{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "code",
"source": [
"# @title β π Initialize\n",
"\n",
"import os\n",
"home_directory = '/content/'\n",
"using_Kaggle = os.environ.get('KAGGLE_URL_BASE','')\n",
"if using_Kaggle : home_directory = '/kaggle/working/'\n",
"%cd {home_directory}\n",
"\n",
"def fix_bad_symbols(txt):\n",
" result = txt\n",
" for symbol in ['^', '}', '{' , ')', '(', '[' , ']' , ':' , '=' ]:\n",
" result = result.replace(symbol,'\\\\' + symbol)\n",
" #------#\n",
" return result;\n",
"\n",
"def my_mkdirs(folder):\n",
" if os.path.exists(folder)==False:\n",
" os.makedirs(folder)\n",
"\n",
"#πΈπΉ\n",
"# Load the data if not already loaded\n",
"try:\n",
" loaded\n",
"except:\n",
" from safetensors.torch import load_file , save_file\n",
" import json , torch , requests , math\n",
" import pandas as pd\n",
" from PIL import Image\n",
" import cv2\n",
" from matplotlib import pyplot as plt\n",
" #----#\n",
" %cd {home_directory}\n",
" !git clone https://huggingface.co/datasets/codeShare/fusion-t2i-generator-data\n",
" loaded = True\n",
" %cd {home_directory + 'fusion-t2i-generator-data/'}\n",
" !unzip reference.zip\n",
"\n",
"from transformers import AutoTokenizer\n",
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
"from transformers import CLIPProcessor, CLIPModel\n",
"processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
"model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n",
"logit_scale = model.logit_scale.exp() #logit_scale = 100.00000762939453\n",
"\n",
"#------#\n",
"%cd {home_directory + 'fusion-t2i-generator-data/' + 'reference'}\n",
"with open(f'reference_prompts.json', 'r') as f:\n",
" data = json.load(f)\n",
" _df = pd.DataFrame({'count': data})['count']\n",
" target_prompts = {\n",
" key : value for key, value in _df.items()\n",
" }\n",
"#------#\n",
"with open(f'reference_urls.json', 'r') as f:\n",
" data = json.load(f)\n",
" _df = pd.DataFrame({'count': data})['count']\n",
" target_urls = {\n",
" key : value for key, value in _df.items()\n",
" }\n",
"\n",
"#------#\n",
"dot_dtype = torch.float32\n",
"dim = 768\n",
"ref = torch.zeros(dim).to(dtype = dot_dtype)\n",
"\n",
"# title β Define parameters for visalizing the reference in a 16x16 grid
(the visualization settings has no effect on output)\n",
"from PIL import Image, ImageDraw\n",
"SCALE = 0.0002 # param {type:\"slider\", min:0.0001, max:0.001, step:0.00001}\n",
"ZERO_POINT = 100 # param {type:\"slider\", min:0, max:300, step:1}\n",
"CELL_SIZE = 16\n",
"image_size = 0.5 # param {type:\"slider\", min:0, max:1, step:0.01}\n",
"show_encoding = False # param {type:\"boolean\"}\n",
"#------#\n",
"\n",
"BORDER_THICKNESS = 4\n",
"\n",
"def visualize(_ref):\n",
" RGB_tensor = (torch.round(_ref/SCALE)+torch.ones(dim)*ZERO_POINT)\n",
" cellsize = CELL_SIZE\n",
" tick = round(cellsize/2)\n",
" border_offset = round(BORDER_THICKNESS/2)\n",
" width = 16*cellsize + BORDER_THICKNESS\n",
" height = 16*cellsize + BORDER_THICKNESS\n",
" image = Image.new('RGB', (width, height), (0, 0, 0))\n",
" draw = ImageDraw.Draw(image)\n",
" for row in range(16):\n",
" for col in range(16):\n",
" tmp = 3*row*col\n",
" r = max(0,min(255,int(RGB_tensor[tmp].item())))\n",
" g = max(0,min(255,int(RGB_tensor[tmp+1].item())))\n",
" b = max(0,min(255,int(RGB_tensor[tmp+2].item())))\n",
" fillColor = (r,g,b)\n",
" x0 = row*cellsize +border_offset\n",
" y0 = (15-col)*cellsize +border_offset\n",
" x1 = row*cellsize + 2*tick + border_offset\n",
" y1 = (15-col)*cellsize + 2*tick + border_offset\n",
" shape = [(x0, y0), (x1, y1)]\n",
" draw.rectangle(shape, fill=fillColor, outline=(0,0,0))\n",
" return (image)\n",
"\n",
"num_plots = 1\n",
"try:\n",
" %cd /content/\n",
" _ref = load_file('reference.safetensors' )\n",
" num_plots = num_plots+1\n",
"except: _ref = torch.zeros(dim).to(dtype = dot_dtype)\n",
"#-----#\n",
"try: ref\n",
"except: ref = torch.zeros(dim).to(dtype = dot_dtype)\n",
"\n",
"\n",
"if show_encoding:\n",
" # create figure\n",
" fig = plt.figure(figsize=(10*image_size, 10*image_size))\n",
" fig.patch.set_facecolor((56/255,56/255,56/255))\n",
" rows = 1\n",
" columns = num_plots\n",
" fig.add_subplot(rows, columns, 1)\n",
" plt.imshow( visualize(ref))\n",
" plt.axis('off')\n",
" plt.title( \"Encoding (local variable)\", color='white', fontsize=round(20*image_size))\n",
" if num_plots>1:\n",
" fig.add_subplot(rows, columns, 2)\n",
" plt.imshow( visualize( _ref['weights'].to(dot_dtype)))\n",
" plt.axis('off')\n",
" plt.title(\"Encoding (saved file)\", color='white', fontsize=round(20*image_size))\n",
" #------#\n",
"\n",
"print(f'Using settings SCALE = {SCALE} and ZERO_POINT = {ZERO_POINT} for visualizing the text_encoding')"
],
"metadata": {
"id": "TC5lMJrS1HCC",
"cellView": "form"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# @title β π·π Use pre-encoded image+prompt pair\n",
"loaded_ref = False\n",
"try:\n",
" ref\n",
" loaded_ref = True\n",
"except:ref = torch.zeros(dim).to(dtype = dot_dtype)\n",
"if loaded_ref : prev_ref = ref.clone().detach()\n",
"\n",
"try:prompt\n",
"except: prompt = ''\n",
"\n",
"# @markdown πΌοΈ+π Choose a pre-encoded reference (note: some results are NSFW!)\n",
"index = 596 # @param {type:\"slider\", min:0, max:1666, step:1}\n",
"PROMPT_INDEX = index\n",
"prompt = target_prompts[f'{PROMPT_INDEX}']\n",
"url = target_urls[f'{PROMPT_INDEX}']\n",
"if url.find('perchance')>-1:\n",
" image = Image.open(requests.get(url, stream=True).raw)\n",
"#------#\n",
"%cd {home_directory + 'fusion-t2i-generator-data/' + 'reference'}\n",
"references = torch.load('reference_text_and_image_encodings.pt' , weights_only=False)\n",
"# @markdown βοΈ πΌοΈ encoding <-----?-----> π encoding
\n",
"C = 0.3 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
"log_strength = 1 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
"method = 'Add to existing ref' # @param [\"Refresh\" , \"Add to existing ref\" , \"Subtract from existing ref\" , \"Do nothing\"]\n",
"image_size = 0.57 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
"show_encoding = True # @param {type:\"boolean\"}\n",
"\n",
"if(not method == 'Do nothing'):\n",
" if method == 'Refresh': ref = torch.zeros(dim).to(dtype = dot_dtype)\n",
" if method == 'Subtract from existing ref':\n",
" ref = torch.sub(ref, math.pow(10 ,log_strength-1) * C * references[index][0].dequantize().to(dtype = torch.float32))\n",
" ref = torch.sub(ref, math.pow(10 ,log_strength-1) * (1-C) * references[index][1].dequantize().to(dtype = torch.float32))\n",
" else:\n",
" ref = torch.add(ref, math.pow(10 ,log_strength-1) * C * references[index][0].dequantize().to(dtype = torch.float32))\n",
" ref = torch.add(ref, math.pow(10 ,log_strength-1) * (1-C) * references[index][1].dequantize().to(dtype = torch.float32))\n",
" #---------#\n",
" references = '' # Clear up memory\n",
" ref = ref/ref.norm(p=2, dim=-1, keepdim=True)\n",
" ref = ref.clone().detach()\n",
" #------#\n",
" # create figure\n",
" fig = plt.figure(figsize=(10*image_size, 10*image_size))\n",
" fig.patch.set_facecolor((56/255,56/255,56/255))\n",
" rows = 1\n",
" columns = 1\n",
" if show_encoding: columns = columns+1\n",
" if show_encoding and loaded_ref : columns = columns+1\n",
" fig.add_subplot(rows, columns, 1)\n",
" plt.imshow(image)\n",
" plt.axis('off')\n",
" plt.title(f\"Reference image at index={index}\" , color='white' , fontsize=round(20*image_size))\n",
" #-----#\n",
" if show_encoding and loaded_ref:\n",
" fig.add_subplot(rows, columns, columns-1)\n",
" plt.imshow( visualize(prev_ref))\n",
" plt.axis('off')\n",
" plt.title(\"Encoding (before)\" , color='white' , fontsize=round(20*image_size))\n",
" print(f'Prompt for this image : \\n\\n \"{prompt} \" \\n\\n')\n",
"\n",
" if show_encoding:\n",
" fig.add_subplot(rows, columns, columns)\n",
" plt.imshow( visualize(ref))\n",
" plt.axis('off')\n",
" plt.title(\"Encoding (now)\" , color='white' , fontsize=round(20*image_size))\n",
" #------#\n"
],
"metadata": {
"id": "BwrEs5zVB0Sb",
"cellView": "form"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"# Other methods"
],
"metadata": {
"id": "f9_AcquM7AYZ"
}
},
{
"cell_type": "code",
"source": [
"# @title β 𧩠Create an encoding\n",
"# @markdown π Write a text prompt (this will overwrite any savefile already stored)\n",
"NEW_ENCODING = '' # @param {type:'string' ,placeholder:'write a prompt'}\n",
"enable = True # @param {type:\"boolean\"}\n",
"# @markdown -----\n",
"# @markdown π Enhance/Penalize Similarity and skip items containing word(s)\n",
"POS = '' # @param {type:'string' ,placeholder:'item1 , item2 , ...'}\n",
"NEG = ''# @param {type:'string' ,placeholder:'item1 , item2 , ...'}\n",
"# @markdown -----\n",
"# @markdown logarithmic prompt strength x for value 10^(x-1)\n",
"_POS = 0 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
"_NEG = 0 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
"# @markdown -----\n",
"# @markdown Check similiarity for this encoding against any written prompt(s)\n",
"# @title β Evaluate saved reference similarity to select items (optional)\n",
"EVAL = '' # @param {type:'string' ,placeholder:'item1 , item2 , ...'}\n",
"\n",
"show_local_reference = True # @param {type:\"boolean\"}\n",
"show_encoding = True # @param {type:\"boolean\"}\n",
"\n",
"try:\n",
" %cd /content/\n",
" _ref = load_file('reference.safetensors' )\n",
" ref = _ref['weights'].to(dot_dtype)\n",
"except:\n",
" ref = torch.zeros(dim).to(dtype = dot_dtype)\n",
" _ref = {}\n",
" _ref['weights'] = ref\n",
" %cd /content/\n",
" save_file(_ref, 'reference.safetensors')\n",
"#-----#\n",
"\n",
"if NEW_ENCODING.strip() != '':\n",
" item = NEW_ENCODING.strip()\n",
" inputs = tokenizer(text = item.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
" ref = model.get_text_features(**inputs)[0]\n",
" ref= ref/ref.norm(p=2 , dim=-1 , keepdim=True)\n",
"#------#\n",
"\n",
"try: ref\n",
"except: ref = torch.zeros(dim).to(dtype = dot_dtype)\n",
"\n",
"if EVAL.strip() != '':\n",
" print(\"Saved Reference:\\n\")\n",
" for item in EVAL.split(','):\n",
" if item.strip()=='':continue\n",
" inputs = tokenizer(text = item.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
" test = model.get_text_features(**inputs)[0]\n",
" test = test/test.norm(p=2 , dim = -1 , keepdim = True)\n",
" ref= ref/ref.norm(p=2 , dim=-1 , keepdim=True)\n",
" eval = torch.dot(ref , test)\n",
" print(f'{item.strip()} : {round(eval.item()*100, 2)}%')\n",
" #-----#\n",
" if(show_local_reference):\n",
" print(\"\\n---------\\nLocal Reference with enchancements added :\\n\")\n",
"\n",
" for _item in POS.split(','):\n",
" item = _item.strip()\n",
" if item == '':continue\n",
" inputs = tokenizer(text = item.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
" ref = ref + math.pow(10,_POS-1) * model.get_text_features(**inputs)[0]\n",
" #-------#\n",
"\n",
" for _item in NEG.split(','):\n",
" item = _item.strip()\n",
" if item == '':continue\n",
" inputs = tokenizer(text = item.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
" ref = ref + math.pow(10,_NEG-1) * model.get_text_features(**inputs)[0]\n",
" #-------#\n",
"\n",
" ref= ref/ref.norm(p=2 , dim=-1 , keepdim=True)\n",
" for item in EVAL.split(','):\n",
" if item.strip()=='':continue\n",
" inputs = tokenizer(text = item.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
" test = model.get_text_features(**inputs)[0]\n",
" test = test/test.norm(p=2 , dim = -1 , keepdim = True)\n",
" eval = torch.dot(ref , test)\n",
" print(f'{item.strip()} : {round(eval.item()*100, 2)}%')\n",
" #-----#\n",
"\n",
" if show_encoding:\n",
" # create figure\n",
" fig = plt.figure(figsize=(10*image_size, 10*image_size))\n",
" fig.patch.set_facecolor((56/255,56/255,56/255))\n",
" rows = 1\n",
" columns = 3\n",
" fig.add_subplot(rows, columns, 1)\n",
" plt.imshow( visualize(ref))\n",
" plt.axis('off')\n",
" plt.title( \"Encoding (local variable)\", color='white', fontsize=round(20*image_size))\n",
" if num_plots>1:\n",
" fig.add_subplot(rows, columns, 2)\n",
" plt.imshow( visualize( _ref['weights'].to(dot_dtype)))\n",
" plt.axis('off')\n",
" plt.title(\"Encoding (saved file)\", color='white', fontsize=round(20*image_size))\n",
"\n",
" fig.add_subplot(rows, columns, 3)\n",
" plt.imshow( visualize(ref - _ref['weights'].to(dot_dtype)))\n",
" plt.axis('off')\n",
" plt.title(\"Changes\", color='white', fontsize=round(20*image_size))\n",
" #------#\n",
"\n",
"\n"
],
"metadata": {
"id": "Oxi6nOyrUTAe",
"cellView": "form"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"**Use an image as a reference via URL (optional)**"
],
"metadata": {
"id": "KI9Ho6CG7m3Z"
}
},
{
"cell_type": "code",
"source": [
"# @title β ππΌοΈ Load an image via URL\n",
"loaded_ref = False\n",
"try:\n",
" ref\n",
" loaded_ref = True\n",
"except:ref = torch.zeros(dim).to(dtype = dot_dtype)\n",
"if loaded_ref : prev_ref = ref.clone().detach()\n",
"\n",
"try:prompt\n",
"except: prompt = ''\n",
"\n",
"# @markdown πΌοΈ Upload your own image for use as reference via URL (optional)\n",
"URL = '' # @param {type:'string' ,placeholder:'paste an url here'}\n",
"if URL.strip() != '':\n",
" image = Image.open(requests.get(URL, stream=True).raw)\n",
" log_strength = 1 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
" method = 'Add to existing ref' # @param [\"Refresh\" , \"Add to existing ref\" , \"Subtract from existing ref\" , \"Do nothing\"]\n",
" image_size = 0.79 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
" show_encoding = True # @param {type:\"boolean\"}\n",
" #---------#\n",
" if(not method == 'Do nothing'):\n",
" # Get image features\n",
" inputs = processor(images=image, return_tensors=\"pt\")\n",
" image_features = model.get_image_features(**inputs)\n",
" image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True)\n",
" #-------#\n",
" if method == 'Refresh':\n",
" ref = torch.zeros(dim).to(dtype = dot_dtype)\n",
" if method == 'Subtract from existing ref':\n",
" ref = ref - math.pow(10,log_strength-1)*image_features\n",
" else: ref = ref + math.pow(10,log_strength-1)*image_features\n",
" #-----#\n",
" ref = ref/ref.norm(p=2, dim=-1, keepdim=True)\n",
" ref = ref[0]\n",
" ref = ref.clone().detach()\n",
" #------#\n",
" # create figure\n",
" fig = plt.figure(figsize=(10*image_size, 10*image_size))\n",
" fig.patch.set_facecolor((56/255,56/255,56/255))\n",
" rows = 1\n",
" columns = 1\n",
" if show_encoding: columns = 2\n",
" if show_encoding and loaded_ref : columns = 3\n",
" fig.add_subplot(rows, columns, 1)\n",
" plt.imshow(image)\n",
" plt.axis('off')\n",
" plt.title(\"Reference image from URL\" , color='white' , fontsize=round(20*image_size))\n",
" #-----#\n",
" if show_encoding and loaded_ref:\n",
" fig.add_subplot(rows, columns, columns-1)\n",
" plt.imshow( visualize(prev_ref))\n",
" plt.axis('off')\n",
" plt.title(\"Encoding (before)\" , color='white' , fontsize=round(20*image_size))\n",
" if show_encoding:\n",
" fig.add_subplot(rows, columns, columns)\n",
" plt.imshow( visualize(ref))\n",
" plt.axis('off')\n",
" plt.title(\"Encoding (now)\" , color='white' , fontsize=round(20*image_size))\n",
" #------#"
],
"metadata": {
"id": "IqUsiQw2HU2C",
"cellView": "form"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"**Use an image as a reference via uploading it to the /content/ folder (optional)**"
],
"metadata": {
"id": "MBPi7F8S7tg3"
}
},
{
"cell_type": "code",
"source": [
"# @title β ππΌοΈ Use an uploaded image as reference\n",
"loaded_ref = False\n",
"try:\n",
" ref\n",
" loaded_ref = True\n",
"except:ref = torch.zeros(dim).to(dtype = dot_dtype)\n",
"if loaded_ref : prev_ref = ref.clone().detach()\n",
"\n",
"try:prompt\n",
"except: prompt = ''\n",
"\n",
"# @markdown πΌοΈ Upload your own image for use as reference via URL (optional)\n",
"FILENAME = '' # @param {type:'string' ,placeholder:'IMG_123.png'}\n",
"log_strength = 1 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
"method = 'Add to existing ref' # @param [\"Refresh\" , \"Add to existing ref\" , \"Subtract from existing ref\" , \"Do nothing\"]\n",
"image_size = 0.5 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
"show_encoding = True # @param {type:\"boolean\"}\n",
"\n",
"if FILENAME.strip() != '':\n",
" %cd /content/\n",
" image = cv2.imread(FILENAME)\n",
" b,g,r = cv2.split(image)\n",
" image = cv2.merge([r,g,b])\n",
" #---------#\n",
" if(not method == 'Do nothing'):\n",
" # Get image features\n",
" inputs = processor(images=image, return_tensors=\"pt\")\n",
" image_features = model.get_image_features(**inputs)\n",
" image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True)\n",
" #-------#\n",
" if method == 'Refresh':\n",
" ref = torch.zeros(dim).to(dtype = dot_dtype)\n",
" if method == 'Subtract from existing ref':\n",
" ref = ref - math.pow(10,log_strength-1)*image_features\n",
" else: ref = ref + math.pow(10,log_strength-1)*image_features\n",
" #-----#\n",
" ref = ref/ref.norm(p=2, dim=-1, keepdim=True)\n",
" ref = ref[0]\n",
" ref = ref.clone().detach()\n",
" #------#\n",
" # create figure\n",
" fig = plt.figure(figsize=(10*image_size, 10*image_size))\n",
" fig.patch.set_facecolor((56/255,56/255,56/255))\n",
" rows = 1\n",
" columns = 1\n",
" if show_encoding: columns = 2\n",
" if show_encoding and loaded_ref : columns = 3\n",
" fig.add_subplot(rows, columns, 1)\n",
" plt.imshow(image)\n",
" plt.axis('off')\n",
" plt.title(f\"Reference image from uploaded image {FILENAME}\" , color='white' , fontsize=round(20*image_size))\n",
" #-----#\n",
" if show_encoding and loaded_ref:\n",
" fig.add_subplot(rows, columns, columns-1)\n",
" plt.imshow( visualize(prev_ref))\n",
" plt.axis('off')\n",
" plt.title(\"Encoding (before)\" , color='white' , fontsize=round(20*image_size))\n",
" if show_encoding:\n",
" fig.add_subplot(rows, columns, columns)\n",
" plt.imshow( visualize(ref))\n",
" plt.axis('off')\n",
" plt.title(\"Encoding (now)\" , color='white' , fontsize=round(20*image_size))\n",
" #------#"
],
"metadata": {
"id": "I_-GOwFPKkha",
"cellView": "form"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"# Search prompts using CLIP"
],
"metadata": {
"id": "UqrYOkhlEQdM"
}
},
{
"cell_type": "code",
"source": [
"# @title β πΎ Save the reference\n",
"\n",
"loaded_ref = False\n",
"try:\n",
" ref\n",
" loaded_ref = True\n",
"except:ref = torch.zeros(dim).to(dtype = dot_dtype)\n",
"if loaded_ref : prev_ref = ref.clone().detach()\n",
"\n",
"try:prompt\n",
"except: prompt = ''\n",
"\n",
"reset_everything = False # @param {type:\"boolean\"}\n",
"_ref = {}\n",
"ref = ref/ref.norm(p=2, dim=-1, keepdim=True)\n",
"if (reset_everything) : ref = torch.zeros(dim).to(dtype = dot_dtype)\n",
"_ref['weights'] = ref.to(dot_dtype)\n",
"%cd /content/\n",
"save_file(_ref , 'reference.safetensors' )\n",
"image_size = 0.5 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
"show_encoding = True # @param {type:\"boolean\"}\n",
"#------#\n",
"print(\"Saved local encoding to reference.safetensors\")\n",
"if show_encoding:\n",
" # create figure\n",
" fig = plt.figure(figsize=(10*image_size, 10*image_size))\n",
" fig.patch.set_facecolor((56/255,56/255,56/255))\n",
" rows = 1\n",
" columns = num_plots\n",
" fig.add_subplot(rows, columns, 1)\n",
" plt.imshow( visualize(ref))\n",
" plt.axis('off')\n",
" plt.title( \"Encoding (local variable)\", color='white', fontsize=round(20*image_size))\n",
" if num_plots>1:\n",
" fig.add_subplot(rows, columns, 2)\n",
" plt.imshow( visualize( _ref['weights'].to(dot_dtype)))\n",
" plt.axis('off')\n",
" plt.title(\"Encoding (saved file)\", color='white', fontsize=round(20*image_size))\n",
" #------#"
],
"metadata": {
"id": "lOQuTPfBMK82",
"cellView": "form"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"**Run the interrogator**\n",
"\n",
" Since the list of items is large (>1 million items) you will need to select a range within the sorted results to print."
],
"metadata": {
"id": "ROKsoZrt7zMe"
}
},
{
"cell_type": "code",
"source": [
"# @title β π΅οΈββοΈ Run the CLIP Interrogator\n",
"LIST_SIZE = 1000 # @param {type:'number' , placeholder:'set how large the list should be'}\n",
"_START_AT = '0' # @param [\"0\", \"10000\", \"50000\"] {allow-input: true}\n",
"START_AT = 0\n",
"#-----#\n",
"if _START_AT.find('K')>-1:\n",
" START_AT = _START_AT.replace('K','')\n",
" if START_AT.isnumeric(): START_AT = int(START_AT)*1000\n",
"#------#\n",
"else:\n",
" if _START_AT.isnumeric(): START_AT = int(_START_AT)\n",
"#----#\n",
"\n",
"output_folder = home_directory + 'results/'\n",
"output_folder_sims = home_directory + 'results/sims/'\n",
"my_mkdirs(output_folder)\n",
"my_mkdirs(output_folder_sims)\n",
"\n",
"# @markdown -----\n",
"# @markdown Select vocab\n",
"general = True # @param {type:\"boolean\"}\n",
"civit9 = True # @param {type:\"boolean\"}\n",
"fanfic1 = False # @param {type:\"boolean\"}\n",
"fanfic2 = False # @param {type:\"boolean\"}\n",
"# @markdown -----\n",
"# @title β New interrogator code using quantized text corpus\n",
"%cd /content/\n",
"_ref = load_file('reference.safetensors' )\n",
"ref = _ref['weights'].to(dot_dtype)\n",
"# @markdown π Enhance/Penalize Similarity and skip items containing word(s)\n",
"POS1 = '' # @param {type:'string' ,placeholder:'item1 , item2 , ...'}\n",
"POS2 = '' # @param {type:'string' ,placeholder:'item1 , item2 , ...'}\n",
"NEG = ''# @param {type:'string' ,placeholder:'item1 , item2 , ...'}\n",
"SKIP = '' # @param {type:'string' ,placeholder:'item1 , item2 , ...'}\n",
"min_wordcount = 0 # @param {type:\"slider\", min:0, max:20, step:1}\n",
"def isBlacklisted(_txt):\n",
" blacklist = SKIP.lower().replace('' , ' ').replace('{' , '').replace('}' , '').replace('|' , ',').strip()\n",
" if blacklist == '': return False\n",
" txt = _txt.lower().strip()\n",
" if len(txt) -1 : return True\n",
" #------#\n",
" found = False\n",
" alphabet = 'abcdefghijklmnopqrstuvxyz'\n",
" for letter in alphabet:\n",
" found = txt.find(letter)>-1\n",
" if found:break\n",
" #------#\n",
" return not found\n",
"# @markdown -----\n",
"# @markdown logarithmic prompt strength x for value 10^(x-1)\n",
"_POS1 = 1 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
"_POS2 = 1 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
"_NEG = 1 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
"# @markdown -----\n",
"# @markdown Save similarity as a list for later review (this will slow down the code)\n",
"save_similiarity = True # @param {type:\"boolean\"}\n",
"# @markdown -----\n",
"include_similiarity = False # @param {type:\"boolean\"}\n",
"print_as_list = False # @param {type:\"boolean\"}\n",
"N = 7 # @param {type:\"slider\", min:0, max:10, step:1}\n",
"#-----#\n",
"for _item in POS1.split(','):\n",
" item = _item.strip()\n",
" if item == '':continue\n",
" inputs = tokenizer(text = item.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
" ref = ref + math.pow(10,_POS1-1) * model.get_text_features(**inputs)[0]\n",
"#-------#\n",
"for _item in POS2.split(','):\n",
" item = _item.strip()\n",
" if item == '':continue\n",
" inputs = tokenizer(text = item.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
" ref = ref + math.pow(10,_POS2-1) * model.get_text_features(**inputs)[0]\n",
"#-------#\n",
"for _item in NEG.split(','):\n",
" item = _item.strip()\n",
" if item == '':continue\n",
" inputs = tokenizer(text = item.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
" ref = ref + math.pow(10,_NEG-1) * model.get_text_features(**inputs)[0]\n",
"#------#\n",
"ref = (ref/ref.norm(p=2, dim=-1, keepdim=True)).to(dtype = dot_dtype)\n",
"vocab_to_load = ''\n",
"if (general): vocab_to_load = vocab_to_load + 'general , '\n",
"if (civit9): vocab_to_load = vocab_to_load + 'civit9 , '\n",
"if (fanfic1): vocab_to_load = vocab_to_load + 'fanfic1 , '\n",
"if (fanfic2): vocab_to_load = vocab_to_load + 'fanfic2 , '\n",
"vocab_to_load = (vocab_to_load +'}').replace(' , }' , '')\n",
"multi = vocab_to_load.find(',')>-1\n",
"#-----#\n",
"prompts_folder = f'{home_directory}fusion-t2i-generator-data/vocab-v2/text'\n",
"encodings_folder = f'{home_directory}fusion-t2i-generator-data/vocab-v2/text_encodings'\n",
"#----#\n",
"scale = 0.0043\n",
"size = 0\n",
"#------#\n",
"total_items = 0\n",
"for filename in os.listdir(prompts_folder):\n",
" if (not general and filename.find('general')>-1):continue\n",
" if (not civit9 and filename.find('civit9')>-1):continue\n",
" if (not fanfic1 and filename.find('fanfic1')>-1):continue\n",
" if (not fanfic2 and filename.find('fanfic2')>-1):continue\n",
" size = size + LIST_SIZE\n",
"#-------#\n",
"similiar_sims = torch.zeros(size)\n",
"similiar_prompts = {}\n",
"_index = 0\n",
"#-------#\n",
"similiar_encodings = {}\n",
"for filename in os.listdir(prompts_folder):\n",
" if (not general and filename.find('general')>-1):continue\n",
" if (not civit9 and filename.find('civit9')>-1):continue\n",
" if (not fanfic1 and filename.find('fanfic1')>-1):continue\n",
" if (not fanfic2 and filename.find('fanfic2')>-1):continue\n",
" #------#\n",
" root_filename = filename.replace('.json', '')\n",
" %cd {prompts_folder}\n",
" prompts = {}\n",
" with open(f'{root_filename}.json', 'r') as f:\n",
" data = json.load(f).items()\n",
" for key,value in data:\n",
" prompts[key] = value\n",
" num_items = int(prompts['num_items'])\n",
" total_items = total_items + num_items\n",
" #------#\n",
" try:vocab_loaded\n",
" except:\n",
" vocab_loaded = 'first'\n",
" #-----#\n",
" if vocab_loaded == 'first' or (vocab_loaded != vocab_to_load and not multi):\n",
" %cd {encodings_folder}\n",
" _text_encodings = load_file(f'{root_filename}.safetensors')['weights'].to(torch.uint8)\n",
" text_encodings = torch.zeros(num_items , dim)\n",
" tmp = torch.ones(dim).to(dot_dtype)\n",
" for index in range(num_items):\n",
" text_encodings[index] = torch.sub(_text_encodings[index][1:dim+1].to(dot_dtype) , tmp , alpha= _text_encodings[index][0].to(dot_dtype))\n",
" vocab_loaded = vocab_to_load\n",
" #------#\n",
" sims = torch.matmul(text_encodings*scale, ref.t())\n",
" sorted , indices = torch.sort(sims , dim=0 , descending = True)\n",
" tmp = {}\n",
" tmp['weights'] = sorted\n",
" %cd {output_folder_sims}\n",
" save_file(tmp, root_filename + '_sims.safetensors')\n",
" tmp={}\n",
" #-----#\n",
" for index in range(LIST_SIZE + START_AT):\n",
" if index0:break\n",
" index = index + 1\n",
"#----#\n",
"positive_bound = index\n",
"ss =list(xx)\n",
"tmp = 0\n",
"chunk = 1\n",
"CHUNK_SIZE = 1000\n",
"index = 0\n",
"for num in reversed(yy):\n",
" tmp = tmp + num\n",
" if(tmp>CHUNK_SIZE):\n",
" _tmp = math.floor(tmp/CHUNK_SIZE)\n",
" chunk = chunk + _tmp\n",
" tmp = tmp - CHUNK_SIZE * _tmp\n",
" ss[num_coords - index] = chunk\n",
" index = index + 1\n",
"#------#\n",
"fig, ax = plt.subplots()\n",
"fig.canvas.draw()\n",
"plt.plot(ss[positive_bound:], xx[positive_bound:])\n",
"plt.xlabel ('Search depth')\n",
"plt.ylabel ('Similarity')\n",
"plt.title ('Similarity to index')\n",
"plt.grid()\n",
"indices_depth = [item.get_text() for item in ax.get_xticklabels()]\n",
"sim_pcnts = [item.get_text() for item in ax.get_yticklabels()]\n",
"\n",
"index = 0\n",
"for index_depth in indices_depth:\n",
" indices_depth[index] = index_depth + 'K'\n",
" index = index + 1\n",
"#-------#\n",
"\n",
"index = 0\n",
"for sim_pcnt in sim_pcnts:\n",
" sim_pcnts[index] = sim_pcnt + '%'\n",
" index = index + 1\n",
"#-------#\n",
"ax.set_xticklabels(indices_depth)\n",
"ax.set_yticklabels(sim_pcnts)\n",
"plt.show()"
],
"metadata": {
"id": "ln6DsZPG99ez"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# @title β Save the results\n",
"\n",
"def mkdir(folder):\n",
" if os.path.exists(folder)==False:\n",
" os.makedirs(folder)\n",
"#-----#\n",
"output_folder = home_directory + 'results'\n",
"mkdir(output_folder)\n",
"#-----#\n",
"try: similiar_prompts\n",
"except:similiar_prompts = {}\n",
"%cd {output_folder}\n",
"print(f'Saving similiar_prompts.json to {output_folder}...')\n",
"with open('similiar_prompts.json', 'w') as f:\n",
" json.dump(similiar_prompts, f)\n",
"#-----#\n",
"try: similiar_sims\n",
"except: similiar_sims = torch.zeros(dim).to(dot_dtype)\n",
"#-------#\n",
"_similiar_sims = {}\n",
"_similiar_sims['weights'] = similiar_sims.to(dot_dtype)\n",
"%cd {output_folder}\n",
"print(f'Saving similiar_sims.safetensors to {output_folder}...')\n",
"save_file(_similiar_sims, 'similiar_sims.safetensors')\n"
],
"metadata": {
"id": "m-N553nXz9Jd",
"cellView": "form"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"\n",
"# @title β Print results\n",
"sorted , indices = torch.sort(similiar_sims , dim=0 , descending = True)\n",
"include_similiarity = False # @param {type:\"boolean\"}\n",
"print_as_list = False # @param {type:\"boolean\"}\n",
"N = 7 # @param {type:\"slider\", min:0, max:10, step:1}\n",
"FILENAME = '' # @param {type:'string' ,placeholder:'write .json file to load (optional)'}\n",
"_FILENAME = FILENAME.replace('.json' , '')\n",
"if _FILENAME.strip() == '': _FILENAME = 'similiar_prompts'\n",
"#------#\n",
"%cd {output_folder}\n",
"with open(f'{_FILENAME}.json', 'r') as f:\n",
" data = json.load(f)\n",
" _df = pd.DataFrame({'count': data})['count']\n",
" similiar_prompts = {\n",
" key : value for key, value in _df.items()\n",
" }\n",
"#-------#\n",
"_similiar_sims = load_file('similiar_sims.safetensors')\n",
"similiar_sims = _similiar_sims['weights'].to(dot_dtype)\n",
"\n",
"# @title β Run the CLIP interrogator on the saved reference\n",
"\n",
"# @markdown Select which values within the saved list to print\n",
"LIST_SIZE = 1000 # @param {type:'number' , placeholder:'set how large the list should be'}\n",
"START_AT = 0 # @param {type:'number' , placeholder:'set how large the list should be'}\n",
"\n",
"if(print_as_list):\n",
" for index in range(LIST_SIZE + START_AT):\n",
" if index