Upload sd_token_similarity_calculator.ipynb
Browse files
Google Colab Notebooks/sd_token_similarity_calculator.ipynb
CHANGED
@@ -134,14 +134,33 @@
|
|
134 |
"#--------#\n",
|
135 |
"\n",
|
136 |
"#default NEG values\n",
|
137 |
-
"
|
138 |
-
"
|
139 |
-
"
|
140 |
-
"
|
141 |
-
"
|
142 |
-
"
|
143 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
"#------#\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
"\n"
|
146 |
],
|
147 |
"metadata": {
|
@@ -149,15 +168,25 @@
|
|
149 |
"colab": {
|
150 |
"base_uri": "https://localhost:8080/"
|
151 |
},
|
152 |
-
"outputId": "
|
153 |
},
|
154 |
-
"execution_count":
|
155 |
"outputs": [
|
156 |
{
|
157 |
"output_type": "stream",
|
158 |
"name": "stdout",
|
159 |
"text": [
|
160 |
-
"/content\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
]
|
162 |
}
|
163 |
]
|
@@ -286,450 +315,10 @@
|
|
286 |
"NUM_VOCAB_ITEMS = nA\n"
|
287 |
],
|
288 |
"metadata": {
|
289 |
-
"id": "ZMG4CThUAmwW"
|
290 |
-
"colab": {
|
291 |
-
"base_uri": "https://localhost:8080/"
|
292 |
-
},
|
293 |
-
"outputId": "2d07198f-1a64-4cbf-cb28-aec4bc5e73b1"
|
294 |
},
|
295 |
-
"execution_count":
|
296 |
-
"outputs": [
|
297 |
-
{
|
298 |
-
"output_type": "stream",
|
299 |
-
"name": "stdout",
|
300 |
-
"text": [
|
301 |
-
"reading tripple_nouns_17-11.json....\n",
|
302 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
303 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
304 |
-
"reading tripple_nouns_14-1.json....\n",
|
305 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
306 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
307 |
-
"reading tripple_nouns_13-9.json....\n",
|
308 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
309 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
310 |
-
"reading tripple_nouns_18-1.json....\n",
|
311 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
312 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
313 |
-
"reading tripple_nouns_16-10.json....\n",
|
314 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
315 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
316 |
-
"reading tripple_nouns_17-4.json....\n",
|
317 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
318 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
319 |
-
"reading tripple_nouns_12-2.json....\n",
|
320 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
321 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
322 |
-
"reading tripple_nouns_15-10.json....\n",
|
323 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
324 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
325 |
-
"reading tripple_nouns_13-2.json....\n",
|
326 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
327 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
328 |
-
"reading tripple_nouns_11-8.json....\n",
|
329 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
330 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
331 |
-
"reading tripple_nouns_17-7.json....\n",
|
332 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
333 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
334 |
-
"reading tripple_nouns_12-7.json....\n",
|
335 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
336 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
337 |
-
"reading tripple_nouns_1-6.json....\n",
|
338 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
339 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
340 |
-
"reading tripple_nouns_13-11.json....\n",
|
341 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
342 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
343 |
-
"reading tripple_nouns_1-3.json....\n",
|
344 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
345 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
346 |
-
"reading tripple_nouns_13-1.json....\n",
|
347 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
348 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
349 |
-
"reading tripple_nouns_1-10.json....\n",
|
350 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
351 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
352 |
-
"reading tripple_nouns_13-6.json....\n",
|
353 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
354 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
355 |
-
"reading tripple_nouns_10-6.json....\n",
|
356 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
357 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
358 |
-
"reading tripple_nouns_14-7.json....\n",
|
359 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
360 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
361 |
-
"reading tripple_nouns_10-3.json....\n",
|
362 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
363 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
364 |
-
"reading tripple_nouns_14-11.json....\n",
|
365 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
366 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
367 |
-
"reading tripple_nouns_17-2.json....\n",
|
368 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
369 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
370 |
-
"reading tripple_nouns_15-9.json....\n",
|
371 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
372 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
373 |
-
"reading tripple_nouns_14-3.json....\n",
|
374 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
375 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
376 |
-
"reading tripple_nouns_12-5.json....\n",
|
377 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
378 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
379 |
-
"reading tripple_nouns_11-9.json....\n",
|
380 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
381 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
382 |
-
"reading tripple_nouns_13-4.json....\n",
|
383 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
384 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
385 |
-
"reading tripple_nouns_12-3.json....\n",
|
386 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
387 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
388 |
-
"reading tripple_nouns_16-11.json....\n",
|
389 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
390 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
391 |
-
"reading tripple_nouns_1-9.json....\n",
|
392 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
393 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
394 |
-
"reading tripple_nouns_11-3.json....\n",
|
395 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
396 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
397 |
-
"reading tripple_nouns_16-2.json....\n",
|
398 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
399 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
400 |
-
"reading tripple_nouns_10-4.json....\n",
|
401 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
402 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
403 |
-
"reading tripple_nouns_16-3.json....\n",
|
404 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
405 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
406 |
-
"reading tripple_nouns_14-9.json....\n",
|
407 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
408 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
409 |
-
"reading tripple_nouns_1-8.json....\n",
|
410 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
411 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
412 |
-
"reading tripple_nouns_12-4.json....\n",
|
413 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
414 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
415 |
-
"reading tripple_nouns_1-2.json....\n",
|
416 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
417 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
418 |
-
"reading tripple_nouns_14-5.json....\n",
|
419 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
420 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
421 |
-
"reading tripple_nouns_10-11.json....\n",
|
422 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
423 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
424 |
-
"reading tripple_nouns_17-9.json....\n",
|
425 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
426 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
427 |
-
"reading tripple_nouns_17-3.json....\n",
|
428 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
429 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
430 |
-
"reading tripple_nouns_11-5.json....\n",
|
431 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
432 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
433 |
-
"reading tripple_nouns_14-2.json....\n",
|
434 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
435 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
436 |
-
"reading tripple_nouns_11-10.json....\n",
|
437 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
438 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
439 |
-
"reading tripple_nouns_17-5.json....\n",
|
440 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
441 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
442 |
-
"reading tripple_nouns_12-8.json....\n",
|
443 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
444 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
445 |
-
"reading tripple_nouns_13-8.json....\n",
|
446 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
447 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
448 |
-
"reading tripple_nouns_15-11.json....\n",
|
449 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
450 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
451 |
-
"reading tripple_nouns_12-10.json....\n",
|
452 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
453 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
454 |
-
"reading tripple_nouns_12-6.json....\n",
|
455 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
456 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
457 |
-
"reading tripple_nouns_11-4.json....\n",
|
458 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
459 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
460 |
-
"reading tripple_nouns_12-11.json....\n",
|
461 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
462 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
463 |
-
"reading tripple_nouns_15-2.json....\n",
|
464 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
465 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
466 |
-
"reading tripple_nouns_10-8.json....\n",
|
467 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
468 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
469 |
-
"reading tripple_nouns_17-6.json....\n",
|
470 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
471 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
472 |
-
"reading tripple_nouns_16-1.json....\n",
|
473 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
474 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
475 |
-
"reading tripple_nouns_16-5.json....\n",
|
476 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
477 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
478 |
-
"reading tripple_nouns_11-6.json....\n",
|
479 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
480 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
481 |
-
"reading tripple_nouns_17-1.json....\n",
|
482 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
483 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
484 |
-
"reading tripple_nouns_14-10.json....\n",
|
485 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
486 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
487 |
-
"reading tripple_nouns_1-11.json....\n",
|
488 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
489 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
490 |
-
"reading tripple_nouns_10-10.json....\n",
|
491 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
492 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
493 |
-
"reading tripple_nouns_15-1.json....\n",
|
494 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
495 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
496 |
-
"reading tripple_nouns_11-1.json....\n",
|
497 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
498 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
499 |
-
"reading tripple_nouns_11-11.json....\n",
|
500 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
501 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
502 |
-
"reading tripple_nouns_16-7.json....\n",
|
503 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
504 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
505 |
-
"reading tripple_nouns_14-6.json....\n",
|
506 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
507 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
508 |
-
"reading tripple_nouns_1-4.json....\n",
|
509 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
510 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
511 |
-
"reading tripple_nouns_1-7.json....\n",
|
512 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
513 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
514 |
-
"reading tripple_nouns_13-5.json....\n",
|
515 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
516 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
517 |
-
"reading tripple_nouns_15-7.json....\n",
|
518 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
519 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
520 |
-
"reading tripple_nouns_17-8.json....\n",
|
521 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
522 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
523 |
-
"reading tripple_nouns_1-1.json....\n",
|
524 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
525 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
526 |
-
"reading tripple_nouns_16-9.json....\n",
|
527 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
528 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
529 |
-
"reading tripple_nouns_15-3.json....\n",
|
530 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
531 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
532 |
-
"reading tripple_nouns_14-8.json....\n",
|
533 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
534 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
535 |
-
"reading tripple_nouns_15-5.json....\n",
|
536 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
537 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
538 |
-
"reading tripple_nouns_16-6.json....\n",
|
539 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
540 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
541 |
-
"reading tripple_nouns_10-5.json....\n",
|
542 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
543 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
544 |
-
"reading tripple_nouns_17-10.json....\n",
|
545 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
546 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
547 |
-
"reading tripple_nouns_12-1.json....\n",
|
548 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
549 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
550 |
-
"reading tripple_nouns_1-5.json....\n",
|
551 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
552 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
553 |
-
"reading tripple_nouns_13-3.json....\n",
|
554 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
555 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
556 |
-
"reading tripple_nouns_11-2.json....\n",
|
557 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
558 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
559 |
-
"reading tripple_nouns_13-10.json....\n",
|
560 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
561 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
562 |
-
"reading tripple_nouns_10-1.json....\n",
|
563 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
564 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
565 |
-
"reading tripple_nouns_16-4.json....\n",
|
566 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
567 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
568 |
-
"reading tripple_nouns_16-8.json....\n",
|
569 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
570 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
571 |
-
"reading tripple_nouns_10-9.json....\n",
|
572 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
573 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
574 |
-
"reading tripple_nouns_15-6.json....\n",
|
575 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
576 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
577 |
-
"reading tripple_nouns_15-4.json....\n",
|
578 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
579 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
580 |
-
"reading tripple_nouns_15-8.json....\n",
|
581 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
582 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
583 |
-
"reading tripple_nouns_11-7.json....\n",
|
584 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
585 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
586 |
-
"reading tripple_nouns_12-9.json....\n",
|
587 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
588 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
589 |
-
"reading tripple_nouns_13-7.json....\n",
|
590 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
591 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
592 |
-
"reading tripple_nouns_10-7.json....\n",
|
593 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
594 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
595 |
-
"reading tripple_nouns_10-2.json....\n",
|
596 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
597 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
598 |
-
"reading tripple_nouns_14-4.json....\n",
|
599 |
-
"/content/text-to-image-prompts/nouns/text\n",
|
600 |
-
"/content/text-to-image-prompts/nouns/text_encodings\n",
|
601 |
-
"reading 🎼 fusion-t2i-lyrics-41.json....\n",
|
602 |
-
"/content/text-to-image-prompts/lyrics/text\n",
|
603 |
-
"/content/text-to-image-prompts/lyrics/text_encodings\n",
|
604 |
-
"reading 🎼 fusion-t2i-lyrics-19.json....\n",
|
605 |
-
"/content/text-to-image-prompts/lyrics/text\n",
|
606 |
-
"/content/text-to-image-prompts/lyrics/text_encodings\n",
|
607 |
-
"reading 🎼 fusion-t2i-lyrics-25.json....\n",
|
608 |
-
"/content/text-to-image-prompts/lyrics/text\n",
|
609 |
-
"/content/text-to-image-prompts/lyrics/text_encodings\n",
|
610 |
-
"reading 🎼 fusion-t2i-lyrics-20.json....\n",
|
611 |
-
"/content/text-to-image-prompts/lyrics/text\n",
|
612 |
-
"/content/text-to-image-prompts/lyrics/text_encodings\n",
|
613 |
-
"reading 🎼 fusion-t2i-lyrics-37.json....\n",
|
614 |
-
"/content/text-to-image-prompts/lyrics/text\n",
|
615 |
-
"/content/text-to-image-prompts/lyrics/text_encodings\n",
|
616 |
-
"reading 🎼 fusion-t2i-lyrics-34.json....\n",
|
617 |
-
"/content/text-to-image-prompts/lyrics/text\n",
|
618 |
-
"/content/text-to-image-prompts/lyrics/text_encodings\n",
|
619 |
-
"reading 🎼 fusion-t2i-lyrics-22.json....\n",
|
620 |
-
"/content/text-to-image-prompts/lyrics/text\n",
|
621 |
-
"/content/text-to-image-prompts/lyrics/text_encodings\n",
|
622 |
-
"reading 🎼 fusion-t2i-lyrics-38.json....\n",
|
623 |
-
"/content/text-to-image-prompts/lyrics/text\n",
|
624 |
-
"/content/text-to-image-prompts/lyrics/text_encodings\n",
|
625 |
-
"reading 🎼 fusion-t2i-lyrics-35.json....\n",
|
626 |
-
"/content/text-to-image-prompts/lyrics/text\n",
|
627 |
-
"/content/text-to-image-prompts/lyrics/text_encodings\n",
|
628 |
-
"reading 🎼 fusion-t2i-lyrics-40.json....\n",
|
629 |
-
"/content/text-to-image-prompts/lyrics/text\n",
|
630 |
-
"/content/text-to-image-prompts/lyrics/text_encodings\n",
|
631 |
-
"reading 🎼 fusion-t2i-lyrics-27.json....\n",
|
632 |
-
"/content/text-to-image-prompts/lyrics/text\n",
|
633 |
-
"/content/text-to-image-prompts/lyrics/text_encodings\n",
|
634 |
-
"reading 🎼 fusion-t2i-lyrics-10.json....\n",
|
635 |
-
"/content/text-to-image-prompts/lyrics/text\n",
|
636 |
-
"/content/text-to-image-prompts/lyrics/text_encodings\n",
|
637 |
-
"reading 🎼 fusion-t2i-lyrics-17.json....\n",
|
638 |
-
"/content/text-to-image-prompts/lyrics/text\n",
|
639 |
-
"/content/text-to-image-prompts/lyrics/text_encodings\n",
|
640 |
-
"reading 🎼 fusion-t2i-lyrics-23.json....\n",
|
641 |
-
"/content/text-to-image-prompts/lyrics/text\n",
|
642 |
-
"/content/text-to-image-prompts/lyrics/text_encodings\n",
|
643 |
-
"reading 🎼 fusion-t2i-lyrics-5.json....\n",
|
644 |
-
"/content/text-to-image-prompts/lyrics/text\n",
|
645 |
-
"/content/text-to-image-prompts/lyrics/text_encodings\n",
|
646 |
-
"reading 🎼 fusion-t2i-lyrics-18.json....\n",
|
647 |
-
"/content/text-to-image-prompts/lyrics/text\n",
|
648 |
-
"/content/text-to-image-prompts/lyrics/text_encodings\n",
|
649 |
-
"reading 🎼 fusion-t2i-lyrics-15.json....\n",
|
650 |
-
"/content/text-to-image-prompts/lyrics/text\n",
|
651 |
-
"/content/text-to-image-prompts/lyrics/text_encodings\n",
|
652 |
-
"reading 🎼 fusion-t2i-lyrics-24.json....\n",
|
653 |
-
"/content/text-to-image-prompts/lyrics/text\n",
|
654 |
-
"/content/text-to-image-prompts/lyrics/text_encodings\n",
|
655 |
-
"reading 🎼 fusion-t2i-lyrics-30.json....\n",
|
656 |
-
"/content/text-to-image-prompts/lyrics/text\n",
|
657 |
-
"/content/text-to-image-prompts/lyrics/text_encodings\n",
|
658 |
-
"reading 🎼 fusion-t2i-lyrics-31.json....\n",
|
659 |
-
"/content/text-to-image-prompts/lyrics/text\n",
|
660 |
-
"/content/text-to-image-prompts/lyrics/text_encodings\n",
|
661 |
-
"reading 🎼 fusion-t2i-lyrics-6.json....\n",
|
662 |
-
"/content/text-to-image-prompts/lyrics/text\n",
|
663 |
-
"/content/text-to-image-prompts/lyrics/text_encodings\n",
|
664 |
-
"reading 🎼 fusion-t2i-lyrics-33.json....\n",
|
665 |
-
"/content/text-to-image-prompts/lyrics/text\n",
|
666 |
-
"/content/text-to-image-prompts/lyrics/text_encodings\n",
|
667 |
-
"reading 🎼 fusion-t2i-lyrics-2.json....\n",
|
668 |
-
"/content/text-to-image-prompts/lyrics/text\n",
|
669 |
-
"/content/text-to-image-prompts/lyrics/text_encodings\n",
|
670 |
-
"reading 🎼 fusion-t2i-lyrics-43.json....\n",
|
671 |
-
"/content/text-to-image-prompts/lyrics/text\n",
|
672 |
-
"/content/text-to-image-prompts/lyrics/text_encodings\n",
|
673 |
-
"reading 🎼 fusion-t2i-lyrics-11.json....\n",
|
674 |
-
"/content/text-to-image-prompts/lyrics/text\n",
|
675 |
-
"/content/text-to-image-prompts/lyrics/text_encodings\n",
|
676 |
-
"reading 🎼 fusion-t2i-lyrics-29.json....\n",
|
677 |
-
"/content/text-to-image-prompts/lyrics/text\n",
|
678 |
-
"/content/text-to-image-prompts/lyrics/text_encodings\n",
|
679 |
-
"reading 🎼 fusion-t2i-lyrics-9.json....\n",
|
680 |
-
"/content/text-to-image-prompts/lyrics/text\n",
|
681 |
-
"/content/text-to-image-prompts/lyrics/text_encodings\n",
|
682 |
-
"reading 🎼 fusion-t2i-lyrics-26.json....\n",
|
683 |
-
"/content/text-to-image-prompts/lyrics/text\n",
|
684 |
-
"/content/text-to-image-prompts/lyrics/text_encodings\n",
|
685 |
-
"reading 🎼 fusion-t2i-lyrics-13.json....\n",
|
686 |
-
"/content/text-to-image-prompts/lyrics/text\n",
|
687 |
-
"/content/text-to-image-prompts/lyrics/text_encodings\n",
|
688 |
-
"reading 🎼 fusion-t2i-lyrics-32.json....\n",
|
689 |
-
"/content/text-to-image-prompts/lyrics/text\n",
|
690 |
-
"/content/text-to-image-prompts/lyrics/text_encodings\n",
|
691 |
-
"reading 🎼 fusion-t2i-lyrics-28.json....\n",
|
692 |
-
"/content/text-to-image-prompts/lyrics/text\n",
|
693 |
-
"/content/text-to-image-prompts/lyrics/text_encodings\n",
|
694 |
-
"reading 🎼 fusion-t2i-lyrics-8.json....\n",
|
695 |
-
"/content/text-to-image-prompts/lyrics/text\n",
|
696 |
-
"/content/text-to-image-prompts/lyrics/text_encodings\n",
|
697 |
-
"reading 🎼 fusion-t2i-lyrics-12.json....\n",
|
698 |
-
"/content/text-to-image-prompts/lyrics/text\n",
|
699 |
-
"/content/text-to-image-prompts/lyrics/text_encodings\n",
|
700 |
-
"reading 🎼 fusion-t2i-lyrics-3.json....\n",
|
701 |
-
"/content/text-to-image-prompts/lyrics/text\n",
|
702 |
-
"/content/text-to-image-prompts/lyrics/text_encodings\n",
|
703 |
-
"reading 🎼 fusion-t2i-lyrics-14.json....\n",
|
704 |
-
"/content/text-to-image-prompts/lyrics/text\n",
|
705 |
-
"/content/text-to-image-prompts/lyrics/text_encodings\n",
|
706 |
-
"reading 🎼 fusion-t2i-lyrics-36.json....\n",
|
707 |
-
"/content/text-to-image-prompts/lyrics/text\n",
|
708 |
-
"/content/text-to-image-prompts/lyrics/text_encodings\n",
|
709 |
-
"reading 🎼 fusion-t2i-lyrics-16.json....\n",
|
710 |
-
"/content/text-to-image-prompts/lyrics/text\n",
|
711 |
-
"/content/text-to-image-prompts/lyrics/text_encodings\n",
|
712 |
-
"reading 🎼 fusion-t2i-lyrics-7.json....\n",
|
713 |
-
"/content/text-to-image-prompts/lyrics/text\n",
|
714 |
-
"/content/text-to-image-prompts/lyrics/text_encodings\n",
|
715 |
-
"reading 🎼 fusion-t2i-lyrics-42.json....\n",
|
716 |
-
"/content/text-to-image-prompts/lyrics/text\n",
|
717 |
-
"/content/text-to-image-prompts/lyrics/text_encodings\n",
|
718 |
-
"reading 🎼 fusion-t2i-lyrics-39.json....\n",
|
719 |
-
"/content/text-to-image-prompts/lyrics/text\n",
|
720 |
-
"/content/text-to-image-prompts/lyrics/text_encodings\n",
|
721 |
-
"reading 🎼 fusion-t2i-lyrics-21.json....\n",
|
722 |
-
"/content/text-to-image-prompts/lyrics/text\n",
|
723 |
-
"/content/text-to-image-prompts/lyrics/text_encodings\n",
|
724 |
-
"reading 🎼 fusion-t2i-lyrics-1.json....\n",
|
725 |
-
"/content/text-to-image-prompts/lyrics/text\n",
|
726 |
-
"/content/text-to-image-prompts/lyrics/text_encodings\n",
|
727 |
-
"reading 🎼 fusion-t2i-lyrics-4.json....\n",
|
728 |
-
"/content/text-to-image-prompts/lyrics/text\n",
|
729 |
-
"/content/text-to-image-prompts/lyrics/text_encodings\n"
|
730 |
-
]
|
731 |
-
}
|
732 |
-
]
|
733 |
},
|
734 |
{
|
735 |
"cell_type": "code",
|
@@ -764,7 +353,7 @@
|
|
764 |
"metadata": {
|
765 |
"id": "sX2JGqOH5B8g"
|
766 |
},
|
767 |
-
"execution_count":
|
768 |
"outputs": []
|
769 |
},
|
770 |
{
|
@@ -833,7 +422,7 @@
|
|
833 |
"height": 1000
|
834 |
}
|
835 |
},
|
836 |
-
"execution_count":
|
837 |
"outputs": [
|
838 |
{
|
839 |
"output_type": "display_data",
|
@@ -894,7 +483,7 @@
|
|
894 |
"metadata": {
|
895 |
"id": "xc-PbIYF428y"
|
896 |
},
|
897 |
-
"execution_count":
|
898 |
"outputs": []
|
899 |
},
|
900 |
{
|
@@ -970,7 +559,7 @@
|
|
970 |
"base_uri": "https://localhost:8080/"
|
971 |
}
|
972 |
},
|
973 |
-
"execution_count":
|
974 |
"outputs": [
|
975 |
{
|
976 |
"output_type": "stream",
|
@@ -1102,7 +691,7 @@
|
|
1102 |
"height": 1000
|
1103 |
}
|
1104 |
},
|
1105 |
-
"execution_count":
|
1106 |
"outputs": [
|
1107 |
{
|
1108 |
"output_type": "display_data",
|
@@ -1155,7 +744,7 @@
|
|
1155 |
"metadata": {
|
1156 |
"id": "rebogpoyOG8k"
|
1157 |
},
|
1158 |
-
"execution_count":
|
1159 |
"outputs": []
|
1160 |
},
|
1161 |
{
|
@@ -1453,11 +1042,11 @@
|
|
1453 |
"#--------#\n",
|
1454 |
"\n",
|
1455 |
"# User input\n",
|
1456 |
-
"target = home_directory + 'text-to-image-prompts/
|
1457 |
"root_output_folder = home_directory + 'output/'\n",
|
1458 |
-
"output_folder = root_output_folder + '
|
1459 |
-
"root_filename = '
|
1460 |
-
"NUM_FILES =
|
1461 |
"#--------#\n",
|
1462 |
"\n",
|
1463 |
"\n",
|
@@ -1610,12 +1199,349 @@
|
|
1610 |
" #----#"
|
1611 |
],
|
1612 |
"metadata": {
|
1613 |
-
"id": "9ZiTsF9jV0TV"
|
1614 |
-
"cellView": "form"
|
1615 |
},
|
1616 |
"execution_count": null,
|
1617 |
"outputs": []
|
1618 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1619 |
{
|
1620 |
"cell_type": "code",
|
1621 |
"source": [
|
@@ -1699,6 +1625,24 @@
|
|
1699 |
"execution_count": null,
|
1700 |
"outputs": []
|
1701 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1702 |
{
|
1703 |
"cell_type": "code",
|
1704 |
"source": [
|
@@ -1771,22 +1715,10 @@
|
|
1771 |
],
|
1772 |
"metadata": {
|
1773 |
"cellView": "form",
|
1774 |
-
"id": "CWlWk0KpuX55"
|
1775 |
-
"outputId": "418a74c3-f83c-4cfd-8514-437974a84601",
|
1776 |
-
"colab": {
|
1777 |
-
"base_uri": "https://localhost:8080/"
|
1778 |
-
}
|
1779 |
},
|
1780 |
"execution_count": null,
|
1781 |
-
"outputs": [
|
1782 |
-
{
|
1783 |
-
"output_type": "stream",
|
1784 |
-
"name": "stdout",
|
1785 |
-
"text": [
|
1786 |
-
"/content/outputs\n"
|
1787 |
-
]
|
1788 |
-
}
|
1789 |
-
]
|
1790 |
},
|
1791 |
{
|
1792 |
"cell_type": "markdown",
|
|
|
134 |
"#--------#\n",
|
135 |
"\n",
|
136 |
"#default NEG values\n",
|
137 |
+
"try: name_NEG\n",
|
138 |
+
"except: name_NEG = ''\n",
|
139 |
+
"try: image_NEG\n",
|
140 |
+
"except: image_NEG = ''\n",
|
141 |
+
"try: strength_image_NEG\n",
|
142 |
+
"except: strength_image_NEG = 1\n",
|
143 |
+
"try: strength_NEG\n",
|
144 |
+
"except: strength_NEG = 1\n",
|
145 |
+
"try: NUM_VOCAB_ITEMS\n",
|
146 |
+
"except: NUM_VOCAB_ITEMS = 0\n",
|
147 |
+
"try: using_NEG\n",
|
148 |
+
"except: using_NEG = False\n",
|
149 |
+
"try: using_image_NEG\n",
|
150 |
+
"except: using_image_NEG = False\n",
|
151 |
"#------#\n",
|
152 |
+
"\n",
|
153 |
+
"def getJSON(path , filename):\n",
|
154 |
+
" %cd {path}\n",
|
155 |
+
" with open(f'{filename}', 'r') as f:\n",
|
156 |
+
" data = json.load(f)\n",
|
157 |
+
" #------#\n",
|
158 |
+
" print(f'reading {filename}....')\n",
|
159 |
+
" _df = pd.DataFrame({'count': data})['count']\n",
|
160 |
+
" _prompts = {\n",
|
161 |
+
" key : value for key, value in _df.items()\n",
|
162 |
+
" }\n",
|
163 |
+
" return _prompts\n",
|
164 |
"\n"
|
165 |
],
|
166 |
"metadata": {
|
|
|
168 |
"colab": {
|
169 |
"base_uri": "https://localhost:8080/"
|
170 |
},
|
171 |
+
"outputId": "bb56eb39-319a-4981-b87e-03745b7d869b"
|
172 |
},
|
173 |
+
"execution_count": 1,
|
174 |
"outputs": [
|
175 |
{
|
176 |
"output_type": "stream",
|
177 |
"name": "stdout",
|
178 |
"text": [
|
179 |
+
"/content\n",
|
180 |
+
"/content\n",
|
181 |
+
"Cloning into 'text-to-image-prompts'...\n",
|
182 |
+
"remote: Enumerating objects: 2335, done.\u001b[K\n",
|
183 |
+
"remote: Counting objects: 100% (2332/2332), done.\u001b[K\n",
|
184 |
+
"remote: Compressing objects: 100% (1911/1911), done.\u001b[K\n",
|
185 |
+
"remote: Total 2335 (delta 408), reused 2245 (delta 369), pack-reused 3 (from 1)\u001b[K\n",
|
186 |
+
"Receiving objects: 100% (2335/2335), 18.25 MiB | 9.15 MiB/s, done.\n",
|
187 |
+
"Resolving deltas: 100% (408/408), done.\n",
|
188 |
+
"Updating files: 100% (1289/1289), done.\n",
|
189 |
+
"Filtering content: 100% (572/572), 2.20 GiB | 42.90 MiB/s, done.\n"
|
190 |
]
|
191 |
}
|
192 |
]
|
|
|
315 |
"NUM_VOCAB_ITEMS = nA\n"
|
316 |
],
|
317 |
"metadata": {
|
318 |
+
"id": "ZMG4CThUAmwW"
|
|
|
|
|
|
|
|
|
319 |
},
|
320 |
+
"execution_count": null,
|
321 |
+
"outputs": []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
322 |
},
|
323 |
{
|
324 |
"cell_type": "code",
|
|
|
353 |
"metadata": {
|
354 |
"id": "sX2JGqOH5B8g"
|
355 |
},
|
356 |
+
"execution_count": null,
|
357 |
"outputs": []
|
358 |
},
|
359 |
{
|
|
|
422 |
"height": 1000
|
423 |
}
|
424 |
},
|
425 |
+
"execution_count": null,
|
426 |
"outputs": [
|
427 |
{
|
428 |
"output_type": "display_data",
|
|
|
483 |
"metadata": {
|
484 |
"id": "xc-PbIYF428y"
|
485 |
},
|
486 |
+
"execution_count": null,
|
487 |
"outputs": []
|
488 |
},
|
489 |
{
|
|
|
559 |
"base_uri": "https://localhost:8080/"
|
560 |
}
|
561 |
},
|
562 |
+
"execution_count": null,
|
563 |
"outputs": [
|
564 |
{
|
565 |
"output_type": "stream",
|
|
|
691 |
"height": 1000
|
692 |
}
|
693 |
},
|
694 |
+
"execution_count": null,
|
695 |
"outputs": [
|
696 |
{
|
697 |
"output_type": "display_data",
|
|
|
744 |
"metadata": {
|
745 |
"id": "rebogpoyOG8k"
|
746 |
},
|
747 |
+
"execution_count": null,
|
748 |
"outputs": []
|
749 |
},
|
750 |
{
|
|
|
1042 |
"#--------#\n",
|
1043 |
"\n",
|
1044 |
"# User input\n",
|
1045 |
+
"target = home_directory + 'text-to-image-prompts/danbooru/'\n",
|
1046 |
"root_output_folder = home_directory + 'output/'\n",
|
1047 |
+
"output_folder = root_output_folder + 'danbooru/'\n",
|
1048 |
+
"root_filename = '🎀 fusion-t2i-danbooru-tags'\n",
|
1049 |
+
"NUM_FILES = 1\n",
|
1050 |
"#--------#\n",
|
1051 |
"\n",
|
1052 |
"\n",
|
|
|
1199 |
" #----#"
|
1200 |
],
|
1201 |
"metadata": {
|
1202 |
+
"id": "9ZiTsF9jV0TV"
|
|
|
1203 |
},
|
1204 |
"execution_count": null,
|
1205 |
"outputs": []
|
1206 |
},
|
1207 |
+
{
|
1208 |
+
"cell_type": "code",
|
1209 |
+
"source": [
|
1210 |
+
" from PIL import Image\n",
|
1211 |
+
" import requests\n",
|
1212 |
+
"\n",
|
1213 |
+
" image_url = \"https://generated-images.perchance.org/image/4a16af4ca096845767941e1a1cf7e787be444305f825baa2fe0a6e32268d4538.jpeg\"\n",
|
1214 |
+
" image_A = Image.open(requests.get(image_url, stream=True).raw)\n",
|
1215 |
+
" #------#\n",
|
1216 |
+
" image_A"
|
1217 |
+
],
|
1218 |
+
"metadata": {
|
1219 |
+
"id": "A5LP8Lfa1gM-"
|
1220 |
+
},
|
1221 |
+
"execution_count": null,
|
1222 |
+
"outputs": []
|
1223 |
+
},
|
1224 |
+
{
|
1225 |
+
"cell_type": "code",
|
1226 |
+
"source": [
|
1227 |
+
" inputs = tokenizer(text = 'fmfjfjfj', padding=True, return_tensors=\"pt\").to(device)\n",
|
1228 |
+
"\n",
|
1229 |
+
" inputs"
|
1230 |
+
],
|
1231 |
+
"metadata": {
|
1232 |
+
"colab": {
|
1233 |
+
"base_uri": "https://localhost:8080/"
|
1234 |
+
},
|
1235 |
+
"id": "8ScBPNT55dUr",
|
1236 |
+
"outputId": "a55e757a-64da-409a-ab4f-ae335a5261a1"
|
1237 |
+
},
|
1238 |
+
"execution_count": 14,
|
1239 |
+
"outputs": [
|
1240 |
+
{
|
1241 |
+
"output_type": "execute_result",
|
1242 |
+
"data": {
|
1243 |
+
"text/plain": [
|
1244 |
+
"{'input_ids': tensor([[49406, 13715, 69, 31130, 31130, 329, 49407]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1]])}"
|
1245 |
+
]
|
1246 |
+
},
|
1247 |
+
"metadata": {},
|
1248 |
+
"execution_count": 14
|
1249 |
+
}
|
1250 |
+
]
|
1251 |
+
},
|
1252 |
+
{
|
1253 |
+
"cell_type": "code",
|
1254 |
+
"source": [
|
1255 |
+
"# @title Process text+image pairings into encodings\n",
|
1256 |
+
"import json\n",
|
1257 |
+
"import pandas as pd\n",
|
1258 |
+
"import os\n",
|
1259 |
+
"import shelve\n",
|
1260 |
+
"import torch\n",
|
1261 |
+
"from safetensors.torch import save_file\n",
|
1262 |
+
"import json\n",
|
1263 |
+
"from PIL import Image\n",
|
1264 |
+
"import requests\n",
|
1265 |
+
"\n",
|
1266 |
+
"# Determine if this notebook is running on Colab or Kaggle\n",
|
1267 |
+
"#Use https://www.kaggle.com/ if Google Colab GPU is busy\n",
|
1268 |
+
"home_directory = '/content/'\n",
|
1269 |
+
"using_Kaggle = os.environ.get('KAGGLE_URL_BASE','')\n",
|
1270 |
+
"if using_Kaggle : home_directory = '/kaggle/working/'\n",
|
1271 |
+
"%cd {home_directory}\n",
|
1272 |
+
"#-------#\n",
|
1273 |
+
"\n",
|
1274 |
+
"# Load the data if not already loaded\n",
|
1275 |
+
"try:\n",
|
1276 |
+
" loaded\n",
|
1277 |
+
"except:\n",
|
1278 |
+
" %cd {home_directory}\n",
|
1279 |
+
" !git clone https://huggingface.co/datasets/codeShare/text-to-image-prompts\n",
|
1280 |
+
" loaded = True\n",
|
1281 |
+
"#--------#\n",
|
1282 |
+
"\n",
|
1283 |
+
"# User input\n",
|
1284 |
+
"target = home_directory + 'text-to-image-prompts/fusion/'\n",
|
1285 |
+
"root_output_folder = home_directory + 'output/'\n",
|
1286 |
+
"output_folder = root_output_folder + 'fusion/'\n",
|
1287 |
+
"root_filename = 'prompts'\n",
|
1288 |
+
"NUM_FILES = 1\n",
|
1289 |
+
"#--------#\n",
|
1290 |
+
"\n",
|
1291 |
+
"# Setup environment\n",
|
1292 |
+
"def my_mkdirs(folder):\n",
|
1293 |
+
" if os.path.exists(folder)==False:\n",
|
1294 |
+
" os.makedirs(folder)\n",
|
1295 |
+
"#--------#\n",
|
1296 |
+
"output_folder_text = output_folder + 'text/'\n",
|
1297 |
+
"output_folder_text = output_folder + 'text/'\n",
|
1298 |
+
"output_folder_text_encodings = output_folder + 'text_encodings/'\n",
|
1299 |
+
"output_folder_image_encodings = output_folder + 'image_encodings/'\n",
|
1300 |
+
"target_raw_text = target + 'raw/text/'\n",
|
1301 |
+
"target_raw_images = target + 'raw/images/'\n",
|
1302 |
+
"%cd {home_directory}\n",
|
1303 |
+
"my_mkdirs(output_folder)\n",
|
1304 |
+
"my_mkdirs(output_folder_text)\n",
|
1305 |
+
"my_mkdirs(output_folder_text_encodings)\n",
|
1306 |
+
"my_mkdirs(output_folder_image_encodings)\n",
|
1307 |
+
"#-------#\n",
|
1308 |
+
"\n",
|
1309 |
+
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
|
1310 |
+
"from transformers import AutoTokenizer\n",
|
1311 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
1312 |
+
"\n",
|
1313 |
+
"max_length = tokenizer.model_max_length\n",
|
1314 |
+
"\n",
|
1315 |
+
"from transformers import CLIPProcessor, CLIPModel\n",
|
1316 |
+
"processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
|
1317 |
+
"model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\").to(device)\n",
|
1318 |
+
"#---------#\n",
|
1319 |
+
"for file_index in range(NUM_FILES + 1):\n",
|
1320 |
+
" if (file_index < 1): continue\n",
|
1321 |
+
"\n",
|
1322 |
+
" # Assign name of JSON file to read\n",
|
1323 |
+
" filename = f'{root_filename}{file_index}'\n",
|
1324 |
+
" if NUM_FILES == 1 : filename = f'{root_filename}'\n",
|
1325 |
+
" #--------#\n",
|
1326 |
+
"\n",
|
1327 |
+
" # Read {filename}.json for text prompts\n",
|
1328 |
+
" %cd {target_raw_text}\n",
|
1329 |
+
" with open(filename + '.json', 'r') as f:\n",
|
1330 |
+
" data = json.load(f)\n",
|
1331 |
+
" _df = pd.DataFrame({'count': data})['count']\n",
|
1332 |
+
" prompts = {\n",
|
1333 |
+
" key : value.replace(\"</w>\",\" \") for key, value in _df.items()\n",
|
1334 |
+
" }\n",
|
1335 |
+
" index = 0\n",
|
1336 |
+
" for key in prompts:\n",
|
1337 |
+
" index = index + 1\n",
|
1338 |
+
" #----------#\n",
|
1339 |
+
" NUM_ITEMS = index\n",
|
1340 |
+
" #------#\n",
|
1341 |
+
"\n",
|
1342 |
+
" # Read {filename}.json for image urls\n",
|
1343 |
+
" %cd {target_raw_images}\n",
|
1344 |
+
" with open('links.json', 'r') as f:\n",
|
1345 |
+
" data = json.load(f)\n",
|
1346 |
+
" _df = pd.DataFrame({'count': data})['count']\n",
|
1347 |
+
" urls = {\n",
|
1348 |
+
" key : value.replace(\"</w>\",\" \") for key, value in _df.items()\n",
|
1349 |
+
" }\n",
|
1350 |
+
" #-------#\n",
|
1351 |
+
"\n",
|
1352 |
+
" # Calculate text_encoding for .json file contents and results as .db file\n",
|
1353 |
+
" names_dict = {}\n",
|
1354 |
+
" text_encoding_dict = {}\n",
|
1355 |
+
" image_encoding_dict = {}\n",
|
1356 |
+
" segments = {}\n",
|
1357 |
+
" index = 0;\n",
|
1358 |
+
" subby = 1;\n",
|
1359 |
+
" NUM_HEADERS = 2\n",
|
1360 |
+
" CHUNKS_SIZE = 2000\n",
|
1361 |
+
" _filename = ''\n",
|
1362 |
+
" #from google.colab.patches import cv2_imshow\n",
|
1363 |
+
"\n",
|
1364 |
+
" for _index in range(NUM_ITEMS):\n",
|
1365 |
+
" if not (f'{_index}' in prompts) : continue\n",
|
1366 |
+
" if (prompts[f'{_index}']==\"SKIP\") : continue\n",
|
1367 |
+
" if (index % 100 == 0) : print(index)\n",
|
1368 |
+
" if (index == 0 and _index>0) : index = index + 2 #make space for headers\n",
|
1369 |
+
" if (_index % (CHUNKS_SIZE-NUM_HEADERS) == 0 and _index > 0) :\n",
|
1370 |
+
"\n",
|
1371 |
+
" # Write headers in the .json\n",
|
1372 |
+
" names_dict[f'{0}'] = f'{_index}'\n",
|
1373 |
+
" names_dict[f'{1}'] = f'{filename}-{subby}'\n",
|
1374 |
+
"\n",
|
1375 |
+
" # Encode the headers into text_encoding and image_encoding\n",
|
1376 |
+
" inputs = tokenizer(text = '' + names_dict[f'{0}'], padding=True,truncation=True, return_tensors=\"pt\").to(device)\n",
|
1377 |
+
" text_features = model.get_text_features(**inputs).to(device)\n",
|
1378 |
+
" text_features = text_features/text_features.norm(p=2, dim=-1, keepdim=True)\n",
|
1379 |
+
" text_encoding_dict[f'{0}'] = text_features.to(torch.device('cpu'))\n",
|
1380 |
+
" image_encoding_dict[f'{0}'] = text_features.to(torch.device('cpu'))\n",
|
1381 |
+
" inputs = tokenizer(text = '' + names_dict[f'{1}'], padding=True,truncation=True, return_tensors=\"pt\").to(device)\n",
|
1382 |
+
" text_features = model.get_text_features(**inputs).to(device)\n",
|
1383 |
+
" text_features = text_features/text_features.norm(p=2, dim=-1, keepdim=True)\n",
|
1384 |
+
" text_encoding_dict[f'{1}'] = text_features.to(torch.device('cpu'))\n",
|
1385 |
+
" image_encoding_dict[f'{1}'] = text_features.to(torch.device('cpu'))\n",
|
1386 |
+
" #-------#\n",
|
1387 |
+
"\n",
|
1388 |
+
" # Write .json\n",
|
1389 |
+
" _filename = f'{filename}-{subby}.json'\n",
|
1390 |
+
" %cd {output_folder_text}\n",
|
1391 |
+
" print(f'Saving segment {_filename} to {output_folder_text}...')\n",
|
1392 |
+
" with open(_filename, 'w') as f:\n",
|
1393 |
+
" json.dump(names_dict, f)\n",
|
1394 |
+
" #-------#\n",
|
1395 |
+
"\n",
|
1396 |
+
" # Write .safetensors for text\n",
|
1397 |
+
" _filename = f'{filename}-{subby}.safetensors'\n",
|
1398 |
+
" %cd {output_folder_text_encodings}\n",
|
1399 |
+
" print(f'Saving segment {_filename} to {output_folder_text_encodings}...')\n",
|
1400 |
+
" save_file(text_encoding_dict, _filename)\n",
|
1401 |
+
" #--------#\n",
|
1402 |
+
"\n",
|
1403 |
+
" # Write .safetensors for images\n",
|
1404 |
+
" _filename = f'{filename}-{subby}.safetensors'\n",
|
1405 |
+
" %cd {output_folder_image_encodings}\n",
|
1406 |
+
" print(f'Saving segment {_filename} to {output_folder_image_encodings}...')\n",
|
1407 |
+
" save_file(image_encoding_dict, _filename)\n",
|
1408 |
+
" #--------#\n",
|
1409 |
+
"\n",
|
1410 |
+
" #Iterate\n",
|
1411 |
+
" subby = subby + 1\n",
|
1412 |
+
" segments[f'{subby}'] = _filename\n",
|
1413 |
+
" text_encoding_dict = {}\n",
|
1414 |
+
" image_encoding_dict = {}\n",
|
1415 |
+
" names_dict = {}\n",
|
1416 |
+
" index = 0\n",
|
1417 |
+
" #------#\n",
|
1418 |
+
" else:\n",
|
1419 |
+
" index = index + 1\n",
|
1420 |
+
" #--------#\n",
|
1421 |
+
"\n",
|
1422 |
+
" #----text-encodings----#\n",
|
1423 |
+
" inputs = tokenizer(text = '' + prompts[f'{_index}'], padding=True,truncation=True, return_tensors=\"pt\").to(device)\n",
|
1424 |
+
" text_features = model.get_text_features(**inputs).to(device)\n",
|
1425 |
+
" text_features = text_features/text_features.norm(p=2, dim=-1, keepdim=True)\n",
|
1426 |
+
" text_encoding_dict[f'{index}'] = text_features.to(torch.device('cpu'))\n",
|
1427 |
+
" names_dict[f'{index}'] = prompts[f'{_index}']\n",
|
1428 |
+
" #-----#\n",
|
1429 |
+
"\n",
|
1430 |
+
" #fetch image from url\n",
|
1431 |
+
" image_url = urls[f'{_index}']\n",
|
1432 |
+
" image_A = Image.open(requests.get(image_url, stream=True).raw)\n",
|
1433 |
+
" #------#\n",
|
1434 |
+
" #image_A #Display it\n",
|
1435 |
+
" #-----#\n",
|
1436 |
+
"\n",
|
1437 |
+
" #---image-encodings---#\n",
|
1438 |
+
" inputs = processor(images=image_A, return_tensors=\"pt\")\n",
|
1439 |
+
" image_features = model.get_image_features(**inputs)\n",
|
1440 |
+
" image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True)\n",
|
1441 |
+
" image_encoding_dict[f'{index}'] = image_features.to(torch.device('cpu'))\n",
|
1442 |
+
" #-----#\n",
|
1443 |
+
" continue\n",
|
1444 |
+
" #-----#\n",
|
1445 |
+
" #-----#\n",
|
1446 |
+
" # Write headers in the .json\n",
|
1447 |
+
" names_dict[f'{0}'] = f'{_index}'\n",
|
1448 |
+
" names_dict[f'{1}'] = f'{filename}-{subby}'\n",
|
1449 |
+
"\n",
|
1450 |
+
" # Encode the headers into text_encoding and image_encoding\n",
|
1451 |
+
" inputs = tokenizer(text = '' + names_dict[f'{0}'], padding=True,truncation=True, return_tensors=\"pt\").to(device)\n",
|
1452 |
+
" text_features = model.get_text_features(**inputs).to(device)\n",
|
1453 |
+
" text_features = text_features/text_features.norm(p=2, dim=-1, keepdim=True)\n",
|
1454 |
+
" text_encoding_dict[f'{0}'] = text_features.to(torch.device('cpu'))\n",
|
1455 |
+
" image_encoding_dict[f'{0}'] = text_features.to(torch.device('cpu'))\n",
|
1456 |
+
" inputs = tokenizer(text = '' + names_dict[f'{1}'], padding=True,truncation=True, return_tensors=\"pt\").to(device)\n",
|
1457 |
+
" text_features = model.get_text_features(**inputs).to(device)\n",
|
1458 |
+
" text_features = text_features/text_features.norm(p=2, dim=-1, keepdim=True)\n",
|
1459 |
+
" text_encoding_dict[f'{1}'] = text_features.to(torch.device('cpu'))\n",
|
1460 |
+
" image_encoding_dict[f'{1}'] = text_features.to(torch.device('cpu'))\n",
|
1461 |
+
" #-------#\n",
|
1462 |
+
"\n",
|
1463 |
+
" # Write .json\n",
|
1464 |
+
" _filename = f'{filename}-{subby}.json'\n",
|
1465 |
+
" %cd {output_folder_text}\n",
|
1466 |
+
" print(f'Saving segment {_filename} to {output_folder_text}...')\n",
|
1467 |
+
" with open(_filename, 'w') as f:\n",
|
1468 |
+
" json.dump(names_dict, f)\n",
|
1469 |
+
" #-------#\n",
|
1470 |
+
"\n",
|
1471 |
+
" # Write .safetensors for text\n",
|
1472 |
+
" _filename = f'{filename}-{subby}.safetensors'\n",
|
1473 |
+
" %cd {output_folder_text_encodings}\n",
|
1474 |
+
" print(f'Saving segment {_filename} to {output_folder_text_encodings}...')\n",
|
1475 |
+
" save_file(text_encoding_dict, _filename)\n",
|
1476 |
+
" #--------#\n",
|
1477 |
+
"\n",
|
1478 |
+
" # Write .safetensors for images\n",
|
1479 |
+
" _filename = f'{filename}-{subby}.safetensors'\n",
|
1480 |
+
" %cd {output_folder_image_encodings}\n",
|
1481 |
+
" print(f'Saving segment {_filename} to {output_folder_image_encodings}...')\n",
|
1482 |
+
" save_file(image_encoding_dict, _filename)\n",
|
1483 |
+
" #--------#\n",
|
1484 |
+
"\n",
|
1485 |
+
" #Iterate\n",
|
1486 |
+
" subby = subby + 1\n",
|
1487 |
+
" segments[f'{subby}'] = _filename\n",
|
1488 |
+
" text_encoding_dict = {}\n",
|
1489 |
+
" image_encoding_dict = {}\n",
|
1490 |
+
" names_dict = {}\n",
|
1491 |
+
" index = 0\n",
|
1492 |
+
" #------#\n",
|
1493 |
+
" #----#"
|
1494 |
+
],
|
1495 |
+
"metadata": {
|
1496 |
+
"colab": {
|
1497 |
+
"base_uri": "https://localhost:8080/",
|
1498 |
+
"height": 443
|
1499 |
+
},
|
1500 |
+
"id": "SDKl21yzsyuo",
|
1501 |
+
"outputId": "1b056910-5151-4425-b4f2-24e4df842301"
|
1502 |
+
},
|
1503 |
+
"execution_count": 15,
|
1504 |
+
"outputs": [
|
1505 |
+
{
|
1506 |
+
"output_type": "stream",
|
1507 |
+
"name": "stdout",
|
1508 |
+
"text": [
|
1509 |
+
"/content\n",
|
1510 |
+
"/content\n",
|
1511 |
+
"/content/text-to-image-prompts/fusion/raw/text\n",
|
1512 |
+
"/content/text-to-image-prompts/fusion/raw/images\n",
|
1513 |
+
"0\n"
|
1514 |
+
]
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"output_type": "error",
|
1518 |
+
"ename": "KeyboardInterrupt",
|
1519 |
+
"evalue": "",
|
1520 |
+
"traceback": [
|
1521 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
1522 |
+
"\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
|
1523 |
+
"\u001b[0;32m<ipython-input-15-26b9624c4626>\u001b[0m in \u001b[0;36m<cell line: 65>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 183\u001b[0m \u001b[0;31m# Get image features\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 184\u001b[0m \u001b[0minputs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mprocessor\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mimages\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mimage_A\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mreturn_tensors\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"pt\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 185\u001b[0;31m \u001b[0mimage_features\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_image_features\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0minputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 186\u001b[0m \u001b[0mimage_features\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mimage_features\u001b[0m \u001b[0;34m/\u001b[0m \u001b[0mimage_features\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnorm\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mp\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdim\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkeepdim\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 187\u001b[0m \u001b[0mimage_encoding_dict\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34mf'{index}'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mimage_features\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mto\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdevice\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'cpu'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
1524 |
+
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/transformers/models/clip/modeling_clip.py\u001b[0m in \u001b[0;36mget_image_features\u001b[0;34m(self, pixel_values, output_attentions, output_hidden_states, return_dict)\u001b[0m\n\u001b[1;32m 1235\u001b[0m \u001b[0mreturn_dict\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mreturn_dict\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mreturn_dict\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconfig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0muse_return_dict\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1236\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1237\u001b[0;31m vision_outputs = self.vision_model(\n\u001b[0m\u001b[1;32m 1238\u001b[0m \u001b[0mpixel_values\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mpixel_values\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1239\u001b[0m \u001b[0moutput_attentions\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0moutput_attentions\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
1525 |
+
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_wrapped_call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1551\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_compiled_call_impl\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# type: ignore[misc]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1552\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1553\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_call_impl\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1554\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1555\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_call_impl\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
1526 |
+
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1560\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0m_global_backward_pre_hooks\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0m_global_backward_hooks\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1561\u001b[0m or _global_forward_hooks or _global_forward_pre_hooks):\n\u001b[0;32m-> 1562\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mforward_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1563\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1564\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
1527 |
+
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/transformers/models/clip/modeling_clip.py\u001b[0m in \u001b[0;36mforward\u001b[0;34m(self, pixel_values, output_attentions, output_hidden_states, return_dict)\u001b[0m\n\u001b[1;32m 1030\u001b[0m \u001b[0mhidden_states\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpre_layrnorm\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mhidden_states\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1031\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1032\u001b[0;31m encoder_outputs = self.encoder(\n\u001b[0m\u001b[1;32m 1033\u001b[0m \u001b[0minputs_embeds\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mhidden_states\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1034\u001b[0m \u001b[0moutput_attentions\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0moutput_attentions\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
1528 |
+
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_wrapped_call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1551\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_compiled_call_impl\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# type: ignore[misc]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1552\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1553\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_call_impl\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1554\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1555\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_call_impl\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
1529 |
+
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1560\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0m_global_backward_pre_hooks\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0m_global_backward_hooks\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1561\u001b[0m or _global_forward_hooks or _global_forward_pre_hooks):\n\u001b[0;32m-> 1562\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mforward_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1563\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1564\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
1530 |
+
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/transformers/models/clip/modeling_clip.py\u001b[0m in \u001b[0;36mforward\u001b[0;34m(self, inputs_embeds, attention_mask, causal_attention_mask, output_attentions, output_hidden_states, return_dict)\u001b[0m\n\u001b[1;32m 811\u001b[0m )\n\u001b[1;32m 812\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 813\u001b[0;31m layer_outputs = encoder_layer(\n\u001b[0m\u001b[1;32m 814\u001b[0m \u001b[0mhidden_states\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 815\u001b[0m \u001b[0mattention_mask\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
1531 |
+
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_wrapped_call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1551\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_compiled_call_impl\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# type: ignore[misc]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1552\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1553\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_call_impl\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1554\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1555\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_call_impl\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
1532 |
+
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1560\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0m_global_backward_pre_hooks\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0m_global_backward_hooks\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1561\u001b[0m or _global_forward_hooks or _global_forward_pre_hooks):\n\u001b[0;32m-> 1562\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mforward_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1563\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1564\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
1533 |
+
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/transformers/models/clip/modeling_clip.py\u001b[0m in \u001b[0;36mforward\u001b[0;34m(self, hidden_states, attention_mask, causal_attention_mask, output_attentions)\u001b[0m\n\u001b[1;32m 546\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 547\u001b[0m \u001b[0mhidden_states\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlayer_norm1\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mhidden_states\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 548\u001b[0;31m hidden_states, attn_weights = self.self_attn(\n\u001b[0m\u001b[1;32m 549\u001b[0m \u001b[0mhidden_states\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mhidden_states\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 550\u001b[0m \u001b[0mattention_mask\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mattention_mask\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
1534 |
+
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_wrapped_call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1551\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_compiled_call_impl\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# type: ignore[misc]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1552\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1553\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_call_impl\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1554\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1555\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_call_impl\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
1535 |
+
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1560\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0m_global_backward_pre_hooks\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0m_global_backward_hooks\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1561\u001b[0m or _global_forward_hooks or _global_forward_pre_hooks):\n\u001b[0;32m-> 1562\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mforward_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1563\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1564\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
1536 |
+
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/transformers/models/clip/modeling_clip.py\u001b[0m in \u001b[0;36mforward\u001b[0;34m(self, hidden_states, attention_mask, causal_attention_mask, output_attentions)\u001b[0m\n\u001b[1;32m 463\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 464\u001b[0m \u001b[0mquery_states\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mq_proj\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mhidden_states\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 465\u001b[0;31m \u001b[0mkey_states\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mk_proj\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mhidden_states\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 466\u001b[0m \u001b[0mvalue_states\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mv_proj\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mhidden_states\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 467\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
|
1537 |
+
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_wrapped_call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1551\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_compiled_call_impl\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# type: ignore[misc]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1552\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1553\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_call_impl\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1554\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1555\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_call_impl\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
1538 |
+
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1560\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0m_global_backward_pre_hooks\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0m_global_backward_hooks\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1561\u001b[0m or _global_forward_hooks or _global_forward_pre_hooks):\n\u001b[0;32m-> 1562\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mforward_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1563\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1564\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
1539 |
+
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py\u001b[0m in \u001b[0;36mforward\u001b[0;34m(self, input)\u001b[0m\n\u001b[1;32m 115\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 116\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mforward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minput\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mTensor\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mTensor\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 117\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mF\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlinear\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mweight\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbias\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 118\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 119\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mextra_repr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
1540 |
+
"\u001b[0;31mKeyboardInterrupt\u001b[0m: "
|
1541 |
+
]
|
1542 |
+
}
|
1543 |
+
]
|
1544 |
+
},
|
1545 |
{
|
1546 |
"cell_type": "code",
|
1547 |
"source": [
|
|
|
1625 |
"execution_count": null,
|
1626 |
"outputs": []
|
1627 |
},
|
1628 |
+
{
|
1629 |
+
"cell_type": "code",
|
1630 |
+
"source": [
|
1631 |
+
"#Remove URL Encoding from the fetched Danbooru tags\n",
|
1632 |
+
"danboorus = getJSON('/content/text-to-image-prompts/danbooru/raw/','🎀 fusion-t2i-danbooru-tags.json')\n",
|
1633 |
+
"from urllib.parse import unquote\n",
|
1634 |
+
"for key in danboorus:\n",
|
1635 |
+
" danboorus[key] = unquote(danboorus[key])\n",
|
1636 |
+
"%cd /content/\n",
|
1637 |
+
"with open(f'🎀 fusion-t2i-danbooru-tags', 'w') as f:\n",
|
1638 |
+
" json.dump(danboorus, f)"
|
1639 |
+
],
|
1640 |
+
"metadata": {
|
1641 |
+
"id": "AjSf585hWWMB"
|
1642 |
+
},
|
1643 |
+
"execution_count": null,
|
1644 |
+
"outputs": []
|
1645 |
+
},
|
1646 |
{
|
1647 |
"cell_type": "code",
|
1648 |
"source": [
|
|
|
1715 |
],
|
1716 |
"metadata": {
|
1717 |
"cellView": "form",
|
1718 |
+
"id": "CWlWk0KpuX55"
|
|
|
|
|
|
|
|
|
1719 |
},
|
1720 |
"execution_count": null,
|
1721 |
+
"outputs": []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1722 |
},
|
1723 |
{
|
1724 |
"cell_type": "markdown",
|