Upload fusion_t2i_CLIP_interrogator.ipynb
Browse files
Google Colab Jupyter Notebooks/fusion_t2i_CLIP_interrogator.ipynb
CHANGED
@@ -177,7 +177,8 @@
|
|
177 |
"print(f'Using settings SCALE = {SCALE} and ZERO_POINT = {ZERO_POINT} for visualizing the text_encoding')"
|
178 |
],
|
179 |
"metadata": {
|
180 |
-
"id": "YDu8XlehhWID"
|
|
|
181 |
},
|
182 |
"execution_count": null,
|
183 |
"outputs": []
|
@@ -185,13 +186,135 @@
|
|
185 |
{
|
186 |
"cell_type": "markdown",
|
187 |
"source": [
|
188 |
-
"**
|
189 |
"\n"
|
190 |
],
|
191 |
"metadata": {
|
192 |
"id": "Xf9zoq-Za3wi"
|
193 |
}
|
194 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
{
|
196 |
"cell_type": "code",
|
197 |
"source": [
|
@@ -206,7 +329,7 @@
|
|
206 |
"try:prompt\n",
|
207 |
"except: prompt = ''\n",
|
208 |
"\n",
|
209 |
-
"# @markdown 🖼️+📝 Choose a pre-encoded reference (
|
210 |
"index = 596 # @param {type:\"slider\", min:0, max:1666, step:1}\n",
|
211 |
"PROMPT_INDEX = index\n",
|
212 |
"prompt = target_prompts[f'{PROMPT_INDEX}']\n",
|
@@ -268,6 +391,15 @@
|
|
268 |
"execution_count": null,
|
269 |
"outputs": []
|
270 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
271 |
{
|
272 |
"cell_type": "code",
|
273 |
"source": [
|
@@ -337,6 +469,15 @@
|
|
337 |
"execution_count": null,
|
338 |
"outputs": []
|
339 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
340 |
{
|
341 |
"cell_type": "code",
|
342 |
"source": [
|
@@ -463,103 +604,27 @@
|
|
463 |
" #------#"
|
464 |
],
|
465 |
"metadata": {
|
466 |
-
"id": "lOQuTPfBMK82"
|
|
|
467 |
},
|
468 |
"execution_count": null,
|
469 |
"outputs": []
|
470 |
},
|
471 |
{
|
472 |
-
"cell_type": "
|
473 |
"source": [
|
474 |
-
"
|
475 |
-
"EVAL = '' # @param {type:'string' ,placeholder:'item1 , item2 , ...'}\n",
|
476 |
-
"\n",
|
477 |
-
"# @markdown 📝 Enhance/Penalize Similarity and skip items containing word(s)\n",
|
478 |
-
"POS = '' # @param {type:'string' ,placeholder:'item1 , item2 , ...'}\n",
|
479 |
-
"NEG = ''# @param {type:'string' ,placeholder:'item1 , item2 , ...'}\n",
|
480 |
-
"# @markdown -----\n",
|
481 |
-
"# @markdown logarithmic prompt strength x for value 10^(x-1)\n",
|
482 |
-
"_POS = 0 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
|
483 |
-
"_NEG = 0 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
|
484 |
"\n",
|
485 |
-
"
|
486 |
-
"show_encoding = True # @param {type:\"boolean\"}\n",
|
487 |
-
"\n",
|
488 |
-
"%cd /content/\n",
|
489 |
-
"_ref = load_file('reference.safetensors' )\n",
|
490 |
-
"ref = _ref['weights'].to(dot_dtype)\n",
|
491 |
-
"\n",
|
492 |
-
"if EVAL.strip() != '':\n",
|
493 |
-
" print(\"Saved Reference:\\n\")\n",
|
494 |
-
" for item in EVAL.split(','):\n",
|
495 |
-
" if item.strip()=='':continue\n",
|
496 |
-
" inputs = tokenizer(text = item.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
|
497 |
-
" test = model.get_text_features(**inputs)[0]\n",
|
498 |
-
" test = test/test.norm(p=2 , dim = -1 , keepdim = True)\n",
|
499 |
-
" ref= ref/ref.norm(p=2 , dim=-1 , keepdim=True)\n",
|
500 |
-
" eval = torch.dot(ref , test)\n",
|
501 |
-
" print(f'{item.strip()} : {round(eval.item()*100, 2)}%')\n",
|
502 |
-
" #-----#\n",
|
503 |
-
"\n",
|
504 |
-
" if(show_local_reference):\n",
|
505 |
-
" print(\"\\n---------\\nLocal Reference with enchancements added :\\n\")\n",
|
506 |
-
"\n",
|
507 |
-
" for _item in POS.split(','):\n",
|
508 |
-
" item = _item.strip()\n",
|
509 |
-
" if item == '':continue\n",
|
510 |
-
" inputs = tokenizer(text = item.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
|
511 |
-
" ref = ref + math.pow(10,_POS-1) * model.get_text_features(**inputs)[0]\n",
|
512 |
-
" #-------#\n",
|
513 |
-
"\n",
|
514 |
-
" for _item in NEG.split(','):\n",
|
515 |
-
" item = _item.strip()\n",
|
516 |
-
" if item == '':continue\n",
|
517 |
-
" inputs = tokenizer(text = item.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
|
518 |
-
" ref = ref + math.pow(10,_NEG-1) * model.get_text_features(**inputs)[0]\n",
|
519 |
-
" #-------#\n",
|
520 |
-
"\n",
|
521 |
-
" ref= ref/ref.norm(p=2 , dim=-1 , keepdim=True)\n",
|
522 |
-
" for item in EVAL.split(','):\n",
|
523 |
-
" if item.strip()=='':continue\n",
|
524 |
-
" inputs = tokenizer(text = item.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
|
525 |
-
" test = model.get_text_features(**inputs)[0]\n",
|
526 |
-
" test = test/test.norm(p=2 , dim = -1 , keepdim = True)\n",
|
527 |
-
" eval = torch.dot(ref , test)\n",
|
528 |
-
" print(f'{item.strip()} : {round(eval.item()*100, 2)}%')\n",
|
529 |
-
" #-----#\n",
|
530 |
-
"\n",
|
531 |
-
" if show_encoding:\n",
|
532 |
-
" # create figure\n",
|
533 |
-
" fig = plt.figure(figsize=(10*image_size, 10*image_size))\n",
|
534 |
-
" fig.patch.set_facecolor((56/255,56/255,56/255))\n",
|
535 |
-
" rows = 1\n",
|
536 |
-
" columns = 3\n",
|
537 |
-
" fig.add_subplot(rows, columns, 1)\n",
|
538 |
-
" plt.imshow( visualize(ref))\n",
|
539 |
-
" plt.axis('off')\n",
|
540 |
-
" plt.title( \"Encoding (local variable)\", color='white', fontsize=round(20*image_size))\n",
|
541 |
-
" if num_plots>1:\n",
|
542 |
-
" fig.add_subplot(rows, columns, 2)\n",
|
543 |
-
" plt.imshow( visualize( _ref['weights'].to(dot_dtype)))\n",
|
544 |
-
" plt.axis('off')\n",
|
545 |
-
" plt.title(\"Encoding (saved file)\", color='white', fontsize=round(20*image_size))\n",
|
546 |
-
"\n",
|
547 |
-
" fig.add_subplot(rows, columns, 3)\n",
|
548 |
-
" plt.imshow( visualize(ref - _ref['weights'].to(dot_dtype)))\n",
|
549 |
-
" plt.axis('off')\n",
|
550 |
-
" plt.title(\"Changes\", color='white', fontsize=round(20*image_size))\n",
|
551 |
-
" #------#\n"
|
552 |
],
|
553 |
"metadata": {
|
554 |
-
"id": "
|
555 |
-
}
|
556 |
-
"execution_count": null,
|
557 |
-
"outputs": []
|
558 |
},
|
559 |
{
|
560 |
"cell_type": "code",
|
561 |
"source": [
|
562 |
-
"# @title ⚄
|
563 |
"LIST_SIZE = 1000 # @param {type:'number' , placeholder:'set how large the list should be'}\n",
|
564 |
"_START_AT = '0' # @param [\"0\", \"10000\", \"50000\"] {allow-input: true}\n",
|
565 |
"START_AT = 0\n",
|
@@ -757,6 +822,17 @@
|
|
757 |
"execution_count": null,
|
758 |
"outputs": []
|
759 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
760 |
{
|
761 |
"cell_type": "code",
|
762 |
"source": [
|
|
|
177 |
"print(f'Using settings SCALE = {SCALE} and ZERO_POINT = {ZERO_POINT} for visualizing the text_encoding')"
|
178 |
],
|
179 |
"metadata": {
|
180 |
+
"id": "YDu8XlehhWID",
|
181 |
+
"cellView": "form"
|
182 |
},
|
183 |
"execution_count": null,
|
184 |
"outputs": []
|
|
|
186 |
{
|
187 |
"cell_type": "markdown",
|
188 |
"source": [
|
189 |
+
"**Paste a prompt in the cell below to create an encoding**\n",
|
190 |
"\n"
|
191 |
],
|
192 |
"metadata": {
|
193 |
"id": "Xf9zoq-Za3wi"
|
194 |
}
|
195 |
},
|
196 |
+
{
|
197 |
+
"cell_type": "code",
|
198 |
+
"source": [
|
199 |
+
"\n",
|
200 |
+
"# @markdown 📝 Write a text prompt (this will overwrite any savefile already stored)\n",
|
201 |
+
"NEW_ENCODING = '' # @param {type:'string' ,placeholder:'write a prompt'}\n",
|
202 |
+
"enable = True # @param {type:\"boolean\"}\n",
|
203 |
+
"# @markdown -----\n",
|
204 |
+
"# @markdown 📝 Enhance/Penalize Similarity and skip items containing word(s)\n",
|
205 |
+
"POS = '' # @param {type:'string' ,placeholder:'item1 , item2 , ...'}\n",
|
206 |
+
"NEG = ''# @param {type:'string' ,placeholder:'item1 , item2 , ...'}\n",
|
207 |
+
"# @markdown -----\n",
|
208 |
+
"# @markdown logarithmic prompt strength x for value 10^(x-1)\n",
|
209 |
+
"_POS = 0 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
|
210 |
+
"_NEG = 0 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
|
211 |
+
"# @markdown -----\n",
|
212 |
+
"# @markdown Check similiarity for this encoding against any written prompt(s)\n",
|
213 |
+
"# @title ⚄ Evaluate saved reference similarity to select items (optional)\n",
|
214 |
+
"EVAL = '' # @param {type:'string' ,placeholder:'item1 , item2 , ...'}\n",
|
215 |
+
"\n",
|
216 |
+
"show_local_reference = True # @param {type:\"boolean\"}\n",
|
217 |
+
"show_encoding = True # @param {type:\"boolean\"}\n",
|
218 |
+
"\n",
|
219 |
+
"try:\n",
|
220 |
+
" %cd /content/\n",
|
221 |
+
" _ref = load_file('reference.safetensors' )\n",
|
222 |
+
" ref = _ref['weights'].to(dot_dtype)\n",
|
223 |
+
"except:\n",
|
224 |
+
" ref = torch.zeros(dim).to(dtype = dot_dtype)\n",
|
225 |
+
" _ref = {}\n",
|
226 |
+
" _ref['weights'] = ref\n",
|
227 |
+
" %cd /content/\n",
|
228 |
+
" save_file(_ref, 'reference.safetensors')\n",
|
229 |
+
"#-----#\n",
|
230 |
+
"\n",
|
231 |
+
"if NEW_ENCODING.strip() != ''\n",
|
232 |
+
" item = NEW_ENCODING.strip()\n",
|
233 |
+
" inputs = tokenizer(text = item.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
|
234 |
+
" ref = model.get_text_features(**inputs)[0]\n",
|
235 |
+
" ref= ref/ref.norm(p=2 , dim=-1 , keepdim=True)\n",
|
236 |
+
"#------#\n",
|
237 |
+
"\n",
|
238 |
+
"try: ref\n",
|
239 |
+
"except: ref = torch.zeros(dim).to(dtype = dot_dtype)\n",
|
240 |
+
"\n",
|
241 |
+
"if EVAL.strip() != '':\n",
|
242 |
+
" print(\"Saved Reference:\\n\")\n",
|
243 |
+
" for item in EVAL.split(','):\n",
|
244 |
+
" if item.strip()=='':continue\n",
|
245 |
+
" inputs = tokenizer(text = item.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
|
246 |
+
" test = model.get_text_features(**inputs)[0]\n",
|
247 |
+
" test = test/test.norm(p=2 , dim = -1 , keepdim = True)\n",
|
248 |
+
" ref= ref/ref.norm(p=2 , dim=-1 , keepdim=True)\n",
|
249 |
+
" eval = torch.dot(ref , test)\n",
|
250 |
+
" print(f'{item.strip()} : {round(eval.item()*100, 2)}%')\n",
|
251 |
+
" #-----#\n",
|
252 |
+
" if(show_local_reference):\n",
|
253 |
+
" print(\"\\n---------\\nLocal Reference with enchancements added :\\n\")\n",
|
254 |
+
"\n",
|
255 |
+
" for _item in POS.split(','):\n",
|
256 |
+
" item = _item.strip()\n",
|
257 |
+
" if item == '':continue\n",
|
258 |
+
" inputs = tokenizer(text = item.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
|
259 |
+
" ref = ref + math.pow(10,_POS-1) * model.get_text_features(**inputs)[0]\n",
|
260 |
+
" #-------#\n",
|
261 |
+
"\n",
|
262 |
+
" for _item in NEG.split(','):\n",
|
263 |
+
" item = _item.strip()\n",
|
264 |
+
" if item == '':continue\n",
|
265 |
+
" inputs = tokenizer(text = item.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
|
266 |
+
" ref = ref + math.pow(10,_NEG-1) * model.get_text_features(**inputs)[0]\n",
|
267 |
+
" #-------#\n",
|
268 |
+
"\n",
|
269 |
+
" ref= ref/ref.norm(p=2 , dim=-1 , keepdim=True)\n",
|
270 |
+
" for item in EVAL.split(','):\n",
|
271 |
+
" if item.strip()=='':continue\n",
|
272 |
+
" inputs = tokenizer(text = item.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
|
273 |
+
" test = model.get_text_features(**inputs)[0]\n",
|
274 |
+
" test = test/test.norm(p=2 , dim = -1 , keepdim = True)\n",
|
275 |
+
" eval = torch.dot(ref , test)\n",
|
276 |
+
" print(f'{item.strip()} : {round(eval.item()*100, 2)}%')\n",
|
277 |
+
" #-----#\n",
|
278 |
+
"\n",
|
279 |
+
" if show_encoding:\n",
|
280 |
+
" # create figure\n",
|
281 |
+
" fig = plt.figure(figsize=(10*image_size, 10*image_size))\n",
|
282 |
+
" fig.patch.set_facecolor((56/255,56/255,56/255))\n",
|
283 |
+
" rows = 1\n",
|
284 |
+
" columns = 3\n",
|
285 |
+
" fig.add_subplot(rows, columns, 1)\n",
|
286 |
+
" plt.imshow( visualize(ref))\n",
|
287 |
+
" plt.axis('off')\n",
|
288 |
+
" plt.title( \"Encoding (local variable)\", color='white', fontsize=round(20*image_size))\n",
|
289 |
+
" if num_plots>1:\n",
|
290 |
+
" fig.add_subplot(rows, columns, 2)\n",
|
291 |
+
" plt.imshow( visualize( _ref['weights'].to(dot_dtype)))\n",
|
292 |
+
" plt.axis('off')\n",
|
293 |
+
" plt.title(\"Encoding (saved file)\", color='white', fontsize=round(20*image_size))\n",
|
294 |
+
"\n",
|
295 |
+
" fig.add_subplot(rows, columns, 3)\n",
|
296 |
+
" plt.imshow( visualize(ref - _ref['weights'].to(dot_dtype)))\n",
|
297 |
+
" plt.axis('off')\n",
|
298 |
+
" plt.title(\"Changes\", color='white', fontsize=round(20*image_size))\n",
|
299 |
+
" #------#\n",
|
300 |
+
"\n",
|
301 |
+
"\n"
|
302 |
+
],
|
303 |
+
"metadata": {
|
304 |
+
"id": "Oxi6nOyrUTAe"
|
305 |
+
},
|
306 |
+
"execution_count": null,
|
307 |
+
"outputs": []
|
308 |
+
},
|
309 |
+
{
|
310 |
+
"cell_type": "markdown",
|
311 |
+
"source": [
|
312 |
+
"**Use a pre-encoded image+prompt pair as reference (optional)**"
|
313 |
+
],
|
314 |
+
"metadata": {
|
315 |
+
"id": "f9_AcquM7AYZ"
|
316 |
+
}
|
317 |
+
},
|
318 |
{
|
319 |
"cell_type": "code",
|
320 |
"source": [
|
|
|
329 |
"try:prompt\n",
|
330 |
"except: prompt = ''\n",
|
331 |
"\n",
|
332 |
+
"# @markdown 🖼️+📝 Choose a pre-encoded reference (note: some results are NSFW!)\n",
|
333 |
"index = 596 # @param {type:\"slider\", min:0, max:1666, step:1}\n",
|
334 |
"PROMPT_INDEX = index\n",
|
335 |
"prompt = target_prompts[f'{PROMPT_INDEX}']\n",
|
|
|
391 |
"execution_count": null,
|
392 |
"outputs": []
|
393 |
},
|
394 |
+
{
|
395 |
+
"cell_type": "markdown",
|
396 |
+
"source": [
|
397 |
+
"**Use an image as a reference via URL (optional)**"
|
398 |
+
],
|
399 |
+
"metadata": {
|
400 |
+
"id": "KI9Ho6CG7m3Z"
|
401 |
+
}
|
402 |
+
},
|
403 |
{
|
404 |
"cell_type": "code",
|
405 |
"source": [
|
|
|
469 |
"execution_count": null,
|
470 |
"outputs": []
|
471 |
},
|
472 |
+
{
|
473 |
+
"cell_type": "markdown",
|
474 |
+
"source": [
|
475 |
+
"**Use an image as a reference via uploading it to the /content/ folder (optional)**"
|
476 |
+
],
|
477 |
+
"metadata": {
|
478 |
+
"id": "MBPi7F8S7tg3"
|
479 |
+
}
|
480 |
+
},
|
481 |
{
|
482 |
"cell_type": "code",
|
483 |
"source": [
|
|
|
604 |
" #------#"
|
605 |
],
|
606 |
"metadata": {
|
607 |
+
"id": "lOQuTPfBMK82",
|
608 |
+
"cellView": "form"
|
609 |
},
|
610 |
"execution_count": null,
|
611 |
"outputs": []
|
612 |
},
|
613 |
{
|
614 |
+
"cell_type": "markdown",
|
615 |
"source": [
|
616 |
+
"**Run the interrogator**\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
617 |
"\n",
|
618 |
+
" Since the list of items is large (>1 million items) you will need to select a range within the sorted results to print."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
619 |
],
|
620 |
"metadata": {
|
621 |
+
"id": "ROKsoZrt7zMe"
|
622 |
+
}
|
|
|
|
|
623 |
},
|
624 |
{
|
625 |
"cell_type": "code",
|
626 |
"source": [
|
627 |
+
"# @title ⚄ CLIP Interrogator\n",
|
628 |
"LIST_SIZE = 1000 # @param {type:'number' , placeholder:'set how large the list should be'}\n",
|
629 |
"_START_AT = '0' # @param [\"0\", \"10000\", \"50000\"] {allow-input: true}\n",
|
630 |
"START_AT = 0\n",
|
|
|
822 |
"execution_count": null,
|
823 |
"outputs": []
|
824 |
},
|
825 |
+
{
|
826 |
+
"cell_type": "markdown",
|
827 |
+
"source": [
|
828 |
+
"**Evaluate Similarities**\n",
|
829 |
+
"\n",
|
830 |
+
"Run this cell to see how far down the list you can go before similarity to the reference is lost."
|
831 |
+
],
|
832 |
+
"metadata": {
|
833 |
+
"id": "yl1DYzUn8YCC"
|
834 |
+
}
|
835 |
+
},
|
836 |
{
|
837 |
"cell_type": "code",
|
838 |
"source": [
|