Datasets:
File size: 9,894 Bytes
c4a2037 d85a449 76cd022 d85a449 c4a2037 4fe9873 d85a449 4fe9873 d85a449 4fe9873 d85a449 b1dcfcc d85a449 b1dcfcc d85a449 b1dcfcc d85a449 b1dcfcc d85a449 b1dcfcc d85a449 b1dcfcc d85a449 b1dcfcc d85a449 b1dcfcc d85a449 b1dcfcc d85a449 b1dcfcc d85a449 b1dcfcc d85a449 b1dcfcc d85a449 76cd022 d85a449 b1dcfcc d85a449 b1dcfcc d85a449 b1dcfcc c240317 d85a449 b1dcfcc d85a449 b1dcfcc d85a449 b1dcfcc 4fe9873 d85a449 e97f10b d85a449 e97f10b 4fe9873 b1dcfcc 76cd022 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
---
language:
- tr
license: cc-by-nc-nd-4.0
annotations_creators:
- machine-generated
language_creators:
- machine-generated
multilinguality:
- monolingual
pretty_name: SQuAD-TR
size_categories:
- 100K<n<1M
source_datasets:
- extended|squad
task_categories:
- question-answering
task_ids:
- open-domain-qa
- extractive-qa
paperswithcode_id: squad-tr
dataset_info:
- config_name: default
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: text
dtype: string
- name: answer_start
dtype: int32
splits:
- name: train
num_bytes: 95795325
num_examples: 104791
- name: validation
num_bytes: 8287109
num_examples: 8291
download_size: 9425486
dataset_size: 104082434
- config_name: excluded
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: text
dtype: string
splits:
- name: train
num_bytes: 24130226
num_examples: 25528
- name: validation
num_bytes: 3427513
num_examples: 3582
download_size: 5270628
dataset_size: 27557739
- config_name: openqa
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: text
dtype: string
splits:
- name: train
num_bytes: 119261215
num_examples: 130319
- name: validation
num_bytes: 11649046
num_examples: 11873
download_size: 14696114
dataset_size: 130910261
---
# Dataset Card for SQuAD-TR
## Table of Contents
- [SQuAD-TR](#dataset-summary)
- [Dataset Description](#dataset-description)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Additional Information](#additional-information)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## 📜 SQuAD-TR
SQuAD-TR is a machine translated version of the original [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) dataset into Turkish, using [Amazon Translate](https://aws.amazon.com/translate/).
### Dataset Description
- **Repository:** [SQuAD-TR GitHub Repository](https://github.com/boun-tabi/SQuAD2.0-TR)
- **Paper:** Building Efficient and Effective OpenQA Systems for Low-Resource Languages
- **Point of Contact:** [Emrah Budur](mailto:emrah.budur@boun.edu.tr)
## Dataset Structure
### Data Instances
Our data instances follow that of the original SQuAD2.0 dataset.
Shared below is an example instance from the default train dataset🍫
Example from SQuAD2.0:
```
{
"context": "Chocolate is New York City's leading specialty-food export, with up to US$234 million worth of exports each year. Entrepreneurs were forming a \"Chocolate District\" in Brooklyn as of 2014, while Godiva, one of the world's largest chocolatiers, continues to be headquartered in Manhattan.",
"qas": [
{
"id": "56cff221234ae51400d9c140",
"question": "Which one of the world's largest chocolate makers is stationed in Manhattan?",
"is_impossible": false,
"answers": [
{
"text": "Godiva",
"answer_start": 194
}
],
}
]
}
```
Turkish translation:
```
{
"context": "Çikolata, her yıl 234 milyon ABD dolarına varan ihracatı ile New York'un önde gelen özel gıda ihracatıdır. Girişimciler 2014 yılı itibariyle Brooklyn'de bir “Çikolata Bölgesi” kurarken, dünyanın en büyük çikolatacılarından biri olan Godiva merkezi Manhattan'da olmaya devam ediyor.",
"qas": [
{
"id": "56cff221234ae51400d9c140",
"question": "Dünyanın en büyük çikolata üreticilerinden hangisi Manhattan'da konuşlandırılmış?",
"is_impossible": false,
"answers": [
{
"text": "Godiva",
"answer_start": 233
}
]
}
]
}
```
### Data Fields
Below if the data model of the splits.
- `id`: a string feature.
- `title`: a string feature.
- `context`: a string feature.
- `question`: a string feature.
- `answers`: a dictionary feature containing:
- `text`: a string feature.
- `*answer_start`: a int32 feature.
*Notes:
- The training split we get by `openqa` parameter will not include `answer_start` field as it is not required for the training phase of the OpenQA formulation.
- The split we get by `excluded` parameter is also missing `answer_start` field as we could not identify the starting index of the answers for these examples from the context after the translation.
## Dataset Creation
We translated the titles, context paragraphs, questions and answer spans from the original SQuAD2.0 dataset using [Amazon Translate](https://aws.amazon.com/translate/) - requiring us to remap the starting positions of the answer spans, since their positions were changed due to the automatic translation.
We performed an automatic post-processing step to populate the start positions for the answer spans. To do so, we have first looked at whether there was an exact match for the translated answer span in the translated context paragraph and if so, we kept the answer text along with this start position found.
If no exact match was found, we looked for approximate matches using a character-level edit distance algorithm.
We have excluded the question-answer pairs from the original dataset where neither an exact nor an approximate match was found in the translated version. Our `default` configuration corresponds to this version.
We have put the excluded examples in our `excluded` configuration.
As a result, the datasets in these two configurations are mutually exclusive. Below are the details for the corresponding dataset splits.
### Data Splits
The SQuAD2.0 TR dataset has 2 splits: _train_ and _validation_. Below are the statistics for the most recent version of the dataset in the default configuration.
| Split | Articles | Paragraphs | Answerable Questions | Unanswerable Questions | Total |
| ---------- | -------- | ---------- | -------------------- | ---------------------- | ------- |
| train | 442 | 18776 | 61293 | 43498 | 104,791 |
| validation | 35 | 1204 | 2346 | 5945 | 8291 |
| Split | Articles | Paragraphs | Questions wo/ answers | Total |
| ------- | -------- | ---------- | --------------------- | ------- |
| train-excluded | 440 | 13490 | 25528 | 25528 |
| dev-excluded | 35 | 924 | 3582 | 3582 |
In addition to the default configuration, we also a different view of train split can be obtained specifically for openqa setting by combining the `train` and `train-excluded` splits. In this view, we only have question-answer pairs (without `answer_start` field) along with their contexts.
| Split | Articles | Paragraphs | Questions w/ answers | Total |
| ---------- | -------- | ---------- | -------------------- | ------- |
| openqa | 442 | 18776 | 86821 | 86821 |
More information on our translation strategy can be found in our linked paper.
### Source Data
This dataset used the original SQuAD2.0 dataset as its source data.
### Licensing Information
The SQuAD-TR is released under [CC BY-NC-ND 4.0](https://creativecommons.org/licenses/by-nc-nd/4.0).
#### 🤗 HuggingFace datasets
```py
from datasets import load_dataset
squad_tr_standard_qa = load_dataset("[TBD]", "default")
squad_tr_open_qa = load_dataset("[TBD]", "openqa")
squad_tr_excluded = load_dataset("[TBD]", "excluded")
xquad_tr = load_dataset("xquad", "xquad.tr") # External resource
```
* Demo application 👉 [Google Colab](https://colab.research.google.com/drive/1QVD0c1kFfOUc1sRGKDHWeF_HgNEineRt?usp=sharing).
### 🔬 Reproducibility
You can find all code, models and samples of the input data here [link TBD]. Please feel free to reach out to us if you have any specific questions.
### ✍️ Citation
>[Emrah Budur](https://scholar.google.com/citations?user=zSNd03UAAAAJ), [Rıza Özçelik](https://www.cmpe.boun.edu.tr/~riza.ozcelik), [Dilara Soylu](https://scholar.google.com/citations?user=_NC2jJEAAAAJ), [Omar Khattab](https://omarkhattab.com), [Tunga Güngör](https://www.cmpe.boun.edu.tr/~gungort/) and [Christopher Potts](https://web.stanford.edu/~cgpotts).
Building Efficient and Effective OpenQA Systems for Low-Resource Languages. 2024.
```
@misc{budur-etal-2024-squad-tr,
title={Building Efficient and Effective OpenQA Systems for Low-Resource Languages},
author={Emrah Budur and R{\i}za \"{O}z\c{c}elik and Dilara Soylu and Omar Khattab and Tunga G\"{u}ng\"{o}r and Christopher Potts},
year={2024},
eprint={TBD},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
## ❤ Acknowledgment
This research was supported by the _[AWS Cloud Credits for Research Program](https://aws.amazon.com/government-education/research-and-technical-computing/cloud-credit-for-research/) (formerly AWS Research Grants)_.
We thank Alara Dirik, Almira Bağlar, Berfu Büyüköz, Berna Erden, Gökçe Uludoğan, Havva Yüksel, Melih Barsbey, Murat Karademir, Selen Parlar, Tuğçe Ulutuğ, Utku Yavuz for their support on our application for AWS Cloud Credits for Research Program and Fatih Mehmet Güler for the valuable advice, discussion and insightful comments. |