Datasets:
ArXiv:
License:
anjalyjayakrishnan
commited on
Commit
•
695efb7
1
Parent(s):
8a28fc8
improved loading time
Browse files- snow-mountain.py +31 -17
snow-mountain.py
CHANGED
@@ -66,6 +66,15 @@ for lang in _LANGUAGES:
|
|
66 |
}
|
67 |
_FILES[lang] = file_dic
|
68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
class Test(datasets.GeneratorBasedBuilder):
|
71 |
|
@@ -100,6 +109,18 @@ class Test(datasets.GeneratorBasedBuilder):
|
|
100 |
|
101 |
downloaded_files = dl_manager.download(_FILES[self.config.name])
|
102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
data_size = ['500', '1000', '2500', 'short', 'full']
|
104 |
|
105 |
splits = []
|
@@ -109,7 +130,7 @@ class Test(datasets.GeneratorBasedBuilder):
|
|
109 |
name=f"train_{size}",
|
110 |
gen_kwargs={
|
111 |
"filepath": downloaded_files[f"train_{size}"],
|
112 |
-
"
|
113 |
},
|
114 |
)
|
115 |
)
|
@@ -118,7 +139,7 @@ class Test(datasets.GeneratorBasedBuilder):
|
|
118 |
name=f"val_{size}",
|
119 |
gen_kwargs={
|
120 |
"filepath": downloaded_files[f"val_{size}"],
|
121 |
-
"
|
122 |
},
|
123 |
)
|
124 |
)
|
@@ -127,7 +148,7 @@ class Test(datasets.GeneratorBasedBuilder):
|
|
127 |
name="test_common",
|
128 |
gen_kwargs={
|
129 |
"filepath": downloaded_files["test_common"],
|
130 |
-
"
|
131 |
},
|
132 |
)
|
133 |
)
|
@@ -136,7 +157,7 @@ class Test(datasets.GeneratorBasedBuilder):
|
|
136 |
name="all_verses",
|
137 |
gen_kwargs={
|
138 |
"filepath": downloaded_files["all_verses"],
|
139 |
-
"
|
140 |
},
|
141 |
)
|
142 |
)
|
@@ -145,32 +166,25 @@ class Test(datasets.GeneratorBasedBuilder):
|
|
145 |
name="short_verses",
|
146 |
gen_kwargs={
|
147 |
"filepath": downloaded_files["short_verses"],
|
148 |
-
"
|
149 |
},
|
150 |
)
|
151 |
)
|
152 |
return splits
|
153 |
|
154 |
|
155 |
-
def _generate_examples(self, filepath,
|
156 |
key = 0
|
|
|
157 |
with open(filepath) as f:
|
158 |
data_df = pd.read_csv(f,sep=',')
|
159 |
-
audio_data = {}
|
160 |
for index,row in data_df.iterrows():
|
161 |
audio = row['path'].split('/')[-1]
|
162 |
-
|
|
|
163 |
content = audio_data[audio]
|
164 |
else:
|
165 |
-
|
166 |
-
archive_path = dl_manager.download(archive_url)
|
167 |
-
for path, file in dl_manager.iter_archive(archive_path):
|
168 |
-
audio_ = path.split('/')[-1]
|
169 |
-
if audio_ not in audio_data:
|
170 |
-
content = file.read()
|
171 |
-
audio_data[audio_] = content
|
172 |
-
if audio in audio_data:
|
173 |
-
content = audio_data[audio]
|
174 |
yield key, {
|
175 |
"sentence": row["sentence"],
|
176 |
"path": row["path"],
|
|
|
66 |
}
|
67 |
_FILES[lang] = file_dic
|
68 |
|
69 |
+
NT_BOOKS = ['MAT', 'MRK', 'LUK', 'JHN', 'ACT', 'ROM', '1CO', '2CO', 'GAL', 'EPH', 'PHP', 'COL', '1TH',
|
70 |
+
'2TH', '1TI', '2TI', 'TIT', 'PHM', 'HEB', 'JAS', '1PE', '2PE', '1JN', '2JN', '3JN', 'JUD', 'REV']
|
71 |
+
OT_BOOKS = ['GEN', 'EXO', 'LEV', 'NUM', 'DEU', 'JOS', 'JDG', 'RUT', '1SA', '2SA', '1KI', '2KI', '1CH',
|
72 |
+
'2CH', 'EZR', 'NEH', 'EST', 'JOB', 'PSA', 'PRO', 'ECC', 'SNG', 'ISA', 'JER', 'LAM', 'EZK',
|
73 |
+
'DAN', 'HOS', 'JOL', 'AMO', 'OBA', 'JON', 'MIC', 'NAM', 'HAB', 'ZEP', 'HAG', 'ZEC', 'MAL']
|
74 |
+
|
75 |
+
BOOKS_DIC = {'hindi':OT_BOOKS, 'bhadrawahi':NT_BOOKS, 'bilaspuri':NT_BOOKS, 'dogri':NT_BOOKS, 'gaddi':
|
76 |
+
NT_BOOKS, 'haryanvi':NT_BOOKS, 'kangri':NT_BOOKS, 'kulvi':NT_BOOKS, 'kulvi_outer_seraji':NT_BOOKS
|
77 |
+
, 'mandeali':NT_BOOKS, 'pahari_mahasui':NT_BOOKS}
|
78 |
|
79 |
class Test(datasets.GeneratorBasedBuilder):
|
80 |
|
|
|
109 |
|
110 |
downloaded_files = dl_manager.download(_FILES[self.config.name])
|
111 |
|
112 |
+
audio_data = {}
|
113 |
+
for book in BOOKS_DIC[self.config.name]:
|
114 |
+
archive_url = f"data/cleaned/{self.config.name}/{book}.tar.gz"
|
115 |
+
# archive_url = '/'.join(row["path"].split('/')[:-1])+'.tar.gz'
|
116 |
+
archive_path = dl_manager.download(archive_url)
|
117 |
+
for path, file in dl_manager.iter_archive(archive_path):
|
118 |
+
audio_ = path.split('/')[-1]
|
119 |
+
if audio_ not in audio_data:
|
120 |
+
content = file.read()
|
121 |
+
audio_data[audio_] = content
|
122 |
+
|
123 |
+
|
124 |
data_size = ['500', '1000', '2500', 'short', 'full']
|
125 |
|
126 |
splits = []
|
|
|
130 |
name=f"train_{size}",
|
131 |
gen_kwargs={
|
132 |
"filepath": downloaded_files[f"train_{size}"],
|
133 |
+
"audio_data": audio_data,
|
134 |
},
|
135 |
)
|
136 |
)
|
|
|
139 |
name=f"val_{size}",
|
140 |
gen_kwargs={
|
141 |
"filepath": downloaded_files[f"val_{size}"],
|
142 |
+
"audio_data": audio_data,
|
143 |
},
|
144 |
)
|
145 |
)
|
|
|
148 |
name="test_common",
|
149 |
gen_kwargs={
|
150 |
"filepath": downloaded_files["test_common"],
|
151 |
+
"audio_data": audio_data,
|
152 |
},
|
153 |
)
|
154 |
)
|
|
|
157 |
name="all_verses",
|
158 |
gen_kwargs={
|
159 |
"filepath": downloaded_files["all_verses"],
|
160 |
+
"audio_data": audio_data,
|
161 |
},
|
162 |
)
|
163 |
)
|
|
|
166 |
name="short_verses",
|
167 |
gen_kwargs={
|
168 |
"filepath": downloaded_files["short_verses"],
|
169 |
+
"audio_data": audio_data,
|
170 |
},
|
171 |
)
|
172 |
)
|
173 |
return splits
|
174 |
|
175 |
|
176 |
+
def _generate_examples(self, filepath, audio_data):
|
177 |
key = 0
|
178 |
+
#print(list(audio_data.keys()))
|
179 |
with open(filepath) as f:
|
180 |
data_df = pd.read_csv(f,sep=',')
|
|
|
181 |
for index,row in data_df.iterrows():
|
182 |
audio = row['path'].split('/')[-1]
|
183 |
+
content = ''
|
184 |
+
if audio in list(audio_data.keys()):
|
185 |
content = audio_data[audio]
|
186 |
else:
|
187 |
+
print(f"*********** Couldn't find audio: {audio} **************")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
yield key, {
|
189 |
"sentence": row["sentence"],
|
190 |
"path": row["path"],
|