File size: 22,398 Bytes
8d6952d
b7ea7b8
 
8d6952d
7834a7a
7db18c1
7834a7a
7db18c1
7834a7a
8d6952d
7834a7a
8d6952d
141fbd4
 
 
 
8d6952d
141fbd4
8d6952d
7834a7a
8d6952d
141fbd4
 
 
7834a7a
9b00be1
bf446c2
 
 
 
 
 
 
 
 
 
 
 
02fe433
 
 
 
 
 
 
 
 
401e0a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02fe433
 
bf446c2
02fe433
7c06415
bf446c2
7c06415
02fe433
bf446c2
02fe433
bf446c2
 
02fe433
 
 
 
 
 
 
 
401e0a9
 
 
 
02fe433
 
2d948f1
02fe433
7c06415
2d948f1
7c06415
02fe433
2d948f1
02fe433
2d948f1
 
02fe433
 
 
 
 
 
 
 
401e0a9
 
02fe433
 
02a5ceb
02fe433
7c06415
02a5ceb
7c06415
02fe433
02a5ceb
02fe433
02a5ceb
 
02fe433
 
 
 
 
 
 
 
401e0a9
 
02fe433
 
 
 
7c06415
 
 
02fe433
 
 
 
 
 
 
 
 
 
 
 
 
401e0a9
 
02fe433
 
 
 
7c06415
 
 
02fe433
 
 
 
 
 
 
 
 
 
 
 
 
401e0a9
 
 
02fe433
 
 
 
7c06415
 
 
02fe433
 
 
 
 
 
 
 
 
 
 
 
 
401e0a9
 
 
02fe433
 
 
 
7c06415
 
 
02fe433
 
 
 
 
 
 
 
 
 
 
 
 
401e0a9
 
 
02fe433
 
 
 
7c06415
 
 
02fe433
 
 
 
 
 
 
 
 
 
 
 
 
401e0a9
 
 
02fe433
 
 
 
7c06415
 
 
02fe433
 
 
 
 
 
 
 
 
 
 
 
 
401e0a9
 
 
02fe433
 
 
 
7c06415
 
 
02fe433
 
 
 
 
 
 
 
 
 
 
 
 
401e0a9
 
 
02fe433
 
 
 
7c06415
 
 
02fe433
 
 
 
 
bf446c2
 
 
 
 
 
 
 
 
2d948f1
 
 
 
 
 
 
 
02a5ceb
 
 
 
 
 
 
 
401e0a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d6952d
 
 
 
 
 
 
7834a7a
8d6952d
 
 
7834a7a
 
8d6952d
 
 
 
 
 
 
 
 
 
 
 
 
7834a7a
8d6952d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b00be1
 
 
 
 
 
 
 
 
 
 
 
 
 
8d6952d
 
 
 
 
 
 
 
 
 
 
b7ea7b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c6472e
b7ea7b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d6952d
 
02fe433
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
---
annotations_creators:
- found
language_creators:
- found
language:
- en
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
- 10K<n<100K
- 1K<n<10K
- n<1K
source_datasets:
- extended|other-tweet-datasets
task_categories:
- text-classification
task_ids:
- intent-classification
- multi-class-classification
- sentiment-classification
paperswithcode_id: tweeteval
pretty_name: TweetEval
config_names:
- emoji
- emotion
- hate
- irony
- offensive
- sentiment
- stance_abortion
- stance_atheism
- stance_climate
- stance_feminist
- stance_hillary
dataset_info:
- config_name: emoji
  features:
  - name: text
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': ❀
          '1': 😍
          '2': πŸ˜‚
          '3': πŸ’•
          '4': πŸ”₯
          '5': 😊
          '6': 😎
          '7': ✨
          '8': πŸ’™
          '9': 😘
          '10': πŸ“·
          '11': πŸ‡ΊπŸ‡Έ
          '12': β˜€
          '13': πŸ’œ
          '14': πŸ˜‰
          '15': πŸ’―
          '16': 😁
          '17': πŸŽ„
          '18': πŸ“Έ
          '19': 😜
  splits:
  - name: train
    num_bytes: 3803167
    num_examples: 45000
  - name: test
    num_bytes: 4255901
    num_examples: 50000
  - name: validation
    num_bytes: 396079
    num_examples: 5000
  download_size: 5939308
  dataset_size: 8455147
- config_name: emotion
  features:
  - name: text
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': anger
          '1': joy
          '2': optimism
          '3': sadness
  splits:
  - name: train
    num_bytes: 338871
    num_examples: 3257
  - name: test
    num_bytes: 146645
    num_examples: 1421
  - name: validation
    num_bytes: 38273
    num_examples: 374
  download_size: 367016
  dataset_size: 523789
- config_name: hate
  features:
  - name: text
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': non-hate
          '1': hate
  splits:
  - name: train
    num_bytes: 1223650
    num_examples: 9000
  - name: test
    num_bytes: 428934
    num_examples: 2970
  - name: validation
    num_bytes: 154144
    num_examples: 1000
  download_size: 1196346
  dataset_size: 1806728
- config_name: irony
  features:
  - name: text
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': non_irony
          '1': irony
  splits:
  - name: train
    num_bytes: 259191
    num_examples: 2862
  - name: test
    num_bytes: 75901
    num_examples: 784
  - name: validation
    num_bytes: 86021
    num_examples: 955
  download_size: 385613
  dataset_size: 421113
- config_name: offensive
  features:
  - name: text
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': non-offensive
          '1': offensive
  splits:
  - name: train
    num_bytes: 1648069
    num_examples: 11916
  - name: test
    num_bytes: 135477
    num_examples: 860
  - name: validation
    num_bytes: 192421
    num_examples: 1324
  download_size: 1863383
  dataset_size: 1975967
- config_name: sentiment
  features:
  - name: text
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': negative
          '1': neutral
          '2': positive
  splits:
  - name: train
    num_bytes: 5425142
    num_examples: 45615
  - name: test
    num_bytes: 1279548
    num_examples: 12284
  - name: validation
    num_bytes: 239088
    num_examples: 2000
  download_size: 6465841
  dataset_size: 6943778
- config_name: stance_abortion
  features:
  - name: text
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': none
          '1': against
          '2': favor
  splits:
  - name: train
    num_bytes: 68698
    num_examples: 587
  - name: test
    num_bytes: 33175
    num_examples: 280
  - name: validation
    num_bytes: 7661
    num_examples: 66
  download_size: 102062
  dataset_size: 109534
- config_name: stance_atheism
  features:
  - name: text
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': none
          '1': against
          '2': favor
  splits:
  - name: train
    num_bytes: 54779
    num_examples: 461
  - name: test
    num_bytes: 25720
    num_examples: 220
  - name: validation
    num_bytes: 6324
    num_examples: 52
  download_size: 80947
  dataset_size: 86823
- config_name: stance_climate
  features:
  - name: text
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': none
          '1': against
          '2': favor
  splits:
  - name: train
    num_bytes: 40253
    num_examples: 355
  - name: test
    num_bytes: 19929
    num_examples: 169
  - name: validation
    num_bytes: 4805
    num_examples: 40
  download_size: 60463
  dataset_size: 64987
- config_name: stance_feminist
  features:
  - name: text
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': none
          '1': against
          '2': favor
  splits:
  - name: train
    num_bytes: 70513
    num_examples: 597
  - name: test
    num_bytes: 33309
    num_examples: 285
  - name: validation
    num_bytes: 8039
    num_examples: 67
  download_size: 104257
  dataset_size: 111861
- config_name: stance_hillary
  features:
  - name: text
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': none
          '1': against
          '2': favor
  splits:
  - name: train
    num_bytes: 69600
    num_examples: 620
  - name: test
    num_bytes: 34491
    num_examples: 295
  - name: validation
    num_bytes: 7536
    num_examples: 69
  download_size: 103745
  dataset_size: 111627
configs:
- config_name: emoji
  data_files:
  - split: train
    path: emoji/train-*
  - split: test
    path: emoji/test-*
  - split: validation
    path: emoji/validation-*
- config_name: emotion
  data_files:
  - split: train
    path: emotion/train-*
  - split: test
    path: emotion/test-*
  - split: validation
    path: emotion/validation-*
- config_name: hate
  data_files:
  - split: train
    path: hate/train-*
  - split: test
    path: hate/test-*
  - split: validation
    path: hate/validation-*
train-eval-index:
- config: emotion
  task: text-classification
  task_id: multi_class_classification
  splits:
    train_split: train
    eval_split: test
  col_mapping:
    text: text
    label: target
  metrics:
  - type: accuracy
    name: Accuracy
  - type: f1
    name: F1 macro
    args:
      average: macro
  - type: f1
    name: F1 micro
    args:
      average: micro
  - type: f1
    name: F1 weighted
    args:
      average: weighted
  - type: precision
    name: Precision macro
    args:
      average: macro
  - type: precision
    name: Precision micro
    args:
      average: micro
  - type: precision
    name: Precision weighted
    args:
      average: weighted
  - type: recall
    name: Recall macro
    args:
      average: macro
  - type: recall
    name: Recall micro
    args:
      average: micro
  - type: recall
    name: Recall weighted
    args:
      average: weighted
- config: hate
  task: text-classification
  task_id: binary_classification
  splits:
    train_split: train
    eval_split: test
  col_mapping:
    text: text
    label: target
  metrics:
  - type: accuracy
    name: Accuracy
  - type: f1
    name: F1 binary
    args:
      average: binary
  - type: precision
    name: Precision macro
    args:
      average: macro
  - type: precision
    name: Precision micro
    args:
      average: micro
  - type: precision
    name: Precision weighted
    args:
      average: weighted
  - type: recall
    name: Recall macro
    args:
      average: macro
  - type: recall
    name: Recall micro
    args:
      average: micro
  - type: recall
    name: Recall weighted
    args:
      average: weighted
- config: irony
  task: text-classification
  task_id: binary_classification
  splits:
    train_split: train
    eval_split: test
  col_mapping:
    text: text
    label: target
  metrics:
  - type: accuracy
    name: Accuracy
  - type: f1
    name: F1 binary
    args:
      average: binary
  - type: precision
    name: Precision macro
    args:
      average: macro
  - type: precision
    name: Precision micro
    args:
      average: micro
  - type: precision
    name: Precision weighted
    args:
      average: weighted
  - type: recall
    name: Recall macro
    args:
      average: macro
  - type: recall
    name: Recall micro
    args:
      average: micro
  - type: recall
    name: Recall weighted
    args:
      average: weighted
- config: offensive
  task: text-classification
  task_id: binary_classification
  splits:
    train_split: train
    eval_split: test
  col_mapping:
    text: text
    label: target
  metrics:
  - type: accuracy
    name: Accuracy
  - type: f1
    name: F1 binary
    args:
      average: binary
  - type: precision
    name: Precision macro
    args:
      average: macro
  - type: precision
    name: Precision micro
    args:
      average: micro
  - type: precision
    name: Precision weighted
    args:
      average: weighted
  - type: recall
    name: Recall macro
    args:
      average: macro
  - type: recall
    name: Recall micro
    args:
      average: micro
  - type: recall
    name: Recall weighted
    args:
      average: weighted
- config: sentiment
  task: text-classification
  task_id: multi_class_classification
  splits:
    train_split: train
    eval_split: test
  col_mapping:
    text: text
    label: target
  metrics:
  - type: accuracy
    name: Accuracy
  - type: f1
    name: F1 macro
    args:
      average: macro
  - type: f1
    name: F1 micro
    args:
      average: micro
  - type: f1
    name: F1 weighted
    args:
      average: weighted
  - type: precision
    name: Precision macro
    args:
      average: macro
  - type: precision
    name: Precision micro
    args:
      average: micro
  - type: precision
    name: Precision weighted
    args:
      average: weighted
  - type: recall
    name: Recall macro
    args:
      average: macro
  - type: recall
    name: Recall micro
    args:
      average: micro
  - type: recall
    name: Recall weighted
    args:
      average: weighted
---

# Dataset Card for tweet_eval

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [Needs More Information]
- **Repository:** [GitHub](https://github.com/cardiffnlp/tweeteval)
- **Paper:** [EMNLP Paper](https://arxiv.org/pdf/2010.12421.pdf)
- **Leaderboard:** [GitHub Leaderboard](https://github.com/cardiffnlp/tweeteval)
- **Point of Contact:** [Needs More Information]

### Dataset Summary

TweetEval consists of seven heterogenous tasks in Twitter, all framed as multi-class tweet classification. The tasks include - irony, hate, offensive, stance, emoji, emotion, and sentiment. All tasks have been unified into the same benchmark, with each dataset presented in the same format and with fixed training, validation and test splits.

### Supported Tasks and Leaderboards

- `text_classification`: The dataset can be trained using a SentenceClassification model from HuggingFace transformers.

### Languages

The text in the dataset is in English, as spoken by Twitter users.

## Dataset Structure

### Data Instances

An instance from `emoji` config:

```
{'label': 12, 'text': 'Sunday afternoon walking through Venice in the sun with @user ️ ️ ️ @ Abbot Kinney, Venice'}
```

An instance from `emotion` config:

```
{'label': 2, 'text': "β€œWorry is a down payment on a problem you may never have'. \xa0Joyce Meyer.  #motivation #leadership #worry"}
```

An instance from `hate` config:

```
{'label': 0, 'text': '@user nice new signage. Are you not concerned by Beatlemania -style hysterical crowds crongregating on you…'}
```

An instance from `irony` config:

```
{'label': 1, 'text': 'seeing ppl walking w/ crutches makes me really excited for the next 3 weeks of my life'}
```

An instance from `offensive` config:

```
{'label': 0, 'text': '@user Bono... who cares. Soon people will understand that they gain nothing from following a phony celebrity. Become a Leader of your people instead or help and support your fellow countrymen.'}
```

An instance from `sentiment` config:

```
{'label': 2, 'text': '"QT @user In the original draft of the 7th book, Remus Lupin survived the Battle of Hogwarts. #HappyBirthdayRemusLupin"'}
```

An instance from `stance_abortion` config:

```
{'label': 1, 'text': 'we remind ourselves that love means to be willing to give until it hurts - Mother Teresa'}
```

An instance from `stance_atheism` config:

```
{'label': 1, 'text': '@user Bless Almighty God, Almighty Holy Spirit and the Messiah. #SemST'}
```

An instance from `stance_climate` config:

```
{'label': 0, 'text': 'Why Is The Pope Upset?  via @user #UnzippedTruth #PopeFrancis #SemST'}
```

An instance from `stance_feminist` config:

```
{'label': 1, 'text': "@user @user is the UK's answer to @user and @user  #GamerGate #SemST"}
```

An instance from `stance_hillary` config:

```
{'label': 1, 'text': "If a man demanded staff to get him an ice tea he'd be called a sexists elitist pig.. Oink oink #Hillary #SemST"}
```

### Data Fields
For `emoji` config:

- `text`: a `string` feature containing the tweet.

- `label`: an `int` classification label with the following mapping:

    `0`: ❀

    `1`: 😍

    `2`: πŸ˜‚

    `3`: πŸ’•

    `4`: πŸ”₯

    `5`: 😊

    `6`: 😎

    `7`: ✨

    `8`: πŸ’™

    `9`: 😘

    `10`: πŸ“·

    `11`: πŸ‡ΊπŸ‡Έ

    `12`: β˜€

    `13`: πŸ’œ

    `14`: πŸ˜‰

    `15`: πŸ’―

    `16`: 😁

    `17`: πŸŽ„

    `18`: πŸ“Έ

    `19`: 😜

For `emotion` config:

- `text`: a `string` feature containing the tweet.

- `label`: an `int` classification label with the following mapping:

    `0`: anger

    `1`: joy

    `2`: optimism

    `3`: sadness

For `hate` config:

- `text`: a `string` feature containing the tweet.

- `label`: an `int` classification label with the following mapping:

    `0`: non-hate

    `1`: hate

For `irony` config:

- `text`: a `string` feature containing the tweet.

- `label`: an `int` classification label with the following mapping:

    `0`: non_irony

    `1`: irony

For `offensive` config:

- `text`: a `string` feature containing the tweet.

- `label`: an `int` classification label with the following mapping:

    `0`: non-offensive

    `1`: offensive

For `sentiment` config:

- `text`: a `string` feature containing the tweet.

- `label`: an `int` classification label with the following mapping:

    `0`: negative

    `1`: neutral

    `2`: positive

For `stance_abortion` config:

- `text`: a `string` feature containing the tweet.

- `label`: an `int` classification label with the following mapping:

    `0`: none

    `1`: against

    `2`: favor

For `stance_atheism` config:

- `text`: a `string` feature containing the tweet.

- `label`: an `int` classification label with the following mapping:

    `0`: none

    `1`: against

    `2`: favor

For `stance_climate` config:

- `text`: a `string` feature containing the tweet.

- `label`: an `int` classification label with the following mapping:

    `0`: none

    `1`: against

    `2`: favor

For `stance_feminist` config:

- `text`: a `string` feature containing the tweet.

- `label`: an `int` classification label with the following mapping:

    `0`: none

    `1`: against

    `2`: favor

For `stance_hillary` config:

- `text`: a `string` feature containing the tweet.

- `label`: an `int` classification label with the following mapping:

    `0`: none

    `1`: against

    `2`: favor



### Data Splits

| name            | train | validation | test  |
| --------------- | ----- | ---------- | ----- |
| emoji           | 45000 | 5000       | 50000 |
| emotion         | 3257  | 374        | 1421  |
| hate            | 9000  | 1000       | 2970  |
| irony           | 2862  | 955        | 784   |
| offensive       | 11916 | 1324       | 860   |
| sentiment       | 45615 | 2000       | 12284 |
| stance_abortion | 587   | 66         | 280   |
| stance_atheism  | 461   | 52         | 220   |
| stance_climate  | 355   | 40         | 169   |
| stance_feminist | 597   | 67         | 285   |
| stance_hillary  | 620   | 69         | 295   |

## Dataset Creation

### Curation Rationale

[Needs More Information]

### Source Data

#### Initial Data Collection and Normalization

[Needs More Information]

#### Who are the source language producers?

[Needs More Information]

### Annotations

#### Annotation process

[Needs More Information]

#### Who are the annotators?

[Needs More Information]

### Personal and Sensitive Information

[Needs More Information]

## Considerations for Using the Data

### Social Impact of Dataset

[Needs More Information]

### Discussion of Biases

[Needs More Information]

### Other Known Limitations

[Needs More Information]

## Additional Information

### Dataset Curators

Francesco Barbieri, Jose Camacho-Collados, Luis Espiinosa-Anke and Leonardo Neves through Cardiff NLP.

### Licensing Information

This is not a single dataset, therefore each subset has its own license (the collection itself does not have additional restrictions).

All of the datasets require complying with Twitter [Terms Of Service](https://twitter.com/tos) and Twitter API [Terms Of Service](https://developer.twitter.com/en/developer-terms/agreement-and-policy)

Additionally the license are:
- emoji: Undefined
- emotion(EmoInt): Undefined
- hate (HateEval): Need permission [here](http://hatespeech.di.unito.it/hateval.html)
- irony: Undefined
- Offensive: Undefined
- Sentiment: [Creative Commons Attribution 3.0 Unported License](https://groups.google.com/g/semevaltweet/c/k5DDcvVb_Vo/m/zEOdECFyBQAJ)
- Stance: Undefined


### Citation Information

```
@inproceedings{barbieri2020tweeteval,
title={{TweetEval:Unified Benchmark and Comparative Evaluation for Tweet Classification}},
author={Barbieri, Francesco and Camacho-Collados, Jose and Espinosa-Anke, Luis and Neves, Leonardo},
booktitle={Proceedings of Findings of EMNLP},
year={2020}
}
```

If you use any of the TweetEval datasets, please cite their original publications:

#### Emotion Recognition:
```
@inproceedings{mohammad2018semeval,
  title={Semeval-2018 task 1: Affect in tweets},
  author={Mohammad, Saif and Bravo-Marquez, Felipe and Salameh, Mohammad and Kiritchenko, Svetlana},
  booktitle={Proceedings of the 12th international workshop on semantic evaluation},
  pages={1--17},
  year={2018}
}

```
#### Emoji Prediction:
```
@inproceedings{barbieri2018semeval,
  title={Semeval 2018 task 2: Multilingual emoji prediction},
  author={Barbieri, Francesco and Camacho-Collados, Jose and Ronzano, Francesco and Espinosa-Anke, Luis and
    Ballesteros, Miguel and Basile, Valerio and Patti, Viviana and Saggion, Horacio},
  booktitle={Proceedings of The 12th International Workshop on Semantic Evaluation},
  pages={24--33},
  year={2018}
}
```

#### Irony Detection:
```
@inproceedings{van2018semeval,
  title={Semeval-2018 task 3: Irony detection in english tweets},
  author={Van Hee, Cynthia and Lefever, Els and Hoste, V{\'e}ronique},
  booktitle={Proceedings of The 12th International Workshop on Semantic Evaluation},
  pages={39--50},
  year={2018}
}
```

#### Hate Speech Detection:
```
@inproceedings{basile-etal-2019-semeval,
    title = "{S}em{E}val-2019 Task 5: Multilingual Detection of Hate Speech Against Immigrants and Women in {T}witter",
    author = "Basile, Valerio  and Bosco, Cristina  and Fersini, Elisabetta  and Nozza, Debora and Patti, Viviana and
      Rangel Pardo, Francisco Manuel  and Rosso, Paolo  and Sanguinetti, Manuela",
    booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
    year = "2019",
    address = "Minneapolis, Minnesota, USA",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/S19-2007",
    doi = "10.18653/v1/S19-2007",
    pages = "54--63"
}
```
#### Offensive Language Identification:
```
@inproceedings{zampieri2019semeval,
  title={SemEval-2019 Task 6: Identifying and Categorizing Offensive Language in Social Media (OffensEval)},
  author={Zampieri, Marcos and Malmasi, Shervin and Nakov, Preslav and Rosenthal, Sara and Farra, Noura and Kumar, Ritesh},
  booktitle={Proceedings of the 13th International Workshop on Semantic Evaluation},
  pages={75--86},
  year={2019}
}
```

#### Sentiment Analysis:
```
@inproceedings{rosenthal2017semeval,
  title={SemEval-2017 task 4: Sentiment analysis in Twitter},
  author={Rosenthal, Sara and Farra, Noura and Nakov, Preslav},
  booktitle={Proceedings of the 11th international workshop on semantic evaluation (SemEval-2017)},
  pages={502--518},
  year={2017}
}
```

#### Stance Detection:
```
@inproceedings{mohammad2016semeval,
  title={Semeval-2016 task 6: Detecting stance in tweets},
  author={Mohammad, Saif and Kiritchenko, Svetlana and Sobhani, Parinaz and Zhu, Xiaodan and Cherry, Colin},
  booktitle={Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016)},
  pages={31--41},
  year={2016}
}
```

### Contributions

Thanks to [@gchhablani](https://github.com/gchhablani) and [@abhishekkrthakur](https://github.com/abhishekkrthakur) for adding this dataset.