Upload fusion_t2i_CLIP_interrogator_dev.ipynb
Browse files
Google Colab Jupyter Notebooks/fusion_t2i_CLIP_interrogator_dev.ipynb
ADDED
@@ -0,0 +1,1290 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": []
|
7 |
+
},
|
8 |
+
"kernelspec": {
|
9 |
+
"name": "python3",
|
10 |
+
"display_name": "Python 3"
|
11 |
+
},
|
12 |
+
"language_info": {
|
13 |
+
"name": "python"
|
14 |
+
}
|
15 |
+
},
|
16 |
+
"cells": [
|
17 |
+
{
|
18 |
+
"cell_type": "code",
|
19 |
+
"source": [
|
20 |
+
"# @title ⚄ 🔄 Initialize\n",
|
21 |
+
"\n",
|
22 |
+
"import os\n",
|
23 |
+
"home_directory = '/content/'\n",
|
24 |
+
"using_Kaggle = os.environ.get('KAGGLE_URL_BASE','')\n",
|
25 |
+
"if using_Kaggle : home_directory = '/kaggle/working/'\n",
|
26 |
+
"%cd {home_directory}\n",
|
27 |
+
"\n",
|
28 |
+
"def fix_bad_symbols(txt):\n",
|
29 |
+
" result = txt\n",
|
30 |
+
" for symbol in ['^', '}', '{' , ')', '(', '[' , ']' , ':' , '=' ]:\n",
|
31 |
+
" result = result.replace(symbol,'\\\\' + symbol)\n",
|
32 |
+
" #------#\n",
|
33 |
+
" return result;\n",
|
34 |
+
"\n",
|
35 |
+
"def my_mkdirs(folder):\n",
|
36 |
+
" if os.path.exists(folder)==False:\n",
|
37 |
+
" os.makedirs(folder)\n",
|
38 |
+
"\n",
|
39 |
+
"#🔸🔹\n",
|
40 |
+
"# Load the data if not already loaded\n",
|
41 |
+
"try:\n",
|
42 |
+
" loaded\n",
|
43 |
+
"except:\n",
|
44 |
+
" from safetensors.torch import load_file , save_file\n",
|
45 |
+
" import json , torch , requests , math\n",
|
46 |
+
" import pandas as pd\n",
|
47 |
+
" from PIL import Image\n",
|
48 |
+
" import cv2\n",
|
49 |
+
" from matplotlib import pyplot as plt\n",
|
50 |
+
" #----#\n",
|
51 |
+
" %cd {home_directory}\n",
|
52 |
+
" !git clone https://huggingface.co/datasets/codeShare/fusion-t2i-generator-data\n",
|
53 |
+
" loaded = True\n",
|
54 |
+
" %cd {home_directory + 'fusion-t2i-generator-data/'}\n",
|
55 |
+
" !unzip reference.zip\n",
|
56 |
+
"\n",
|
57 |
+
"from transformers import AutoTokenizer\n",
|
58 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
59 |
+
"from transformers import CLIPProcessor, CLIPModel\n",
|
60 |
+
"processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
|
61 |
+
"model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n",
|
62 |
+
"logit_scale = model.logit_scale.exp() #logit_scale = 100.00000762939453\n",
|
63 |
+
"\n",
|
64 |
+
"#------#\n",
|
65 |
+
"%cd {home_directory + 'fusion-t2i-generator-data/' + 'reference'}\n",
|
66 |
+
"with open(f'reference_prompts.json', 'r') as f:\n",
|
67 |
+
" data = json.load(f)\n",
|
68 |
+
" _df = pd.DataFrame({'count': data})['count']\n",
|
69 |
+
" target_prompts = {\n",
|
70 |
+
" key : value for key, value in _df.items()\n",
|
71 |
+
" }\n",
|
72 |
+
"#------#\n",
|
73 |
+
"with open(f'reference_urls.json', 'r') as f:\n",
|
74 |
+
" data = json.load(f)\n",
|
75 |
+
" _df = pd.DataFrame({'count': data})['count']\n",
|
76 |
+
" target_urls = {\n",
|
77 |
+
" key : value for key, value in _df.items()\n",
|
78 |
+
" }\n",
|
79 |
+
"\n",
|
80 |
+
"#------#\n",
|
81 |
+
"dot_dtype = torch.float32\n",
|
82 |
+
"dim = 768\n",
|
83 |
+
"ref = torch.zeros(dim).to(dtype = dot_dtype)\n",
|
84 |
+
"\n",
|
85 |
+
"# title ⚄ Define parameters for visalizing the reference in a 16x16 grid <br> (the visualization settings has no effect on output)\n",
|
86 |
+
"from PIL import Image, ImageDraw\n",
|
87 |
+
"SCALE = 0.0002 # param {type:\"slider\", min:0.0001, max:0.001, step:0.00001}\n",
|
88 |
+
"ZERO_POINT = 100 # param {type:\"slider\", min:0, max:300, step:1}\n",
|
89 |
+
"CELL_SIZE = 16\n",
|
90 |
+
"image_size = 0.5 # param {type:\"slider\", min:0, max:1, step:0.01}\n",
|
91 |
+
"show_encoding = False # param {type:\"boolean\"}\n",
|
92 |
+
"#------#\n",
|
93 |
+
"\n",
|
94 |
+
"BORDER_THICKNESS = 4\n",
|
95 |
+
"\n",
|
96 |
+
"def visualize(_ref):\n",
|
97 |
+
" RGB_tensor = (torch.round(_ref/SCALE)+torch.ones(dim)*ZERO_POINT)\n",
|
98 |
+
" cellsize = CELL_SIZE\n",
|
99 |
+
" tick = round(cellsize/2)\n",
|
100 |
+
" border_offset = round(BORDER_THICKNESS/2)\n",
|
101 |
+
" width = 16*cellsize + BORDER_THICKNESS\n",
|
102 |
+
" height = 16*cellsize + BORDER_THICKNESS\n",
|
103 |
+
" image = Image.new('RGB', (width, height), (0, 0, 0))\n",
|
104 |
+
" draw = ImageDraw.Draw(image)\n",
|
105 |
+
" for row in range(16):\n",
|
106 |
+
" for col in range(16):\n",
|
107 |
+
" tmp = 3*row*col\n",
|
108 |
+
" r = max(0,min(255,int(RGB_tensor[tmp].item())))\n",
|
109 |
+
" g = max(0,min(255,int(RGB_tensor[tmp+1].item())))\n",
|
110 |
+
" b = max(0,min(255,int(RGB_tensor[tmp+2].item())))\n",
|
111 |
+
" fillColor = (r,g,b)\n",
|
112 |
+
" x0 = row*cellsize +border_offset\n",
|
113 |
+
" y0 = (15-col)*cellsize +border_offset\n",
|
114 |
+
" x1 = row*cellsize + 2*tick + border_offset\n",
|
115 |
+
" y1 = (15-col)*cellsize + 2*tick + border_offset\n",
|
116 |
+
" shape = [(x0, y0), (x1, y1)]\n",
|
117 |
+
" draw.rectangle(shape, fill=fillColor, outline=(0,0,0))\n",
|
118 |
+
" return (image)\n",
|
119 |
+
"\n",
|
120 |
+
"num_plots = 1\n",
|
121 |
+
"try:\n",
|
122 |
+
" %cd /content/\n",
|
123 |
+
" _ref = load_file('reference.safetensors' )\n",
|
124 |
+
" num_plots = num_plots+1\n",
|
125 |
+
"except: _ref = torch.zeros(dim).to(dtype = dot_dtype)\n",
|
126 |
+
"#-----#\n",
|
127 |
+
"try: ref\n",
|
128 |
+
"except: ref = torch.zeros(dim).to(dtype = dot_dtype)\n",
|
129 |
+
"\n",
|
130 |
+
"\n",
|
131 |
+
"if show_encoding:\n",
|
132 |
+
" # create figure\n",
|
133 |
+
" fig = plt.figure(figsize=(10*image_size, 10*image_size))\n",
|
134 |
+
" fig.patch.set_facecolor((56/255,56/255,56/255))\n",
|
135 |
+
" rows = 1\n",
|
136 |
+
" columns = num_plots\n",
|
137 |
+
" fig.add_subplot(rows, columns, 1)\n",
|
138 |
+
" plt.imshow( visualize(ref))\n",
|
139 |
+
" plt.axis('off')\n",
|
140 |
+
" plt.title( \"Encoding (local variable)\", color='white', fontsize=round(20*image_size))\n",
|
141 |
+
" if num_plots>1:\n",
|
142 |
+
" fig.add_subplot(rows, columns, 2)\n",
|
143 |
+
" plt.imshow( visualize( _ref['weights'].to(dot_dtype)))\n",
|
144 |
+
" plt.axis('off')\n",
|
145 |
+
" plt.title(\"Encoding (saved file)\", color='white', fontsize=round(20*image_size))\n",
|
146 |
+
" #------#\n",
|
147 |
+
"\n",
|
148 |
+
"print(f'Using settings SCALE = {SCALE} and ZERO_POINT = {ZERO_POINT} for visualizing the text_encoding')"
|
149 |
+
],
|
150 |
+
"metadata": {
|
151 |
+
"id": "TC5lMJrS1HCC",
|
152 |
+
"cellView": "form"
|
153 |
+
},
|
154 |
+
"execution_count": null,
|
155 |
+
"outputs": []
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"cell_type": "code",
|
159 |
+
"source": [
|
160 |
+
"# @title ⚄ 📷💭 Use pre-encoded image+prompt pair\n",
|
161 |
+
"loaded_ref = False\n",
|
162 |
+
"try:\n",
|
163 |
+
" ref\n",
|
164 |
+
" loaded_ref = True\n",
|
165 |
+
"except:ref = torch.zeros(dim).to(dtype = dot_dtype)\n",
|
166 |
+
"if loaded_ref : prev_ref = ref.clone().detach()\n",
|
167 |
+
"\n",
|
168 |
+
"try:prompt\n",
|
169 |
+
"except: prompt = ''\n",
|
170 |
+
"\n",
|
171 |
+
"# @markdown 🖼️+📝 Choose a pre-encoded reference (note: some results are NSFW!)\n",
|
172 |
+
"index = 596 # @param {type:\"slider\", min:0, max:1666, step:1}\n",
|
173 |
+
"PROMPT_INDEX = index\n",
|
174 |
+
"prompt = target_prompts[f'{PROMPT_INDEX}']\n",
|
175 |
+
"url = target_urls[f'{PROMPT_INDEX}']\n",
|
176 |
+
"if url.find('perchance')>-1:\n",
|
177 |
+
" image = Image.open(requests.get(url, stream=True).raw)\n",
|
178 |
+
"#------#\n",
|
179 |
+
"%cd {home_directory + 'fusion-t2i-generator-data/' + 'reference'}\n",
|
180 |
+
"references = torch.load('reference_text_and_image_encodings.pt' , weights_only=False)\n",
|
181 |
+
"# @markdown ⚖️ 🖼️ encoding <-----?-----> 📝 encoding </div> <br>\n",
|
182 |
+
"C = 0.3 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
|
183 |
+
"log_strength = 1 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
|
184 |
+
"method = 'Add to existing ref' # @param [\"Refresh\" , \"Add to existing ref\" , \"Subtract from existing ref\" , \"Do nothing\"]\n",
|
185 |
+
"image_size = 0.57 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
|
186 |
+
"show_encoding = True # @param {type:\"boolean\"}\n",
|
187 |
+
"\n",
|
188 |
+
"if(not method == 'Do nothing'):\n",
|
189 |
+
" if method == 'Refresh': ref = torch.zeros(dim).to(dtype = dot_dtype)\n",
|
190 |
+
" if method == 'Subtract from existing ref':\n",
|
191 |
+
" ref = torch.sub(ref, math.pow(10 ,log_strength-1) * C * references[index][0].dequantize().to(dtype = torch.float32))\n",
|
192 |
+
" ref = torch.sub(ref, math.pow(10 ,log_strength-1) * (1-C) * references[index][1].dequantize().to(dtype = torch.float32))\n",
|
193 |
+
" else:\n",
|
194 |
+
" ref = torch.add(ref, math.pow(10 ,log_strength-1) * C * references[index][0].dequantize().to(dtype = torch.float32))\n",
|
195 |
+
" ref = torch.add(ref, math.pow(10 ,log_strength-1) * (1-C) * references[index][1].dequantize().to(dtype = torch.float32))\n",
|
196 |
+
" #---------#\n",
|
197 |
+
" references = '' # Clear up memory\n",
|
198 |
+
" ref = ref/ref.norm(p=2, dim=-1, keepdim=True)\n",
|
199 |
+
" ref = ref.clone().detach()\n",
|
200 |
+
" #------#\n",
|
201 |
+
" # create figure\n",
|
202 |
+
" fig = plt.figure(figsize=(10*image_size, 10*image_size))\n",
|
203 |
+
" fig.patch.set_facecolor((56/255,56/255,56/255))\n",
|
204 |
+
" rows = 1\n",
|
205 |
+
" columns = 1\n",
|
206 |
+
" if show_encoding: columns = columns+1\n",
|
207 |
+
" if show_encoding and loaded_ref : columns = columns+1\n",
|
208 |
+
" fig.add_subplot(rows, columns, 1)\n",
|
209 |
+
" plt.imshow(image)\n",
|
210 |
+
" plt.axis('off')\n",
|
211 |
+
" plt.title(f\"Reference image at index={index}\" , color='white' , fontsize=round(20*image_size))\n",
|
212 |
+
" #-----#\n",
|
213 |
+
" if show_encoding and loaded_ref:\n",
|
214 |
+
" fig.add_subplot(rows, columns, columns-1)\n",
|
215 |
+
" plt.imshow( visualize(prev_ref))\n",
|
216 |
+
" plt.axis('off')\n",
|
217 |
+
" plt.title(\"Encoding (before)\" , color='white' , fontsize=round(20*image_size))\n",
|
218 |
+
" print(f'Prompt for this image : \\n\\n \"{prompt} \" \\n\\n')\n",
|
219 |
+
"\n",
|
220 |
+
" if show_encoding:\n",
|
221 |
+
" fig.add_subplot(rows, columns, columns)\n",
|
222 |
+
" plt.imshow( visualize(ref))\n",
|
223 |
+
" plt.axis('off')\n",
|
224 |
+
" plt.title(\"Encoding (now)\" , color='white' , fontsize=round(20*image_size))\n",
|
225 |
+
" #------#\n"
|
226 |
+
],
|
227 |
+
"metadata": {
|
228 |
+
"id": "BwrEs5zVB0Sb",
|
229 |
+
"cellView": "form"
|
230 |
+
},
|
231 |
+
"execution_count": null,
|
232 |
+
"outputs": []
|
233 |
+
},
|
234 |
+
{
|
235 |
+
"cell_type": "markdown",
|
236 |
+
"source": [
|
237 |
+
"# Other methods"
|
238 |
+
],
|
239 |
+
"metadata": {
|
240 |
+
"id": "f9_AcquM7AYZ"
|
241 |
+
}
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"cell_type": "code",
|
245 |
+
"source": [
|
246 |
+
"# @title ⚄ 🧩 Create an encoding\n",
|
247 |
+
"# @markdown 📝 Write a text prompt (this will overwrite any savefile already stored)\n",
|
248 |
+
"NEW_ENCODING = '' # @param {type:'string' ,placeholder:'write a prompt'}\n",
|
249 |
+
"enable = True # @param {type:\"boolean\"}\n",
|
250 |
+
"# @markdown -----\n",
|
251 |
+
"# @markdown 📝 Enhance/Penalize Similarity and skip items containing word(s)\n",
|
252 |
+
"POS = '' # @param {type:'string' ,placeholder:'item1 , item2 , ...'}\n",
|
253 |
+
"NEG = ''# @param {type:'string' ,placeholder:'item1 , item2 , ...'}\n",
|
254 |
+
"# @markdown -----\n",
|
255 |
+
"# @markdown logarithmic prompt strength x for value 10^(x-1)\n",
|
256 |
+
"_POS = 0 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
|
257 |
+
"_NEG = 0 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
|
258 |
+
"# @markdown -----\n",
|
259 |
+
"# @markdown Check similiarity for this encoding against any written prompt(s)\n",
|
260 |
+
"# @title ⚄ Evaluate saved reference similarity to select items (optional)\n",
|
261 |
+
"EVAL = '' # @param {type:'string' ,placeholder:'item1 , item2 , ...'}\n",
|
262 |
+
"\n",
|
263 |
+
"show_local_reference = True # @param {type:\"boolean\"}\n",
|
264 |
+
"show_encoding = True # @param {type:\"boolean\"}\n",
|
265 |
+
"\n",
|
266 |
+
"try:\n",
|
267 |
+
" %cd /content/\n",
|
268 |
+
" _ref = load_file('reference.safetensors' )\n",
|
269 |
+
" ref = _ref['weights'].to(dot_dtype)\n",
|
270 |
+
"except:\n",
|
271 |
+
" ref = torch.zeros(dim).to(dtype = dot_dtype)\n",
|
272 |
+
" _ref = {}\n",
|
273 |
+
" _ref['weights'] = ref\n",
|
274 |
+
" %cd /content/\n",
|
275 |
+
" save_file(_ref, 'reference.safetensors')\n",
|
276 |
+
"#-----#\n",
|
277 |
+
"\n",
|
278 |
+
"if NEW_ENCODING.strip() != '':\n",
|
279 |
+
" item = NEW_ENCODING.strip()\n",
|
280 |
+
" inputs = tokenizer(text = item.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
|
281 |
+
" ref = model.get_text_features(**inputs)[0]\n",
|
282 |
+
" ref= ref/ref.norm(p=2 , dim=-1 , keepdim=True)\n",
|
283 |
+
"#------#\n",
|
284 |
+
"\n",
|
285 |
+
"try: ref\n",
|
286 |
+
"except: ref = torch.zeros(dim).to(dtype = dot_dtype)\n",
|
287 |
+
"\n",
|
288 |
+
"if EVAL.strip() != '':\n",
|
289 |
+
" print(\"Saved Reference:\\n\")\n",
|
290 |
+
" for item in EVAL.split(','):\n",
|
291 |
+
" if item.strip()=='':continue\n",
|
292 |
+
" inputs = tokenizer(text = item.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
|
293 |
+
" test = model.get_text_features(**inputs)[0]\n",
|
294 |
+
" test = test/test.norm(p=2 , dim = -1 , keepdim = True)\n",
|
295 |
+
" ref= ref/ref.norm(p=2 , dim=-1 , keepdim=True)\n",
|
296 |
+
" eval = torch.dot(ref , test)\n",
|
297 |
+
" print(f'{item.strip()} : {round(eval.item()*100, 2)}%')\n",
|
298 |
+
" #-----#\n",
|
299 |
+
" if(show_local_reference):\n",
|
300 |
+
" print(\"\\n---------\\nLocal Reference with enchancements added :\\n\")\n",
|
301 |
+
"\n",
|
302 |
+
" for _item in POS.split(','):\n",
|
303 |
+
" item = _item.strip()\n",
|
304 |
+
" if item == '':continue\n",
|
305 |
+
" inputs = tokenizer(text = item.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
|
306 |
+
" ref = ref + math.pow(10,_POS-1) * model.get_text_features(**inputs)[0]\n",
|
307 |
+
" #-------#\n",
|
308 |
+
"\n",
|
309 |
+
" for _item in NEG.split(','):\n",
|
310 |
+
" item = _item.strip()\n",
|
311 |
+
" if item == '':continue\n",
|
312 |
+
" inputs = tokenizer(text = item.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
|
313 |
+
" ref = ref + math.pow(10,_NEG-1) * model.get_text_features(**inputs)[0]\n",
|
314 |
+
" #-------#\n",
|
315 |
+
"\n",
|
316 |
+
" ref= ref/ref.norm(p=2 , dim=-1 , keepdim=True)\n",
|
317 |
+
" for item in EVAL.split(','):\n",
|
318 |
+
" if item.strip()=='':continue\n",
|
319 |
+
" inputs = tokenizer(text = item.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
|
320 |
+
" test = model.get_text_features(**inputs)[0]\n",
|
321 |
+
" test = test/test.norm(p=2 , dim = -1 , keepdim = True)\n",
|
322 |
+
" eval = torch.dot(ref , test)\n",
|
323 |
+
" print(f'{item.strip()} : {round(eval.item()*100, 2)}%')\n",
|
324 |
+
" #-----#\n",
|
325 |
+
"\n",
|
326 |
+
" if show_encoding:\n",
|
327 |
+
" # create figure\n",
|
328 |
+
" fig = plt.figure(figsize=(10*image_size, 10*image_size))\n",
|
329 |
+
" fig.patch.set_facecolor((56/255,56/255,56/255))\n",
|
330 |
+
" rows = 1\n",
|
331 |
+
" columns = 3\n",
|
332 |
+
" fig.add_subplot(rows, columns, 1)\n",
|
333 |
+
" plt.imshow( visualize(ref))\n",
|
334 |
+
" plt.axis('off')\n",
|
335 |
+
" plt.title( \"Encoding (local variable)\", color='white', fontsize=round(20*image_size))\n",
|
336 |
+
" if num_plots>1:\n",
|
337 |
+
" fig.add_subplot(rows, columns, 2)\n",
|
338 |
+
" plt.imshow( visualize( _ref['weights'].to(dot_dtype)))\n",
|
339 |
+
" plt.axis('off')\n",
|
340 |
+
" plt.title(\"Encoding (saved file)\", color='white', fontsize=round(20*image_size))\n",
|
341 |
+
"\n",
|
342 |
+
" fig.add_subplot(rows, columns, 3)\n",
|
343 |
+
" plt.imshow( visualize(ref - _ref['weights'].to(dot_dtype)))\n",
|
344 |
+
" plt.axis('off')\n",
|
345 |
+
" plt.title(\"Changes\", color='white', fontsize=round(20*image_size))\n",
|
346 |
+
" #------#\n",
|
347 |
+
"\n",
|
348 |
+
"\n"
|
349 |
+
],
|
350 |
+
"metadata": {
|
351 |
+
"id": "Oxi6nOyrUTAe",
|
352 |
+
"cellView": "form"
|
353 |
+
},
|
354 |
+
"execution_count": null,
|
355 |
+
"outputs": []
|
356 |
+
},
|
357 |
+
{
|
358 |
+
"cell_type": "markdown",
|
359 |
+
"source": [
|
360 |
+
"**Use an image as a reference via URL (optional)**"
|
361 |
+
],
|
362 |
+
"metadata": {
|
363 |
+
"id": "KI9Ho6CG7m3Z"
|
364 |
+
}
|
365 |
+
},
|
366 |
+
{
|
367 |
+
"cell_type": "code",
|
368 |
+
"source": [
|
369 |
+
"# @title ⚄ 🌐🖼️ Load an image via URL\n",
|
370 |
+
"loaded_ref = False\n",
|
371 |
+
"try:\n",
|
372 |
+
" ref\n",
|
373 |
+
" loaded_ref = True\n",
|
374 |
+
"except:ref = torch.zeros(dim).to(dtype = dot_dtype)\n",
|
375 |
+
"if loaded_ref : prev_ref = ref.clone().detach()\n",
|
376 |
+
"\n",
|
377 |
+
"try:prompt\n",
|
378 |
+
"except: prompt = ''\n",
|
379 |
+
"\n",
|
380 |
+
"# @markdown 🖼️ Upload your own image for use as reference via URL (optional)\n",
|
381 |
+
"URL = '' # @param {type:'string' ,placeholder:'paste an url here'}\n",
|
382 |
+
"if URL.strip() != '':\n",
|
383 |
+
" image = Image.open(requests.get(URL, stream=True).raw)\n",
|
384 |
+
" log_strength = 1 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
|
385 |
+
" method = 'Add to existing ref' # @param [\"Refresh\" , \"Add to existing ref\" , \"Subtract from existing ref\" , \"Do nothing\"]\n",
|
386 |
+
" image_size = 0.79 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
|
387 |
+
" show_encoding = True # @param {type:\"boolean\"}\n",
|
388 |
+
" #---------#\n",
|
389 |
+
" if(not method == 'Do nothing'):\n",
|
390 |
+
" # Get image features\n",
|
391 |
+
" inputs = processor(images=image, return_tensors=\"pt\")\n",
|
392 |
+
" image_features = model.get_image_features(**inputs)\n",
|
393 |
+
" image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True)\n",
|
394 |
+
" #-------#\n",
|
395 |
+
" if method == 'Refresh':\n",
|
396 |
+
" ref = torch.zeros(dim).to(dtype = dot_dtype)\n",
|
397 |
+
" if method == 'Subtract from existing ref':\n",
|
398 |
+
" ref = ref - math.pow(10,log_strength-1)*image_features\n",
|
399 |
+
" else: ref = ref + math.pow(10,log_strength-1)*image_features\n",
|
400 |
+
" #-----#\n",
|
401 |
+
" ref = ref/ref.norm(p=2, dim=-1, keepdim=True)\n",
|
402 |
+
" ref = ref[0]\n",
|
403 |
+
" ref = ref.clone().detach()\n",
|
404 |
+
" #------#\n",
|
405 |
+
" # create figure\n",
|
406 |
+
" fig = plt.figure(figsize=(10*image_size, 10*image_size))\n",
|
407 |
+
" fig.patch.set_facecolor((56/255,56/255,56/255))\n",
|
408 |
+
" rows = 1\n",
|
409 |
+
" columns = 1\n",
|
410 |
+
" if show_encoding: columns = 2\n",
|
411 |
+
" if show_encoding and loaded_ref : columns = 3\n",
|
412 |
+
" fig.add_subplot(rows, columns, 1)\n",
|
413 |
+
" plt.imshow(image)\n",
|
414 |
+
" plt.axis('off')\n",
|
415 |
+
" plt.title(\"Reference image from URL\" , color='white' , fontsize=round(20*image_size))\n",
|
416 |
+
" #-----#\n",
|
417 |
+
" if show_encoding and loaded_ref:\n",
|
418 |
+
" fig.add_subplot(rows, columns, columns-1)\n",
|
419 |
+
" plt.imshow( visualize(prev_ref))\n",
|
420 |
+
" plt.axis('off')\n",
|
421 |
+
" plt.title(\"Encoding (before)\" , color='white' , fontsize=round(20*image_size))\n",
|
422 |
+
" if show_encoding:\n",
|
423 |
+
" fig.add_subplot(rows, columns, columns)\n",
|
424 |
+
" plt.imshow( visualize(ref))\n",
|
425 |
+
" plt.axis('off')\n",
|
426 |
+
" plt.title(\"Encoding (now)\" , color='white' , fontsize=round(20*image_size))\n",
|
427 |
+
" #------#"
|
428 |
+
],
|
429 |
+
"metadata": {
|
430 |
+
"id": "IqUsiQw2HU2C",
|
431 |
+
"cellView": "form"
|
432 |
+
},
|
433 |
+
"execution_count": null,
|
434 |
+
"outputs": []
|
435 |
+
},
|
436 |
+
{
|
437 |
+
"cell_type": "markdown",
|
438 |
+
"source": [
|
439 |
+
"**Use an image as a reference via uploading it to the /content/ folder (optional)**"
|
440 |
+
],
|
441 |
+
"metadata": {
|
442 |
+
"id": "MBPi7F8S7tg3"
|
443 |
+
}
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"cell_type": "code",
|
447 |
+
"source": [
|
448 |
+
"# @title ⚄ 📂🖼️ Use an uploaded image as reference\n",
|
449 |
+
"loaded_ref = False\n",
|
450 |
+
"try:\n",
|
451 |
+
" ref\n",
|
452 |
+
" loaded_ref = True\n",
|
453 |
+
"except:ref = torch.zeros(dim).to(dtype = dot_dtype)\n",
|
454 |
+
"if loaded_ref : prev_ref = ref.clone().detach()\n",
|
455 |
+
"\n",
|
456 |
+
"try:prompt\n",
|
457 |
+
"except: prompt = ''\n",
|
458 |
+
"\n",
|
459 |
+
"# @markdown 🖼️ Upload your own image for use as reference via URL (optional)\n",
|
460 |
+
"FILENAME = '' # @param {type:'string' ,placeholder:'IMG_123.png'}\n",
|
461 |
+
"log_strength = 1 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
|
462 |
+
"method = 'Add to existing ref' # @param [\"Refresh\" , \"Add to existing ref\" , \"Subtract from existing ref\" , \"Do nothing\"]\n",
|
463 |
+
"image_size = 0.5 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
|
464 |
+
"show_encoding = True # @param {type:\"boolean\"}\n",
|
465 |
+
"\n",
|
466 |
+
"if FILENAME.strip() != '':\n",
|
467 |
+
" %cd /content/\n",
|
468 |
+
" image = cv2.imread(FILENAME)\n",
|
469 |
+
" b,g,r = cv2.split(image)\n",
|
470 |
+
" image = cv2.merge([r,g,b])\n",
|
471 |
+
" #---------#\n",
|
472 |
+
" if(not method == 'Do nothing'):\n",
|
473 |
+
" # Get image features\n",
|
474 |
+
" inputs = processor(images=image, return_tensors=\"pt\")\n",
|
475 |
+
" image_features = model.get_image_features(**inputs)\n",
|
476 |
+
" image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True)\n",
|
477 |
+
" #-------#\n",
|
478 |
+
" if method == 'Refresh':\n",
|
479 |
+
" ref = torch.zeros(dim).to(dtype = dot_dtype)\n",
|
480 |
+
" if method == 'Subtract from existing ref':\n",
|
481 |
+
" ref = ref - math.pow(10,log_strength-1)*image_features\n",
|
482 |
+
" else: ref = ref + math.pow(10,log_strength-1)*image_features\n",
|
483 |
+
" #-----#\n",
|
484 |
+
" ref = ref/ref.norm(p=2, dim=-1, keepdim=True)\n",
|
485 |
+
" ref = ref[0]\n",
|
486 |
+
" ref = ref.clone().detach()\n",
|
487 |
+
" #------#\n",
|
488 |
+
" # create figure\n",
|
489 |
+
" fig = plt.figure(figsize=(10*image_size, 10*image_size))\n",
|
490 |
+
" fig.patch.set_facecolor((56/255,56/255,56/255))\n",
|
491 |
+
" rows = 1\n",
|
492 |
+
" columns = 1\n",
|
493 |
+
" if show_encoding: columns = 2\n",
|
494 |
+
" if show_encoding and loaded_ref : columns = 3\n",
|
495 |
+
" fig.add_subplot(rows, columns, 1)\n",
|
496 |
+
" plt.imshow(image)\n",
|
497 |
+
" plt.axis('off')\n",
|
498 |
+
" plt.title(f\"Reference image from uploaded image {FILENAME}\" , color='white' , fontsize=round(20*image_size))\n",
|
499 |
+
" #-----#\n",
|
500 |
+
" if show_encoding and loaded_ref:\n",
|
501 |
+
" fig.add_subplot(rows, columns, columns-1)\n",
|
502 |
+
" plt.imshow( visualize(prev_ref))\n",
|
503 |
+
" plt.axis('off')\n",
|
504 |
+
" plt.title(\"Encoding (before)\" , color='white' , fontsize=round(20*image_size))\n",
|
505 |
+
" if show_encoding:\n",
|
506 |
+
" fig.add_subplot(rows, columns, columns)\n",
|
507 |
+
" plt.imshow( visualize(ref))\n",
|
508 |
+
" plt.axis('off')\n",
|
509 |
+
" plt.title(\"Encoding (now)\" , color='white' , fontsize=round(20*image_size))\n",
|
510 |
+
" #------#"
|
511 |
+
],
|
512 |
+
"metadata": {
|
513 |
+
"id": "I_-GOwFPKkha",
|
514 |
+
"cellView": "form"
|
515 |
+
},
|
516 |
+
"execution_count": null,
|
517 |
+
"outputs": []
|
518 |
+
},
|
519 |
+
{
|
520 |
+
"cell_type": "markdown",
|
521 |
+
"source": [
|
522 |
+
"# Search prompts using CLIP"
|
523 |
+
],
|
524 |
+
"metadata": {
|
525 |
+
"id": "UqrYOkhlEQdM"
|
526 |
+
}
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"cell_type": "code",
|
530 |
+
"source": [
|
531 |
+
"# @title ⚄ 💾 Save the reference\n",
|
532 |
+
"\n",
|
533 |
+
"loaded_ref = False\n",
|
534 |
+
"try:\n",
|
535 |
+
" ref\n",
|
536 |
+
" loaded_ref = True\n",
|
537 |
+
"except:ref = torch.zeros(dim).to(dtype = dot_dtype)\n",
|
538 |
+
"if loaded_ref : prev_ref = ref.clone().detach()\n",
|
539 |
+
"\n",
|
540 |
+
"try:prompt\n",
|
541 |
+
"except: prompt = ''\n",
|
542 |
+
"\n",
|
543 |
+
"reset_everything = False # @param {type:\"boolean\"}\n",
|
544 |
+
"_ref = {}\n",
|
545 |
+
"ref = ref/ref.norm(p=2, dim=-1, keepdim=True)\n",
|
546 |
+
"if (reset_everything) : ref = torch.zeros(dim).to(dtype = dot_dtype)\n",
|
547 |
+
"_ref['weights'] = ref.to(dot_dtype)\n",
|
548 |
+
"%cd /content/\n",
|
549 |
+
"save_file(_ref , 'reference.safetensors' )\n",
|
550 |
+
"image_size = 0.5 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
|
551 |
+
"show_encoding = True # @param {type:\"boolean\"}\n",
|
552 |
+
"#------#\n",
|
553 |
+
"print(\"Saved local encoding to reference.safetensors\")\n",
|
554 |
+
"if show_encoding:\n",
|
555 |
+
" # create figure\n",
|
556 |
+
" fig = plt.figure(figsize=(10*image_size, 10*image_size))\n",
|
557 |
+
" fig.patch.set_facecolor((56/255,56/255,56/255))\n",
|
558 |
+
" rows = 1\n",
|
559 |
+
" columns = num_plots\n",
|
560 |
+
" fig.add_subplot(rows, columns, 1)\n",
|
561 |
+
" plt.imshow( visualize(ref))\n",
|
562 |
+
" plt.axis('off')\n",
|
563 |
+
" plt.title( \"Encoding (local variable)\", color='white', fontsize=round(20*image_size))\n",
|
564 |
+
" if num_plots>1:\n",
|
565 |
+
" fig.add_subplot(rows, columns, 2)\n",
|
566 |
+
" plt.imshow( visualize( _ref['weights'].to(dot_dtype)))\n",
|
567 |
+
" plt.axis('off')\n",
|
568 |
+
" plt.title(\"Encoding (saved file)\", color='white', fontsize=round(20*image_size))\n",
|
569 |
+
" #------#"
|
570 |
+
],
|
571 |
+
"metadata": {
|
572 |
+
"id": "lOQuTPfBMK82",
|
573 |
+
"cellView": "form"
|
574 |
+
},
|
575 |
+
"execution_count": null,
|
576 |
+
"outputs": []
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"cell_type": "markdown",
|
580 |
+
"source": [
|
581 |
+
"**Run the interrogator**\n",
|
582 |
+
"\n",
|
583 |
+
" Since the list of items is large (>1 million items) you will need to select a range within the sorted results to print."
|
584 |
+
],
|
585 |
+
"metadata": {
|
586 |
+
"id": "ROKsoZrt7zMe"
|
587 |
+
}
|
588 |
+
},
|
589 |
+
{
|
590 |
+
"cell_type": "code",
|
591 |
+
"source": [
|
592 |
+
"# @title ⚄ 🕵️♂️ Run the CLIP Interrogator\n",
|
593 |
+
"LIST_SIZE = 1000 # @param {type:'number' , placeholder:'set how large the list should be'}\n",
|
594 |
+
"_START_AT = '0' # @param [\"0\", \"10000\", \"50000\"] {allow-input: true}\n",
|
595 |
+
"START_AT = 0\n",
|
596 |
+
"#-----#\n",
|
597 |
+
"if _START_AT.find('K')>-1:\n",
|
598 |
+
" START_AT = _START_AT.replace('K','')\n",
|
599 |
+
" if START_AT.isnumeric(): START_AT = int(START_AT)*1000\n",
|
600 |
+
"#------#\n",
|
601 |
+
"else:\n",
|
602 |
+
" if _START_AT.isnumeric(): START_AT = int(_START_AT)\n",
|
603 |
+
"#----#\n",
|
604 |
+
"\n",
|
605 |
+
"output_folder = home_directory + 'results/'\n",
|
606 |
+
"output_folder_sims = home_directory + 'results/sims/'\n",
|
607 |
+
"my_mkdirs(output_folder)\n",
|
608 |
+
"my_mkdirs(output_folder_sims)\n",
|
609 |
+
"\n",
|
610 |
+
"# @markdown -----\n",
|
611 |
+
"# @markdown Select vocab\n",
|
612 |
+
"general = True # @param {type:\"boolean\"}\n",
|
613 |
+
"civit9 = True # @param {type:\"boolean\"}\n",
|
614 |
+
"fanfic1 = False # @param {type:\"boolean\"}\n",
|
615 |
+
"fanfic2 = False # @param {type:\"boolean\"}\n",
|
616 |
+
"# @markdown -----\n",
|
617 |
+
"# @title ⚄ New interrogator code using quantized text corpus\n",
|
618 |
+
"%cd /content/\n",
|
619 |
+
"_ref = load_file('reference.safetensors' )\n",
|
620 |
+
"ref = _ref['weights'].to(dot_dtype)\n",
|
621 |
+
"# @markdown 📝 Enhance/Penalize Similarity and skip items containing word(s)\n",
|
622 |
+
"POS1 = '' # @param {type:'string' ,placeholder:'item1 , item2 , ...'}\n",
|
623 |
+
"POS2 = '' # @param {type:'string' ,placeholder:'item1 , item2 , ...'}\n",
|
624 |
+
"NEG = ''# @param {type:'string' ,placeholder:'item1 , item2 , ...'}\n",
|
625 |
+
"SKIP = '' # @param {type:'string' ,placeholder:'item1 , item2 , ...'}\n",
|
626 |
+
"min_wordcount = 0 # @param {type:\"slider\", min:0, max:20, step:1}\n",
|
627 |
+
"def isBlacklisted(_txt):\n",
|
628 |
+
" blacklist = SKIP.lower().replace('</w>' , ' ').replace('{' , '').replace('}' , '').replace('|' , ',').strip()\n",
|
629 |
+
" if blacklist == '': return False\n",
|
630 |
+
" txt = _txt.lower().strip()\n",
|
631 |
+
" if len(txt)<min_wordcount: return True\n",
|
632 |
+
" if txt.isnumeric(): return True\n",
|
633 |
+
" #-----#\n",
|
634 |
+
" for item in list(blacklist.split(',')):\n",
|
635 |
+
" if item.strip() == '' : continue\n",
|
636 |
+
" if txt.find(item.strip())> -1 : return True\n",
|
637 |
+
" #------#\n",
|
638 |
+
" found = False\n",
|
639 |
+
" alphabet = 'abcdefghijklmnopqrstuvxyz'\n",
|
640 |
+
" for letter in alphabet:\n",
|
641 |
+
" found = txt.find(letter)>-1\n",
|
642 |
+
" if found:break\n",
|
643 |
+
" #------#\n",
|
644 |
+
" return not found\n",
|
645 |
+
"# @markdown -----\n",
|
646 |
+
"# @markdown logarithmic prompt strength x for value 10^(x-1)\n",
|
647 |
+
"_POS1 = 1 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
|
648 |
+
"_POS2 = 1 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
|
649 |
+
"_NEG = 1 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
|
650 |
+
"# @markdown -----\n",
|
651 |
+
"# @markdown Save similarity as a list for later review (this will slow down the code)\n",
|
652 |
+
"save_similiarity = True # @param {type:\"boolean\"}\n",
|
653 |
+
"# @markdown -----\n",
|
654 |
+
"include_similiarity = False # @param {type:\"boolean\"}\n",
|
655 |
+
"print_as_list = False # @param {type:\"boolean\"}\n",
|
656 |
+
"N = 7 # @param {type:\"slider\", min:0, max:10, step:1}\n",
|
657 |
+
"#-----#\n",
|
658 |
+
"for _item in POS1.split(','):\n",
|
659 |
+
" item = _item.strip()\n",
|
660 |
+
" if item == '':continue\n",
|
661 |
+
" inputs = tokenizer(text = item.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
|
662 |
+
" ref = ref + math.pow(10,_POS1-1) * model.get_text_features(**inputs)[0]\n",
|
663 |
+
"#-------#\n",
|
664 |
+
"for _item in POS2.split(','):\n",
|
665 |
+
" item = _item.strip()\n",
|
666 |
+
" if item == '':continue\n",
|
667 |
+
" inputs = tokenizer(text = item.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
|
668 |
+
" ref = ref + math.pow(10,_POS2-1) * model.get_text_features(**inputs)[0]\n",
|
669 |
+
"#-------#\n",
|
670 |
+
"for _item in NEG.split(','):\n",
|
671 |
+
" item = _item.strip()\n",
|
672 |
+
" if item == '':continue\n",
|
673 |
+
" inputs = tokenizer(text = item.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
|
674 |
+
" ref = ref + math.pow(10,_NEG-1) * model.get_text_features(**inputs)[0]\n",
|
675 |
+
"#------#\n",
|
676 |
+
"ref = (ref/ref.norm(p=2, dim=-1, keepdim=True)).to(dtype = dot_dtype)\n",
|
677 |
+
"vocab_to_load = ''\n",
|
678 |
+
"if (general): vocab_to_load = vocab_to_load + 'general , '\n",
|
679 |
+
"if (civit9): vocab_to_load = vocab_to_load + 'civit9 , '\n",
|
680 |
+
"if (fanfic1): vocab_to_load = vocab_to_load + 'fanfic1 , '\n",
|
681 |
+
"if (fanfic2): vocab_to_load = vocab_to_load + 'fanfic2 , '\n",
|
682 |
+
"vocab_to_load = (vocab_to_load +'}').replace(' , }' , '')\n",
|
683 |
+
"multi = vocab_to_load.find(',')>-1\n",
|
684 |
+
"#-----#\n",
|
685 |
+
"prompts_folder = f'{home_directory}fusion-t2i-generator-data/vocab-v2/text'\n",
|
686 |
+
"encodings_folder = f'{home_directory}fusion-t2i-generator-data/vocab-v2/text_encodings'\n",
|
687 |
+
"#----#\n",
|
688 |
+
"scale = 0.0043\n",
|
689 |
+
"size = 0\n",
|
690 |
+
"#------#\n",
|
691 |
+
"total_items = 0\n",
|
692 |
+
"for filename in os.listdir(prompts_folder):\n",
|
693 |
+
" if (not general and filename.find('general')>-1):continue\n",
|
694 |
+
" if (not civit9 and filename.find('civit9')>-1):continue\n",
|
695 |
+
" if (not fanfic1 and filename.find('fanfic1')>-1):continue\n",
|
696 |
+
" if (not fanfic2 and filename.find('fanfic2')>-1):continue\n",
|
697 |
+
" size = size + LIST_SIZE\n",
|
698 |
+
"#-------#\n",
|
699 |
+
"similiar_sims = torch.zeros(size)\n",
|
700 |
+
"similiar_prompts = {}\n",
|
701 |
+
"_index = 0\n",
|
702 |
+
"#-------#\n",
|
703 |
+
"similiar_encodings = {}\n",
|
704 |
+
"for filename in os.listdir(prompts_folder):\n",
|
705 |
+
" if (not general and filename.find('general')>-1):continue\n",
|
706 |
+
" if (not civit9 and filename.find('civit9')>-1):continue\n",
|
707 |
+
" if (not fanfic1 and filename.find('fanfic1')>-1):continue\n",
|
708 |
+
" if (not fanfic2 and filename.find('fanfic2')>-1):continue\n",
|
709 |
+
" #------#\n",
|
710 |
+
" root_filename = filename.replace('.json', '')\n",
|
711 |
+
" %cd {prompts_folder}\n",
|
712 |
+
" prompts = {}\n",
|
713 |
+
" with open(f'{root_filename}.json', 'r') as f:\n",
|
714 |
+
" data = json.load(f).items()\n",
|
715 |
+
" for key,value in data:\n",
|
716 |
+
" prompts[key] = value\n",
|
717 |
+
" num_items = int(prompts['num_items'])\n",
|
718 |
+
" total_items = total_items + num_items\n",
|
719 |
+
" #------#\n",
|
720 |
+
" try:vocab_loaded\n",
|
721 |
+
" except:\n",
|
722 |
+
" vocab_loaded = 'first'\n",
|
723 |
+
" #-----#\n",
|
724 |
+
" if vocab_loaded == 'first' or (vocab_loaded != vocab_to_load and not multi):\n",
|
725 |
+
" %cd {encodings_folder}\n",
|
726 |
+
" _text_encodings = load_file(f'{root_filename}.safetensors')['weights'].to(torch.uint8)\n",
|
727 |
+
" text_encodings = torch.zeros(num_items , dim)\n",
|
728 |
+
" tmp = torch.ones(dim).to(dot_dtype)\n",
|
729 |
+
" for index in range(num_items):\n",
|
730 |
+
" text_encodings[index] = torch.sub(_text_encodings[index][1:dim+1].to(dot_dtype) , tmp , alpha= _text_encodings[index][0].to(dot_dtype))\n",
|
731 |
+
" vocab_loaded = vocab_to_load\n",
|
732 |
+
" #------#\n",
|
733 |
+
" sims = torch.matmul(text_encodings*scale, ref.t())\n",
|
734 |
+
" sorted , indices = torch.sort(sims , dim=0 , descending = True)\n",
|
735 |
+
" tmp = {}\n",
|
736 |
+
" tmp['weights'] = sorted\n",
|
737 |
+
" %cd {output_folder_sims}\n",
|
738 |
+
" save_file(tmp, root_filename + '_sims.safetensors')\n",
|
739 |
+
" tmp={}\n",
|
740 |
+
" #-----#\n",
|
741 |
+
" for index in range(LIST_SIZE + START_AT):\n",
|
742 |
+
" if index<START_AT: continue\n",
|
743 |
+
" key = indices[index].item()\n",
|
744 |
+
" try:prompt = prompts[f'{key}']\n",
|
745 |
+
" except:continue\n",
|
746 |
+
" if(isBlacklisted(prompt)):continue\n",
|
747 |
+
" #-------#\n",
|
748 |
+
" similiar_sims[_index] = torch.tensor(round(sims[key].item(), 5))\n",
|
749 |
+
" similiar_prompts[f'{_index}'] = prompt\n",
|
750 |
+
" _index = _index + 1\n",
|
751 |
+
" #-------#\n",
|
752 |
+
" continue\n",
|
753 |
+
"#---------#\n",
|
754 |
+
"total_items = total_items + num_items+1\n",
|
755 |
+
"#-------#\n",
|
756 |
+
"print(f'\\nProcessed entire list of {total_items} items to find closest match.\\nSaved closest matching indices {START_AT} to {START_AT + LIST_SIZE} as the dict \"similiar_prompts\" with {LIST_SIZE} items.\\n')\n",
|
757 |
+
"\n",
|
758 |
+
"# Print results\n",
|
759 |
+
"sorted , indices = torch.sort(similiar_sims , dim=0 , descending = True)\n",
|
760 |
+
"if(print_as_list):\n",
|
761 |
+
" for index in range(LIST_SIZE):\n",
|
762 |
+
" key = indices[index].item()\n",
|
763 |
+
" sim = similiar_sims[key].item()\n",
|
764 |
+
" prompt = similiar_prompts[f'{key}']\n",
|
765 |
+
" if include_similiarity :print(f'{prompt} - {round(sim*100,1)} %')\n",
|
766 |
+
" else: print(f'{prompt}')\n",
|
767 |
+
"#-------#\n",
|
768 |
+
"else:\n",
|
769 |
+
" prompt = ''\n",
|
770 |
+
" for iter in range(N):\n",
|
771 |
+
" prompt = prompt + '{'\n",
|
772 |
+
" for index in range(LIST_SIZE):\n",
|
773 |
+
" key = indices[index].item()\n",
|
774 |
+
" sim = similiar_sims[key].item()\n",
|
775 |
+
" prompt = prompt + fix_bad_symbols(similiar_prompts[f'{key}']) + '|'\n",
|
776 |
+
" #-----#\n",
|
777 |
+
" prompt = (prompt + '}').replace('|}', '} ')\n",
|
778 |
+
" #------#\n",
|
779 |
+
" print(f'Similiar prompts: \\n\\n\\n{prompt} \\n\\n\\n//----//')\n",
|
780 |
+
"#-----#\n",
|
781 |
+
"\n",
|
782 |
+
"#Clear memory\n",
|
783 |
+
"_text_encodings = {}\n",
|
784 |
+
"prompts = {}\n",
|
785 |
+
"#-----#\n",
|
786 |
+
"\n",
|
787 |
+
"image\n"
|
788 |
+
],
|
789 |
+
"metadata": {
|
790 |
+
"id": "kOYZ8Ajn-DD8"
|
791 |
+
},
|
792 |
+
"execution_count": null,
|
793 |
+
"outputs": []
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"cell_type": "markdown",
|
797 |
+
"source": [
|
798 |
+
"**Evaluate Similarities**\n",
|
799 |
+
"\n",
|
800 |
+
"Run this cell to see how far down the list you can go before similarity to the reference is lost."
|
801 |
+
],
|
802 |
+
"metadata": {
|
803 |
+
"id": "yl1DYzUn8YCC"
|
804 |
+
}
|
805 |
+
},
|
806 |
+
{
|
807 |
+
"cell_type": "code",
|
808 |
+
"source": [
|
809 |
+
"# @title ⚄ 🔍 Test how unique the encoding is\n",
|
810 |
+
"%cd {output_folder_sims}\n",
|
811 |
+
"index = 0\n",
|
812 |
+
"for filename in os.listdir(output_folder_sims):\n",
|
813 |
+
" _sims = load_file(filename)\n",
|
814 |
+
" _sims = _sims['weights']\n",
|
815 |
+
" for _sim in _sims.tolist():\n",
|
816 |
+
" index = index + 1\n",
|
817 |
+
" #-------#\n",
|
818 |
+
"total_items = index\n",
|
819 |
+
"sims = torch.zeros(total_items)\n",
|
820 |
+
"index = 0\n",
|
821 |
+
"for filename in os.listdir(output_folder_sims):\n",
|
822 |
+
" _sims = load_file(filename)\n",
|
823 |
+
" _sims = _sims['weights']\n",
|
824 |
+
" for sim in _sims.tolist():\n",
|
825 |
+
" sims[index] = sim\n",
|
826 |
+
" index = index + 1\n",
|
827 |
+
" #-------#\n",
|
828 |
+
"#---------------#\n",
|
829 |
+
"_sorted , indices = torch.sort(sims , dim=0 , descending = True)\n",
|
830 |
+
"SCALE = 0.001\n",
|
831 |
+
"sorted = torch.round(_sorted/SCALE)\n",
|
832 |
+
"ZERO_POINT = sorted[total_items-1].item()\n",
|
833 |
+
"sorted = (sorted - torch.ones(total_items)*ZERO_POINT)\n",
|
834 |
+
"densities = torch.bincount(sorted.to(dtype = torch.int64))\n",
|
835 |
+
"yy = densities.tolist()\n",
|
836 |
+
"top = (sorted[0] + ZERO_POINT).to(dtype = torch.int64).item()\n",
|
837 |
+
"num_coords = round(top - ZERO_POINT)\n",
|
838 |
+
"xx = [round((ZERO_POINT + x)*100*SCALE,2) for x in range(num_coords+1)]\n",
|
839 |
+
"index = 0\n",
|
840 |
+
"for item in xx:\n",
|
841 |
+
" if item>0:break\n",
|
842 |
+
" index = index + 1\n",
|
843 |
+
"#----#\n",
|
844 |
+
"positive_bound = index\n",
|
845 |
+
"ss =list(xx)\n",
|
846 |
+
"tmp = 0\n",
|
847 |
+
"chunk = 1\n",
|
848 |
+
"CHUNK_SIZE = 1000\n",
|
849 |
+
"index = 0\n",
|
850 |
+
"for num in reversed(yy):\n",
|
851 |
+
" tmp = tmp + num\n",
|
852 |
+
" if(tmp>CHUNK_SIZE):\n",
|
853 |
+
" _tmp = math.floor(tmp/CHUNK_SIZE)\n",
|
854 |
+
" chunk = chunk + _tmp\n",
|
855 |
+
" tmp = tmp - CHUNK_SIZE * _tmp\n",
|
856 |
+
" ss[num_coords - index] = chunk\n",
|
857 |
+
" index = index + 1\n",
|
858 |
+
"#------#\n",
|
859 |
+
"fig, ax = plt.subplots()\n",
|
860 |
+
"fig.canvas.draw()\n",
|
861 |
+
"plt.plot(ss[positive_bound:], xx[positive_bound:])\n",
|
862 |
+
"plt.xlabel ('Search depth')\n",
|
863 |
+
"plt.ylabel ('Similarity')\n",
|
864 |
+
"plt.title ('Similarity to index')\n",
|
865 |
+
"plt.grid()\n",
|
866 |
+
"indices_depth = [item.get_text() for item in ax.get_xticklabels()]\n",
|
867 |
+
"sim_pcnts = [item.get_text() for item in ax.get_yticklabels()]\n",
|
868 |
+
"\n",
|
869 |
+
"index = 0\n",
|
870 |
+
"for index_depth in indices_depth:\n",
|
871 |
+
" indices_depth[index] = index_depth + 'K'\n",
|
872 |
+
" index = index + 1\n",
|
873 |
+
"#-------#\n",
|
874 |
+
"\n",
|
875 |
+
"index = 0\n",
|
876 |
+
"for sim_pcnt in sim_pcnts:\n",
|
877 |
+
" sim_pcnts[index] = sim_pcnt + '%'\n",
|
878 |
+
" index = index + 1\n",
|
879 |
+
"#-------#\n",
|
880 |
+
"ax.set_xticklabels(indices_depth)\n",
|
881 |
+
"ax.set_yticklabels(sim_pcnts)\n",
|
882 |
+
"plt.show()"
|
883 |
+
],
|
884 |
+
"metadata": {
|
885 |
+
"id": "ln6DsZPG99ez"
|
886 |
+
},
|
887 |
+
"execution_count": null,
|
888 |
+
"outputs": []
|
889 |
+
},
|
890 |
+
{
|
891 |
+
"cell_type": "code",
|
892 |
+
"source": [
|
893 |
+
"# @title ⚄ Save the results\n",
|
894 |
+
"\n",
|
895 |
+
"def mkdir(folder):\n",
|
896 |
+
" if os.path.exists(folder)==False:\n",
|
897 |
+
" os.makedirs(folder)\n",
|
898 |
+
"#-----#\n",
|
899 |
+
"output_folder = home_directory + 'results'\n",
|
900 |
+
"mkdir(output_folder)\n",
|
901 |
+
"#-----#\n",
|
902 |
+
"try: similiar_prompts\n",
|
903 |
+
"except:similiar_prompts = {}\n",
|
904 |
+
"%cd {output_folder}\n",
|
905 |
+
"print(f'Saving similiar_prompts.json to {output_folder}...')\n",
|
906 |
+
"with open('similiar_prompts.json', 'w') as f:\n",
|
907 |
+
" json.dump(similiar_prompts, f)\n",
|
908 |
+
"#-----#\n",
|
909 |
+
"try: similiar_sims\n",
|
910 |
+
"except: similiar_sims = torch.zeros(dim).to(dot_dtype)\n",
|
911 |
+
"#-------#\n",
|
912 |
+
"_similiar_sims = {}\n",
|
913 |
+
"_similiar_sims['weights'] = similiar_sims.to(dot_dtype)\n",
|
914 |
+
"%cd {output_folder}\n",
|
915 |
+
"print(f'Saving similiar_sims.safetensors to {output_folder}...')\n",
|
916 |
+
"save_file(_similiar_sims, 'similiar_sims.safetensors')\n"
|
917 |
+
],
|
918 |
+
"metadata": {
|
919 |
+
"id": "m-N553nXz9Jd",
|
920 |
+
"cellView": "form"
|
921 |
+
},
|
922 |
+
"execution_count": null,
|
923 |
+
"outputs": []
|
924 |
+
},
|
925 |
+
{
|
926 |
+
"cell_type": "code",
|
927 |
+
"source": [
|
928 |
+
"\n",
|
929 |
+
"# @title ⚄ Print results\n",
|
930 |
+
"sorted , indices = torch.sort(similiar_sims , dim=0 , descending = True)\n",
|
931 |
+
"include_similiarity = False # @param {type:\"boolean\"}\n",
|
932 |
+
"print_as_list = False # @param {type:\"boolean\"}\n",
|
933 |
+
"N = 7 # @param {type:\"slider\", min:0, max:10, step:1}\n",
|
934 |
+
"FILENAME = '' # @param {type:'string' ,placeholder:'write .json file to load (optional)'}\n",
|
935 |
+
"_FILENAME = FILENAME.replace('.json' , '')\n",
|
936 |
+
"if _FILENAME.strip() == '': _FILENAME = 'similiar_prompts'\n",
|
937 |
+
"#------#\n",
|
938 |
+
"%cd {output_folder}\n",
|
939 |
+
"with open(f'{_FILENAME}.json', 'r') as f:\n",
|
940 |
+
" data = json.load(f)\n",
|
941 |
+
" _df = pd.DataFrame({'count': data})['count']\n",
|
942 |
+
" similiar_prompts = {\n",
|
943 |
+
" key : value for key, value in _df.items()\n",
|
944 |
+
" }\n",
|
945 |
+
"#-------#\n",
|
946 |
+
"_similiar_sims = load_file('similiar_sims.safetensors')\n",
|
947 |
+
"similiar_sims = _similiar_sims['weights'].to(dot_dtype)\n",
|
948 |
+
"\n",
|
949 |
+
"# @title ⚄ Run the CLIP interrogator on the saved reference\n",
|
950 |
+
"\n",
|
951 |
+
"# @markdown Select which values within the saved list to print\n",
|
952 |
+
"LIST_SIZE = 1000 # @param {type:'number' , placeholder:'set how large the list should be'}\n",
|
953 |
+
"START_AT = 0 # @param {type:'number' , placeholder:'set how large the list should be'}\n",
|
954 |
+
"\n",
|
955 |
+
"if(print_as_list):\n",
|
956 |
+
" for index in range(LIST_SIZE + START_AT):\n",
|
957 |
+
" if index<START_AT:continue\n",
|
958 |
+
" key = indices[index].item()\n",
|
959 |
+
" sim = similiar_sims[key].item()\n",
|
960 |
+
" prompt = similiar_prompts[f'{key}']\n",
|
961 |
+
" if include_similiarity :print(f'{prompt} - {round(sim*100,1)} %')\n",
|
962 |
+
" else: print(f'{prompt}')\n",
|
963 |
+
"#-------#\n",
|
964 |
+
"else:\n",
|
965 |
+
" prompt = ''\n",
|
966 |
+
" for iter in range(N):\n",
|
967 |
+
" prompt = prompt + '{'\n",
|
968 |
+
" for index in range(LIST_SIZE + START_AT):\n",
|
969 |
+
" if index<START_AT:continue\n",
|
970 |
+
" key = indices[index].item()\n",
|
971 |
+
" sim = similiar_sims[key].item()\n",
|
972 |
+
" prompt = prompt + fix_bad_symbols(similiar_prompts[f'{key}']) + '|'\n",
|
973 |
+
" #-----#\n",
|
974 |
+
" prompt = (prompt + '}').replace('|}', '} ')\n",
|
975 |
+
" #------#\n",
|
976 |
+
" print(f'Similiar prompts: \\n\\n {prompt} \\n\\n')\n",
|
977 |
+
"image\n",
|
978 |
+
"#-----#\n"
|
979 |
+
],
|
980 |
+
"metadata": {
|
981 |
+
"id": "XOMkIKc9-wZz",
|
982 |
+
"cellView": "form"
|
983 |
+
},
|
984 |
+
"execution_count": null,
|
985 |
+
"outputs": []
|
986 |
+
},
|
987 |
+
{
|
988 |
+
"cell_type": "markdown",
|
989 |
+
"source": [
|
990 |
+
"OTHER STUFF BELOW - Code for the modules below are work-in-progress."
|
991 |
+
],
|
992 |
+
"metadata": {
|
993 |
+
"id": "FRIqYJDEebpf"
|
994 |
+
}
|
995 |
+
},
|
996 |
+
{
|
997 |
+
"cell_type": "markdown",
|
998 |
+
"source": [
|
999 |
+
"The savefile can be used here : https://perchance.org/fusion-ai-image-generator"
|
1000 |
+
],
|
1001 |
+
"metadata": {
|
1002 |
+
"id": "JldNmWy1iyvK"
|
1003 |
+
}
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"cell_type": "code",
|
1007 |
+
"source": [
|
1008 |
+
"# @title \t⚄ Create fusion-generator .json savefile from result\n",
|
1009 |
+
"filename = 'blank.json'\n",
|
1010 |
+
"path = '/content/text-to-image-prompts/fusion/'\n",
|
1011 |
+
"\n",
|
1012 |
+
"print(f'reading {filename}....')\n",
|
1013 |
+
"_index = 0\n",
|
1014 |
+
"%cd {path}\n",
|
1015 |
+
"with open(f'{filename}', 'r') as f:\n",
|
1016 |
+
" data = json.load(f)\n",
|
1017 |
+
"#------#\n",
|
1018 |
+
"_df = pd.DataFrame({'count': data})['count']\n",
|
1019 |
+
"_savefile = {\n",
|
1020 |
+
" key : value for key, value in _df.items()\n",
|
1021 |
+
"}\n",
|
1022 |
+
"#------#\n",
|
1023 |
+
"from safetensors.torch import load_file\n",
|
1024 |
+
"import json , os , torch\n",
|
1025 |
+
"import pandas as pd\n",
|
1026 |
+
"#----#\n",
|
1027 |
+
"def my_mkdirs(folder):\n",
|
1028 |
+
" if os.path.exists(folder)==False:\n",
|
1029 |
+
" os.makedirs(folder)\n",
|
1030 |
+
"#------#\n",
|
1031 |
+
"savefile_prompt = ''\n",
|
1032 |
+
"for i in range(N) : savefile_prompt = savefile_prompt + ' ' + __prompts\n",
|
1033 |
+
"_savefile['main'] = savefile_prompt.replace('\\n', ' ').replace(' ', ' ').replace(' ', ' ')\n",
|
1034 |
+
"#------#\n",
|
1035 |
+
"save_filename = f'fusion_C05_X7_1000_{PROMPT_INDEX}.json'\n",
|
1036 |
+
"output_folder = '/content/output/savefiles/'\n",
|
1037 |
+
"my_mkdirs(output_folder)\n",
|
1038 |
+
"#-----#\n",
|
1039 |
+
"%cd {output_folder}\n",
|
1040 |
+
"print(f'Saving segment {save_filename} to {output_folder}...')\n",
|
1041 |
+
"with open(save_filename, 'w') as f:\n",
|
1042 |
+
" json.dump(_savefile, f)\n"
|
1043 |
+
],
|
1044 |
+
"metadata": {
|
1045 |
+
"id": "Q7vpNAXQilbf",
|
1046 |
+
"cellView": "form"
|
1047 |
+
},
|
1048 |
+
"execution_count": null,
|
1049 |
+
"outputs": []
|
1050 |
+
},
|
1051 |
+
{
|
1052 |
+
"cell_type": "code",
|
1053 |
+
"source": [
|
1054 |
+
"# @title \t⚄ Create a savefile-set from the entire range of pre-encoded items\n",
|
1055 |
+
"\n",
|
1056 |
+
"# @markdown 📥 Load the data (only required one time)\n",
|
1057 |
+
"load_the_data = True # @param {type:\"boolean\"}\n",
|
1058 |
+
"\n",
|
1059 |
+
"import math\n",
|
1060 |
+
"from safetensors.torch import load_file\n",
|
1061 |
+
"import json , os , torch\n",
|
1062 |
+
"import pandas as pd\n",
|
1063 |
+
"from PIL import Image\n",
|
1064 |
+
"import requests\n",
|
1065 |
+
"\n",
|
1066 |
+
"def my_mkdirs(folder):\n",
|
1067 |
+
" if os.path.exists(folder)==False:\n",
|
1068 |
+
" os.makedirs(folder)\n",
|
1069 |
+
"\n",
|
1070 |
+
"# @markdown ⚖️ Set the value for C in the reference <br> <br> sim = C* text_enc + image_enc*(1-C) <br><br>\n",
|
1071 |
+
"\n",
|
1072 |
+
"C = 0.5 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
|
1073 |
+
"\n",
|
1074 |
+
"# @markdown 🚫 Penalize similarity to this prompt(optional)\n",
|
1075 |
+
"if(load_the_data):\n",
|
1076 |
+
" target_prompts , target_text_encodings , urls , target_image_encodings , NUM_ITEMS = getPromptsAndLinks('/content/text-to-image-prompts/fusion')\n",
|
1077 |
+
" from transformers import AutoTokenizer\n",
|
1078 |
+
" tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
1079 |
+
" from transformers import CLIPProcessor, CLIPModel\n",
|
1080 |
+
" processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
|
1081 |
+
" model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n",
|
1082 |
+
" logit_scale = model.logit_scale.exp() #logit_scale = 100.00000762939453\n",
|
1083 |
+
"#---------#\n",
|
1084 |
+
"\n",
|
1085 |
+
"filename = 'blank.json'\n",
|
1086 |
+
"path = '/content/text-to-image-prompts/fusion/'\n",
|
1087 |
+
"print(f'reading {filename}....')\n",
|
1088 |
+
"_index = 0\n",
|
1089 |
+
"%cd {path}\n",
|
1090 |
+
"with open(f'{filename}', 'r') as f:\n",
|
1091 |
+
" data = json.load(f)\n",
|
1092 |
+
"#------#\n",
|
1093 |
+
"_df = pd.DataFrame({'count': data})['count']\n",
|
1094 |
+
"_blank = {\n",
|
1095 |
+
" key : value for key, value in _df.items()\n",
|
1096 |
+
"}\n",
|
1097 |
+
"#------#\n",
|
1098 |
+
"\n",
|
1099 |
+
"root_savefile_name = 'fusion_C05_X7'\n",
|
1100 |
+
"\n",
|
1101 |
+
"%cd /content/\n",
|
1102 |
+
"output_folder = '/content/output/savefiles/'\n",
|
1103 |
+
"my_mkdirs(output_folder)\n",
|
1104 |
+
"my_mkdirs('/content/output2/savefiles/')\n",
|
1105 |
+
"my_mkdirs('/content/output3/savefiles/')\n",
|
1106 |
+
"my_mkdirs('/content/output4/savefiles/')\n",
|
1107 |
+
"my_mkdirs('/content/output5/savefiles/')\n",
|
1108 |
+
"my_mkdirs('/content/output6/savefiles/')\n",
|
1109 |
+
"my_mkdirs('/content/output7/savefiles/')\n",
|
1110 |
+
"my_mkdirs('/content/output8/savefiles/')\n",
|
1111 |
+
"my_mkdirs('/content/output9/savefiles/')\n",
|
1112 |
+
"my_mkdirs('/content/output10/savefiles/')\n",
|
1113 |
+
"my_mkdirs('/content/output11/savefiles/')\n",
|
1114 |
+
"my_mkdirs('/content/output12/savefiles/')\n",
|
1115 |
+
"my_mkdirs('/content/output13/savefiles/')\n",
|
1116 |
+
"\n",
|
1117 |
+
"\n",
|
1118 |
+
"NEG = '' # @param {type:'string'}\n",
|
1119 |
+
"strength = 1 # @param {type:\"slider\", min:-5, max:5, step:0.1}\n",
|
1120 |
+
"\n",
|
1121 |
+
"for index in range(1667):\n",
|
1122 |
+
"\n",
|
1123 |
+
" PROMPT_INDEX = index\n",
|
1124 |
+
" prompt = target_prompts[f'{index}']\n",
|
1125 |
+
" url = urls[f'{index}']\n",
|
1126 |
+
" if url.find('perchance')>-1:\n",
|
1127 |
+
" image = Image.open(requests.get(url, stream=True).raw)\n",
|
1128 |
+
" else: continue #print(\"(No image for this ID)\")\n",
|
1129 |
+
"\n",
|
1130 |
+
" print(f\"no. {PROMPT_INDEX} : '{prompt}'\")\n",
|
1131 |
+
" text_features_A = target_text_encodings[f'{index}']\n",
|
1132 |
+
" image_features_A = target_image_encodings[f'{index}']\n",
|
1133 |
+
" # text-similarity\n",
|
1134 |
+
" sims = C * torch.matmul(text_tensor, text_features_A.t())\n",
|
1135 |
+
"\n",
|
1136 |
+
" neg_sims = 0*sims\n",
|
1137 |
+
" if(NEG != ''):\n",
|
1138 |
+
" # Get text features for user input\n",
|
1139 |
+
" inputs = tokenizer(text = NEG, padding=True, return_tensors=\"pt\")\n",
|
1140 |
+
" text_features_NEG = model.get_text_features(**inputs)\n",
|
1141 |
+
" text_features_NEG = text_features_A/text_features_A.norm(p=2, dim=-1, keepdim=True)\n",
|
1142 |
+
" # text-similarity\n",
|
1143 |
+
" neg_sims = strength*torch.matmul(text_tensor, text_features_NEG.t())\n",
|
1144 |
+
" #------#\n",
|
1145 |
+
"\n",
|
1146 |
+
" # plus image-similarity\n",
|
1147 |
+
" sims = sims + (1-C) * torch.matmul(text_tensor, image_features_A.t()) * logit_scale\n",
|
1148 |
+
"\n",
|
1149 |
+
" # minus NEG-similarity\n",
|
1150 |
+
" sims = sims - neg_sims\n",
|
1151 |
+
"\n",
|
1152 |
+
" # Sort the items\n",
|
1153 |
+
" sorted , indices = torch.sort(sims,dim=0 , descending=True)\n",
|
1154 |
+
"\n",
|
1155 |
+
" # @markdown Repeat output N times\n",
|
1156 |
+
" RANGE = 1000\n",
|
1157 |
+
" NUM_CHUNKS = 10+\n",
|
1158 |
+
" separator = '|'\n",
|
1159 |
+
" _savefiles = {}\n",
|
1160 |
+
" #-----#\n",
|
1161 |
+
" for chunk in range(NUM_CHUNKS):\n",
|
1162 |
+
" if chunk=<10:continue\n",
|
1163 |
+
" start_at_index = chunk * RANGE\n",
|
1164 |
+
" _prompts = ''\n",
|
1165 |
+
" for _index in range(start_at_index + RANGE):\n",
|
1166 |
+
" if _index < start_at_index : continue\n",
|
1167 |
+
" index = indices[_index].item()\n",
|
1168 |
+
" prompt = prompts[f'{index}']\n",
|
1169 |
+
" _prompts = _prompts.replace(prompt + separator,'')\n",
|
1170 |
+
" _prompts = _prompts + prompt + separator\n",
|
1171 |
+
" #------#\n",
|
1172 |
+
" _prompts = fix_bad_symbols(_prompts)\n",
|
1173 |
+
" _prompts = ('{' + _prompts + '}').replace(separator + '}', '}')\n",
|
1174 |
+
" _savefiles[f'{chunk}'] = _prompts\n",
|
1175 |
+
" #---------#\n",
|
1176 |
+
" save_filename = f'{root_savefile_name}_{start_at_index + RANGE}_{PROMPT_INDEX}.json'\n",
|
1177 |
+
"\n",
|
1178 |
+
"\n",
|
1179 |
+
" if (chunk=<20 && chunk>10): %cd '/content/output2/savefiles/'\n",
|
1180 |
+
" if (chunk<=30 && chunk>20): %cd '/content/output3/savefiles/'\n",
|
1181 |
+
" if (chunk=<40 && chunk>30): %cd '/content/output4/savefiles/'\n",
|
1182 |
+
" if (chunk<=50 && chunk>40): %cd '/content/output5/savefiles/'\n",
|
1183 |
+
" if (chunk=<60 && chunk>50): %cd '/content/output6/savefiles/'\n",
|
1184 |
+
" if (chunk<=70 && chunk>60): %cd '/content/output7/savefiles/'\n",
|
1185 |
+
" if (chunk=<80 && chunk>70): %cd '/content/output8/savefiles/'\n",
|
1186 |
+
" if (chunk<=90 && chunk>80): %cd '/content/output9/savefiles/'\n",
|
1187 |
+
" if (chunk=<100 && chunk>90): %cd '/content/output10/savefiles/'\n",
|
1188 |
+
" if (chunk<=110 && chunk>100): %cd '/content/output11/savefiles/'\n",
|
1189 |
+
" if (chunk=<120 && chunk>110): %cd '/content/output12/savefiles/'\n",
|
1190 |
+
" if (chunk<=130 && chunk>120): %cd '/content/output13/savefiles/'\n",
|
1191 |
+
"\n",
|
1192 |
+
"\n",
|
1193 |
+
" #------#\n",
|
1194 |
+
" print(f'Saving savefile {save_filename} to {output_folder}...')\n",
|
1195 |
+
" with open(save_filename, 'w') as f:\n",
|
1196 |
+
" json.dump(_savefiles, f)\n",
|
1197 |
+
" #---------#\n",
|
1198 |
+
" continue\n",
|
1199 |
+
"#-----------#"
|
1200 |
+
],
|
1201 |
+
"metadata": {
|
1202 |
+
"id": "x1uAVXZEoL0T",
|
1203 |
+
"cellView": "form"
|
1204 |
+
},
|
1205 |
+
"execution_count": null,
|
1206 |
+
"outputs": []
|
1207 |
+
},
|
1208 |
+
{
|
1209 |
+
"cell_type": "code",
|
1210 |
+
"source": [
|
1211 |
+
"# Determine if this notebook is running on Colab or Kaggle\n",
|
1212 |
+
"#Use https://www.kaggle.com/ if Google Colab GPU is busy\n",
|
1213 |
+
"home_directory = '/content/'\n",
|
1214 |
+
"using_Kaggle = os.environ.get('KAGGLE_URL_BASE','')\n",
|
1215 |
+
"if using_Kaggle : home_directory = '/kaggle/working/'\n",
|
1216 |
+
"%cd {home_directory}\n",
|
1217 |
+
"#-------#\n",
|
1218 |
+
"\n",
|
1219 |
+
"# @title Download the text_encodings as .zip\n",
|
1220 |
+
"import os\n",
|
1221 |
+
"%cd {home_directory}\n",
|
1222 |
+
"#os.remove(f'{home_directory}results.zip')\n",
|
1223 |
+
"root_output_folder = home_directory + 'output/'\n",
|
1224 |
+
"zip_dest = f'/content/results.zip' #drive/MyDrive\n",
|
1225 |
+
"!zip -r {zip_dest} {root_output_folder}"
|
1226 |
+
],
|
1227 |
+
"metadata": {
|
1228 |
+
"id": "zivBNrw9uSVD",
|
1229 |
+
"cellView": "form"
|
1230 |
+
},
|
1231 |
+
"execution_count": null,
|
1232 |
+
"outputs": []
|
1233 |
+
},
|
1234 |
+
{
|
1235 |
+
"cell_type": "code",
|
1236 |
+
"source": [
|
1237 |
+
"# @title \t⚄ Quick fix for normalizing encoded text corpus tensors\n",
|
1238 |
+
"\n",
|
1239 |
+
"import os\n",
|
1240 |
+
"my_mkdirs('/content/output')\n",
|
1241 |
+
"my_mkdirs('/content/output/text_encodings')\n",
|
1242 |
+
"\n",
|
1243 |
+
"for filename in os.listdir(f'{prompts_folder}'):\n",
|
1244 |
+
" %cd {prompts_folder}\n",
|
1245 |
+
" prompts = {}\n",
|
1246 |
+
" with open(f'{filename}', 'r') as f:\n",
|
1247 |
+
" data = json.load(f).items()\n",
|
1248 |
+
" for key,value in data:\n",
|
1249 |
+
" prompts[key] = value\n",
|
1250 |
+
" #------#\n",
|
1251 |
+
" num_items = int(prompts['num_items'])\n",
|
1252 |
+
"\n",
|
1253 |
+
" %cd {encodings_folder}\n",
|
1254 |
+
" enc_filename = filename.replace('json', 'safetensors')\n",
|
1255 |
+
" _text_encodings = load_file(f'{enc_filename}')['weights'].to(torch.uint8)\n",
|
1256 |
+
" text_encodings = torch.zeros(num_items , dim)\n",
|
1257 |
+
" tmp = torch.ones(dim)\n",
|
1258 |
+
" tmp2 = torch.tensor(1/0.0043)\n",
|
1259 |
+
" zero_point = 0\n",
|
1260 |
+
" for index in range(num_items):\n",
|
1261 |
+
" text_encodings[index] = torch.tensor(0.0043) * torch.sub(_text_encodings[index][1:dim+1] , tmp , alpha= _text_encodings[index][0]).to(torch.float32)\n",
|
1262 |
+
" text_encodings[index] = tmp2*text_encodings[index]/text_encodings[index].norm(p=2, dim=-1, keepdim = True)\n",
|
1263 |
+
" test = torch.round( torch.add(text_encodings[index],tmp*zero_point))\n",
|
1264 |
+
" less_than_zero = test<0\n",
|
1265 |
+
" while(torch.any(less_than_zero).item()):\n",
|
1266 |
+
" zero_point = zero_point + 1\n",
|
1267 |
+
" test = torch.round( torch.add(text_encodings[index],tmp*zero_point))\n",
|
1268 |
+
" less_than_zero = test<0\n",
|
1269 |
+
" #------#\n",
|
1270 |
+
" _text_encodings[index][0] = zero_point\n",
|
1271 |
+
" _text_encodings[index][1:dim+1] = test\n",
|
1272 |
+
" #-------#\n",
|
1273 |
+
" %cd /content/output/text_encodings\n",
|
1274 |
+
"\n",
|
1275 |
+
" tmp = {}\n",
|
1276 |
+
" tmp['weights'] = _text_encodings.to(torch.uint8)\n",
|
1277 |
+
" tmp['num_items'] = torch.tensor(num_items).to(torch.uint8)\n",
|
1278 |
+
" tmp['scale'] = torch.tensor(0.0043)\n",
|
1279 |
+
" save_file(tmp , f'{enc_filename}')\n",
|
1280 |
+
"#------#"
|
1281 |
+
],
|
1282 |
+
"metadata": {
|
1283 |
+
"cellView": "form",
|
1284 |
+
"id": "9qgHW1Wr7kZn"
|
1285 |
+
},
|
1286 |
+
"execution_count": null,
|
1287 |
+
"outputs": []
|
1288 |
+
}
|
1289 |
+
]
|
1290 |
+
}
|