File size: 2,834 Bytes
55aa166
 
d11e973
 
 
 
 
 
 
a659f94
d11e973
 
 
 
 
 
 
55aa166
bbf9087
 
 
d11e973
 
 
 
 
 
 
 
a659f94
 
 
bbf9087
 
d11e973
a659f94
d11e973
a659f94
d11e973
 
 
 
 
 
 
bbf9087
24fda38
a659f94
 
d11e973
 
24fda38
d11e973
 
 
 
 
24fda38
d11e973
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
license: apache-2.0
task_categories:
- question-answering
- summarization
- conversational
- sentence-similarity
language:
- en
pretty_name: FAISS Vector Store of Embeddings for Books
tags:
- faiss
- langchain
- instructor embeddings
- vector stores
- books
- LLM
---
# Vector store of embeddings for books 
- **"1984" by George Orwell**
- **"The Almanac of Naval Ravikant" by Eric Jorgenson**

This is a [faiss](https://github.com/facebookresearch/faiss) vector store created with [instructor embeddings](https://github.com/HKUNLP/instructor-embedding) using [LangChain](https://langchain.readthedocs.io/en/latest/modules/indexes/examples/embeddings.html#instructembeddings) . Use it for similarity search, question answering or anything else that leverages embeddings! 😃

Creating these embeddings can take a while so here's a convenient, downloadable one 🤗


## How to use

1. Specify the book from one of the following:
   - `"1984"`
   - `"The Almanac of Naval Ravikant"`
3. Download data
4. Load to use with LangChain

```
pip install -qqq langchain InstructorEmbedding sentence_transformers faiss-cpu huggingface_hub
```

```python
import os
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.vectorstores.faiss import FAISS
from huggingface_hub import snapshot_download

# download the vectorstore for the book you want
BOOK="1984"
cache_dir=f"{book}_cache"
vectorstore = snapshot_download(repo_id="calmgoose/book-embeddings",
                                repo_type="dataset",
                                revision="main",
                                allow_patterns=f"books/{BOOK}/*", # to download only the one book
                                cache_dir=cache_dir,
                                )

# get path to the `vectorstore` folder that you just downloaded
# we'll look inside the `cache_dir` for the folder we want
target_dir = BOOK

# Walk through the directory tree recursively
for root, dirs, files in os.walk(cache_dir):
    # Check if the target directory is in the list of directories
    if target_dir in dirs:
        # Get the full path of the target directory
        target_path = os.path.join(root, target_dir)

# load embeddings
# this is what was used to create embeddings for the book
embeddings = HuggingFaceInstructEmbeddings(
    embed_instruction="Represent the book passage for retrieval: ",
    query_instruction="Represent the question for retrieving supporting texts from the book passage: "
    )

# load vector store to use with langchain
docsearch = FAISS.load_local(folder_path=target_path, embeddings=embeddings)

# similarity search
question = "Who is big brother?"
search = docsearch.similarity_search(question, k=4)

for item in search:
    print(item.page_content)
    print(f"From page: {item.metadata['page']}")
    print("---")
```