--- license: cc-by-nc-4.0 dataset_info: features: - name: summary dtype: string - name: url dtype: string - name: date_publish dtype: timestamp[us] - name: article_title dtype: string - name: id dtype: string - name: article_domain dtype: string - name: abstractiveness_bin dtype: string - name: cluster_id dtype: string - name: summary_id dtype: string - name: article_id dtype: string - name: summary_domain dtype: string - name: summary_word_count dtype: int64 - name: summary_entity_count dtype: int64 - name: entity_precision_constraint dtype: float64 - name: entity_precision dtype: float64 - name: simhash_distance dtype: int64 - name: quotation_precision dtype: float64 - name: title-title-similarity dtype: float32 - name: summary-title-similarity dtype: float32 - name: BERTScore-P (bert-large-uncased) dtype: float32 - name: BERTScore-R (bert-large-uncased) dtype: float32 - name: BERTScore-F1 (bert-large-uncased) dtype: float32 - name: BERTScore-P (facebook/bart-large) dtype: float32 - name: BERTScore-R (facebook/bart-large) dtype: float32 - name: BERTScore-F1 (facebook/bart-large) dtype: float32 - name: mint dtype: float64 - name: lcsr dtype: float64 splits: - name: train num_bytes: 1050376245 num_examples: 1349911 - name: validation num_bytes: 7785024 num_examples: 10000 - name: test num_bytes: 7798236 num_examples: 10000 download_size: 521533439 dataset_size: 1065959505 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* --- ## Dataset Card for CCSum [summary-only] We release the meta data containing article url, title, summary (median length: 30 words), published date, id derived from sha2(maintext, 256), and other meta data associated with the CCSum dataset. Please download the articles based on the urls, and reach out to us if you encounter any issue with using the dataset. ## Dataset Summary CCSum is a large-scale and high-quality dataset for abstractive news summarization. It contains 1.3 million pairs of articles and reference summaries derived from 35 million news articles from CommonCrawl News. In creating this dataset, we cluster CommonCrawl News articles into news events from which we generate candidate article-summary pairs and apply strict filtering and a Bayesian optimization method that eliminates 99% of the candidate summaries. The human evaluation shows the proposed dataset has higher quality-in terms of factual consistency, informativeness, and coherence-than established abstractive summarization datasets. ## Load dataset ```python from datasets import load_dataset # Load the full dataset (both abstractive and extractive) dataset = load_dataset("ccsum/CCSum") # abstractive subset of the dataset dataset_abstractive = dataset.filter(lambda x: x["abstractiveness_bin"] == "high") # extractive subset of the dataset dataset_extractive = dataset.filter(lambda x: x["abstractiveness_bin"] == "low") ``` ## Language CCSum currently only supports English. ## Main Data Fields - `id`: a string that corresponds to the sha256 hash of the article and summary - `article`: a string containing the body of the news article from CCNews - `summary`: a string containing a summary for the article - `abstractiveness_bin`: a string indicating if the abstractiveness level of the summary. `high` denotes the abstractive subset and `low` denotes the extractive subset. ### Data Splits The CNN/DailyMail dataset has 3 splits: _train_, _validation_, and _test_. Below are the statistics for Version 3.0.0 of the dataset. | Split | Total | Date range | Extractive | Abstractive | |-------|-----------|------------------|------------|------------| | Train | 1,349,911 | 1/2018 - 12/2021 | 674,939 | 674,972 | | Val. | 10,000 | 1/2022 - 5/2022 | 4,853 | 5,147 | | Test | 10,000 | 6/2022 - 12/2022 | 5,053 | 4,947 | ## Dataset Creation The dataset is created from CommonCrawl News. Please refer to our paper for more details: "CCSum: A Large-Scale and High-Quality Dataset for Abstractive News Summarization (NAACL 2024)." ### Licensing Information The CCSum dataset released under the cc-by-nc-4.0 license.