File size: 9,720 Bytes
8d6952d 63aa343 8d6952d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The Tweet Eval Datasets"""
import datasets
_CITATION = """\
@inproceedings{barbieri2020tweeteval,
title={{TweetEval:Unified Benchmark and Comparative Evaluation for Tweet Classification}},
author={Barbieri, Francesco and Camacho-Collados, Jose and Espinosa-Anke, Luis and Neves, Leonardo},
booktitle={Proceedings of Findings of EMNLP},
year={2020}
}
"""
_DESCRIPTION = """\
TweetEval consists of seven heterogenous tasks in Twitter, all framed as multi-class tweet classification. All tasks have been unified into the same benchmark, with each dataset presented in the same format and with fixed training, validation and test splits.
"""
_HOMEPAGE = "https://github.com/cardiffnlp/tweeteval"
_LICENSE = ""
URL = "https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/"
_URLs = {
"emoji": {
"train_text": URL + "emoji/train_text.txt",
"train_labels": URL + "emoji/train_labels.txt",
"test_text": URL + "emoji/test_text.txt",
"test_labels": URL + "emoji/test_labels.txt",
"val_text": URL + "emoji/val_text.txt",
"val_labels": URL + "emoji/val_labels.txt",
},
"emotion": {
"train_text": URL + "emotion/train_text.txt",
"train_labels": URL + "emotion/train_labels.txt",
"test_text": URL + "emotion/test_text.txt",
"test_labels": URL + "emotion/test_labels.txt",
"val_text": URL + "emotion/val_text.txt",
"val_labels": URL + "emotion/val_labels.txt",
},
"hate": {
"train_text": URL + "hate/train_text.txt",
"train_labels": URL + "hate/train_labels.txt",
"test_text": URL + "hate/test_text.txt",
"test_labels": URL + "hate/test_labels.txt",
"val_text": URL + "hate/val_text.txt",
"val_labels": URL + "hate/val_labels.txt",
},
"irony": {
"train_text": URL + "irony/train_text.txt",
"train_labels": URL + "irony/train_labels.txt",
"test_text": URL + "irony/test_text.txt",
"test_labels": URL + "irony/test_labels.txt",
"val_text": URL + "irony/val_text.txt",
"val_labels": URL + "irony/val_labels.txt",
},
"offensive": {
"train_text": URL + "offensive/train_text.txt",
"train_labels": URL + "offensive/train_labels.txt",
"test_text": URL + "offensive/test_text.txt",
"test_labels": URL + "offensive/test_labels.txt",
"val_text": URL + "offensive/val_text.txt",
"val_labels": URL + "offensive/val_labels.txt",
},
"sentiment": {
"train_text": URL + "sentiment/train_text.txt",
"train_labels": URL + "sentiment/train_labels.txt",
"test_text": URL + "sentiment/test_text.txt",
"test_labels": URL + "sentiment/test_labels.txt",
"val_text": URL + "sentiment/val_text.txt",
"val_labels": URL + "sentiment/val_labels.txt",
},
"stance": {
"abortion": {
"train_text": URL + "stance/abortion/train_text.txt",
"train_labels": URL + "stance/abortion/train_labels.txt",
"test_text": URL + "stance/abortion/test_text.txt",
"test_labels": URL + "stance/abortion/test_labels.txt",
"val_text": URL + "stance/abortion/val_text.txt",
"val_labels": URL + "stance/abortion/val_labels.txt",
},
"atheism": {
"train_text": URL + "stance/atheism/train_text.txt",
"train_labels": URL + "stance/atheism/train_labels.txt",
"test_text": URL + "stance/atheism/test_text.txt",
"test_labels": URL + "stance/atheism/test_labels.txt",
"val_text": URL + "stance/atheism/val_text.txt",
"val_labels": URL + "stance/atheism/val_labels.txt",
},
"climate": {
"train_text": URL + "stance/climate/train_text.txt",
"train_labels": URL + "stance/climate/train_labels.txt",
"test_text": URL + "stance/climate/test_text.txt",
"test_labels": URL + "stance/climate/test_labels.txt",
"val_text": URL + "stance/climate/val_text.txt",
"val_labels": URL + "stance/climate/val_labels.txt",
},
"feminist": {
"train_text": URL + "stance/feminist/train_text.txt",
"train_labels": URL + "stance/feminist/train_labels.txt",
"test_text": URL + "stance/feminist/test_text.txt",
"test_labels": URL + "stance/feminist/test_labels.txt",
"val_text": URL + "stance/feminist/val_text.txt",
"val_labels": URL + "stance/feminist/val_labels.txt",
},
"hillary": {
"train_text": URL + "stance/hillary/train_text.txt",
"train_labels": URL + "stance/hillary/train_labels.txt",
"test_text": URL + "stance/hillary/test_text.txt",
"test_labels": URL + "stance/hillary/test_labels.txt",
"val_text": URL + "stance/hillary/val_text.txt",
"val_labels": URL + "stance/hillary/val_labels.txt",
},
},
}
class TweetEvalConfig(datasets.BuilderConfig):
def __init__(self, *args, type=None, sub_type=None, **kwargs):
super().__init__(
*args,
name=f"{type}" if type != "stance" else f"{type}_{sub_type}",
**kwargs,
)
self.type = type
self.sub_type = sub_type
class TweetEval(datasets.GeneratorBasedBuilder):
"""TweetEval Dataset."""
BUILDER_CONFIGS = [
TweetEvalConfig(
type=key,
sub_type=None,
version=datasets.Version("1.1.0"),
description=f"This part of my dataset covers {key} part of TweetEval Dataset.",
)
for key in list(_URLs.keys())
if key != "stance"
] + [
TweetEvalConfig(
type="stance",
sub_type=key,
version=datasets.Version("1.1.0"),
description=f"This part of my dataset covers stance_{key} part of TweetEval Dataset.",
)
for key in list(_URLs["stance"].keys())
]
def _info(self):
if self.config.type == "stance":
names = ["none", "against", "favor"]
elif self.config.type == "sentiment":
names = ["negative", "neutral", "positive"]
elif self.config.type == "offensive":
names = ["non-offensive", "offensive"]
elif self.config.type == "irony":
names = ["non_irony", "irony"]
elif self.config.type == "hate":
names = ["non-hate", "hate"]
elif self.config.type == "emoji":
names = [
"β€",
"π",
"π",
"π",
"π₯",
"π",
"π",
"β¨",
"π",
"π",
"π·",
"πΊπΈ",
"β",
"π",
"π",
"π―",
"π",
"π",
"πΈ",
"π",
]
else:
names = ["anger", "joy", "optimism", "sadness"]
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{"text": datasets.Value("string"), "label": datasets.features.ClassLabel(names=names)}
),
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
if self.config.type != "stance":
my_urls = _URLs[self.config.type]
else:
my_urls = _URLs[self.config.type][self.config.sub_type]
data_dir = dl_manager.download_and_extract(my_urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={"text_path": data_dir["train_text"], "labels_path": data_dir["train_labels"]},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={"text_path": data_dir["test_text"], "labels_path": data_dir["test_labels"]},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={"text_path": data_dir["val_text"], "labels_path": data_dir["val_labels"]},
),
]
def _generate_examples(self, text_path, labels_path):
"""Yields examples."""
with open(text_path, encoding="utf-8") as f:
texts = f.readlines()
with open(labels_path, encoding="utf-8") as f:
labels = f.readlines()
for i, text in enumerate(texts):
yield i, {"text": text.strip(), "label": int(labels[i].strip())}
|