Upload fusion_t2i_CLIP_interrogator.ipynb
Browse files
Google Colab Notebooks/fusion_t2i_CLIP_interrogator.ipynb
CHANGED
@@ -264,24 +264,24 @@
|
|
264 |
"source": [
|
265 |
"# @title π Select items to sample from\n",
|
266 |
"\n",
|
267 |
-
"prompt_features =
|
268 |
-
"civitai_blue_set =
|
269 |
-
"civitai_yellow_set =
|
270 |
-
"artby_prompts =
|
271 |
"suffix = False # @param {\"type\":\"boolean\",\"placeholder\":\"πΉ\"}\n",
|
272 |
"prefix = False # @param {\"type\":\"boolean\",\"placeholder\":\"πΈ\"}\n",
|
273 |
-
"emojis =
|
274 |
"#------#\n",
|
275 |
-
"\n",
|
276 |
"first_names = False # @param {\"type\":\"boolean\",\"placeholder\":\"πΉ\"}\n",
|
277 |
"last_names = False # @param {\"type\":\"boolean\",\"placeholder\":\"πΈ\"}\n",
|
278 |
-
"celebs =
|
279 |
"#-------#\n",
|
280 |
"danbooru_tags = True # @param {\"type\":\"boolean\",\"placeholder\":\"π\"}\n",
|
281 |
-
"lyrics =
|
282 |
-
"tripple_nouns =
|
283 |
"#-----#\n",
|
284 |
-
"female_fullnames =
|
285 |
"debug = False\n",
|
286 |
"#------#\n",
|
287 |
"prompts = {}\n",
|
@@ -289,6 +289,9 @@
|
|
289 |
"nA = 0\n",
|
290 |
"#--------#\n",
|
291 |
"\n",
|
|
|
|
|
|
|
292 |
"\n",
|
293 |
"if tripple_nouns:\n",
|
294 |
" url = '/content/text-to-image-prompts/nouns'\n",
|
@@ -391,14 +394,14 @@
|
|
391 |
"source": [
|
392 |
"# @title \tβ Use a pre-encoded prompt + image pair from the fusion gen (note: NSFW!)\n",
|
393 |
"# @markdown πΌοΈ Choose a pre-encoded reference\n",
|
394 |
-
"index =
|
395 |
"PROMPT_INDEX = index\n",
|
396 |
"\n",
|
397 |
"import math\n",
|
398 |
"# @markdown -----------\n",
|
399 |
"# @markdown πβ Enhance similarity to prompt(s)\n",
|
400 |
"POS = '' # @param {type:'string' ,placeholder:'item1 , item2 , ...'}\n",
|
401 |
-
"log_strength = 1 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
|
402 |
"pos_strength = math.pow(10 ,log_strength-1)\n",
|
403 |
"# @markdown -----------\n",
|
404 |
"\n",
|
@@ -408,10 +411,12 @@
|
|
408 |
"neg_strength = math.pow(10 ,log_strength-1)\n",
|
409 |
"\n",
|
410 |
"# @markdown β© Skip item(s) containing the word\n",
|
411 |
-
"SKIP = '' # @param {type:'string' , placeholder:'item1 , item2 , ...'}\n",
|
412 |
"\n",
|
413 |
-
"# @markdown βοΈ sim_ref = C* text_encoding + image_encoding*(1-C) <br>\n",
|
414 |
"C = 0.5 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
|
|
|
|
|
415 |
"\n",
|
416 |
"blacklist = SKIP\n",
|
417 |
"# @markdown -----------\n",
|
@@ -449,8 +454,10 @@
|
|
449 |
"\n",
|
450 |
"\n",
|
451 |
"def isBlacklisted(txt):\n",
|
|
|
452 |
" if blacklist.strip() == '': return False\n",
|
453 |
" for item in list(blacklist.split(',')):\n",
|
|
|
454 |
" if txt.find(item.strip())> -1 : return True\n",
|
455 |
" #------#\n",
|
456 |
" return False\n",
|
@@ -488,7 +495,7 @@
|
|
488 |
" image_features_A = target_image_encodings[f'{index}']\n",
|
489 |
"\n",
|
490 |
" # text-similarity\n",
|
491 |
-
" sims = C * torch.matmul(text_tensor, text_features_A.t())\n",
|
492 |
"\n",
|
493 |
" # Calculate negatives\n",
|
494 |
" neg_sims = {}\n",
|
@@ -518,7 +525,7 @@
|
|
518 |
"\n",
|
519 |
" # plus image-similarity\n",
|
520 |
" img_sims = torch.matmul(text_tensor, image_features_A.t()) * logit_scale\n",
|
521 |
-
" sims = sims + (1-C) * img_sims\n",
|
522 |
"\n",
|
523 |
"\n",
|
524 |
" # plus POS-similarity\n",
|
@@ -546,13 +553,15 @@
|
|
546 |
" for _index in range(start_at_index + RANGE):\n",
|
547 |
" if _index < start_at_index : continue\n",
|
548 |
"\n",
|
549 |
-
" for iters in range(
|
550 |
" found = True\n",
|
551 |
-
" index = indices[_index + offset].item()\n",
|
552 |
" if isBlacklisted(prompts[f'{index}'].lower()):\n",
|
553 |
" offset = offset + 1\n",
|
554 |
" found = False\n",
|
555 |
-
" if (_index + offset)
|
|
|
|
|
556 |
" if found : break\n",
|
557 |
" #-------#\n",
|
558 |
"\n",
|
|
|
264 |
"source": [
|
265 |
"# @title π Select items to sample from\n",
|
266 |
"\n",
|
267 |
+
"prompt_features = False # @param {\"type\":\"boolean\",\"placeholder\":\"π¦\"}\n",
|
268 |
+
"civitai_blue_set = False # @param {\"type\":\"boolean\",\"placeholder\":\"π\"}\n",
|
269 |
+
"civitai_yellow_set = False # @param {\"type\":\"boolean\",\"placeholder\":\"π\"}\n",
|
270 |
+
"artby_prompts = False # @param {\"type\":\"boolean\",\"placeholder\":\"π\"}\n",
|
271 |
"suffix = False # @param {\"type\":\"boolean\",\"placeholder\":\"πΉ\"}\n",
|
272 |
"prefix = False # @param {\"type\":\"boolean\",\"placeholder\":\"πΈ\"}\n",
|
273 |
+
"emojis = False # @param {\"type\":\"boolean\",\"placeholder\":\"π\"}\n",
|
274 |
"#------#\n",
|
275 |
+
"suffix_pairs = True # @param {\"type\":\"boolean\",\"placeholder\":\"πΉ\"}\n",
|
276 |
"first_names = False # @param {\"type\":\"boolean\",\"placeholder\":\"πΉ\"}\n",
|
277 |
"last_names = False # @param {\"type\":\"boolean\",\"placeholder\":\"πΈ\"}\n",
|
278 |
+
"celebs = False # @param {\"type\":\"boolean\",\"placeholder\":\"ππ¨\"}\n",
|
279 |
"#-------#\n",
|
280 |
"danbooru_tags = True # @param {\"type\":\"boolean\",\"placeholder\":\"π\"}\n",
|
281 |
+
"lyrics = False # @param {\"type\":\"boolean\",\"placeholder\":\"πΌ\"}\n",
|
282 |
+
"tripple_nouns = False # @param {\"type\":\"boolean\",\"placeholder\":\"πΌ\"}\n",
|
283 |
"#-----#\n",
|
284 |
+
"female_fullnames = False # @param {\"type\":\"boolean\",\"placeholder\":\"π\"}\n",
|
285 |
"debug = False\n",
|
286 |
"#------#\n",
|
287 |
"prompts = {}\n",
|
|
|
289 |
"nA = 0\n",
|
290 |
"#--------#\n",
|
291 |
"\n",
|
292 |
+
"if suffix_pairs:\n",
|
293 |
+
" url = '/content/text-to-image-prompts/suffix_pairs'\n",
|
294 |
+
" prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n",
|
295 |
"\n",
|
296 |
"if tripple_nouns:\n",
|
297 |
" url = '/content/text-to-image-prompts/nouns'\n",
|
|
|
394 |
"source": [
|
395 |
"# @title \tβ Use a pre-encoded prompt + image pair from the fusion gen (note: NSFW!)\n",
|
396 |
"# @markdown πΌοΈ Choose a pre-encoded reference\n",
|
397 |
+
"index = 617 # @param {type:\"slider\", min:0, max:1666, step:1}\n",
|
398 |
"PROMPT_INDEX = index\n",
|
399 |
"\n",
|
400 |
"import math\n",
|
401 |
"# @markdown -----------\n",
|
402 |
"# @markdown πβ Enhance similarity to prompt(s)\n",
|
403 |
"POS = '' # @param {type:'string' ,placeholder:'item1 , item2 , ...'}\n",
|
404 |
+
"log_strength = 1.06 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
|
405 |
"pos_strength = math.pow(10 ,log_strength-1)\n",
|
406 |
"# @markdown -----------\n",
|
407 |
"\n",
|
|
|
411 |
"neg_strength = math.pow(10 ,log_strength-1)\n",
|
412 |
"\n",
|
413 |
"# @markdown β© Skip item(s) containing the word\n",
|
414 |
+
"SKIP = '_ass , ass_' # @param {type:'string' , placeholder:'item1 , item2 , ...'}\n",
|
415 |
"\n",
|
416 |
+
"# @markdown βοΈ sim_ref =(10^(log_strength-1)) * ( C* text_encoding + image_encoding*(1-C) )<br>\n",
|
417 |
"C = 0.5 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
|
418 |
+
"log_strength = 1 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
|
419 |
+
"prompt_strength = math.pow(10 ,log_strength-1)\n",
|
420 |
"\n",
|
421 |
"blacklist = SKIP\n",
|
422 |
"# @markdown -----------\n",
|
|
|
454 |
"\n",
|
455 |
"\n",
|
456 |
"def isBlacklisted(txt):\n",
|
457 |
+
" if txt.strip().isnumeric(): return True\n",
|
458 |
" if blacklist.strip() == '': return False\n",
|
459 |
" for item in list(blacklist.split(',')):\n",
|
460 |
+
" if item.strip() == '' : continue\n",
|
461 |
" if txt.find(item.strip())> -1 : return True\n",
|
462 |
" #------#\n",
|
463 |
" return False\n",
|
|
|
495 |
" image_features_A = target_image_encodings[f'{index}']\n",
|
496 |
"\n",
|
497 |
" # text-similarity\n",
|
498 |
+
" sims = prompt_strength * C * torch.matmul(text_tensor, text_features_A.t())\n",
|
499 |
"\n",
|
500 |
" # Calculate negatives\n",
|
501 |
" neg_sims = {}\n",
|
|
|
525 |
"\n",
|
526 |
" # plus image-similarity\n",
|
527 |
" img_sims = torch.matmul(text_tensor, image_features_A.t()) * logit_scale\n",
|
528 |
+
" sims = sims + prompt_strength * (1-C) * img_sims\n",
|
529 |
"\n",
|
530 |
"\n",
|
531 |
" # plus POS-similarity\n",
|
|
|
553 |
" for _index in range(start_at_index + RANGE):\n",
|
554 |
" if _index < start_at_index : continue\n",
|
555 |
"\n",
|
556 |
+
" for iters in range(1000):\n",
|
557 |
" found = True\n",
|
558 |
+
" index = indices[min(_index + offset,NUM_VOCAB_ITEMS-1)].item()\n",
|
559 |
" if isBlacklisted(prompts[f'{index}'].lower()):\n",
|
560 |
" offset = offset + 1\n",
|
561 |
" found = False\n",
|
562 |
+
" if (_index + offset)>=NUM_VOCAB_ITEMS-2 :\n",
|
563 |
+
" found = True\n",
|
564 |
+
" offset = NUM_VOCAB_ITEMS - _index -1\n",
|
565 |
" if found : break\n",
|
566 |
" #-------#\n",
|
567 |
"\n",
|