codeShare commited on
Commit
a6ab21f
·
verified ·
1 Parent(s): daa92d9

Upload fusion_t2i_CLIP_interrogator.ipynb

Browse files
Google Colab Notebooks/fusion_t2i_CLIP_interrogator.ipynb CHANGED
@@ -29,7 +29,8 @@
29
  "cell_type": "code",
30
  "execution_count": null,
31
  "metadata": {
32
- "id": "UEYEdzjgOEOE"
 
33
  },
34
  "outputs": [],
35
  "source": [
@@ -47,28 +48,22 @@
47
  "\n",
48
  "def fix_bad_symbols(txt):\n",
49
  " result = txt\n",
50
- " for symbol in ['}', '{' , ')', '(', '[' , ']' , ':' , '=' , '^']:\n",
51
  " result = result.replace(symbol,'\\\\' + symbol)\n",
52
- " for symbol in ['^']:\n",
53
- " result = result.replace(symbol,'')\n",
54
  " #------#\n",
55
- " result = result.replace('\\\\|','|').replace(' |',' |')\n",
56
  " return result;\n",
57
  "\n",
58
  "\n",
59
  "def getPrompts(_path, separator):\n",
60
- "\n",
61
  " path = _path + '/text'\n",
62
  " path_enc = _path + '/text_encodings'\n",
63
  " #-----#\n",
64
  " index = 0\n",
65
- " file_index = 0\n",
66
  " prompts = {}\n",
67
  " text_encodings = {}\n",
68
  " _text_encodings = {}\n",
69
  " #-----#\n",
70
  " for filename in os.listdir(f'{path}'):\n",
71
- "\n",
72
  " print(f'reading {filename}....')\n",
73
  " _index = 0\n",
74
  " %cd {path}\n",
@@ -79,27 +74,13 @@
79
  " _prompts = {\n",
80
  " key : value for key, value in _df.items()\n",
81
  " }\n",
 
 
 
82
  " for key in _prompts:\n",
83
  " _index = int(key)\n",
84
  " value = _prompts[key]\n",
85
- "\n",
86
- " #Read the 'header' file in the JSON\n",
87
- " if _index <= 0 :\n",
88
- " _NUM_ITEMS = int(value)\n",
89
- " prompts[f'{index}'] = _prompts[f'{_index}'] + separator\n",
90
- " index = index + 1\n",
91
- " continue\n",
92
- " if _index <= 1 :\n",
93
- " _file_name = f'{value}'\n",
94
- " %cd {path_enc}\n",
95
- " _text_encodings = load_file(f'{_file_name}.safetensors')\n",
96
- " #Store text_encodings for the header items\n",
97
- " text_encodings[f'{index-1}'] = _text_encodings[f'{_index-1}']\n",
98
- " text_encodings[f'{index}'] = _text_encodings[f'{_index}']\n",
99
- " #------#\n",
100
- " prompts[f'{index}'] = _prompts[f'{_index}'] + separator\n",
101
- " index = index + 1\n",
102
- " continue\n",
103
  " #------#\n",
104
  " #Read the text_encodings + prompts\n",
105
  " text_encodings[f'{index}'] = _text_encodings[f'{_index}']\n",
@@ -108,8 +89,6 @@
108
  " continue\n",
109
  " #-------#\n",
110
  " #--------#\n",
111
- " #_text_encodings.close() #close the text_encodings file\n",
112
- " file_index = file_index + 1\n",
113
  " #----------#\n",
114
  " NUM_ITEMS = index -1\n",
115
  " return prompts , text_encodings , NUM_ITEMS\n",
@@ -255,8 +234,7 @@
255
  " #----------#\n",
256
  " NUM_ITEMS = index -1\n",
257
  " return prompts , text_encodings , urls , image_encodings , NUM_ITEMS\n",
258
- "#--------#\n",
259
- "\n"
260
  ]
261
  },
262
  {
@@ -264,35 +242,57 @@
264
  "source": [
265
  "# @title 📚 Select items to sample from\n",
266
  "\n",
267
- "prompt_features = False # @param {\"type\":\"boolean\",\"placeholder\":\"🦜\"}\n",
268
- "civitai_blue_set = False # @param {\"type\":\"boolean\",\"placeholder\":\"📘\"}\n",
269
- "civitai_yellow_set = False # @param {\"type\":\"boolean\",\"placeholder\":\"📘\"}\n",
270
- "artby_prompts = False # @param {\"type\":\"boolean\",\"placeholder\":\"📘\"}\n",
271
- "suffix = False # @param {\"type\":\"boolean\",\"placeholder\":\"🔹\"}\n",
272
- "prefix = False # @param {\"type\":\"boolean\",\"placeholder\":\"🔸\"}\n",
273
- "emojis = False # @param {\"type\":\"boolean\",\"placeholder\":\"😃\"}\n",
274
  "#------#\n",
275
- "suffix_pairs = True # @param {\"type\":\"boolean\",\"placeholder\":\"🔹\"}\n",
276
- "first_names = False # @param {\"type\":\"boolean\",\"placeholder\":\"🔹\"}\n",
277
- "last_names = False # @param {\"type\":\"boolean\",\"placeholder\":\"🔸\"}\n",
278
- "celebs = False # @param {\"type\":\"boolean\",\"placeholder\":\"🆔👨\"}\n",
279
  "#-------#\n",
280
  "danbooru_tags = True # @param {\"type\":\"boolean\",\"placeholder\":\"🎀\"}\n",
281
- "lyrics = False # @param {\"type\":\"boolean\",\"placeholder\":\"🎼\"}\n",
282
- "tripple_nouns = False # @param {\"type\":\"boolean\",\"placeholder\":\"🎼\"}\n",
283
  "#-----#\n",
284
- "female_fullnames = False # @param {\"type\":\"boolean\",\"placeholder\":\"😃\"}\n",
285
  "debug = False\n",
 
 
 
 
 
 
286
  "#------#\n",
287
  "prompts = {}\n",
288
  "text_encodings = {}\n",
289
  "nA = 0\n",
290
  "#--------#\n",
291
  "\n",
292
- "if suffix_pairs:\n",
293
- " url = '/content/text-to-image-prompts/suffix_pairs'\n",
 
 
 
 
 
 
 
 
 
 
 
 
294
  " prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n",
295
  "\n",
 
 
 
 
 
 
296
  "if tripple_nouns:\n",
297
  " url = '/content/text-to-image-prompts/nouns'\n",
298
  " prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n",
@@ -344,16 +344,6 @@
344
  " prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n",
345
  "#--------#\n",
346
  "\n",
347
- "if civitai_yellow_set:\n",
348
- " url = '/content/text-to-image-prompts/civitai-prompts/yellow'\n",
349
- " prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n",
350
- "#--------#\n",
351
- "\n",
352
- "if artby_prompts:\n",
353
- " url = '/content/text-to-image-prompts/artby'\n",
354
- " prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n",
355
- "#--------#\n",
356
- "\n",
357
  "if suffix :\n",
358
  " tmp = '/content/text-to-image-prompts/vocab/text_encodings/suffix/'\n",
359
  " for item in ['common','average','rare','weird','exotic'] :\n",
@@ -381,10 +371,13 @@
381
  "text_tensor = torch.zeros(NUM_VOCAB_ITEMS,768)\n",
382
  "for index in range(NUM_VOCAB_ITEMS):\n",
383
  " text_tensor[index] = text_encodings[f'{index}']\n",
384
- "#---------#\n"
 
 
385
  ],
386
  "metadata": {
387
- "id": "CF53WIAKObg3"
 
388
  },
389
  "execution_count": null,
390
  "outputs": []
@@ -394,7 +387,7 @@
394
  "source": [
395
  "# @title \t⚄ Use a pre-encoded prompt + image pair from the fusion gen (note: NSFW!)\n",
396
  "# @markdown 🖼️ Choose a pre-encoded reference\n",
397
- "index = 617 # @param {type:\"slider\", min:0, max:1666, step:1}\n",
398
  "PROMPT_INDEX = index\n",
399
  "\n",
400
  "import math\n",
@@ -411,7 +404,7 @@
411
  "neg_strength = math.pow(10 ,log_strength-1)\n",
412
  "\n",
413
  "# @markdown ⏩ Skip item(s) containing the word\n",
414
- "SKIP = '_ass , ass_' # @param {type:'string' , placeholder:'item1 , item2 , ...'}\n",
415
  "\n",
416
  "# @markdown ⚖️ How important is the prompt vs. the image? <br> <br>\n",
417
  "# @markdown <div style = \"font-size: 10px; \"> sim_ref = (10^(log_strength-1)) * ( C* text_encoding + image_encoding*(1-C) ) </div> <br>\n",
@@ -609,7 +602,8 @@
609
  "#------#"
610
  ],
611
  "metadata": {
612
- "id": "XW3914T8O2uf"
 
613
  },
614
  "execution_count": null,
615
  "outputs": []
@@ -680,7 +674,8 @@
680
  "#-------#"
681
  ],
682
  "metadata": {
683
- "id": "EdBiAguJO9aX"
 
684
  },
685
  "execution_count": null,
686
  "outputs": []
@@ -734,7 +729,8 @@
734
  " json.dump(_savefile, f)\n"
735
  ],
736
  "metadata": {
737
- "id": "Q7vpNAXQilbf"
 
738
  },
739
  "execution_count": null,
740
  "outputs": []
@@ -744,19 +740,26 @@
744
  "source": [
745
  "# @title \t⚄ Create a savefile-set from the entire range of pre-encoded items\n",
746
  "\n",
747
- "#image_index = 0 # @param {type:'number'}\n",
748
  "# @markdown 📥 Load the data (only required one time)\n",
749
  "load_the_data = True # @param {type:\"boolean\"}\n",
750
  "\n",
 
 
 
 
 
 
 
 
 
 
 
751
  "# @markdown ⚖️ Set the value for C in the reference <br> <br> sim = C* text_enc + image_enc*(1-C) <br><br>\n",
752
  "\n",
753
  "C = 0.5 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
754
  "\n",
755
  "# @markdown 🚫 Penalize similarity to this prompt(optional)\n",
756
- "\n",
757
  "if(load_the_data):\n",
758
- " from PIL import Image\n",
759
- " import requests\n",
760
  " target_prompts , target_text_encodings , urls , target_image_encodings , NUM_ITEMS = getPromptsAndLinks('/content/text-to-image-prompts/fusion')\n",
761
  " from transformers import AutoTokenizer\n",
762
  " tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
@@ -780,16 +783,31 @@
780
  "}\n",
781
  "#------#\n",
782
  "\n",
783
- "root_savefile_name = 'fusion_C05_X7_1000_'\n",
 
 
784
  "output_folder = '/content/output/savefiles/'\n",
785
  "my_mkdirs(output_folder)\n",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
786
  "NEG = '' # @param {type:'string'}\n",
787
  "strength = 1 # @param {type:\"slider\", min:-5, max:5, step:0.1}\n",
788
  "\n",
789
  "for index in range(1667):\n",
790
  "\n",
791
  " PROMPT_INDEX = index\n",
792
- "\n",
793
  " prompt = target_prompts[f'{index}']\n",
794
  " url = urls[f'{index}']\n",
795
  " if url.find('perchance')>-1:\n",
@@ -797,110 +815,79 @@
797
  " else: continue #print(\"(No image for this ID)\")\n",
798
  "\n",
799
  " print(f\"no. {PROMPT_INDEX} : '{prompt}'\")\n",
 
 
 
 
800
  "\n",
801
- "\n",
802
- " if(True):\n",
803
- " text_features_A = target_text_encodings[f'{index}']\n",
804
- " image_features_A = target_image_encodings[f'{index}']\n",
805
- "\n",
 
806
  " # text-similarity\n",
807
- " sims = C * torch.matmul(text_tensor, text_features_A.t())\n",
808
- "\n",
809
- " neg_sims = 0*sims\n",
810
- " if(NEG != ''):\n",
811
- "\n",
812
- " # Get text features for user input\n",
813
- " inputs = tokenizer(text = NEG, padding=True, return_tensors=\"pt\")\n",
814
- " text_features_NEG = model.get_text_features(**inputs)\n",
815
- " text_features_NEG = text_features_A/text_features_A.norm(p=2, dim=-1, keepdim=True)\n",
816
- "\n",
817
- " # text-similarity\n",
818
- " neg_sims = strength*torch.matmul(text_tensor, text_features_NEG.t())\n",
819
- " #------#\n",
820
- "\n",
821
- " # plus image-similarity\n",
822
- " sims = sims + (1-C) * torch.matmul(text_tensor, image_features_A.t()) * logit_scale\n",
823
- "\n",
824
- " # minus NEG-similarity\n",
825
- " sims = sims - neg_sims\n",
826
- "\n",
827
- " # Sort the items\n",
828
- " sorted , indices = torch.sort(sims,dim=0 , descending=True)\n",
829
- "\n",
830
- " # @title ⚙️📝 Print the results (Advanced)\n",
831
- " list_size = 1000 # param {type:'number'}\n",
832
- " start_at_index = 0 # param {type:'number'}\n",
833
- " print_Similarity = True # param {type:\"boolean\"}\n",
834
- " print_Prompts = True # param {type:\"boolean\"}\n",
835
- " print_Prefix = True # param {type:\"boolean\"}\n",
836
- " print_Descriptions = True # param {type:\"boolean\"}\n",
837
- " compact_Output = True # param {type:\"boolean\"}\n",
838
- "\n",
839
- " # @markdown -----------\n",
840
- " # @markdown ⚙️📝 Printing options\n",
841
- " newline_Separator = False # @param {type:\"boolean\"}\n",
842
  "\n",
843
- " import random\n",
844
- " list_size2 = 1000 # param {type:'number'}\n",
845
- " start_at_index2 = 10000 # param {type:'number'}\n",
846
- " rate_percent = 0 # param {type:\"slider\", min:0, max:100, step:1}\n",
847
  "\n",
848
- " # @markdown Repeat output N times\n",
849
- " N = 7 # @param {type:\"slider\", min:0, max:10, step:1}\n",
850
  "\n",
851
- " # title Show the 100 most similiar suffix and prefix text-encodings to the text encoding\n",
852
- " RANGE = list_size\n",
853
- " separator = '|'\n",
854
- " if newline_Separator : separator = separator + '\\n'\n",
855
  "\n",
 
 
 
 
 
 
 
 
 
856
  " _prompts = ''\n",
857
- " _sims = ''\n",
858
  " for _index in range(start_at_index + RANGE):\n",
859
  " if _index < start_at_index : continue\n",
860
  " index = indices[_index].item()\n",
861
- "\n",
862
  " prompt = prompts[f'{index}']\n",
863
- " if rate_percent >= random.randint(0,100) : prompt = prompts[f'{random.randint(start_at_index2 , start_at_index2 + list_size2)}']\n",
864
- "\n",
865
- " #Remove duplicates\n",
866
- " if _prompts.find(prompt + separator)<=-1:\n",
867
- " _sims = _sims + f'{round(100*sims[index].item(), 2)} %' + separator\n",
868
- " #-------#\n",
869
  " _prompts = _prompts.replace(prompt + separator,'')\n",
870
  " _prompts = _prompts + prompt + separator\n",
871
- " #------#\n",
872
  " #------#\n",
873
  " _prompts = fix_bad_symbols(_prompts)\n",
874
- " __prompts = ('{' + _prompts + '}').replace(separator + '}', '}')\n",
875
- " __sims = ('{' + _sims + '}').replace(separator + '}', '}')\n",
876
- " #------#\n",
877
- " #--------#\n",
878
- " _savefile = _blank\n",
879
- " from safetensors.torch import load_file\n",
880
- " import json , os , torch\n",
881
- " import pandas as pd\n",
882
- " #----#\n",
883
- " def my_mkdirs(folder):\n",
884
- " if os.path.exists(folder)==False:\n",
885
- " os.makedirs(folder)\n",
886
- " #------#\n",
887
- " savefile_prompt = ''\n",
888
- " for i in range(N) : savefile_prompt = savefile_prompt + ' ' + __prompts\n",
889
- " _savefile['main'] = savefile_prompt.replace('\\n', ' ').replace(' ', ' ').replace(' ', ' ')\n",
 
 
 
 
890
  " #------#\n",
891
- " save_filename = f'{root_savefile_name}{PROMPT_INDEX}.json'\n",
892
- " #-----#\n",
893
- " %cd {output_folder}\n",
894
  " print(f'Saving savefile {save_filename} to {output_folder}...')\n",
895
  " with open(save_filename, 'w') as f:\n",
896
- " json.dump(_savefile, f)\n",
897
  " #---------#\n",
898
  " continue\n",
899
- "#-----------#\n",
900
- "\n"
901
  ],
902
  "metadata": {
903
- "id": "x1uAVXZEoL0T"
 
904
  },
905
  "execution_count": null,
906
  "outputs": []
@@ -925,53 +912,8 @@
925
  "!zip -r {zip_dest} {root_output_folder}"
926
  ],
927
  "metadata": {
928
- "id": "zivBNrw9uSVD"
929
- },
930
- "execution_count": null,
931
- "outputs": []
932
- },
933
- {
934
- "cell_type": "code",
935
- "source": [
936
- "output_folder = '/content/output/fusion-gen-savefiles/'\n",
937
- "index = 0\n",
938
- "path = '/content/text-to-image-prompts/fusion-gen-savefiles'\n",
939
- "\n",
940
- "def my_mkdirs(folder):\n",
941
- " if os.path.exists(folder)==False:\n",
942
- " os.makedirs(folder)\n",
943
- "\n",
944
- "my_mkdirs(output_folder)\n",
945
- "for filename in os.listdir(f'{path}'):\n",
946
- " if filename.find('fusion_C05_X7_1000_')<=-1: continue\n",
947
- " print(f'reading {filename}...')\n",
948
- " %cd {path}\n",
949
- " with open(f'{filename}', 'r') as f:\n",
950
- " data = json.load(f)\n",
951
- " _df = pd.DataFrame({'count': data})['count']\n",
952
- " _savefile = {\n",
953
- " key : value for key, value in _df.items()\n",
954
- " }\n",
955
- "\n",
956
- " _savefile2 = {}\n",
957
- "\n",
958
- " for key in _savefile:\n",
959
- " _savefile2[key] = _savefile[key]\n",
960
- " if(key == \"_main\") :\n",
961
- " _savefile2[key] = \"Prompt input only ✏️\"\n",
962
- " print(\"changed\")\n",
963
- " #----------#\n",
964
- "\n",
965
- " save_filename = f'fusion_C05_X7_1000_{index}.json'\n",
966
- " index = index + 1\n",
967
- "\n",
968
- " %cd {output_folder}\n",
969
- " print(f'Saving savefile {save_filename} to {output_folder}...')\n",
970
- " with open(save_filename, 'w') as f:\n",
971
- " json.dump(_savefile2, f)"
972
- ],
973
- "metadata": {
974
- "id": "A3ASDnO3IzSL"
975
  },
976
  "execution_count": null,
977
  "outputs": []
 
29
  "cell_type": "code",
30
  "execution_count": null,
31
  "metadata": {
32
+ "id": "UEYEdzjgOEOE",
33
+ "cellView": "form"
34
  },
35
  "outputs": [],
36
  "source": [
 
48
  "\n",
49
  "def fix_bad_symbols(txt):\n",
50
  " result = txt\n",
51
+ " for symbol in ['^', '}', '{' , ')', '(', '[' , ']' , ':' , '=' ]:\n",
52
  " result = result.replace(symbol,'\\\\' + symbol)\n",
 
 
53
  " #------#\n",
 
54
  " return result;\n",
55
  "\n",
56
  "\n",
57
  "def getPrompts(_path, separator):\n",
 
58
  " path = _path + '/text'\n",
59
  " path_enc = _path + '/text_encodings'\n",
60
  " #-----#\n",
61
  " index = 0\n",
 
62
  " prompts = {}\n",
63
  " text_encodings = {}\n",
64
  " _text_encodings = {}\n",
65
  " #-----#\n",
66
  " for filename in os.listdir(f'{path}'):\n",
 
67
  " print(f'reading {filename}....')\n",
68
  " _index = 0\n",
69
  " %cd {path}\n",
 
74
  " _prompts = {\n",
75
  " key : value for key, value in _df.items()\n",
76
  " }\n",
77
+ " _file_name = _prompts[f'{1}']\n",
78
+ " %cd {path_enc}\n",
79
+ " _text_encodings = load_file(f'{_file_name}.safetensors')\n",
80
  " for key in _prompts:\n",
81
  " _index = int(key)\n",
82
  " value = _prompts[key]\n",
83
+ " if _index<2:continue\n",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84
  " #------#\n",
85
  " #Read the text_encodings + prompts\n",
86
  " text_encodings[f'{index}'] = _text_encodings[f'{_index}']\n",
 
89
  " continue\n",
90
  " #-------#\n",
91
  " #--------#\n",
 
 
92
  " #----------#\n",
93
  " NUM_ITEMS = index -1\n",
94
  " return prompts , text_encodings , NUM_ITEMS\n",
 
234
  " #----------#\n",
235
  " NUM_ITEMS = index -1\n",
236
  " return prompts , text_encodings , urls , image_encodings , NUM_ITEMS\n",
237
+ "#--------#"
 
238
  ]
239
  },
240
  {
 
242
  "source": [
243
  "# @title 📚 Select items to sample from\n",
244
  "\n",
245
+ "prompt_features = True # @param {\"type\":\"boolean\",\"placeholder\":\"🦜\"}\n",
246
+ "civitai_blue_set = True # @param {\"type\":\"boolean\",\"placeholder\":\"📘\"}\n",
247
+ "suffix = True # @param {\"type\":\"boolean\",\"placeholder\":\"🔹\"}\n",
248
+ "prefix = True # @param {\"type\":\"boolean\",\"placeholder\":\"🔸\"}\n",
249
+ "emojis = True # @param {\"type\":\"boolean\",\"placeholder\":\"😃\"}\n",
 
 
250
  "#------#\n",
251
+ "\n",
252
+ "first_names = True # @param {\"type\":\"boolean\",\"placeholder\":\"🔹\"}\n",
253
+ "last_names = True # @param {\"type\":\"boolean\",\"placeholder\":\"🔸\"}\n",
254
+ "celebs = True # @param {\"type\":\"boolean\",\"placeholder\":\"🆔👨\"}\n",
255
  "#-------#\n",
256
  "danbooru_tags = True # @param {\"type\":\"boolean\",\"placeholder\":\"🎀\"}\n",
257
+ "lyrics = True # @param {\"type\":\"boolean\",\"placeholder\":\"🎼\"}\n",
258
+ "tripple_nouns = True # @param {\"type\":\"boolean\",\"placeholder\":\"🎼\"}\n",
259
  "#-----#\n",
260
+ "female_fullnames = True # @param {\"type\":\"boolean\",\"placeholder\":\"😃\"}\n",
261
  "debug = False\n",
262
+ "\n",
263
+ "civitai_red_set = True # @param {\"type\":\"boolean\",\"placeholder\":\"📕\"}\n",
264
+ "e621 = True # @param {\"type\":\"boolean\",\"placeholder\":\"😃\"}\n",
265
+ "prefix_suffix_pairs = True # @param {\"type\":\"boolean\",\"placeholder\":\"😃\"}\n",
266
+ "suffix_tripple = True # @param {\"type\":\"boolean\",\"placeholder\":\"😃\"}\n",
267
+ "suffix_quad = True # @param {\"type\":\"boolean\",\"placeholder\":\"😃\"}\n",
268
  "#------#\n",
269
  "prompts = {}\n",
270
  "text_encodings = {}\n",
271
  "nA = 0\n",
272
  "#--------#\n",
273
  "\n",
274
+ "if civitai_red_set:\n",
275
+ " url = '/content/text-to-image-prompts/civitai-prompts/red'\n",
276
+ " prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n",
277
+ "\n",
278
+ "if e621:\n",
279
+ " url = '/content/text-to-image-prompts/e621'\n",
280
+ " prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n",
281
+ "\n",
282
+ "if prefix_suffix_pairs:\n",
283
+ " url = '/content/text-to-image-prompts/prefix_suffix_pairs'\n",
284
+ " prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n",
285
+ "\n",
286
+ "if suffix_tripple:\n",
287
+ " url = '/content/text-to-image-prompts/suffix_tripple'\n",
288
  " prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n",
289
  "\n",
290
+ "if suffix_quad:\n",
291
+ " url = '/content/text-to-image-prompts/suffix_quad'\n",
292
+ " prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n",
293
+ "\n",
294
+ "\n",
295
+ "\n",
296
  "if tripple_nouns:\n",
297
  " url = '/content/text-to-image-prompts/nouns'\n",
298
  " prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n",
 
344
  " prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n",
345
  "#--------#\n",
346
  "\n",
 
 
 
 
 
 
 
 
 
 
347
  "if suffix :\n",
348
  " tmp = '/content/text-to-image-prompts/vocab/text_encodings/suffix/'\n",
349
  " for item in ['common','average','rare','weird','exotic'] :\n",
 
371
  "text_tensor = torch.zeros(NUM_VOCAB_ITEMS,768)\n",
372
  "for index in range(NUM_VOCAB_ITEMS):\n",
373
  " text_tensor[index] = text_encodings[f'{index}']\n",
374
+ "#---------#\n",
375
+ "print(f\"Done loading vocabulary for the interrogator\")\n",
376
+ "print(f\"Vocab size is : {NUM_VOCAB_ITEMS} items\")"
377
  ],
378
  "metadata": {
379
+ "id": "CF53WIAKObg3",
380
+ "cellView": "form"
381
  },
382
  "execution_count": null,
383
  "outputs": []
 
387
  "source": [
388
  "# @title \t⚄ Use a pre-encoded prompt + image pair from the fusion gen (note: NSFW!)\n",
389
  "# @markdown 🖼️ Choose a pre-encoded reference\n",
390
+ "index = 682 # @param {type:\"slider\", min:0, max:1666, step:1}\n",
391
  "PROMPT_INDEX = index\n",
392
  "\n",
393
  "import math\n",
 
404
  "neg_strength = math.pow(10 ,log_strength-1)\n",
405
  "\n",
406
  "# @markdown ⏩ Skip item(s) containing the word\n",
407
+ "SKIP = 'futa ' # @param {type:'string' , placeholder:'item1 , item2 , ...'}\n",
408
  "\n",
409
  "# @markdown ⚖️ How important is the prompt vs. the image? <br> <br>\n",
410
  "# @markdown <div style = \"font-size: 10px; \"> sim_ref = (10^(log_strength-1)) * ( C* text_encoding + image_encoding*(1-C) ) </div> <br>\n",
 
602
  "#------#"
603
  ],
604
  "metadata": {
605
+ "id": "XW3914T8O2uf",
606
+ "cellView": "form"
607
  },
608
  "execution_count": null,
609
  "outputs": []
 
674
  "#-------#"
675
  ],
676
  "metadata": {
677
+ "id": "EdBiAguJO9aX",
678
+ "cellView": "form"
679
  },
680
  "execution_count": null,
681
  "outputs": []
 
729
  " json.dump(_savefile, f)\n"
730
  ],
731
  "metadata": {
732
+ "id": "Q7vpNAXQilbf",
733
+ "cellView": "form"
734
  },
735
  "execution_count": null,
736
  "outputs": []
 
740
  "source": [
741
  "# @title \t⚄ Create a savefile-set from the entire range of pre-encoded items\n",
742
  "\n",
 
743
  "# @markdown 📥 Load the data (only required one time)\n",
744
  "load_the_data = True # @param {type:\"boolean\"}\n",
745
  "\n",
746
+ "import math\n",
747
+ "from safetensors.torch import load_file\n",
748
+ "import json , os , torch\n",
749
+ "import pandas as pd\n",
750
+ "from PIL import Image\n",
751
+ "import requests\n",
752
+ "\n",
753
+ "def my_mkdirs(folder):\n",
754
+ " if os.path.exists(folder)==False:\n",
755
+ " os.makedirs(folder)\n",
756
+ "\n",
757
  "# @markdown ⚖️ Set the value for C in the reference <br> <br> sim = C* text_enc + image_enc*(1-C) <br><br>\n",
758
  "\n",
759
  "C = 0.5 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
760
  "\n",
761
  "# @markdown 🚫 Penalize similarity to this prompt(optional)\n",
 
762
  "if(load_the_data):\n",
 
 
763
  " target_prompts , target_text_encodings , urls , target_image_encodings , NUM_ITEMS = getPromptsAndLinks('/content/text-to-image-prompts/fusion')\n",
764
  " from transformers import AutoTokenizer\n",
765
  " tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
 
783
  "}\n",
784
  "#------#\n",
785
  "\n",
786
+ "root_savefile_name = 'fusion_C05_X7'\n",
787
+ "\n",
788
+ "%cd /content/\n",
789
  "output_folder = '/content/output/savefiles/'\n",
790
  "my_mkdirs(output_folder)\n",
791
+ "my_mkdirs('/content/output2/savefiles/')\n",
792
+ "my_mkdirs('/content/output3/savefiles/')\n",
793
+ "my_mkdirs('/content/output4/savefiles/')\n",
794
+ "my_mkdirs('/content/output5/savefiles/')\n",
795
+ "my_mkdirs('/content/output6/savefiles/')\n",
796
+ "my_mkdirs('/content/output7/savefiles/')\n",
797
+ "my_mkdirs('/content/output8/savefiles/')\n",
798
+ "my_mkdirs('/content/output9/savefiles/')\n",
799
+ "my_mkdirs('/content/output10/savefiles/')\n",
800
+ "my_mkdirs('/content/output11/savefiles/')\n",
801
+ "my_mkdirs('/content/output12/savefiles/')\n",
802
+ "my_mkdirs('/content/output13/savefiles/')\n",
803
+ "\n",
804
+ "\n",
805
  "NEG = '' # @param {type:'string'}\n",
806
  "strength = 1 # @param {type:\"slider\", min:-5, max:5, step:0.1}\n",
807
  "\n",
808
  "for index in range(1667):\n",
809
  "\n",
810
  " PROMPT_INDEX = index\n",
 
811
  " prompt = target_prompts[f'{index}']\n",
812
  " url = urls[f'{index}']\n",
813
  " if url.find('perchance')>-1:\n",
 
815
  " else: continue #print(\"(No image for this ID)\")\n",
816
  "\n",
817
  " print(f\"no. {PROMPT_INDEX} : '{prompt}'\")\n",
818
+ " text_features_A = target_text_encodings[f'{index}']\n",
819
+ " image_features_A = target_image_encodings[f'{index}']\n",
820
+ " # text-similarity\n",
821
+ " sims = C * torch.matmul(text_tensor, text_features_A.t())\n",
822
  "\n",
823
+ " neg_sims = 0*sims\n",
824
+ " if(NEG != ''):\n",
825
+ " # Get text features for user input\n",
826
+ " inputs = tokenizer(text = NEG, padding=True, return_tensors=\"pt\")\n",
827
+ " text_features_NEG = model.get_text_features(**inputs)\n",
828
+ " text_features_NEG = text_features_A/text_features_A.norm(p=2, dim=-1, keepdim=True)\n",
829
  " # text-similarity\n",
830
+ " neg_sims = strength*torch.matmul(text_tensor, text_features_NEG.t())\n",
831
+ " #------#\n",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
832
  "\n",
833
+ " # plus image-similarity\n",
834
+ " sims = sims + (1-C) * torch.matmul(text_tensor, image_features_A.t()) * logit_scale\n",
 
 
835
  "\n",
836
+ " # minus NEG-similarity\n",
837
+ " sims = sims - neg_sims\n",
838
  "\n",
839
+ " # Sort the items\n",
840
+ " sorted , indices = torch.sort(sims,dim=0 , descending=True)\n",
 
 
841
  "\n",
842
+ " # @markdown Repeat output N times\n",
843
+ " RANGE = 1000\n",
844
+ " NUM_CHUNKS = 10+\n",
845
+ " separator = '|'\n",
846
+ " _savefiles = {}\n",
847
+ " #-----#\n",
848
+ " for chunk in range(NUM_CHUNKS):\n",
849
+ " if chunk=<10:continue\n",
850
+ " start_at_index = chunk * RANGE\n",
851
  " _prompts = ''\n",
 
852
  " for _index in range(start_at_index + RANGE):\n",
853
  " if _index < start_at_index : continue\n",
854
  " index = indices[_index].item()\n",
 
855
  " prompt = prompts[f'{index}']\n",
 
 
 
 
 
 
856
  " _prompts = _prompts.replace(prompt + separator,'')\n",
857
  " _prompts = _prompts + prompt + separator\n",
 
858
  " #------#\n",
859
  " _prompts = fix_bad_symbols(_prompts)\n",
860
+ " _prompts = ('{' + _prompts + '}').replace(separator + '}', '}')\n",
861
+ " _savefiles[f'{chunk}'] = _prompts\n",
862
+ " #---------#\n",
863
+ " save_filename = f'{root_savefile_name}_{start_at_index + RANGE}_{PROMPT_INDEX}.json'\n",
864
+ "\n",
865
+ "\n",
866
+ " if (chunk=<20 && chunk>10): %cd '/content/output2/savefiles/'\n",
867
+ " if (chunk<=30 && chunk>20): %cd '/content/output3/savefiles/'\n",
868
+ " if (chunk=<40 && chunk>30): %cd '/content/output4/savefiles/'\n",
869
+ " if (chunk<=50 && chunk>40): %cd '/content/output5/savefiles/'\n",
870
+ " if (chunk=<60 && chunk>50): %cd '/content/output6/savefiles/'\n",
871
+ " if (chunk<=70 && chunk>60): %cd '/content/output7/savefiles/'\n",
872
+ " if (chunk=<80 && chunk>70): %cd '/content/output8/savefiles/'\n",
873
+ " if (chunk<=90 && chunk>80): %cd '/content/output9/savefiles/'\n",
874
+ " if (chunk=<100 && chunk>90): %cd '/content/output10/savefiles/'\n",
875
+ " if (chunk<=110 && chunk>100): %cd '/content/output11/savefiles/'\n",
876
+ " if (chunk=<120 && chunk>110): %cd '/content/output12/savefiles/'\n",
877
+ " if (chunk<=130 && chunk>120): %cd '/content/output13/savefiles/'\n",
878
+ "\n",
879
+ "\n",
880
  " #------#\n",
 
 
 
881
  " print(f'Saving savefile {save_filename} to {output_folder}...')\n",
882
  " with open(save_filename, 'w') as f:\n",
883
+ " json.dump(_savefiles, f)\n",
884
  " #---------#\n",
885
  " continue\n",
886
+ "#-----------#"
 
887
  ],
888
  "metadata": {
889
+ "id": "x1uAVXZEoL0T",
890
+ "cellView": "form"
891
  },
892
  "execution_count": null,
893
  "outputs": []
 
912
  "!zip -r {zip_dest} {root_output_folder}"
913
  ],
914
  "metadata": {
915
+ "id": "zivBNrw9uSVD",
916
+ "cellView": "form"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
917
  },
918
  "execution_count": null,
919
  "outputs": []