codeShare commited on
Commit
c4972f8
β€’
1 Parent(s): db3b894

Upload fusion_t2i_CLIP_interrogator.ipynb

Browse files
Google Colab Notebooks/fusion_t2i_CLIP_interrogator.ipynb CHANGED
@@ -47,9 +47,12 @@
47
  "\n",
48
  "def fix_bad_symbols(txt):\n",
49
  " result = txt\n",
50
- " for symbol in ['^', '}', '{' , ')', '(', '[' , ']' , ':' , '=' ]:\n",
51
  " result = result.replace(symbol,'\\\\' + symbol)\n",
 
 
52
  " #------#\n",
 
53
  " return result;\n",
54
  "\n",
55
  "\n",
@@ -390,19 +393,27 @@
390
  "# @markdown πŸ–ΌοΈ Choose a pre-encoded reference\n",
391
  "index = 708 # @param {type:\"slider\", min:0, max:1666, step:1}\n",
392
  "PROMPT_INDEX = index\n",
393
- "# @markdown βš–οΈ Set the value for C in the reference <br> <br> sim = C* text_enc + image_enc*(1-C) <br>\n",
394
- "C = 0.5 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
395
  "# @markdown -----------\n",
396
- "# @markdown πŸ“ Enhance similarity to this prompt(optional)\n",
397
- "POS = '' # @param {type:'string'}\n",
398
- "strength = 1 # @param {type:\"slider\", min:-50, max:50, step:0.1}\n",
399
- "pos_strength = strength\n",
400
  "# @markdown -----------\n",
401
  "\n",
402
- "# @markdown 🚫 Penalize similarity to this prompt(optional)\n",
403
- "NEG = '' # @param {type:'string'}\n",
404
- "strength = 1 # @param {type:\"slider\", min:-50, max:50, step:0.1}\n",
405
- "neg_strength = strength\n",
 
 
 
 
 
 
 
 
406
  "# @markdown -----------\n",
407
  "# @title βš™οΈπŸ“ Print the results (Advanced)\n",
408
  "list_size = 1000 # param {type:'number'}\n",
@@ -436,6 +447,14 @@
436
  "enable = run_script\n",
437
  "\n",
438
  "\n",
 
 
 
 
 
 
 
 
439
  "# Load the data if not already loaded\n",
440
  "try:\n",
441
  " loaded2\n",
@@ -471,28 +490,30 @@
471
  " # text-similarity\n",
472
  " sims = C * torch.matmul(text_tensor, text_features_A.t())\n",
473
  "\n",
474
- " neg_sims = 0*sims\n",
 
 
475
  " if(NEG != ''):\n",
476
- "\n",
477
- " # Get text features for user input\n",
478
- " inputs = tokenizer(text = NEG, padding=True, return_tensors=\"pt\")\n",
479
- " text_features_NEG = model.get_text_features(**inputs)\n",
480
- " text_features_NEG = text_features_NEG/text_features_NEG.norm(p=2, dim=-1, keepdim=True)\n",
481
- "\n",
482
- " # text-similarity\n",
483
- " neg_sims = torch.matmul(text_tensor, text_features_NEG.t())\n",
484
  " #------#\n",
485
  "\n",
486
- " pos_sims = 0*sims\n",
 
 
487
  " if(POS != ''):\n",
488
- "\n",
489
- " # Get text features for user input\n",
490
- " inputs = tokenizer(text = POS, padding=True, return_tensors=\"pt\")\n",
491
- " text_features_POS = model.get_text_features(**inputs)\n",
492
- " text_features_POS = text_features_POS/text_features_POS.norm(p=2, dim=-1, keepdim=True)\n",
493
- "\n",
494
- " # text-similarity\n",
495
- " pos_sims = torch.matmul(text_tensor, text_features_POS.t())\n",
496
  " #------#\n",
497
  "\n",
498
  " # plus image-similarity\n",
@@ -501,11 +522,14 @@
501
  "\n",
502
  "\n",
503
  " # plus POS-similarity\n",
504
- " sims = sims + pos_strength*pos_sims\n",
505
- "\n",
 
506
  "\n",
507
  " # minus NEG-similarity\n",
508
- " sims = sims - neg_strength*neg_sims\n",
 
 
509
  "\n",
510
  "\n",
511
  " # Sort the items\n",
@@ -518,13 +542,28 @@
518
  "\n",
519
  " _prompts = ''\n",
520
  " _sims = ''\n",
 
521
  " for _index in range(start_at_index + RANGE):\n",
522
  " if _index < start_at_index : continue\n",
523
- " index = indices[_index].item()\n",
524
  "\n",
 
 
 
 
 
 
 
 
 
 
 
525
  " prompt = prompts[f'{index}']\n",
 
526
  " if rate_percent >= random.randint(0,100) : prompt = prompts[f'{random.randint(start_at_index2 , start_at_index2 + list_size2)}']\n",
527
  "\n",
 
 
 
528
  " #Remove duplicates\n",
529
  " if _prompts.find(prompt + separator)<=-1:\n",
530
  " _sims = _sims + f'{round(100*sims[index].item(), 2)} %' + separator\n",
@@ -554,7 +593,10 @@
554
  " #-------#\n",
555
  " #-------#\n",
556
  "#-------#\n",
557
- "image\n"
 
 
 
558
  ],
559
  "metadata": {
560
  "id": "XW3914T8O2uf"
 
47
  "\n",
48
  "def fix_bad_symbols(txt):\n",
49
  " result = txt\n",
50
+ " for symbol in ['}', '{' , ')', '(', '[' , ']' , ':' , '=' , '^']:\n",
51
  " result = result.replace(symbol,'\\\\' + symbol)\n",
52
+ " for symbol in ['^']:\n",
53
+ " result = result.replace(symbol,'')\n",
54
  " #------#\n",
55
+ " result = result.replace('\\\\|','|')\n",
56
  " return result;\n",
57
  "\n",
58
  "\n",
 
393
  "# @markdown πŸ–ΌοΈ Choose a pre-encoded reference\n",
394
  "index = 708 # @param {type:\"slider\", min:0, max:1666, step:1}\n",
395
  "PROMPT_INDEX = index\n",
396
+ "\n",
397
+ "import math\n",
398
  "# @markdown -----------\n",
399
+ "# @markdown πŸ“βž• Enhance similarity to prompt(s)\n",
400
+ "POS = '' # @param {type:'string' ,placeholder:'item1 , item2 , ...'}\n",
401
+ "log_strength = 1 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
402
+ "pos_strength = math.pow(10 ,log_strength-1)\n",
403
  "# @markdown -----------\n",
404
  "\n",
405
+ "# @markdown 🚫 Penalize similarity to prompt(s)\n",
406
+ "NEG = '' # @param {type:'string' , placeholder:'item1 , item2 , ...'}\n",
407
+ "log_strength = 1 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
408
+ "neg_strength = math.pow(10 ,log_strength-1)\n",
409
+ "\n",
410
+ "# @markdown ⏩ Skip item(s) containing the word\n",
411
+ "SKIP = '' # @param {type:'string' , placeholder:'item1 , item2 , ...'}\n",
412
+ "\n",
413
+ "# @markdown βš–οΈ sim_ref = C* text_encoding + image_encoding*(1-C) <br>\n",
414
+ "C = 0.5 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
415
+ "\n",
416
+ "blacklist = SKIP\n",
417
  "# @markdown -----------\n",
418
  "# @title βš™οΈπŸ“ Print the results (Advanced)\n",
419
  "list_size = 1000 # param {type:'number'}\n",
 
447
  "enable = run_script\n",
448
  "\n",
449
  "\n",
450
+ "\n",
451
+ "def isBlacklisted(txt):\n",
452
+ " if blacklist.strip() == '': return False\n",
453
+ " for item in list(blacklist.split(',')):\n",
454
+ " if txt.find(item.strip())> -1 : return True\n",
455
+ " #------#\n",
456
+ " return False\n",
457
+ "\n",
458
  "# Load the data if not already loaded\n",
459
  "try:\n",
460
  " loaded2\n",
 
490
  " # text-similarity\n",
491
  " sims = C * torch.matmul(text_tensor, text_features_A.t())\n",
492
  "\n",
493
+ " # Calculate negatives\n",
494
+ " neg_sims = {}\n",
495
+ " neg_sims[f'{0}'] = 0*sims\n",
496
  " if(NEG != ''):\n",
497
+ " _index = 0\n",
498
+ " for _NEG in NEG.split(','):\n",
499
+ " inputs = tokenizer(text = _NEG, truncation = True , padding=True, return_tensors=\"pt\")\n",
500
+ " text_features_NEG = model.get_text_features(**inputs)\n",
501
+ " text_features_NEG = text_features_NEG/text_features_NEG.norm(p=2, dim=-1, keepdim=True)\n",
502
+ " # text-similarity\n",
503
+ " neg_sims[f'{_index}'] = torch.matmul(text_tensor, text_features_NEG.t())\n",
 
504
  " #------#\n",
505
  "\n",
506
+ " # Calculate positives\n",
507
+ " pos_sims = {}\n",
508
+ " pos_sims[f'{0}'] = 0*sims\n",
509
  " if(POS != ''):\n",
510
+ " _index = 0\n",
511
+ " for _POS in POS.split(','):\n",
512
+ " inputs = tokenizer(text = _POS, truncation = True , padding=True, return_tensors=\"pt\")\n",
513
+ " text_features_POS = model.get_text_features(**inputs)\n",
514
+ " text_features_POS = text_features_POS/text_features_POS.norm(p=2, dim=-1, keepdim=True)\n",
515
+ " # text-similarity\n",
516
+ " pos_sims[f'{_index}'] = torch.matmul(text_tensor, text_features_POS.t())\n",
 
517
  " #------#\n",
518
  "\n",
519
  " # plus image-similarity\n",
 
522
  "\n",
523
  "\n",
524
  " # plus POS-similarity\n",
525
+ " for key in pos_sims:\n",
526
+ " sims = sims + pos_strength*pos_sims[key]\n",
527
+ " #------#\n",
528
  "\n",
529
  " # minus NEG-similarity\n",
530
+ " for key in neg_sims:\n",
531
+ " sims = sims - neg_strength*neg_sims[key]\n",
532
+ " #-------#\n",
533
  "\n",
534
  "\n",
535
  " # Sort the items\n",
 
542
  "\n",
543
  " _prompts = ''\n",
544
  " _sims = ''\n",
545
+ " offset = 0\n",
546
  " for _index in range(start_at_index + RANGE):\n",
547
  " if _index < start_at_index : continue\n",
 
548
  "\n",
549
+ " for iters in range(10000):\n",
550
+ " found = True\n",
551
+ " index = indices[_index + offset].item()\n",
552
+ " if isBlacklisted(prompts[f'{index}'].lower()):\n",
553
+ " offset = offset + 1\n",
554
+ " found = False\n",
555
+ " if (_index + offset)>NUM_VOCAB_ITEMS : found = True\n",
556
+ " if found : break\n",
557
+ " #-------#\n",
558
+ "\n",
559
+ " index = indices[_index + offset].item()\n",
560
  " prompt = prompts[f'{index}']\n",
561
+ "\n",
562
  " if rate_percent >= random.randint(0,100) : prompt = prompts[f'{random.randint(start_at_index2 , start_at_index2 + list_size2)}']\n",
563
  "\n",
564
+ "\n",
565
+ " #---------#\n",
566
+ "\n",
567
  " #Remove duplicates\n",
568
  " if _prompts.find(prompt + separator)<=-1:\n",
569
  " _sims = _sims + f'{round(100*sims[index].item(), 2)} %' + separator\n",
 
593
  " #-------#\n",
594
  " #-------#\n",
595
  "#-------#\n",
596
+ "image or print('No image found')\n",
597
+ "\n",
598
+ "\n",
599
+ "#------#"
600
  ],
601
  "metadata": {
602
  "id": "XW3914T8O2uf"