Datasets:
File size: 11,123 Bytes
dc0fb27 2dbf6f8 dc0fb27 9931646 1d4bcb8 9931646 1d4bcb8 9931646 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 |
---
license: apache-2.0
mutilinguality:
- multilingual
task_categories:
- text-generation
task_ids:
- language-modeling
language:
- afr
- amh
- arz
- eng
- fra
- hau
- ibo
- kin
- mlg
- nya
- orm
- por
- sna
- som
- sot
- swa
- tir
- xho
- yor
- zul
viewer: true
dataset_info:
- config_name: afr
features:
- name: id
dtype: string
- name: headline
dtype: string
- name: content
dtype: string
- name: category
dtype: string
- name: url
dtype: string
splits:
- name: train
num_bytes: 4549624636
num_examples: 1042812
- name: validation
num_bytes: 504320368
num_examples: 115868
download_size: 5124049817
dataset_size: 5053945004
- config_name: amh
features:
- name: id
dtype: string
- name: headline
dtype: string
- name: content
dtype: string
- name: category
dtype: string
- name: url
dtype: string
splits:
- name: train
num_bytes: 1115662532
num_examples: 135863
- name: validation
num_bytes: 123858179
num_examples: 15095
download_size: 1248728162
dataset_size: 1239520711
- config_name: arz
features:
- name: id
dtype: string
- name: headline
dtype: string
- name: content
dtype: string
- name: category
dtype: string
- name: url
dtype: string
splits:
- name: train
num_bytes: 621073489
num_examples: 1455662
- name: validation
num_bytes: 69342976
num_examples: 161740
download_size: 753246622
dataset_size: 690416465
- config_name: eng
features:
- name: id
dtype: string
- name: headline
dtype: string
- name: content
dtype: string
- name: category
dtype: string
- name: url
dtype: string
splits:
- name: train
num_bytes: 3795223480
num_examples: 1378555
- name: validation
num_bytes: 423622310
num_examples: 153172
download_size: 4279723559
dataset_size: 4218845790
- config_name: fra
features:
- name: id
dtype: string
- name: headline
dtype: string
- name: content
dtype: string
- name: category
dtype: string
- name: url
dtype: string
splits:
- name: train
num_bytes: 3340740638
num_examples: 1443177
- name: validation
num_bytes: 368983958
num_examples: 160352
download_size: 3796280757
dataset_size: 3709724596
- config_name: hau
features:
- name: id
dtype: string
- name: headline
dtype: string
- name: content
dtype: string
- name: category
dtype: string
- name: url
dtype: string
splits:
- name: train
num_bytes: 909342448
num_examples: 359881
- name: validation
num_bytes: 101151882
num_examples: 39986
download_size: 1027800797
dataset_size: 1010494330
- config_name: ibo
features:
- name: id
dtype: string
- name: headline
dtype: string
- name: content
dtype: string
- name: category
dtype: string
- name: url
dtype: string
splits:
- name: train
num_bytes: 193493918
num_examples: 51386
- name: validation
num_bytes: 22265232
num_examples: 5709
download_size: 219266571
dataset_size: 215759150
- config_name: kin
features:
- name: id
dtype: string
- name: headline
dtype: string
- name: content
dtype: string
- name: category
dtype: string
- name: url
dtype: string
splits:
- name: train
num_bytes: 208582172
num_examples: 97064
- name: validation
num_bytes: 10662209
num_examples: 5831
download_size: 222938591
dataset_size: 219244381
- config_name: mlg
features:
- name: id
dtype: string
- name: headline
dtype: string
- name: content
dtype: string
- name: category
dtype: string
- name: url
dtype: string
splits:
- name: train
num_bytes: 561868602
num_examples: 216210
- name: validation
num_bytes: 62280728
num_examples: 24023
download_size: 635783521
dataset_size: 624149330
- config_name: nya
features:
- name: id
dtype: string
- name: headline
dtype: string
- name: content
dtype: string
- name: category
dtype: string
- name: url
dtype: string
splits:
- name: train
num_bytes: 260737793
num_examples: 39647
- name: validation
num_bytes: 29199589
num_examples: 4405
download_size: 293880333
dataset_size: 289937382
- config_name: orm
features:
- name: id
dtype: string
- name: headline
dtype: string
- name: content
dtype: string
- name: category
dtype: string
- name: url
dtype: string
splits:
- name: train
num_bytes: 51725718
num_examples: 20169
- name: validation
num_bytes: 5500617
num_examples: 2241
download_size: 58001407
dataset_size: 57226335
- config_name: por
features:
- name: id
dtype: string
- name: headline
dtype: string
- name: content
dtype: string
- name: category
dtype: string
- name: url
dtype: string
splits:
- name: train
num_bytes: 2191644027
num_examples: 1089199
- name: validation
num_bytes: 245338209
num_examples: 121022
download_size: 2498665351
dataset_size: 2436982236
- config_name: sna
features:
- name: id
dtype: string
- name: headline
dtype: string
- name: content
dtype: string
- name: category
dtype: string
- name: url
dtype: string
splits:
- name: train
num_bytes: 225393219
num_examples: 60986
- name: validation
num_bytes: 25595688
num_examples: 6776
download_size: 254964089
dataset_size: 250988907
- config_name: som
features:
- name: id
dtype: string
- name: headline
dtype: string
- name: content
dtype: string
- name: category
dtype: string
- name: url
dtype: string
splits:
- name: train
num_bytes: 2165910731
num_examples: 976484
- name: validation
num_bytes: 241175779
num_examples: 108498
download_size: 2451878912
dataset_size: 2407086510
- config_name: sot
features:
- name: id
dtype: string
- name: headline
dtype: string
- name: content
dtype: string
- name: category
dtype: string
- name: url
dtype: string
splits:
- name: train
num_bytes: 199386007
num_examples: 38361
- name: validation
num_bytes: 22324957
num_examples: 4262
download_size: 224556522
dataset_size: 221710964
- config_name: swa
features:
- name: id
dtype: string
- name: headline
dtype: string
- name: content
dtype: string
- name: category
dtype: string
- name: url
dtype: string
splits:
- name: train
num_bytes: 3371589021
num_examples: 1036254
- name: validation
num_bytes: 373326029
num_examples: 115139
download_size: 3804265021
dataset_size: 3744915050
- config_name: tir
features:
- name: id
dtype: string
- name: headline
dtype: string
- name: content
dtype: string
- name: category
dtype: string
- name: url
dtype: string
splits:
- name: train
num_bytes: 32026542
num_examples: 8240
- name: validation
num_bytes: 3589604
num_examples: 915
download_size: 35955368
dataset_size: 35616146
- config_name: xho
features:
- name: id
dtype: string
- name: headline
dtype: string
- name: content
dtype: string
- name: category
dtype: string
- name: url
dtype: string
splits:
- name: train
num_bytes: 114450184
num_examples: 23892
- name: validation
num_bytes: 13051255
num_examples: 2654
download_size: 129410950
dataset_size: 127501439
- config_name: yor
features:
- name: id
dtype: string
- name: headline
dtype: string
- name: content
dtype: string
- name: category
dtype: string
- name: url
dtype: string
splits:
- name: train
num_bytes: 192473693
num_examples: 73473
- name: validation
num_bytes: 21123764
num_examples: 8163
download_size: 217343993
dataset_size: 213597457
- config_name: zul
features:
- name: id
dtype: string
- name: headline
dtype: string
- name: content
dtype: string
- name: category
dtype: string
- name: url
dtype: string
splits:
- name: train
num_bytes: 279244495
num_examples: 65447
- name: validation
num_bytes: 30487397
num_examples: 7271
download_size: 314070508
dataset_size: 309731892
---
# Dataset Summary
`WURA` is a document-level dataset covering 16 African Languages and 4 high-resource languages widely spoken in Africa (English, French, Arabic and Portuguese). This dataset was created by auditing mC4 and crawling additional verified news sources. It was first used to train AfriTeVa V2.
# Dataset Structure
```
>>> from datasets import load_dataset
```
Although the document-level dataset is loaded by default, you may also optionally load a passage-level dataset as follows
```
>>> data = load_dataset("castorini/wura, "yor", level="passage", verification_mode="no_checks")
```
Note that we must pass `verification_mode="no_checks` to prevent HF from verifying checksums against the document-level checksum infos.
# Citation
```
@inproceedings{oladipo-etal-2023-better,
title = "Better Quality Pre-training Data and T5 Models for {A}frican Languages",
author = "Oladipo, Akintunde and
Adeyemi, Mofetoluwa and
Ahia, Orevaoghene and
Owodunni, Abraham and
Ogundepo, Odunayo and
Adelani, David and
Lin, Jimmy",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.emnlp-main.11",
pages = "158--168",
abstract = "In this study, we highlight the importance of enhancing the quality of pretraining data in multilingual language models. Existing web crawls have demonstrated quality issues, particularly in the context of low-resource languages. Consequently, we introduce a new multilingual pretraining corpus for 16 African languages, designed by carefully auditing existing pretraining corpora to understand and rectify prevalent quality issues. To compile this dataset, we undertake a rigorous examination of current data sources for thirteen languages within one of the most extensive multilingual web crawls, mC4, and extract cleaner data through meticulous auditing and improved web crawling strategies. Subsequently, we pretrain a new T5-based model on this dataset and evaluate its performance on multiple downstream tasks. Our model demonstrates better downstream effectiveness over existing pretrained models across four NLP tasks, underscoring the critical role data quality plays in pretraining language models in low-resource scenarios. Specifically, on cross-lingual QA evaluation, our new model is more than twice as effective as multilingual T5. All code, data and models are publicly available at https://github.com/castorini/AfriTeVa-keji.",
}
``` |