codeShare commited on
Commit
0a27771
1 Parent(s): f04b033

Upload sd_token_similarity_calculator.ipynb

Browse files
Google Colab Notebooks/sd_token_similarity_calculator.ipynb CHANGED
@@ -539,6 +539,113 @@
539
  "id": "hyK423TQCRup"
540
  }
541
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
542
  {
543
  "cell_type": "code",
544
  "source": [
@@ -743,10 +850,28 @@
743
  "!zip -r {zip_dest} {root_output_folder}"
744
  ],
745
  "metadata": {
746
- "id": "V4YCpmWlkPMG"
 
 
 
 
747
  },
748
- "execution_count": null,
749
- "outputs": []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
750
  },
751
  {
752
  "cell_type": "code",
 
539
  "id": "hyK423TQCRup"
540
  }
541
  },
542
+ {
543
+ "cell_type": "code",
544
+ "source": [
545
+ "# @title Process the raw vocab into json + .safetensor pair\n",
546
+ "\n",
547
+ "# NOTE : although they have 1x768 dimension , these are not text_encodings , but token vectors\n",
548
+ "import json\n",
549
+ "import pandas as pd\n",
550
+ "import os\n",
551
+ "import shelve\n",
552
+ "import torch\n",
553
+ "from safetensors.torch import save_file , load_file\n",
554
+ "import json\n",
555
+ "\n",
556
+ "home_directory = '/content/'\n",
557
+ "using_Kaggle = os.environ.get('KAGGLE_URL_BASE','')\n",
558
+ "if using_Kaggle : home_directory = '/kaggle/working/'\n",
559
+ "%cd {home_directory}\n",
560
+ "#-------#\n",
561
+ "\n",
562
+ "# Load the data if not already loaded\n",
563
+ "try:\n",
564
+ " loaded\n",
565
+ "except:\n",
566
+ " %cd {home_directory}\n",
567
+ " !git clone https://huggingface.co/datasets/codeShare/text-to-image-prompts\n",
568
+ " loaded = True\n",
569
+ "#--------#\n",
570
+ "\n",
571
+ "# User input\n",
572
+ "target = home_directory + 'text-to-image-prompts/vocab/'\n",
573
+ "root_output_folder = home_directory + 'output/'\n",
574
+ "output_folder = root_output_folder + 'vocab/'\n",
575
+ "root_filename = 'vocab'\n",
576
+ "NUM_FILES = 1\n",
577
+ "#--------#\n",
578
+ "\n",
579
+ "# Setup environment\n",
580
+ "def my_mkdirs(folder):\n",
581
+ " if os.path.exists(folder)==False:\n",
582
+ " os.makedirs(folder)\n",
583
+ "#--------#\n",
584
+ "output_folder_text = output_folder + 'text/'\n",
585
+ "output_folder_text = output_folder + 'text/'\n",
586
+ "output_folder_token_vectors = output_folder + 'token_vectors/'\n",
587
+ "target_raw = target + 'raw/'\n",
588
+ "%cd {home_directory}\n",
589
+ "my_mkdirs(output_folder)\n",
590
+ "my_mkdirs(output_folder_text)\n",
591
+ "my_mkdirs(output_folder_token_vectors)\n",
592
+ "#-------#\n",
593
+ "\n",
594
+ "%cd {target_raw}\n",
595
+ "tokens = torch.load(f'{root_filename}.pt' , weights_only=True)\n",
596
+ "tokens = model.clone().detach()\n",
597
+ "\n",
598
+ "\n",
599
+ "%cd {target_raw}\n",
600
+ "with open(f'{root_filename}.json', 'r') as f:\n",
601
+ " data = json.load(f)\n",
602
+ "_df = pd.DataFrame({'count': data})['count']\n",
603
+ "#reverse key and value in the dict\n",
604
+ "vocab = {\n",
605
+ " value : key for key, value in _df.items()\n",
606
+ "}\n",
607
+ "#------#\n",
608
+ "\n",
609
+ "\n",
610
+ "tensors = {}\n",
611
+ "for key in vocab:\n",
612
+ " name = vocab[key]\n",
613
+ " token = tokens[int(key)]\n",
614
+ " tensors[key] = token\n",
615
+ "#-----#\n",
616
+ "\n",
617
+ "%cd {output_folder_token_vectors}\n",
618
+ "save_file(tensors, \"vocab.safetensors\")\n",
619
+ "\n",
620
+ "%cd {output_folder_text}\n",
621
+ "with open('vocab.json', 'w') as f:\n",
622
+ " json.dump(vocab, f)\n",
623
+ "\n",
624
+ "\n"
625
+ ],
626
+ "metadata": {
627
+ "id": "H3JRx5rhWIEo",
628
+ "outputId": "df7f400b-1f0a-4c1e-c6c9-4c3db0491545",
629
+ "colab": {
630
+ "base_uri": "https://localhost:8080/"
631
+ }
632
+ },
633
+ "execution_count": 26,
634
+ "outputs": [
635
+ {
636
+ "output_type": "stream",
637
+ "name": "stdout",
638
+ "text": [
639
+ "/content\n",
640
+ "/content\n",
641
+ "/content/text-to-image-prompts/vocab/raw\n",
642
+ "/content/text-to-image-prompts/vocab/raw\n",
643
+ "/content/output/vocab/token_vectors\n",
644
+ "/content/output/vocab/text\n"
645
+ ]
646
+ }
647
+ ]
648
+ },
649
  {
650
  "cell_type": "code",
651
  "source": [
 
850
  "!zip -r {zip_dest} {root_output_folder}"
851
  ],
852
  "metadata": {
853
+ "id": "V4YCpmWlkPMG",
854
+ "colab": {
855
+ "base_uri": "https://localhost:8080/"
856
+ },
857
+ "outputId": "9eafe028-a982-4b67-adf3-0633cbbe81f7"
858
  },
859
+ "execution_count": 27,
860
+ "outputs": [
861
+ {
862
+ "output_type": "stream",
863
+ "name": "stdout",
864
+ "text": [
865
+ "/content\n",
866
+ " adding: content/output/ (stored 0%)\n",
867
+ " adding: content/output/vocab/ (stored 0%)\n",
868
+ " adding: content/output/vocab/text/ (stored 0%)\n",
869
+ " adding: content/output/vocab/text/vocab.json (deflated 71%)\n",
870
+ " adding: content/output/vocab/token_vectors/ (stored 0%)\n",
871
+ " adding: content/output/vocab/token_vectors/vocab.safetensors (deflated 9%)\n"
872
+ ]
873
+ }
874
+ ]
875
  },
876
  {
877
  "cell_type": "code",