Upload fusion_t2i_CLIP_interrogator.ipynb
Browse files
Google Colab Notebooks/fusion_t2i_CLIP_interrogator.ipynb
ADDED
@@ -0,0 +1,597 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": []
|
7 |
+
},
|
8 |
+
"kernelspec": {
|
9 |
+
"name": "python3",
|
10 |
+
"display_name": "Python 3"
|
11 |
+
},
|
12 |
+
"language_info": {
|
13 |
+
"name": "python"
|
14 |
+
}
|
15 |
+
},
|
16 |
+
"cells": [
|
17 |
+
{
|
18 |
+
"cell_type": "code",
|
19 |
+
"execution_count": null,
|
20 |
+
"metadata": {
|
21 |
+
"cellView": "form",
|
22 |
+
"id": "UEYEdzjgOEOE"
|
23 |
+
},
|
24 |
+
"outputs": [],
|
25 |
+
"source": [
|
26 |
+
"# @title β³οΈ Load/initialize values\n",
|
27 |
+
"#Imports\n",
|
28 |
+
"#!pip install safetensors\n",
|
29 |
+
"from safetensors.torch import load_file\n",
|
30 |
+
"import json , os , shelve , torch\n",
|
31 |
+
"import pandas as pd\n",
|
32 |
+
"#----#\n",
|
33 |
+
"\n",
|
34 |
+
"def my_mkdirs(folder):\n",
|
35 |
+
" if os.path.exists(folder)==False:\n",
|
36 |
+
" os.makedirs(folder)\n",
|
37 |
+
"\n",
|
38 |
+
"def fix_bad_symbols(txt):\n",
|
39 |
+
" result = txt\n",
|
40 |
+
" for symbol in ['^', '}', '{' , ')', '(', '[' , ']' , ':' , '=' ]:\n",
|
41 |
+
" result = result.replace(symbol,'\\\\' + symbol)\n",
|
42 |
+
" #------#\n",
|
43 |
+
" return result;\n",
|
44 |
+
"\n",
|
45 |
+
"\n",
|
46 |
+
"def getPrompts(_path, separator):\n",
|
47 |
+
"\n",
|
48 |
+
" path = _path + '/text'\n",
|
49 |
+
" path_enc = _path + '/text_encodings'\n",
|
50 |
+
" #-----#\n",
|
51 |
+
" index = 0\n",
|
52 |
+
" file_index = 0\n",
|
53 |
+
" prompts = {}\n",
|
54 |
+
" text_encodings = {}\n",
|
55 |
+
" _text_encodings = {}\n",
|
56 |
+
" #-----#\n",
|
57 |
+
" for filename in os.listdir(f'{path}'):\n",
|
58 |
+
"\n",
|
59 |
+
" print(f'reading {filename}....')\n",
|
60 |
+
" _index = 0\n",
|
61 |
+
" %cd {path}\n",
|
62 |
+
" with open(f'{filename}', 'r') as f:\n",
|
63 |
+
" data = json.load(f)\n",
|
64 |
+
" #------#\n",
|
65 |
+
" _df = pd.DataFrame({'count': data})['count']\n",
|
66 |
+
" _prompts = {\n",
|
67 |
+
" key : value for key, value in _df.items()\n",
|
68 |
+
" }\n",
|
69 |
+
" for key in _prompts:\n",
|
70 |
+
" _index = int(key)\n",
|
71 |
+
" value = _prompts[key]\n",
|
72 |
+
"\n",
|
73 |
+
" #Read the 'header' file in the JSON\n",
|
74 |
+
" if _index <= 0 :\n",
|
75 |
+
" _NUM_ITEMS = int(value)\n",
|
76 |
+
" prompts[f'{index}'] = _prompts[f'{_index}'] + separator\n",
|
77 |
+
" index = index + 1\n",
|
78 |
+
" continue\n",
|
79 |
+
" if _index <= 1 :\n",
|
80 |
+
" _file_name = f'{value}'\n",
|
81 |
+
" %cd {path_enc}\n",
|
82 |
+
" _text_encodings = load_file(f'{_file_name}.safetensors')\n",
|
83 |
+
" #Store text_encodings for the header items\n",
|
84 |
+
" text_encodings[f'{index-1}'] = _text_encodings[f'{_index-1}']\n",
|
85 |
+
" text_encodings[f'{index}'] = _text_encodings[f'{_index}']\n",
|
86 |
+
" #------#\n",
|
87 |
+
" prompts[f'{index}'] = _prompts[f'{_index}'] + separator\n",
|
88 |
+
" index = index + 1\n",
|
89 |
+
" continue\n",
|
90 |
+
" #------#\n",
|
91 |
+
" #Read the text_encodings + prompts\n",
|
92 |
+
" text_encodings[f'{index}'] = _text_encodings[f'{_index}']\n",
|
93 |
+
" prompts[f'{index}'] = _prompts[f'{_index}'] + separator\n",
|
94 |
+
" index = index + 1\n",
|
95 |
+
" continue\n",
|
96 |
+
" #-------#\n",
|
97 |
+
" #--------#\n",
|
98 |
+
" #_text_encodings.close() #close the text_encodings file\n",
|
99 |
+
" file_index = file_index + 1\n",
|
100 |
+
" #----------#\n",
|
101 |
+
" NUM_ITEMS = index -1\n",
|
102 |
+
" return prompts , text_encodings , NUM_ITEMS\n",
|
103 |
+
"#--------#\n",
|
104 |
+
"\n",
|
105 |
+
"def append_from_url(dictA, tensA , nA , url , separator):\n",
|
106 |
+
" dictB , tensB, nB = getPrompts(url, separator)\n",
|
107 |
+
" dictAB = dictA\n",
|
108 |
+
" tensAB = tensA\n",
|
109 |
+
" nAB = nA\n",
|
110 |
+
" for key in dictB:\n",
|
111 |
+
" nAB = nAB + 1\n",
|
112 |
+
" dictAB[f'{nA + int(key)}'] = dictB[key]\n",
|
113 |
+
" tensAB[f'{nA + int(key)}'] = tensB[key]\n",
|
114 |
+
" #-----#\n",
|
115 |
+
" return dictAB, tensAB , nAB-1\n",
|
116 |
+
"#-------#\n",
|
117 |
+
"\n",
|
118 |
+
"home_directory = '/content/'\n",
|
119 |
+
"using_Kaggle = os.environ.get('KAGGLE_URL_BASE','')\n",
|
120 |
+
"if using_Kaggle : home_directory = '/kaggle/working/'\n",
|
121 |
+
"%cd {home_directory}\n",
|
122 |
+
"\n",
|
123 |
+
"#πΈπΉ\n",
|
124 |
+
"# Load the data if not already loaded\n",
|
125 |
+
"try:\n",
|
126 |
+
" loaded\n",
|
127 |
+
"except:\n",
|
128 |
+
" %cd {home_directory}\n",
|
129 |
+
" !git clone https://huggingface.co/datasets/codeShare/text-to-image-prompts\n",
|
130 |
+
" loaded = True\n",
|
131 |
+
"#--------#\n",
|
132 |
+
"\n",
|
133 |
+
"#default NEG values\n",
|
134 |
+
"try: name_NEG\n",
|
135 |
+
"except: name_NEG = ''\n",
|
136 |
+
"try: image_NEG\n",
|
137 |
+
"except: image_NEG = ''\n",
|
138 |
+
"try: strength_image_NEG\n",
|
139 |
+
"except: strength_image_NEG = 1\n",
|
140 |
+
"try: strength_NEG\n",
|
141 |
+
"except: strength_NEG = 1\n",
|
142 |
+
"try: NUM_VOCAB_ITEMS\n",
|
143 |
+
"except: NUM_VOCAB_ITEMS = 0\n",
|
144 |
+
"try: using_NEG\n",
|
145 |
+
"except: using_NEG = False\n",
|
146 |
+
"try: using_image_NEG\n",
|
147 |
+
"except: using_image_NEG = False\n",
|
148 |
+
"#------#\n",
|
149 |
+
"\n",
|
150 |
+
"def getJSON(path , filename):\n",
|
151 |
+
" %cd {path}\n",
|
152 |
+
" with open(f'{filename}', 'r') as f:\n",
|
153 |
+
" data = json.load(f)\n",
|
154 |
+
" #------#\n",
|
155 |
+
" print(f'reading {filename}....')\n",
|
156 |
+
" _df = pd.DataFrame({'count': data})['count']\n",
|
157 |
+
" _prompts = {\n",
|
158 |
+
" key : value for key, value in _df.items()\n",
|
159 |
+
" }\n",
|
160 |
+
" return _prompts\n",
|
161 |
+
"\n",
|
162 |
+
"#----#\n",
|
163 |
+
"\n",
|
164 |
+
"def getPromptsAndLinks(_path):\n",
|
165 |
+
" path = _path + '/text'\n",
|
166 |
+
" path_enc = _path + '/text_encodings'\n",
|
167 |
+
" #-----#\n",
|
168 |
+
" path_images = _path + '/images'\n",
|
169 |
+
" path_enc_images = _path + '/image_encodings'\n",
|
170 |
+
" #----#\n",
|
171 |
+
" _file_name = ''\n",
|
172 |
+
" _file_name_image = ''\n",
|
173 |
+
" #-----#\n",
|
174 |
+
" index = 0\n",
|
175 |
+
" prompts = {}\n",
|
176 |
+
" _prompts = {}\n",
|
177 |
+
" #-------#\n",
|
178 |
+
" urls = {}\n",
|
179 |
+
" _urls = {}\n",
|
180 |
+
" #------#\n",
|
181 |
+
" text_encodings = {}\n",
|
182 |
+
" _text_encodings = {}\n",
|
183 |
+
" image_encodings = {}\n",
|
184 |
+
" _image_encodings = {}\n",
|
185 |
+
" #-----#\n",
|
186 |
+
" for filename in os.listdir(f'{path}'):\n",
|
187 |
+
"\n",
|
188 |
+
" print(f'reading {filename}.json...')\n",
|
189 |
+
" _index = 0\n",
|
190 |
+
" %cd {path}\n",
|
191 |
+
" with open(f'{filename}', 'r') as f:\n",
|
192 |
+
" data = json.load(f)\n",
|
193 |
+
" _df = pd.DataFrame({'count': data})['count']\n",
|
194 |
+
" _prompts = {\n",
|
195 |
+
" key : value for key, value in _df.items()\n",
|
196 |
+
" }\n",
|
197 |
+
"\n",
|
198 |
+
" for key in _prompts:\n",
|
199 |
+
" _index = int(key)\n",
|
200 |
+
" value = _prompts[key]\n",
|
201 |
+
" if _index<=0: continue\n",
|
202 |
+
" if _index<=1:\n",
|
203 |
+
" _file_name = f'{value}'\n",
|
204 |
+
" _file_name_images = _prompts[f'{0}']\n",
|
205 |
+
" #-------#\n",
|
206 |
+
" print(f'reading {_file_name_images}.json..')\n",
|
207 |
+
" %cd {path_images}\n",
|
208 |
+
" with open(f'{_file_name_images}.json', 'r') as f:\n",
|
209 |
+
" data = json.load(f)\n",
|
210 |
+
" _df = pd.DataFrame({'count': data})['count']\n",
|
211 |
+
" _urls = {\n",
|
212 |
+
" key : value for key, value in _df.items()\n",
|
213 |
+
" }\n",
|
214 |
+
" #--------#\n",
|
215 |
+
" %cd {path_enc}\n",
|
216 |
+
" _text_encodings = load_file(f'{_file_name}.safetensors')\n",
|
217 |
+
" text_encodings[f'{index-1}'] = _text_encodings[f'{_index-1}']\n",
|
218 |
+
" text_encodings[f'{index}'] = _text_encodings[f'{_index}']\n",
|
219 |
+
" #-------#\n",
|
220 |
+
" %cd {path_enc_images}\n",
|
221 |
+
" _image_encodings = load_file(f'{_file_name_images}.safetensors')\n",
|
222 |
+
" image_encodings[f'{index-1}'] = _image_encodings[f'{_index-1}']\n",
|
223 |
+
" image_encodings[f'{index}'] = _image_encodings[f'{_index}']\n",
|
224 |
+
" #-------#\n",
|
225 |
+
" prompts[f'{index-1}'] = _prompts[f'{_index-1}']\n",
|
226 |
+
" urls[f'{index-1}'] = _urls[f'{_index-1}']\n",
|
227 |
+
" prompts[f'{index}'] = _prompts[f'{_index}']\n",
|
228 |
+
" urls[f'{index}'] = _urls[f'{_index}']\n",
|
229 |
+
" #-------#\n",
|
230 |
+
" index = index + 1\n",
|
231 |
+
" continue\n",
|
232 |
+
" #--------#\n",
|
233 |
+
" #Read the text_encodings + prompts\n",
|
234 |
+
" text_encodings[f'{index}'] = _text_encodings[f'{_index}']\n",
|
235 |
+
" image_encodings[f'{index}'] = _image_encodings[f'{_index}']\n",
|
236 |
+
" prompts[f'{index}'] = _prompts[f'{_index}']\n",
|
237 |
+
" urls[f'{index}'] = _urls[f'{_index}']\n",
|
238 |
+
" index = index + 1\n",
|
239 |
+
" continue\n",
|
240 |
+
" #-------#\n",
|
241 |
+
" #--------#\n",
|
242 |
+
" #----------#\n",
|
243 |
+
" NUM_ITEMS = index -1\n",
|
244 |
+
" return prompts , text_encodings , urls , image_encodings , NUM_ITEMS\n",
|
245 |
+
"#--------#\n",
|
246 |
+
"\n"
|
247 |
+
]
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"cell_type": "code",
|
251 |
+
"source": [
|
252 |
+
"# @title π Select items to sample from\n",
|
253 |
+
"\n",
|
254 |
+
"prompt_features = True # @param {\"type\":\"boolean\",\"placeholder\":\"π¦\"}\n",
|
255 |
+
"civitai_blue_set = True # @param {\"type\":\"boolean\",\"placeholder\":\"π\"}\n",
|
256 |
+
"suffix = True # @param {\"type\":\"boolean\",\"placeholder\":\"πΉ\"}\n",
|
257 |
+
"prefix = False # @param {\"type\":\"boolean\",\"placeholder\":\"πΈ\"}\n",
|
258 |
+
"emojis = True # @param {\"type\":\"boolean\",\"placeholder\":\"π\"}\n",
|
259 |
+
"#------#\n",
|
260 |
+
"\n",
|
261 |
+
"first_names = False # @param {\"type\":\"boolean\",\"placeholder\":\"πΉ\"}\n",
|
262 |
+
"last_names = False # @param {\"type\":\"boolean\",\"placeholder\":\"πΈ\"}\n",
|
263 |
+
"full_names = False # @param {\"type\":\"boolean\",\"placeholder\":\"π\"}\n",
|
264 |
+
"celebs = False # @param {\"type\":\"boolean\",\"placeholder\":\"ππ¨\"}\n",
|
265 |
+
"#-------#\n",
|
266 |
+
"danbooru_tags = True # @param {\"type\":\"boolean\",\"placeholder\":\"π\"}\n",
|
267 |
+
"lyrics = False # @param {\"type\":\"boolean\",\"placeholder\":\"πΌ\"}\n",
|
268 |
+
"tripple_nouns = True # @param {\"type\":\"boolean\",\"placeholder\":\"πΌ\"}\n",
|
269 |
+
"#-----#\n",
|
270 |
+
"female_fullnames = False # @param {\"type\":\"boolean\",\"placeholder\":\"π\"}\n",
|
271 |
+
"debug = False\n",
|
272 |
+
"#------#\n",
|
273 |
+
"prompts = {}\n",
|
274 |
+
"text_encodings = {}\n",
|
275 |
+
"nA = 0\n",
|
276 |
+
"#--------#\n",
|
277 |
+
"\n",
|
278 |
+
"\n",
|
279 |
+
"if tripple_nouns:\n",
|
280 |
+
" url = '/content/text-to-image-prompts/nouns'\n",
|
281 |
+
" prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n",
|
282 |
+
"\n",
|
283 |
+
"if lyrics:\n",
|
284 |
+
" url = '/content/text-to-image-prompts/lyrics'\n",
|
285 |
+
" prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n",
|
286 |
+
"\n",
|
287 |
+
"if danbooru_tags:\n",
|
288 |
+
" url = '/content/text-to-image-prompts/danbooru'\n",
|
289 |
+
" prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n",
|
290 |
+
"#--------#\n",
|
291 |
+
"\n",
|
292 |
+
"if first_names:\n",
|
293 |
+
" url = '/content/text-to-image-prompts/names/firstnames'\n",
|
294 |
+
" prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n",
|
295 |
+
"#--------#\n",
|
296 |
+
"\n",
|
297 |
+
"if last_names:\n",
|
298 |
+
" url = '/content/text-to-image-prompts/names/lastnames'\n",
|
299 |
+
" prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n",
|
300 |
+
"#--------#\n",
|
301 |
+
"\n",
|
302 |
+
"if full_names:\n",
|
303 |
+
" url = '/content/text-to-image-prompts/names/fullnames'\n",
|
304 |
+
" prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n",
|
305 |
+
"#--------#\n",
|
306 |
+
"\n",
|
307 |
+
"if celebs:\n",
|
308 |
+
" url = '/content/text-to-image-prompts/names/celebs/mixed'\n",
|
309 |
+
" prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n",
|
310 |
+
"#--------#\n",
|
311 |
+
"\n",
|
312 |
+
"if celebs_young :\n",
|
313 |
+
" url = '/content/text-to-image-prompts/names/celebs/young'\n",
|
314 |
+
" prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n",
|
315 |
+
"#--------#\n",
|
316 |
+
"\n",
|
317 |
+
"if female_fullnames:\n",
|
318 |
+
" url = '/content/text-to-image-prompts/names/fullnames'\n",
|
319 |
+
" prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n",
|
320 |
+
"#--------#\n",
|
321 |
+
"\n",
|
322 |
+
"\n",
|
323 |
+
"if prompt_features:\n",
|
324 |
+
" url = '/content/text-to-image-prompts/civitai-prompts/green'\n",
|
325 |
+
" prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n",
|
326 |
+
"#--------#\n",
|
327 |
+
"\n",
|
328 |
+
"\n",
|
329 |
+
"if emojis:\n",
|
330 |
+
" url = '/content/text-to-image-prompts/vocab/text_encodings/emoji'\n",
|
331 |
+
" prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n",
|
332 |
+
"#--------#\n",
|
333 |
+
"\n",
|
334 |
+
"\n",
|
335 |
+
"if civitai_blue_set:\n",
|
336 |
+
" url = '/content/text-to-image-prompts/civitai-prompts/blue'\n",
|
337 |
+
" prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n",
|
338 |
+
"#--------#\n",
|
339 |
+
"\n",
|
340 |
+
"if suffix :\n",
|
341 |
+
" tmp = '/content/text-to-image-prompts/vocab/text_encodings/suffix/'\n",
|
342 |
+
" for item in ['common','average','rare','weird','exotic'] :\n",
|
343 |
+
" url = tmp + item\n",
|
344 |
+
" prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n",
|
345 |
+
"#------#\n",
|
346 |
+
"\n",
|
347 |
+
"if prefix :\n",
|
348 |
+
" tmp = '/content/text-to-image-prompts/vocab/text_encodings/prefix/'\n",
|
349 |
+
" for item in ['common','average','rare','weird','exotic'] :\n",
|
350 |
+
" url = tmp + item\n",
|
351 |
+
" prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '-')\n",
|
352 |
+
"#------#\n",
|
353 |
+
"\n",
|
354 |
+
"if debug:\n",
|
355 |
+
" index = 0\n",
|
356 |
+
" for key in prompts: index = index + 1\n",
|
357 |
+
" print(index)\n",
|
358 |
+
" index = 0\n",
|
359 |
+
" for key in text_encodings : index = index + 1\n",
|
360 |
+
" print(index)\n",
|
361 |
+
"#------#\n",
|
362 |
+
"\n",
|
363 |
+
"NUM_VOCAB_ITEMS = nA\n",
|
364 |
+
"text_tensor = torch.zeros(NUM_VOCAB_ITEMS,768)\n",
|
365 |
+
"for index in range(NUM_VOCAB_ITEMS):\n",
|
366 |
+
" text_tensor[index] = text_encodings[f'{index}']\n",
|
367 |
+
"#---------#\n"
|
368 |
+
],
|
369 |
+
"metadata": {
|
370 |
+
"cellView": "form",
|
371 |
+
"id": "CF53WIAKObg3"
|
372 |
+
},
|
373 |
+
"execution_count": null,
|
374 |
+
"outputs": []
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"cell_type": "code",
|
378 |
+
"source": [
|
379 |
+
"# @title \tβ Use a pre-encoded prompt + image pair from the fusion gen (note: NSFW!)\n",
|
380 |
+
"\n",
|
381 |
+
"\n",
|
382 |
+
"#image_index = 0 # @param {type:'number'}\n",
|
383 |
+
"# @markdown π₯ Load the data (only required one time)\n",
|
384 |
+
"load_the_data = False # @param {type:\"boolean\"}\n",
|
385 |
+
"\n",
|
386 |
+
"# @markdown πΌοΈ Choose a pre-encoded reference\n",
|
387 |
+
"index = 829 # @param {type:\"slider\", min:0, max:1668, step:1}\n",
|
388 |
+
"\n",
|
389 |
+
"# @markdown βοΈ Set the value for C in the reference <br> <br> sim = C* text_enc + image_enc*(1-C) <br><br>\n",
|
390 |
+
"\n",
|
391 |
+
"C = 0.5 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
|
392 |
+
"\n",
|
393 |
+
"# @markdown π« Penalize similarity to this prompt(optional)\n",
|
394 |
+
"\n",
|
395 |
+
"NEG = '' # @param {type:'string'}\n",
|
396 |
+
"strength = 1 # @param {type:\"slider\", min:-5, max:5, step:0.1}\n",
|
397 |
+
"\n",
|
398 |
+
"# @markdown Calculate most similiar items using above settings?\n",
|
399 |
+
"enable = True # @param {type:\"boolean\"}\n",
|
400 |
+
"\n",
|
401 |
+
"if (load_the_data):\n",
|
402 |
+
" target_prompts , target_text_encodings , urls , target_image_encodings , NUM_ITEMS = getPromptsAndLinks('/content/text-to-image-prompts/fusion')\n",
|
403 |
+
" from transformers import AutoTokenizer\n",
|
404 |
+
" tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
405 |
+
" from transformers import CLIPProcessor, CLIPModel\n",
|
406 |
+
" processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
|
407 |
+
" model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n",
|
408 |
+
" logit_scale = model.logit_scale.exp() #logit_scale = 100.00000762939453\n",
|
409 |
+
"\n",
|
410 |
+
"from PIL import Image\n",
|
411 |
+
"import requests\n",
|
412 |
+
"prompt = target_prompts[f'{index}']\n",
|
413 |
+
"url = urls[f'{index}']\n",
|
414 |
+
"if url.find('perchance')>-1:\n",
|
415 |
+
" image = Image.open(requests.get(url, stream=True).raw)\n",
|
416 |
+
"else: print(\"(No image for this ID)\")\n",
|
417 |
+
"\n",
|
418 |
+
"print(\"\")\n",
|
419 |
+
"print(f\"'{prompt}'\")\n",
|
420 |
+
"print(\"\")\n",
|
421 |
+
"\n",
|
422 |
+
"if(enable):\n",
|
423 |
+
" text_features_A = target_text_encodings[f'{index}']\n",
|
424 |
+
" image_features_A = target_image_encodings[f'{index}']\n",
|
425 |
+
"\n",
|
426 |
+
" # text-similarity\n",
|
427 |
+
" sims = C * torch.matmul(text_tensor, text_features_A.t())\n",
|
428 |
+
"\n",
|
429 |
+
" neg_sims = 0*sims\n",
|
430 |
+
" if(NEG != ''):\n",
|
431 |
+
"\n",
|
432 |
+
" # Get text features for user input\n",
|
433 |
+
" inputs = tokenizer(text = NEG, padding=True, return_tensors=\"pt\")\n",
|
434 |
+
" text_features_NEG = model.get_text_features(**inputs)\n",
|
435 |
+
" text_features_NEG = text_features_A/text_features_A.norm(p=2, dim=-1, keepdim=True)\n",
|
436 |
+
"\n",
|
437 |
+
" # text-similarity\n",
|
438 |
+
" neg_sims = strength*torch.matmul(text_tensor, text_features_NEG.t())\n",
|
439 |
+
" #------#\n",
|
440 |
+
"\n",
|
441 |
+
" # plus image-similarity\n",
|
442 |
+
" sims = sims + (1-C) * torch.matmul(text_tensor, image_features_A.t()) * logit_scale\n",
|
443 |
+
"\n",
|
444 |
+
"\n",
|
445 |
+
" # minus NEG-similarity\n",
|
446 |
+
" sims = sims - neg_sims\n",
|
447 |
+
"\n",
|
448 |
+
" # Sort the items\n",
|
449 |
+
" sorted , indices = torch.sort(sims,dim=0 , descending=True)\n",
|
450 |
+
"\n",
|
451 |
+
" # @title βοΈπ Print the results (Advanced)\n",
|
452 |
+
" list_size = 1000 # param {type:'number'}\n",
|
453 |
+
" start_at_index = 0 # param {type:'number'}\n",
|
454 |
+
" print_Similarity = True # param {type:\"boolean\"}\n",
|
455 |
+
" print_Prompts = True # param {type:\"boolean\"}\n",
|
456 |
+
" print_Prefix = True # param {type:\"boolean\"}\n",
|
457 |
+
" print_Descriptions = True # param {type:\"boolean\"}\n",
|
458 |
+
" compact_Output = True # param {type:\"boolean\"}\n",
|
459 |
+
"\n",
|
460 |
+
" # @markdown -----------\n",
|
461 |
+
" # @markdown βοΈπ Printing options\n",
|
462 |
+
" newline_Separator = True # @param {type:\"boolean\"}\n",
|
463 |
+
"\n",
|
464 |
+
" import random\n",
|
465 |
+
" list_size2 = 1000 # param {type:'number'}\n",
|
466 |
+
" start_at_index2 = 10000 # param {type:'number'}\n",
|
467 |
+
" rate_percent = 0 # param {type:\"slider\", min:0, max:100, step:1}\n",
|
468 |
+
"\n",
|
469 |
+
" # @markdown Repeat output N times\n",
|
470 |
+
" N = 6 # @param {type:\"slider\", min:0, max:10, step:1}\n",
|
471 |
+
"\n",
|
472 |
+
" # title Show the 100 most similiar suffix and prefix text-encodings to the text encoding\n",
|
473 |
+
" RANGE = list_size\n",
|
474 |
+
" separator = '|'\n",
|
475 |
+
" if newline_Separator : separator = separator + '\\n'\n",
|
476 |
+
"\n",
|
477 |
+
" _prompts = ''\n",
|
478 |
+
" _sims = ''\n",
|
479 |
+
" for _index in range(start_at_index + RANGE):\n",
|
480 |
+
" if _index < start_at_index : continue\n",
|
481 |
+
" index = indices[_index].item()\n",
|
482 |
+
"\n",
|
483 |
+
" prompt = prompts[f'{index}']\n",
|
484 |
+
" if rate_percent >= random.randint(0,100) : prompt = prompts[f'{random.randint(start_at_index2 , start_at_index2 + list_size2)}']\n",
|
485 |
+
"\n",
|
486 |
+
" #Remove duplicates\n",
|
487 |
+
" if _prompts.find(prompt + separator)<=-1:\n",
|
488 |
+
" _sims = _sims + f'{round(100*sims[index].item(), 2)} %' + separator\n",
|
489 |
+
" #-------#\n",
|
490 |
+
" _prompts = _prompts.replace(prompt + separator,'')\n",
|
491 |
+
" _prompts = _prompts + prompt + separator\n",
|
492 |
+
" #------#\n",
|
493 |
+
" #------#\n",
|
494 |
+
" __prompts = fix_bad_symbols(__prompts)\n",
|
495 |
+
" __prompts = ('{' + _prompts + '}').replace(separator + '}', '}')\n",
|
496 |
+
" __sims = ('{' + _sims + '}').replace(separator + '}', '}')\n",
|
497 |
+
" #------#\n",
|
498 |
+
"\n",
|
499 |
+
" if(not print_Prompts): __prompts = ''\n",
|
500 |
+
" if(not print_Similarity): __sims = ''\n",
|
501 |
+
"\n",
|
502 |
+
" if(not compact_Output):\n",
|
503 |
+
" if(print_Descriptions):\n",
|
504 |
+
" print(f'The {start_at_index}-{start_at_index + RANGE} most similiar items to prompt : \\n\\n ')\n",
|
505 |
+
" for i in range(N) : print(__prompts)\n",
|
506 |
+
" print(f'The {start_at_index}-{start_at_index + RANGE} similarity % for items : \\n\\n' + __sims)\n",
|
507 |
+
" print('')\n",
|
508 |
+
" else:\n",
|
509 |
+
" for i in range(N) : print(__prompts)\n",
|
510 |
+
" else:\n",
|
511 |
+
" for i in range(N) : print(__prompts)\n",
|
512 |
+
" #-------#\n",
|
513 |
+
" #-------#\n",
|
514 |
+
"#-------#\n",
|
515 |
+
"image\n"
|
516 |
+
],
|
517 |
+
"metadata": {
|
518 |
+
"cellView": "form",
|
519 |
+
"id": "XW3914T8O2uf"
|
520 |
+
},
|
521 |
+
"execution_count": null,
|
522 |
+
"outputs": []
|
523 |
+
},
|
524 |
+
{
|
525 |
+
"cell_type": "code",
|
526 |
+
"source": [
|
527 |
+
"# @title βοΈπ Print the results (Advanced)\n",
|
528 |
+
"list_size = 1000 # @param {type:'number'}\n",
|
529 |
+
"start_at_index = 0 # @param {type:'number'}\n",
|
530 |
+
"print_Similarity = True # @param {type:\"boolean\"}\n",
|
531 |
+
"print_Prompts = True # @param {type:\"boolean\"}\n",
|
532 |
+
"print_Descriptions = True # @param {type:\"boolean\"}\n",
|
533 |
+
"compact_Output = True # @param {type:\"boolean\"}\n",
|
534 |
+
"newline_Separator = False # @param {type:\"boolean\"}\n",
|
535 |
+
"\n",
|
536 |
+
"import random\n",
|
537 |
+
"# @markdown -----------\n",
|
538 |
+
"# @markdown Mix with...\n",
|
539 |
+
"list_size2 = 1000 # @param {type:'number'}\n",
|
540 |
+
"start_at_index2 = 10000 # @param {type:'number'}\n",
|
541 |
+
"rate_percent = 0 # @param {type:\"slider\", min:0, max:100, step:1}\n",
|
542 |
+
"\n",
|
543 |
+
"# @markdown -----------\n",
|
544 |
+
"# @markdown Repeat output N times\n",
|
545 |
+
"N = 6 # @param {type:\"slider\", min:0, max:10, step:1}\n",
|
546 |
+
"\n",
|
547 |
+
"# title Show the 100 most similiar suffix and prefix text-encodings to the text encoding\n",
|
548 |
+
"RANGE = list_size\n",
|
549 |
+
"separator = '|'\n",
|
550 |
+
"if newline_Separator : separator = separator + '\\n'\n",
|
551 |
+
"\n",
|
552 |
+
"_prompts = ''\n",
|
553 |
+
"_sims = ''\n",
|
554 |
+
"for _index in range(start_at_index + RANGE):\n",
|
555 |
+
" if _index < start_at_index : continue\n",
|
556 |
+
" index = indices[_index].item()\n",
|
557 |
+
"\n",
|
558 |
+
" prompt = prompts[f'{index}']\n",
|
559 |
+
" if rate_percent >= random.randint(0,100) : prompt = prompts[f'{random.randint(start_at_index2 , start_at_index2 + list_size2)}']\n",
|
560 |
+
"\n",
|
561 |
+
" #Remove duplicates\n",
|
562 |
+
" if _prompts.find(prompt + separator)<=-1:\n",
|
563 |
+
" _sims = _sims + f'{round(100*sims[index].item(), 2)} %' + separator\n",
|
564 |
+
" #-------#\n",
|
565 |
+
" _prompts = _prompts.replace(prompt + separator,'')\n",
|
566 |
+
" _prompts = _prompts + prompt + separator\n",
|
567 |
+
" #------#\n",
|
568 |
+
"#------#\n",
|
569 |
+
"__prompts = fix_bad_symbols(__prompts)\n",
|
570 |
+
"__prompts = ('{' + _prompts + '}').replace(separator + '}', '}')\n",
|
571 |
+
"__sims = ('{' + _sims + '}').replace(separator + '}', '}')\n",
|
572 |
+
"#------#\n",
|
573 |
+
"\n",
|
574 |
+
"if(not print_Prompts): __prompts = ''\n",
|
575 |
+
"if(not print_Similarity): __sims = ''\n",
|
576 |
+
"\n",
|
577 |
+
"if(not compact_Output):\n",
|
578 |
+
" if(print_Descriptions):\n",
|
579 |
+
" print(f'The {start_at_index}-{start_at_index + RANGE} most similiar items to prompt : \\n\\n ')\n",
|
580 |
+
" for i in range(N) : print(__prompts)\n",
|
581 |
+
" print(f'The {start_at_index}-{start_at_index + RANGE} similarity % for items : \\n\\n' + __sims)\n",
|
582 |
+
" print('')\n",
|
583 |
+
" else:\n",
|
584 |
+
" for i in range(N) : print(__prompts)\n",
|
585 |
+
"else:\n",
|
586 |
+
" for i in range(N) : print(__prompts)\n",
|
587 |
+
"#-------#"
|
588 |
+
],
|
589 |
+
"metadata": {
|
590 |
+
"cellView": "form",
|
591 |
+
"id": "EdBiAguJO9aX"
|
592 |
+
},
|
593 |
+
"execution_count": null,
|
594 |
+
"outputs": []
|
595 |
+
}
|
596 |
+
]
|
597 |
+
}
|