{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [] }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "5dca7b09d56f417398e46db04d9ee6f0": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_d5992cc5c2c74667b7950a31d240e8ca", "IPY_MODEL_2e3a582e334b4cf484fe0c96aa2eeeee", "IPY_MODEL_58ca3c2a3c114d9f82c9d4738c599071" ], "layout": "IPY_MODEL_647d99de5f414064a2d5a5d8898f8582" } }, "d5992cc5c2c74667b7950a31d240e8ca": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_d15c178984644ed18c745b18cbcddac8", "placeholder": "​", "style": "IPY_MODEL_5f57f909c3044664ac7af0ecfedf18cf", "value": "tokenizer_config.json: 100%" } }, "2e3a582e334b4cf484fe0c96aa2eeeee": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_81b8659dfc10451e9213be7a7aa44510", "max": 905, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_547dd36fc5e541f6aef423f7664134d5", "value": 905 } }, "58ca3c2a3c114d9f82c9d4738c599071": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_6178bd1f3b9640d5bfdf7bf5bb05a406", "placeholder": "​", "style": "IPY_MODEL_0fbc37ff65e1497e90cc841712512047", "value": " 905/905 [00:00<00:00, 10.6kB/s]" } }, "647d99de5f414064a2d5a5d8898f8582": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d15c178984644ed18c745b18cbcddac8": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "5f57f909c3044664ac7af0ecfedf18cf": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "81b8659dfc10451e9213be7a7aa44510": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "547dd36fc5e541f6aef423f7664134d5": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "6178bd1f3b9640d5bfdf7bf5bb05a406": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "0fbc37ff65e1497e90cc841712512047": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "47dac14e4a384b4e9cf3795b8ca1f1ec": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_1b0819260b3d4743a56064c0d8bfc830", "IPY_MODEL_8fd54fb9620d4e5483a8cc4b13772450", "IPY_MODEL_93972ad1588643ef82d1cda9688ede2a" ], "layout": "IPY_MODEL_6c0bd737885a415f9e23aae530507b57" } }, "1b0819260b3d4743a56064c0d8bfc830": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_3da1b3a59ce44a5fa864a8811d9249ec", "placeholder": "​", "style": "IPY_MODEL_e02db22decd44fd994905d9dc7109e34", "value": "vocab.json: 100%" } }, "8fd54fb9620d4e5483a8cc4b13772450": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_1c762c6c27d2438e9efc866501037a38", "max": 961143, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_6ecef1d62b17470d9d2f32258fabf7f8", "value": 961143 } }, "93972ad1588643ef82d1cda9688ede2a": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_69990822ae87496aaae5221e7e341c95", "placeholder": "​", "style": "IPY_MODEL_e8538f56afe147df99ade93a85ddcf31", "value": " 961k/961k [00:00<00:00, 4.72MB/s]" } }, "6c0bd737885a415f9e23aae530507b57": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "3da1b3a59ce44a5fa864a8811d9249ec": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "e02db22decd44fd994905d9dc7109e34": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "1c762c6c27d2438e9efc866501037a38": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6ecef1d62b17470d9d2f32258fabf7f8": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "69990822ae87496aaae5221e7e341c95": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "e8538f56afe147df99ade93a85ddcf31": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "687cd93939ac4ad1b3ed258ff84a1857": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_b63f2c2f78b246e3ab1809a2d714b64a", "IPY_MODEL_1bfab9a0900540ebad3a64f00d9e39bf", "IPY_MODEL_4da319c577d9495e957413c67515a499" ], "layout": "IPY_MODEL_ea600bd904e34bee87b2703d414d315e" } }, "b63f2c2f78b246e3ab1809a2d714b64a": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_82ebe02aa7894947935b0ce1daa4d505", "placeholder": "​", "style": "IPY_MODEL_78c7ddcc5ccd49bf9cf2f14f08e2609d", "value": "merges.txt: 100%" } }, "1bfab9a0900540ebad3a64f00d9e39bf": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_e31c87d919e84946b0277a92967cb6c3", "max": 524619, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_6cbe0ec17f7e4cb5b8447703db1f20ba", "value": 524619 } }, "4da319c577d9495e957413c67515a499": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_f5e67e2741e2485ca8e3f157392440b1", "placeholder": "​", "style": "IPY_MODEL_198d36ee2257424eb1b474c135aa9811", "value": " 525k/525k [00:00<00:00, 6.29MB/s]" } }, "ea600bd904e34bee87b2703d414d315e": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "82ebe02aa7894947935b0ce1daa4d505": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "78c7ddcc5ccd49bf9cf2f14f08e2609d": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "e31c87d919e84946b0277a92967cb6c3": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6cbe0ec17f7e4cb5b8447703db1f20ba": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "f5e67e2741e2485ca8e3f157392440b1": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "198d36ee2257424eb1b474c135aa9811": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "13b1728bb6d84fb89f9e63933092185f": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_0e77e43b624644ed8ebe6acd85dfc52d", "IPY_MODEL_bb84378708c34191a9641db13fc43b5b", "IPY_MODEL_755f9b3eb87d475bb4ce6c21e33358d9" ], "layout": "IPY_MODEL_fbc004fa4416418f81f31bc29ad10930" } }, "0e77e43b624644ed8ebe6acd85dfc52d": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_7e148a9687724693a13a7771c1c7f586", "placeholder": "​", "style": "IPY_MODEL_daa44708db4a42f0b1f75608225a5705", "value": "tokenizer.json: 100%" } }, "bb84378708c34191a9641db13fc43b5b": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_4badd8300313476dad92543de778c256", "max": 2224003, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_d235bd543e9348fd859449433e038770", "value": 2224003 } }, "755f9b3eb87d475bb4ce6c21e33358d9": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_cfa1e815b60546bf81c36dcd2b53d631", "placeholder": "​", "style": "IPY_MODEL_5181aa4ba5614070b18b6eb589c23bb8", "value": " 2.22M/2.22M [00:00<00:00, 6.69MB/s]" } }, "fbc004fa4416418f81f31bc29ad10930": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "7e148a9687724693a13a7771c1c7f586": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "daa44708db4a42f0b1f75608225a5705": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "4badd8300313476dad92543de778c256": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d235bd543e9348fd859449433e038770": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "cfa1e815b60546bf81c36dcd2b53d631": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "5181aa4ba5614070b18b6eb589c23bb8": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "9aeb391f81744af0a7a1a626ee59936e": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_1eb2c749a73e4ec1aa12815685c3b9af", "IPY_MODEL_c83a9a607f8e4c40a7104f43c8d17147", "IPY_MODEL_57b79f775cdf4af8b9b958d63a04e229" ], "layout": "IPY_MODEL_875f86ecd6324684b8dbf923b2ea4568" } }, "1eb2c749a73e4ec1aa12815685c3b9af": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_6838aea531514dfbae5691f8a34bf055", "placeholder": "​", "style": "IPY_MODEL_30726707cb7b4137831b195e31471180", "value": "special_tokens_map.json: 100%" } }, "c83a9a607f8e4c40a7104f43c8d17147": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_d5b5ad4c5a5b49c9985e95a906cf7fda", "max": 389, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_921b4a60a3f946d5999e88254ea743c4", "value": 389 } }, "57b79f775cdf4af8b9b958d63a04e229": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_b6ba9d87ee844b5c886f44322276d455", "placeholder": "​", "style": "IPY_MODEL_0c9ae72e011644a89cb4852c33d1e871", "value": " 389/389 [00:00<00:00, 12.1kB/s]" } }, "875f86ecd6324684b8dbf923b2ea4568": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6838aea531514dfbae5691f8a34bf055": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "30726707cb7b4137831b195e31471180": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "d5b5ad4c5a5b49c9985e95a906cf7fda": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "921b4a60a3f946d5999e88254ea743c4": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "b6ba9d87ee844b5c886f44322276d455": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "0c9ae72e011644a89cb4852c33d1e871": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "56a58c40eee645d38be668030eae6267": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_9ec58932bfc640a5b1ea9b4a53f1170d", "IPY_MODEL_897bf5386cb949c8a11b23cac21dc1b9", "IPY_MODEL_c4e687725f034c62b1bd2170f3b2347c" ], "layout": "IPY_MODEL_5b1b0236c84b4fd8826d0d47864018b0" } }, "9ec58932bfc640a5b1ea9b4a53f1170d": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_0c2adf2827694110b89bf3f170448eb3", "placeholder": "​", "style": "IPY_MODEL_e5f9b5ff2318493f8cb76b981f8b5103", "value": "preprocessor_config.json: 100%" } }, "897bf5386cb949c8a11b23cac21dc1b9": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_b86350615d514315b3bbdc813b9956a6", "max": 316, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_83f3be93d43747fd8491ce5e317e2983", "value": 316 } }, "c4e687725f034c62b1bd2170f3b2347c": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_8534e88f44104d6087f6282a2aa8bb22", "placeholder": "​", "style": "IPY_MODEL_70806ac31a5e43f3b6f0bcae899e7470", "value": " 316/316 [00:00<00:00, 6.39kB/s]" } }, "5b1b0236c84b4fd8826d0d47864018b0": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "0c2adf2827694110b89bf3f170448eb3": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "e5f9b5ff2318493f8cb76b981f8b5103": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "b86350615d514315b3bbdc813b9956a6": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "83f3be93d43747fd8491ce5e317e2983": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "8534e88f44104d6087f6282a2aa8bb22": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "70806ac31a5e43f3b6f0bcae899e7470": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "357c81f51fbe457e9e20449f3a224d02": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_a8fdfac3177d46e7a6029de111b6b6c2", "IPY_MODEL_2d5b999476174325ba7006241d80faf0", "IPY_MODEL_6aaf805100234796a23bbab6016c6ed6" ], "layout": "IPY_MODEL_ca8c235feb6b4ae39554e621d2a651e2" } }, "a8fdfac3177d46e7a6029de111b6b6c2": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_8f85d310615041f99116ae12299ef3bc", "placeholder": "​", "style": "IPY_MODEL_a1bdef3019b1430bbe70b40cdc748a45", "value": "config.json: 100%" } }, "2d5b999476174325ba7006241d80faf0": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_15bde02e567a4da6b230b5cedb15884f", "max": 4519, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_680a024ed0c04e74af9a8ed7c64ed71a", "value": 4519 } }, "6aaf805100234796a23bbab6016c6ed6": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_cb3de774774941c1b022c9bda771cd4a", "placeholder": "​", "style": "IPY_MODEL_370f2efe33514979802333a3ecb2b7ed", "value": " 4.52k/4.52k [00:00<00:00, 108kB/s]" } }, "ca8c235feb6b4ae39554e621d2a651e2": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "8f85d310615041f99116ae12299ef3bc": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a1bdef3019b1430bbe70b40cdc748a45": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "15bde02e567a4da6b230b5cedb15884f": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "680a024ed0c04e74af9a8ed7c64ed71a": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "cb3de774774941c1b022c9bda771cd4a": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "370f2efe33514979802333a3ecb2b7ed": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "89e36f7ed4484644ba46d7bac8a9676c": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_905e816125ad4122b4f96e9daf3baf15", "IPY_MODEL_c98d3cf5642742788361f97a8f4fbbab", "IPY_MODEL_6515a59e871b48f28f2c5007491eccba" ], "layout": "IPY_MODEL_66406afa18d1444693353faa95792d94" } }, "905e816125ad4122b4f96e9daf3baf15": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_dd03d5feff1343e9acfac6cfe41a2746", "placeholder": "​", "style": "IPY_MODEL_ab1ce4c54876485a87d81735d5d32476", "value": "model.safetensors: 100%" } }, "c98d3cf5642742788361f97a8f4fbbab": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_3a875d281498401585062f728b4e0c20", "max": 1710540580, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_3c756ac7e7da412196e2ed98812422ae", "value": 1710540580 } }, "6515a59e871b48f28f2c5007491eccba": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_e64e816b7112446bb21ee810a5d8c0ae", "placeholder": "​", "style": "IPY_MODEL_5032d61130504967b59ab8486824f3b8", "value": " 1.71G/1.71G [00:26<00:00, 44.4MB/s]" } }, "66406afa18d1444693353faa95792d94": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "dd03d5feff1343e9acfac6cfe41a2746": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "ab1ce4c54876485a87d81735d5d32476": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "3a875d281498401585062f728b4e0c20": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "3c756ac7e7da412196e2ed98812422ae": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "e64e816b7112446bb21ee810a5d8c0ae": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "5032d61130504967b59ab8486824f3b8": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } } } } }, "cells": [ { "cell_type": "markdown", "source": [ "This Notebook is a Stable-diffusion tool which allows you to find similiar tokens from the SD 1.5 vocab.json that you can use for text-to-image generation. Try this Free online SD 1.5 generator with the results: https://perchance.org/fusion-ai-image-generator\n", "\n", "Scroll to the bottom of the notebook to see the guide for how this works." ], "metadata": { "id": "L7JTcbOdBPfh" } }, { "cell_type": "code", "source": [ "# @title ✳️ Load/initialize values\n", "#Imports\n", "#!pip install safetensors\n", "from safetensors.torch import load_file\n", "import json , os , shelve , torch\n", "import pandas as pd\n", "#----#\n", "\n", "def my_mkdirs(folder):\n", " if os.path.exists(folder)==False:\n", " os.makedirs(folder)\n", "\n", "def fix_bad_symbols(txt):\n", " result = txt\n", " for symbol in ['^', '}', '{' , ')', '(', '[' , ']' , ':' , '=' ]:\n", " result = result.replace(symbol,'\\\\' + symbol)\n", " #------#\n", " return result;\n", "\n", "\n", "def getPrompts(_path, separator):\n", " path = _path + '/text'\n", " path_enc = _path + '/text_encodings'\n", " #-----#\n", " index = 0\n", " prompts = {}\n", " text_encodings = {}\n", " _text_encodings = {}\n", " #-----#\n", " for filename in os.listdir(f'{path}'):\n", " print(f'reading {filename}....')\n", " _index = 0\n", " %cd {path}\n", " with open(f'{filename}', 'r') as f:\n", " data = json.load(f)\n", " #------#\n", " _df = pd.DataFrame({'count': data})['count']\n", " _prompts = {\n", " key : value for key, value in _df.items()\n", " }\n", " _file_name = _prompts[f'{1}']\n", " %cd {path_enc}\n", " _text_encodings = load_file(f'{_file_name}.safetensors')\n", " for key in _prompts:\n", " _index = int(key)\n", " value = _prompts[key]\n", " if _index<2:continue\n", " #------#\n", " #Read the text_encodings + prompts\n", " text_encodings[f'{index}'] = _text_encodings[f'{_index}']\n", " prompts[f'{index}'] = _prompts[f'{_index}'] + separator\n", " index = index + 1\n", " continue\n", " #-------#\n", " #--------#\n", " #----------#\n", " NUM_ITEMS = index -1\n", " return prompts , text_encodings , NUM_ITEMS\n", "#--------#\n", "\n", "def append_from_url(dictA, tensA , nA , url , separator):\n", " dictB , tensB, nB = getPrompts(url, separator)\n", " dictAB = dictA\n", " tensAB = tensA\n", " nAB = nA\n", " for key in dictB:\n", " nAB = nAB + 1\n", " dictAB[f'{nA + int(key)}'] = dictB[key]\n", " tensAB[f'{nA + int(key)}'] = tensB[key]\n", " #-----#\n", " return dictAB, tensAB , nAB-1\n", "#-------#\n", "\n", "home_directory = '/content/'\n", "using_Kaggle = os.environ.get('KAGGLE_URL_BASE','')\n", "if using_Kaggle : home_directory = '/kaggle/working/'\n", "%cd {home_directory}\n", "\n", "#🔸🔹\n", "# Load the data if not already loaded\n", "try:\n", " loaded\n", "except:\n", " %cd {home_directory}\n", " !git clone https://huggingface.co/datasets/codeShare/text-to-image-prompts\n", " loaded = True\n", "#--------#\n", "\n", "#default NEG values\n", "try: name_NEG\n", "except: name_NEG = ''\n", "try: image_NEG\n", "except: image_NEG = ''\n", "try: strength_image_NEG\n", "except: strength_image_NEG = 1\n", "try: strength_NEG\n", "except: strength_NEG = 1\n", "try: NUM_VOCAB_ITEMS\n", "except: NUM_VOCAB_ITEMS = 0\n", "try: using_NEG\n", "except: using_NEG = False\n", "try: using_image_NEG\n", "except: using_image_NEG = False\n", "#------#\n", "\n", "def getJSON(path , filename):\n", " %cd {path}\n", " with open(f'{filename}', 'r') as f:\n", " data = json.load(f)\n", " #------#\n", " print(f'reading {filename}....')\n", " _df = pd.DataFrame({'count': data})['count']\n", " _prompts = {\n", " key : value for key, value in _df.items()\n", " }\n", " return _prompts\n", "\n", "#----#\n", "\n", "def getPromptsAndLinks(_path):\n", " path = _path + '/text'\n", " path_enc = _path + '/text_encodings'\n", " #-----#\n", " path_images = _path + '/images'\n", " path_enc_images = _path + '/image_encodings'\n", " #----#\n", " _file_name = ''\n", " _file_name_image = ''\n", " #-----#\n", " index = 0\n", " prompts = {}\n", " _prompts = {}\n", " #-------#\n", " urls = {}\n", " _urls = {}\n", " #------#\n", " text_encodings = {}\n", " _text_encodings = {}\n", " image_encodings = {}\n", " _image_encodings = {}\n", " #-----#\n", " for filename in os.listdir(f'{path}'):\n", "\n", " print(f'reading {filename}.json...')\n", " _index = 0\n", " %cd {path}\n", " with open(f'{filename}', 'r') as f:\n", " data = json.load(f)\n", " _df = pd.DataFrame({'count': data})['count']\n", " _prompts = {\n", " key : value for key, value in _df.items()\n", " }\n", "\n", " for key in _prompts:\n", " _index = int(key)\n", " value = _prompts[key]\n", " if _index<=0: continue\n", " if _index<=1:\n", " _file_name = f'{value}'\n", " _file_name_images = _prompts[f'{0}']\n", " #-------#\n", " print(f'reading {_file_name_images}.json..')\n", " %cd {path_images}\n", " with open(f'{_file_name_images}.json', 'r') as f:\n", " data = json.load(f)\n", " _df = pd.DataFrame({'count': data})['count']\n", " _urls = {\n", " key : value for key, value in _df.items()\n", " }\n", " #--------#\n", " %cd {path_enc}\n", " _text_encodings = load_file(f'{_file_name}.safetensors')\n", " text_encodings[f'{index-1}'] = _text_encodings[f'{_index-1}']\n", " text_encodings[f'{index}'] = _text_encodings[f'{_index}']\n", " #-------#\n", " %cd {path_enc_images}\n", " _image_encodings = load_file(f'{_file_name_images}.safetensors')\n", " image_encodings[f'{index-1}'] = _image_encodings[f'{_index-1}']\n", " image_encodings[f'{index}'] = _image_encodings[f'{_index}']\n", " #-------#\n", " prompts[f'{index-1}'] = _prompts[f'{_index-1}']\n", " urls[f'{index-1}'] = _urls[f'{_index-1}']\n", " prompts[f'{index}'] = _prompts[f'{_index}']\n", " urls[f'{index}'] = _urls[f'{_index}']\n", " #-------#\n", " index = index + 1\n", " continue\n", " #--------#\n", " #Read the text_encodings + prompts\n", " text_encodings[f'{index}'] = _text_encodings[f'{_index}']\n", " image_encodings[f'{index}'] = _image_encodings[f'{_index}']\n", " prompts[f'{index}'] = _prompts[f'{_index}']\n", " urls[f'{index}'] = _urls[f'{_index}']\n", " index = index + 1\n", " continue\n", " #-------#\n", " #--------#\n", " #----------#\n", " NUM_ITEMS = index -1\n", " return prompts , text_encodings , urls , image_encodings , NUM_ITEMS\n", "#--------#\n", "\n" ], "metadata": { "id": "rUXQ73IbonHY", "outputId": "b6b7b140-db39-46df-9ad0-2348df131166", "colab": { "base_uri": "https://localhost:8080/" } }, "execution_count": 2, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "/content\n" ] } ] }, { "cell_type": "code", "source": [ "# @title 📚 Select items to sample from\n", "\n", "prompt_features = True # @param {\"type\":\"boolean\",\"placeholder\":\"🦜\"}\n", "civitai_blue_set = True # @param {\"type\":\"boolean\",\"placeholder\":\"📘\"}\n", "suffix = True # @param {\"type\":\"boolean\",\"placeholder\":\"🔹\"}\n", "prefix = True # @param {\"type\":\"boolean\",\"placeholder\":\"🔸\"}\n", "emojis = True # @param {\"type\":\"boolean\",\"placeholder\":\"😃\"}\n", "#------#\n", "\n", "first_names = True # @param {\"type\":\"boolean\",\"placeholder\":\"🔹\"}\n", "last_names = True # @param {\"type\":\"boolean\",\"placeholder\":\"🔸\"}\n", "celebs = True # @param {\"type\":\"boolean\",\"placeholder\":\"🆔👨\"}\n", "#-------#\n", "danbooru_tags = True # @param {\"type\":\"boolean\",\"placeholder\":\"🎀\"}\n", "lyrics = True # @param {\"type\":\"boolean\",\"placeholder\":\"🎼\"}\n", "tripple_nouns = True # @param {\"type\":\"boolean\",\"placeholder\":\"🎼\"}\n", "#-----#\n", "female_fullnames = True # @param {\"type\":\"boolean\",\"placeholder\":\"😃\"}\n", "debug = False\n", "\n", "\n", "\n", "civitai_red_set = True # @param {\"type\":\"boolean\",\"placeholder\":\"😃\"}\n", "e621 = True # @param {\"type\":\"boolean\",\"placeholder\":\"😃\"}\n", "prefix_suffix_pairs = True # @param {\"type\":\"boolean\",\"placeholder\":\"😃\"}\n", "suffix_tripple = True # @param {\"type\":\"boolean\",\"placeholder\":\"😃\"}\n", "suffix_quad = True # @param {\"type\":\"boolean\",\"placeholder\":\"😃\"}\n", "#------#\n", "prompts = {}\n", "text_encodings = {}\n", "nA = 0\n", "#--------#\n", "\n", "if civitai_red_set:\n", " url = '/content/text-to-image-prompts/civitai-prompts/red'\n", " prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n", "\n", "if e621:\n", " url = '/content/text-to-image-prompts/e621'\n", " prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n", "\n", "if prefix_suffix_pairs:\n", " url = '/content/text-to-image-prompts/prefix_suffix_pairs'\n", " prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n", "\n", "if suffix_tripple:\n", " url = '/content/text-to-image-prompts/suffix_tripple'\n", " prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n", "\n", "if suffix_quad:\n", " url = '/content/text-to-image-prompts/suffix_quad'\n", " prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n", "\n", "\n", "\n", "if tripple_nouns:\n", " url = '/content/text-to-image-prompts/nouns'\n", " prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n", "\n", "if lyrics:\n", " url = '/content/text-to-image-prompts/lyrics'\n", " prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n", "\n", "if danbooru_tags:\n", " url = '/content/text-to-image-prompts/danbooru'\n", " prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n", "#--------#\n", "\n", "if first_names:\n", " url = '/content/text-to-image-prompts/names/firstnames'\n", " prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n", "#--------#\n", "\n", "if last_names:\n", " url = '/content/text-to-image-prompts/names/lastnames'\n", " prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n", "#--------#\n", "\n", "if celebs:\n", " url = '/content/text-to-image-prompts/names/celebs/mixed'\n", " prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n", "#--------#\n", "\n", "if female_fullnames:\n", " url = '/content/text-to-image-prompts/names/fullnames'\n", " prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n", "#--------#\n", "\n", "\n", "if prompt_features:\n", " url = '/content/text-to-image-prompts/civitai-prompts/green'\n", " prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n", "#--------#\n", "\n", "\n", "if emojis:\n", " url = '/content/text-to-image-prompts/vocab/text_encodings/emoji'\n", " prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n", "#--------#\n", "\n", "\n", "if civitai_blue_set:\n", " url = '/content/text-to-image-prompts/civitai-prompts/blue'\n", " prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n", "#--------#\n", "\n", "if suffix :\n", " tmp = '/content/text-to-image-prompts/vocab/text_encodings/suffix/'\n", " for item in ['common','average','rare','weird','exotic'] :\n", " url = tmp + item\n", " prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n", "#------#\n", "\n", "if prefix :\n", " tmp = '/content/text-to-image-prompts/vocab/text_encodings/prefix/'\n", " for item in ['common','average','rare','weird','exotic'] :\n", " url = tmp + item\n", " prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '-')\n", "#------#\n", "\n", "if debug:\n", " index = 0\n", " for key in prompts: index = index + 1\n", " print(index)\n", " index = 0\n", " for key in text_encodings : index = index + 1\n", " print(index)\n", "#------#\n", "\n", "NUM_VOCAB_ITEMS = nA\n", "text_tensor = torch.zeros(NUM_VOCAB_ITEMS,768)\n", "for index in range(NUM_VOCAB_ITEMS):\n", " text_tensor[index] = text_encodings[f'{index}']\n", "#---------#\n" ], "metadata": { "id": "ZMG4CThUAmwW", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "be34cf84-73f3-4185-ade5-ff4bc0dc4807" }, "execution_count": 3, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "reading 📕 fusion-t2i-civitai-red-21.json....\n", "/content/text-to-image-prompts/civitai-prompts/red/text\n", "/content/text-to-image-prompts/civitai-prompts/red/text_encodings\n", "reading 📕 fusion-t2i-civitai-red-3.json....\n", "/content/text-to-image-prompts/civitai-prompts/red/text\n", "/content/text-to-image-prompts/civitai-prompts/red/text_encodings\n", "reading 📕 fusion-t2i-civitai-red-6.json....\n", "/content/text-to-image-prompts/civitai-prompts/red/text\n", "/content/text-to-image-prompts/civitai-prompts/red/text_encodings\n", "reading 📕 fusion-t2i-civitai-red-22.json....\n", "/content/text-to-image-prompts/civitai-prompts/red/text\n", "/content/text-to-image-prompts/civitai-prompts/red/text_encodings\n", "reading 📕 fusion-t2i-civitai-red-32.json....\n", "/content/text-to-image-prompts/civitai-prompts/red/text\n", "/content/text-to-image-prompts/civitai-prompts/red/text_encodings\n", "reading 📕 fusion-t2i-civitai-red-13.json....\n", "/content/text-to-image-prompts/civitai-prompts/red/text\n", "/content/text-to-image-prompts/civitai-prompts/red/text_encodings\n", "reading 📕 fusion-t2i-civitai-red-33.json....\n", "/content/text-to-image-prompts/civitai-prompts/red/text\n", "/content/text-to-image-prompts/civitai-prompts/red/text_encodings\n", "reading 📕 fusion-t2i-civitai-red-15.json....\n", "/content/text-to-image-prompts/civitai-prompts/red/text\n", "/content/text-to-image-prompts/civitai-prompts/red/text_encodings\n", "reading 📕 fusion-t2i-civitai-red-7.json....\n", "/content/text-to-image-prompts/civitai-prompts/red/text\n", "/content/text-to-image-prompts/civitai-prompts/red/text_encodings\n", "reading 📕 fusion-t2i-civitai-red-17.json....\n", "/content/text-to-image-prompts/civitai-prompts/red/text\n", "/content/text-to-image-prompts/civitai-prompts/red/text_encodings\n", "reading 📕 fusion-t2i-civitai-red-28.json....\n", "/content/text-to-image-prompts/civitai-prompts/red/text\n", "/content/text-to-image-prompts/civitai-prompts/red/text_encodings\n", "reading 📕 fusion-t2i-civitai-red-23.json....\n", "/content/text-to-image-prompts/civitai-prompts/red/text\n", "/content/text-to-image-prompts/civitai-prompts/red/text_encodings\n", "reading 📕 fusion-t2i-civitai-red-27.json....\n", "/content/text-to-image-prompts/civitai-prompts/red/text\n", "/content/text-to-image-prompts/civitai-prompts/red/text_encodings\n", "reading 📕 fusion-t2i-civitai-red-30.json....\n", "/content/text-to-image-prompts/civitai-prompts/red/text\n", "/content/text-to-image-prompts/civitai-prompts/red/text_encodings\n", "reading 📕 fusion-t2i-civitai-red-19.json....\n", "/content/text-to-image-prompts/civitai-prompts/red/text\n", "/content/text-to-image-prompts/civitai-prompts/red/text_encodings\n", "reading 📕 fusion-t2i-civitai-red-20.json....\n", "/content/text-to-image-prompts/civitai-prompts/red/text\n", "/content/text-to-image-prompts/civitai-prompts/red/text_encodings\n", "reading 📕 fusion-t2i-civitai-red-2.json....\n", "/content/text-to-image-prompts/civitai-prompts/red/text\n", "/content/text-to-image-prompts/civitai-prompts/red/text_encodings\n", "reading 📕 fusion-t2i-civitai-red-25.json....\n", "/content/text-to-image-prompts/civitai-prompts/red/text\n", "/content/text-to-image-prompts/civitai-prompts/red/text_encodings\n", "reading 📕 fusion-t2i-civitai-red-29.json....\n", "/content/text-to-image-prompts/civitai-prompts/red/text\n", "/content/text-to-image-prompts/civitai-prompts/red/text_encodings\n", "reading 📕 fusion-t2i-civitai-red-31.json....\n", "/content/text-to-image-prompts/civitai-prompts/red/text\n", "/content/text-to-image-prompts/civitai-prompts/red/text_encodings\n", "reading 📕 fusion-t2i-civitai-red-18.json....\n", "/content/text-to-image-prompts/civitai-prompts/red/text\n", "/content/text-to-image-prompts/civitai-prompts/red/text_encodings\n", "reading 📕 fusion-t2i-civitai-red-5.json....\n", "/content/text-to-image-prompts/civitai-prompts/red/text\n", "/content/text-to-image-prompts/civitai-prompts/red/text_encodings\n", "reading 📕 fusion-t2i-civitai-red-12.json....\n", "/content/text-to-image-prompts/civitai-prompts/red/text\n", "/content/text-to-image-prompts/civitai-prompts/red/text_encodings\n", "reading 📕 fusion-t2i-civitai-red-26.json....\n", "/content/text-to-image-prompts/civitai-prompts/red/text\n", "/content/text-to-image-prompts/civitai-prompts/red/text_encodings\n", "reading 📕 fusion-t2i-civitai-red-14.json....\n", "/content/text-to-image-prompts/civitai-prompts/red/text\n", "/content/text-to-image-prompts/civitai-prompts/red/text_encodings\n", "reading 📕 fusion-t2i-civitai-red-10.json....\n", "/content/text-to-image-prompts/civitai-prompts/red/text\n", "/content/text-to-image-prompts/civitai-prompts/red/text_encodings\n", "reading 📕 fusion-t2i-civitai-red-9.json....\n", "/content/text-to-image-prompts/civitai-prompts/red/text\n", "/content/text-to-image-prompts/civitai-prompts/red/text_encodings\n", "reading 📕 fusion-t2i-civitai-red-16.json....\n", "/content/text-to-image-prompts/civitai-prompts/red/text\n", "/content/text-to-image-prompts/civitai-prompts/red/text_encodings\n", "reading 📕 fusion-t2i-civitai-red-11.json....\n", "/content/text-to-image-prompts/civitai-prompts/red/text\n", "/content/text-to-image-prompts/civitai-prompts/red/text_encodings\n", "reading 📕 fusion-t2i-civitai-red-1.json....\n", "/content/text-to-image-prompts/civitai-prompts/red/text\n", "/content/text-to-image-prompts/civitai-prompts/red/text_encodings\n", "reading 📕 fusion-t2i-civitai-red-24.json....\n", "/content/text-to-image-prompts/civitai-prompts/red/text\n", "/content/text-to-image-prompts/civitai-prompts/red/text_encodings\n", "reading 📕 fusion-t2i-civitai-red-8.json....\n", "/content/text-to-image-prompts/civitai-prompts/red/text\n", "/content/text-to-image-prompts/civitai-prompts/red/text_encodings\n", "reading 📕 fusion-t2i-civitai-red-4.json....\n", "/content/text-to-image-prompts/civitai-prompts/red/text\n", "/content/text-to-image-prompts/civitai-prompts/red/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-16.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-13.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-31.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-49.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-29.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-71.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-26.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-12.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-56.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-65.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-17.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-14.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-11.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-9.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-44.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-38.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-66.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-63.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-42.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-60.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-41.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-33.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-39.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-30.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-58.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-6.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-54.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-47.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-10.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-64.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-8.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-22.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-27.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-74.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-53.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-43.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-50.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-40.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-72.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-15.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-3.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-55.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-75.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-36.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-48.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-1.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-45.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-70.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-59.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-61.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-57.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-20.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-18.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-46.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-52.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-68.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-2.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-67.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-69.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-32.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-21.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-24.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-34.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-62.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-51.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-28.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-35.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-4.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-23.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-73.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-37.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-7.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-19.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-25.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading 🦊 fusion-t2i-e621-tags-5.json....\n", "/content/text-to-image-prompts/e621/text\n", "/content/text-to-image-prompts/e621/text_encodings\n", "reading prefix_suffix_pairs-174.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-144.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-32.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-96.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-18.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-51.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-104.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-171.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-159.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-143.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-66.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-117.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-9.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-139.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-178.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-158.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-99.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-140.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-4.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-138.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-191.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-69.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-124.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-164.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-24.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-72.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-157.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-8.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-13.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-128.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-182.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-193.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-114.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-194.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-39.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-133.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-98.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-91.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-198.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-129.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-78.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-42.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-130.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-168.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-189.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-87.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-156.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-20.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-148.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-163.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-180.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-172.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-7.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-3.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-86.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-37.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-137.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-54.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-155.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-112.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-154.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-58.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-33.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-63.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-166.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-122.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-48.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-67.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-196.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-10.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-89.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-170.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-149.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-134.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-81.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-179.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-62.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-83.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-71.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-151.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-16.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-36.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-141.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-201.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-195.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-108.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-150.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-74.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-1.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-187.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-120.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-47.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-165.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-44.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-29.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-55.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-97.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-73.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-125.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-14.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-177.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-152.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-61.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-146.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-105.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-111.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-75.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-176.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-131.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-49.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-93.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-19.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-68.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-186.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-181.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-145.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-38.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-57.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-50.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-23.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-25.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-127.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-126.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-27.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-31.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-90.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-161.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-132.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-22.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-46.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-115.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-15.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-26.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-199.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-95.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-11.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-173.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-70.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-113.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-92.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-43.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-2.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-121.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-60.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-147.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-136.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-190.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-17.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-59.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-64.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-76.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-53.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-80.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-107.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-188.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-84.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-110.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-119.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-12.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-5.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-88.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-82.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-175.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-52.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-21.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-106.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-160.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-28.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-109.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-102.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-56.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-142.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-185.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-40.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-192.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-34.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-167.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-184.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-116.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-85.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-183.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-135.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-153.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-30.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-41.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-100.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-200.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-35.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-79.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-123.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-197.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-118.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-94.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-101.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-162.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-6.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-65.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-45.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-77.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-103.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading prefix_suffix_pairs-169.json....\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text\n", "/content/text-to-image-prompts/prefix_suffix_pairs/text_encodings\n", "reading suffix_tripple-119.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-107.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-145.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-201.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-60.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-16.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-179.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-2.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-54.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-31.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-73.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-79.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-96.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-177.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-97.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-116.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-151.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-129.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-40.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-80.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-166.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-33.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-83.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-87.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-165.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-50.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-125.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-98.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-77.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-171.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-70.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-155.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-13.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-106.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-44.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-67.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-109.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-7.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-71.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-192.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-15.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-136.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-173.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-57.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-69.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-121.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-43.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-65.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-164.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-197.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-183.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-111.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-66.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-86.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-130.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-90.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-89.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-3.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-142.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-85.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-137.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-122.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-20.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-144.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-4.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-194.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-141.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-63.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-188.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-95.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-55.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-41.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-152.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-108.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-9.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-46.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-68.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-156.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-157.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-143.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-105.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-84.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-135.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-139.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-49.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-162.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-104.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-78.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-147.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-11.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-120.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-17.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-5.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-138.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-190.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-47.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-100.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-163.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-175.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-25.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-140.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-114.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-52.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-161.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-196.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-91.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-169.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-51.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-61.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-32.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-6.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-18.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-76.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-170.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-153.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-168.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-127.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-146.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-134.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-103.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-158.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-93.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-56.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-182.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-200.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-132.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-191.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-154.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-185.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-99.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-178.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-101.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-128.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-12.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-26.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-198.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-113.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-58.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-36.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-29.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-22.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-123.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-199.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-62.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-34.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-149.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-35.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-159.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-64.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-115.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-133.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-37.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-189.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-181.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-131.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-174.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-187.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-186.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-92.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-88.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-14.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-102.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-172.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-8.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-124.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-160.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-112.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-24.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-10.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-53.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-75.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-193.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-42.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-19.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-30.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-117.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-195.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-27.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-81.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-110.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-82.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-1.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-148.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-167.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-45.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-28.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-126.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-21.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-94.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-23.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-118.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-48.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-39.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-74.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-184.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-150.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-180.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-59.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-38.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-176.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_tripple-72.json....\n", "/content/text-to-image-prompts/suffix_tripple/text\n", "/content/text-to-image-prompts/suffix_tripple/text_encodings\n", "reading suffix_quad-27.json....\n", "/content/text-to-image-prompts/suffix_quad/text\n", "/content/text-to-image-prompts/suffix_quad/text_encodings\n", "reading suffix_quad-39.json....\n", "/content/text-to-image-prompts/suffix_quad/text\n", "/content/text-to-image-prompts/suffix_quad/text_encodings\n", "reading suffix_quad-30.json....\n", "/content/text-to-image-prompts/suffix_quad/text\n", "/content/text-to-image-prompts/suffix_quad/text_encodings\n", "reading suffix_quad-42.json....\n", "/content/text-to-image-prompts/suffix_quad/text\n", "/content/text-to-image-prompts/suffix_quad/text_encodings\n", "reading suffix_quad-3.json....\n", "/content/text-to-image-prompts/suffix_quad/text\n", "/content/text-to-image-prompts/suffix_quad/text_encodings\n", "reading suffix_quad-43.json....\n", "/content/text-to-image-prompts/suffix_quad/text\n", "/content/text-to-image-prompts/suffix_quad/text_encodings\n", "reading suffix_quad-10.json....\n", "/content/text-to-image-prompts/suffix_quad/text\n", "/content/text-to-image-prompts/suffix_quad/text_encodings\n", "reading suffix_quad-26.json....\n", "/content/text-to-image-prompts/suffix_quad/text\n", "/content/text-to-image-prompts/suffix_quad/text_encodings\n", "reading suffix_quad-15.json....\n", "/content/text-to-image-prompts/suffix_quad/text\n", "/content/text-to-image-prompts/suffix_quad/text_encodings\n", "reading suffix_quad-18.json....\n", "/content/text-to-image-prompts/suffix_quad/text\n", "/content/text-to-image-prompts/suffix_quad/text_encodings\n", "reading suffix_quad-23.json....\n", "/content/text-to-image-prompts/suffix_quad/text\n", "/content/text-to-image-prompts/suffix_quad/text_encodings\n", "reading suffix_quad-8.json....\n", "/content/text-to-image-prompts/suffix_quad/text\n", "/content/text-to-image-prompts/suffix_quad/text_encodings\n", "reading suffix_quad-13.json....\n", "/content/text-to-image-prompts/suffix_quad/text\n", "/content/text-to-image-prompts/suffix_quad/text_encodings\n", "reading suffix_quad-44.json....\n", "/content/text-to-image-prompts/suffix_quad/text\n", "/content/text-to-image-prompts/suffix_quad/text_encodings\n", "reading suffix_quad-45.json....\n", "/content/text-to-image-prompts/suffix_quad/text\n", "/content/text-to-image-prompts/suffix_quad/text_encodings\n", "reading suffix_quad-5.json....\n", "/content/text-to-image-prompts/suffix_quad/text\n", "/content/text-to-image-prompts/suffix_quad/text_encodings\n", "reading suffix_quad-46.json....\n", "/content/text-to-image-prompts/suffix_quad/text\n", "/content/text-to-image-prompts/suffix_quad/text_encodings\n", "reading suffix_quad-6.json....\n", "/content/text-to-image-prompts/suffix_quad/text\n", "/content/text-to-image-prompts/suffix_quad/text_encodings\n", "reading suffix_quad-40.json....\n", "/content/text-to-image-prompts/suffix_quad/text\n", "/content/text-to-image-prompts/suffix_quad/text_encodings\n", "reading suffix_quad-20.json....\n", "/content/text-to-image-prompts/suffix_quad/text\n", "/content/text-to-image-prompts/suffix_quad/text_encodings\n", "reading suffix_quad-48.json....\n", "/content/text-to-image-prompts/suffix_quad/text\n", "/content/text-to-image-prompts/suffix_quad/text_encodings\n", "reading suffix_quad-21.json....\n", "/content/text-to-image-prompts/suffix_quad/text\n", "/content/text-to-image-prompts/suffix_quad/text_encodings\n", "reading suffix_quad-37.json....\n", "/content/text-to-image-prompts/suffix_quad/text\n", "/content/text-to-image-prompts/suffix_quad/text_encodings\n", "reading suffix_quad-16.json....\n", "/content/text-to-image-prompts/suffix_quad/text\n", "/content/text-to-image-prompts/suffix_quad/text_encodings\n", "reading suffix_quad-22.json....\n", "/content/text-to-image-prompts/suffix_quad/text\n", "/content/text-to-image-prompts/suffix_quad/text_encodings\n", "reading suffix_quad-32.json....\n", "/content/text-to-image-prompts/suffix_quad/text\n", "/content/text-to-image-prompts/suffix_quad/text_encodings\n", "reading suffix_quad-28.json....\n", "/content/text-to-image-prompts/suffix_quad/text\n", "/content/text-to-image-prompts/suffix_quad/text_encodings\n", "reading suffix_quad-34.json....\n", "/content/text-to-image-prompts/suffix_quad/text\n", "/content/text-to-image-prompts/suffix_quad/text_encodings\n", "reading suffix_quad-41.json....\n", "/content/text-to-image-prompts/suffix_quad/text\n", "/content/text-to-image-prompts/suffix_quad/text_encodings\n", "reading suffix_quad-2.json....\n", "/content/text-to-image-prompts/suffix_quad/text\n", "/content/text-to-image-prompts/suffix_quad/text_encodings\n", "reading suffix_quad-17.json....\n", "/content/text-to-image-prompts/suffix_quad/text\n", "/content/text-to-image-prompts/suffix_quad/text_encodings\n", "reading suffix_quad-12.json....\n", "/content/text-to-image-prompts/suffix_quad/text\n", "/content/text-to-image-prompts/suffix_quad/text_encodings\n", "reading suffix_quad-19.json....\n", "/content/text-to-image-prompts/suffix_quad/text\n", "/content/text-to-image-prompts/suffix_quad/text_encodings\n", "reading suffix_quad-14.json....\n", "/content/text-to-image-prompts/suffix_quad/text\n", "/content/text-to-image-prompts/suffix_quad/text_encodings\n", "reading suffix_quad-29.json....\n", "/content/text-to-image-prompts/suffix_quad/text\n", "/content/text-to-image-prompts/suffix_quad/text_encodings\n", "reading suffix_quad-33.json....\n", "/content/text-to-image-prompts/suffix_quad/text\n", "/content/text-to-image-prompts/suffix_quad/text_encodings\n", "reading suffix_quad-35.json....\n", "/content/text-to-image-prompts/suffix_quad/text\n", "/content/text-to-image-prompts/suffix_quad/text_encodings\n", "reading suffix_quad-24.json....\n", "/content/text-to-image-prompts/suffix_quad/text\n", "/content/text-to-image-prompts/suffix_quad/text_encodings\n", "reading suffix_quad-38.json....\n", "/content/text-to-image-prompts/suffix_quad/text\n", "/content/text-to-image-prompts/suffix_quad/text_encodings\n", "reading suffix_quad-36.json....\n", "/content/text-to-image-prompts/suffix_quad/text\n", "/content/text-to-image-prompts/suffix_quad/text_encodings\n", "reading suffix_quad-4.json....\n", "/content/text-to-image-prompts/suffix_quad/text\n", "/content/text-to-image-prompts/suffix_quad/text_encodings\n", "reading suffix_quad-47.json....\n", "/content/text-to-image-prompts/suffix_quad/text\n", "/content/text-to-image-prompts/suffix_quad/text_encodings\n", "reading suffix_quad-7.json....\n", "/content/text-to-image-prompts/suffix_quad/text\n", "/content/text-to-image-prompts/suffix_quad/text_encodings\n", "reading suffix_quad-25.json....\n", "/content/text-to-image-prompts/suffix_quad/text\n", "/content/text-to-image-prompts/suffix_quad/text_encodings\n", "reading suffix_quad-1.json....\n", "/content/text-to-image-prompts/suffix_quad/text\n", "/content/text-to-image-prompts/suffix_quad/text_encodings\n", "reading suffix_quad-31.json....\n", "/content/text-to-image-prompts/suffix_quad/text\n", "/content/text-to-image-prompts/suffix_quad/text_encodings\n", "reading suffix_quad-9.json....\n", "/content/text-to-image-prompts/suffix_quad/text\n", "/content/text-to-image-prompts/suffix_quad/text_encodings\n", "reading suffix_quad-11.json....\n", "/content/text-to-image-prompts/suffix_quad/text\n", "/content/text-to-image-prompts/suffix_quad/text_encodings\n", "reading tripple_nouns_1-6.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_16-4.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_12-9.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_13-1.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_17-8.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_16-3.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_16-10.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_10-6.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_17-5.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_1-10.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_14-7.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_11-9.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_1-4.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_10-4.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_15-3.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_13-8.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_12-5.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_16-11.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_14-3.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_13-4.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_14-2.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_12-8.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_14-5.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_11-8.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_13-11.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_15-8.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_11-3.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_11-11.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_10-10.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_12-1.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_15-10.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_17-10.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_11-7.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_10-5.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_12-4.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_1-5.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_14-10.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_11-1.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_11-6.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_12-3.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_10-8.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_13-10.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_11-2.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_17-4.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_14-9.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_16-9.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_1-3.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_1-2.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_12-6.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_13-9.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_10-11.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_17-2.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_14-4.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_10-3.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_16-1.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_14-6.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_17-3.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_14-1.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_1-8.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_15-6.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_1-11.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_10-1.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_10-7.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_16-6.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_13-3.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_17-11.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_1-9.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_16-5.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_11-5.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_15-1.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_13-2.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_10-9.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_10-2.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_1-1.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_17-1.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_15-11.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_14-11.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_11-10.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_12-2.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_15-9.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_16-8.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_18-1.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_15-2.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_13-6.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_17-9.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_11-4.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_15-7.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_14-8.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_15-4.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_13-5.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_13-7.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_16-7.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_17-7.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_12-11.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_16-2.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_17-6.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_1-7.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_12-7.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_15-5.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading tripple_nouns_12-10.json....\n", "/content/text-to-image-prompts/nouns/text\n", "/content/text-to-image-prompts/nouns/text_encodings\n", "reading 🎼 fusion-t2i-lyrics-21.json....\n", "/content/text-to-image-prompts/lyrics/text\n", "/content/text-to-image-prompts/lyrics/text_encodings\n", "reading 🎼 fusion-t2i-lyrics-4.json....\n", "/content/text-to-image-prompts/lyrics/text\n", "/content/text-to-image-prompts/lyrics/text_encodings\n", "reading 🎼 fusion-t2i-lyrics-16.json....\n", "/content/text-to-image-prompts/lyrics/text\n", "/content/text-to-image-prompts/lyrics/text_encodings\n", "reading 🎼 fusion-t2i-lyrics-31.json....\n", "/content/text-to-image-prompts/lyrics/text\n", "/content/text-to-image-prompts/lyrics/text_encodings\n", "reading 🎼 fusion-t2i-lyrics-10.json....\n", "/content/text-to-image-prompts/lyrics/text\n", "/content/text-to-image-prompts/lyrics/text_encodings\n", "reading 🎼 fusion-t2i-lyrics-28.json....\n", "/content/text-to-image-prompts/lyrics/text\n", "/content/text-to-image-prompts/lyrics/text_encodings\n", "reading 🎼 fusion-t2i-lyrics-12.json....\n", "/content/text-to-image-prompts/lyrics/text\n", "/content/text-to-image-prompts/lyrics/text_encodings\n", "reading 🎼 fusion-t2i-lyrics-26.json....\n", "/content/text-to-image-prompts/lyrics/text\n", "/content/text-to-image-prompts/lyrics/text_encodings\n", "reading 🎼 fusion-t2i-lyrics-1.json....\n", "/content/text-to-image-prompts/lyrics/text\n", "/content/text-to-image-prompts/lyrics/text_encodings\n", "reading 🎼 fusion-t2i-lyrics-29.json....\n", "/content/text-to-image-prompts/lyrics/text\n", "/content/text-to-image-prompts/lyrics/text_encodings\n", "reading 🎼 fusion-t2i-lyrics-43.json....\n", "/content/text-to-image-prompts/lyrics/text\n", "/content/text-to-image-prompts/lyrics/text_encodings\n", "reading 🎼 fusion-t2i-lyrics-25.json....\n", "/content/text-to-image-prompts/lyrics/text\n", "/content/text-to-image-prompts/lyrics/text_encodings\n", "reading 🎼 fusion-t2i-lyrics-42.json....\n", "/content/text-to-image-prompts/lyrics/text\n", "/content/text-to-image-prompts/lyrics/text_encodings\n", "reading 🎼 fusion-t2i-lyrics-8.json....\n", "/content/text-to-image-prompts/lyrics/text\n", "/content/text-to-image-prompts/lyrics/text_encodings\n", "reading 🎼 fusion-t2i-lyrics-35.json....\n", "/content/text-to-image-prompts/lyrics/text\n", "/content/text-to-image-prompts/lyrics/text_encodings\n", "reading 🎼 fusion-t2i-lyrics-32.json....\n", "/content/text-to-image-prompts/lyrics/text\n", "/content/text-to-image-prompts/lyrics/text_encodings\n", "reading 🎼 fusion-t2i-lyrics-7.json....\n", "/content/text-to-image-prompts/lyrics/text\n", "/content/text-to-image-prompts/lyrics/text_encodings\n", "reading 🎼 fusion-t2i-lyrics-15.json....\n", "/content/text-to-image-prompts/lyrics/text\n", "/content/text-to-image-prompts/lyrics/text_encodings\n", "reading 🎼 fusion-t2i-lyrics-14.json....\n", "/content/text-to-image-prompts/lyrics/text\n", "/content/text-to-image-prompts/lyrics/text_encodings\n", "reading 🎼 fusion-t2i-lyrics-5.json....\n", "/content/text-to-image-prompts/lyrics/text\n", "/content/text-to-image-prompts/lyrics/text_encodings\n", "reading 🎼 fusion-t2i-lyrics-41.json....\n", "/content/text-to-image-prompts/lyrics/text\n", "/content/text-to-image-prompts/lyrics/text_encodings\n", "reading 🎼 fusion-t2i-lyrics-17.json....\n", "/content/text-to-image-prompts/lyrics/text\n", "/content/text-to-image-prompts/lyrics/text_encodings\n", "reading 🎼 fusion-t2i-lyrics-27.json....\n", "/content/text-to-image-prompts/lyrics/text\n", "/content/text-to-image-prompts/lyrics/text_encodings\n", "reading 🎼 fusion-t2i-lyrics-3.json....\n", "/content/text-to-image-prompts/lyrics/text\n", "/content/text-to-image-prompts/lyrics/text_encodings\n", "reading 🎼 fusion-t2i-lyrics-13.json....\n", "/content/text-to-image-prompts/lyrics/text\n", "/content/text-to-image-prompts/lyrics/text_encodings\n", "reading 🎼 fusion-t2i-lyrics-11.json....\n", "/content/text-to-image-prompts/lyrics/text\n", "/content/text-to-image-prompts/lyrics/text_encodings\n", "reading 🎼 fusion-t2i-lyrics-36.json....\n", "/content/text-to-image-prompts/lyrics/text\n", "/content/text-to-image-prompts/lyrics/text_encodings\n", "reading 🎼 fusion-t2i-lyrics-22.json....\n", "/content/text-to-image-prompts/lyrics/text\n", "/content/text-to-image-prompts/lyrics/text_encodings\n", "reading 🎼 fusion-t2i-lyrics-38.json....\n", "/content/text-to-image-prompts/lyrics/text\n", "/content/text-to-image-prompts/lyrics/text_encodings\n", "reading 🎼 fusion-t2i-lyrics-9.json....\n", "/content/text-to-image-prompts/lyrics/text\n", "/content/text-to-image-prompts/lyrics/text_encodings\n", "reading 🎼 fusion-t2i-lyrics-18.json....\n", "/content/text-to-image-prompts/lyrics/text\n", "/content/text-to-image-prompts/lyrics/text_encodings\n", "reading 🎼 fusion-t2i-lyrics-23.json....\n", "/content/text-to-image-prompts/lyrics/text\n", "/content/text-to-image-prompts/lyrics/text_encodings\n", "reading 🎼 fusion-t2i-lyrics-24.json....\n", "/content/text-to-image-prompts/lyrics/text\n", "/content/text-to-image-prompts/lyrics/text_encodings\n", "reading 🎼 fusion-t2i-lyrics-20.json....\n", "/content/text-to-image-prompts/lyrics/text\n", "/content/text-to-image-prompts/lyrics/text_encodings\n", "reading 🎼 fusion-t2i-lyrics-37.json....\n", "/content/text-to-image-prompts/lyrics/text\n", "/content/text-to-image-prompts/lyrics/text_encodings\n", "reading 🎼 fusion-t2i-lyrics-33.json....\n", "/content/text-to-image-prompts/lyrics/text\n", "/content/text-to-image-prompts/lyrics/text_encodings\n", "reading 🎼 fusion-t2i-lyrics-34.json....\n", "/content/text-to-image-prompts/lyrics/text\n", "/content/text-to-image-prompts/lyrics/text_encodings\n", "reading 🎼 fusion-t2i-lyrics-39.json....\n", "/content/text-to-image-prompts/lyrics/text\n", "/content/text-to-image-prompts/lyrics/text_encodings\n", "reading 🎼 fusion-t2i-lyrics-30.json....\n", "/content/text-to-image-prompts/lyrics/text\n", "/content/text-to-image-prompts/lyrics/text_encodings\n", "reading 🎼 fusion-t2i-lyrics-40.json....\n", "/content/text-to-image-prompts/lyrics/text\n", "/content/text-to-image-prompts/lyrics/text_encodings\n", "reading 🎼 fusion-t2i-lyrics-2.json....\n", "/content/text-to-image-prompts/lyrics/text\n", "/content/text-to-image-prompts/lyrics/text_encodings\n", "reading 🎼 fusion-t2i-lyrics-19.json....\n", "/content/text-to-image-prompts/lyrics/text\n", "/content/text-to-image-prompts/lyrics/text_encodings\n", "reading 🎼 fusion-t2i-lyrics-6.json....\n", "/content/text-to-image-prompts/lyrics/text\n", "/content/text-to-image-prompts/lyrics/text_encodings\n", "reading 🎀 fusion-t2i-danbooru-tags-9.json....\n", "/content/text-to-image-prompts/danbooru/text\n", "/content/text-to-image-prompts/danbooru/text_encodings\n", "reading 🎀 fusion-t2i-danbooru-tags-16.json....\n", "/content/text-to-image-prompts/danbooru/text\n", "/content/text-to-image-prompts/danbooru/text_encodings\n", "reading 🎀 fusion-t2i-danbooru-tags-20.json....\n", "/content/text-to-image-prompts/danbooru/text\n", "/content/text-to-image-prompts/danbooru/text_encodings\n", "reading 🎀 fusion-t2i-danbooru-tags-14.json....\n", "/content/text-to-image-prompts/danbooru/text\n", "/content/text-to-image-prompts/danbooru/text_encodings\n", "reading 🎀 fusion-t2i-danbooru-tags-8.json....\n", "/content/text-to-image-prompts/danbooru/text\n", "/content/text-to-image-prompts/danbooru/text_encodings\n", "reading 🎀 fusion-t2i-danbooru-tags-3.json....\n", "/content/text-to-image-prompts/danbooru/text\n", "/content/text-to-image-prompts/danbooru/text_encodings\n", "reading 🎀 fusion-t2i-danbooru-tags-2.json....\n", "/content/text-to-image-prompts/danbooru/text\n", "/content/text-to-image-prompts/danbooru/text_encodings\n", "reading 🎀 fusion-t2i-danbooru-tags-11.json....\n", "/content/text-to-image-prompts/danbooru/text\n", "/content/text-to-image-prompts/danbooru/text_encodings\n", "reading 🎀 fusion-t2i-danbooru-tags-6.json....\n", "/content/text-to-image-prompts/danbooru/text\n", "/content/text-to-image-prompts/danbooru/text_encodings\n", "reading 🎀 fusion-t2i-danbooru-tags-7.json....\n", "/content/text-to-image-prompts/danbooru/text\n", "/content/text-to-image-prompts/danbooru/text_encodings\n", "reading 🎀 fusion-t2i-danbooru-tags-1.json....\n", "/content/text-to-image-prompts/danbooru/text\n", "/content/text-to-image-prompts/danbooru/text_encodings\n", "reading 🎀 fusion-t2i-danbooru-tags-5.json....\n", "/content/text-to-image-prompts/danbooru/text\n", "/content/text-to-image-prompts/danbooru/text_encodings\n", "reading 🎀 fusion-t2i-danbooru-tags-12.json....\n", "/content/text-to-image-prompts/danbooru/text\n", "/content/text-to-image-prompts/danbooru/text_encodings\n", "reading 🎀 fusion-t2i-danbooru-tags-17.json....\n", "/content/text-to-image-prompts/danbooru/text\n", "/content/text-to-image-prompts/danbooru/text_encodings\n", "reading 🎀 fusion-t2i-danbooru-tags-19.json....\n", "/content/text-to-image-prompts/danbooru/text\n", "/content/text-to-image-prompts/danbooru/text_encodings\n", "reading 🎀 fusion-t2i-danbooru-tags-18.json....\n", "/content/text-to-image-prompts/danbooru/text\n", "/content/text-to-image-prompts/danbooru/text_encodings\n", "reading 🎀 fusion-t2i-danbooru-tags-15.json....\n", "/content/text-to-image-prompts/danbooru/text\n", "/content/text-to-image-prompts/danbooru/text_encodings\n", "reading 🎀 fusion-t2i-danbooru-tags-21.json....\n", "/content/text-to-image-prompts/danbooru/text\n", "/content/text-to-image-prompts/danbooru/text_encodings\n", "reading 🎀 fusion-t2i-danbooru-tags-10.json....\n", "/content/text-to-image-prompts/danbooru/text\n", "/content/text-to-image-prompts/danbooru/text_encodings\n", "reading 🎀 fusion-t2i-danbooru-tags-4.json....\n", "/content/text-to-image-prompts/danbooru/text\n", "/content/text-to-image-prompts/danbooru/text_encodings\n", "reading 🎀 fusion-t2i-danbooru-tags-13.json....\n", "/content/text-to-image-prompts/danbooru/text\n", "/content/text-to-image-prompts/danbooru/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-27.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-96.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-7.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-92.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-46.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-76.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-56.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-24.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-10.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-5.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-82.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-37.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-21.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-60.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-23.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-9.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-91.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-83.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-70.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-84.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-42.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-71.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-20.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-66.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-13.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-90.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-74.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-51.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-11.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-50.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-38.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-58.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-33.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-49.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-62.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-47.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-45.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-86.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-72.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-29.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-8.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-53.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-97.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-89.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-100.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-15.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-52.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-75.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-78.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-31.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-67.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-88.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-22.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-64.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-59.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-18.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-80.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-25.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-87.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-57.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-17.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-6.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-4.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-102.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-44.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-69.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-43.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-28.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-2.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-94.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-12.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-36.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-101.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-19.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-93.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-14.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-73.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-85.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-34.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-55.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-65.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-79.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-32.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-26.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-77.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-35.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-48.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-41.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-54.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-61.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-40.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-30.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-81.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-68.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-3.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-1.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-63.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-95.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-16.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 🆔👩_🦰 fusion-t2i-girl-firstname-1-39.json....\n", "/content/text-to-image-prompts/names/firstnames/text\n", "/content/text-to-image-prompts/names/firstnames/text_encodings\n", "reading 👱_♀️ fusion-t2i-lastnames-7-2.json....\n", "/content/text-to-image-prompts/names/lastnames/text\n", "/content/text-to-image-prompts/names/lastnames/text_encodings\n", "reading 👱_♀️ fusion-t2i-lastnames-10-1.json....\n", "/content/text-to-image-prompts/names/lastnames/text\n", "/content/text-to-image-prompts/names/lastnames/text_encodings\n", "reading 👱_♀️ fusion-t2i-lastnames-2-3.json....\n", "/content/text-to-image-prompts/names/lastnames/text\n", "/content/text-to-image-prompts/names/lastnames/text_encodings\n", "reading 👱_♀️ fusion-t2i-lastnames-9-4.json....\n", "/content/text-to-image-prompts/names/lastnames/text\n", "/content/text-to-image-prompts/names/lastnames/text_encodings\n", "reading 👱_♀️ fusion-t2i-lastnames-1-3.json....\n", "/content/text-to-image-prompts/names/lastnames/text\n", "/content/text-to-image-prompts/names/lastnames/text_encodings\n", "reading 👱_♀️ fusion-t2i-lastnames-1-6.json....\n", "/content/text-to-image-prompts/names/lastnames/text\n", "/content/text-to-image-prompts/names/lastnames/text_encodings\n", "reading 👱_♀️ fusion-t2i-lastnames-3-1.json....\n", "/content/text-to-image-prompts/names/lastnames/text\n", "/content/text-to-image-prompts/names/lastnames/text_encodings\n", "reading 👱_♀️ fusion-t2i-lastnames-8-3.json....\n", "/content/text-to-image-prompts/names/lastnames/text\n", "/content/text-to-image-prompts/names/lastnames/text_encodings\n", "reading 👱_♀️ fusion-t2i-lastnames-9-6.json....\n", "/content/text-to-image-prompts/names/lastnames/text\n", "/content/text-to-image-prompts/names/lastnames/text_encodings\n", "reading 👱_♀️ fusion-t2i-lastnames-10-4.json....\n", "/content/text-to-image-prompts/names/lastnames/text\n", "/content/text-to-image-prompts/names/lastnames/text_encodings\n", "reading 👱_♀️ fusion-t2i-lastnames-3-5.json....\n", "/content/text-to-image-prompts/names/lastnames/text\n", "/content/text-to-image-prompts/names/lastnames/text_encodings\n", "reading 👱_♀️ fusion-t2i-lastnames-3-6.json....\n", "/content/text-to-image-prompts/names/lastnames/text\n", "/content/text-to-image-prompts/names/lastnames/text_encodings\n", "reading 👱_♀️ fusion-t2i-lastnames-8-1.json....\n", "/content/text-to-image-prompts/names/lastnames/text\n", "/content/text-to-image-prompts/names/lastnames/text_encodings\n", "reading 👱_♀️ fusion-t2i-lastnames-3-3.json....\n", "/content/text-to-image-prompts/names/lastnames/text\n", "/content/text-to-image-prompts/names/lastnames/text_encodings\n", "reading 👱_♀️ fusion-t2i-lastnames-9-5.json....\n", "/content/text-to-image-prompts/names/lastnames/text\n", "/content/text-to-image-prompts/names/lastnames/text_encodings\n", "reading 👱_♀️ fusion-t2i-lastnames-6-1.json....\n", "/content/text-to-image-prompts/names/lastnames/text\n", "/content/text-to-image-prompts/names/lastnames/text_encodings\n", "reading 👱_♀️ fusion-t2i-lastnames-5-2.json....\n", "/content/text-to-image-prompts/names/lastnames/text\n", "/content/text-to-image-prompts/names/lastnames/text_encodings\n", "reading 👱_♀️ fusion-t2i-lastnames-1-1.json....\n", "/content/text-to-image-prompts/names/lastnames/text\n", "/content/text-to-image-prompts/names/lastnames/text_encodings\n", "reading 👱_♀️ fusion-t2i-lastnames-8-4.json....\n", "/content/text-to-image-prompts/names/lastnames/text\n", "/content/text-to-image-prompts/names/lastnames/text_encodings\n", "reading 👱_♀️ fusion-t2i-lastnames-10-2.json....\n", "/content/text-to-image-prompts/names/lastnames/text\n", "/content/text-to-image-prompts/names/lastnames/text_encodings\n", "reading 👱_♀️ fusion-t2i-lastnames-9-2.json....\n", "/content/text-to-image-prompts/names/lastnames/text\n", "/content/text-to-image-prompts/names/lastnames/text_encodings\n", "reading 👱_♀️ fusion-t2i-lastnames-4-1.json....\n", "/content/text-to-image-prompts/names/lastnames/text\n", "/content/text-to-image-prompts/names/lastnames/text_encodings\n", "reading 👱_♀️ fusion-t2i-lastnames-9-1.json....\n", "/content/text-to-image-prompts/names/lastnames/text\n", "/content/text-to-image-prompts/names/lastnames/text_encodings\n", "reading 👱_♀️ fusion-t2i-lastnames-2-4.json....\n", "/content/text-to-image-prompts/names/lastnames/text\n", "/content/text-to-image-prompts/names/lastnames/text_encodings\n", "reading 👱_♀️ fusion-t2i-lastnames-2-1.json....\n", "/content/text-to-image-prompts/names/lastnames/text\n", "/content/text-to-image-prompts/names/lastnames/text_encodings\n", "reading 👱_♀️ fusion-t2i-lastnames-7-5.json....\n", "/content/text-to-image-prompts/names/lastnames/text\n", "/content/text-to-image-prompts/names/lastnames/text_encodings\n", "reading 👱_♀️ fusion-t2i-lastnames-10-3.json....\n", "/content/text-to-image-prompts/names/lastnames/text\n", "/content/text-to-image-prompts/names/lastnames/text_encodings\n", "reading 👱_♀️ fusion-t2i-lastnames-6-2.json....\n", "/content/text-to-image-prompts/names/lastnames/text\n", "/content/text-to-image-prompts/names/lastnames/text_encodings\n", "reading 👱_♀️ fusion-t2i-lastnames-2-2.json....\n", "/content/text-to-image-prompts/names/lastnames/text\n", "/content/text-to-image-prompts/names/lastnames/text_encodings\n", "reading 👱_♀️ fusion-t2i-lastnames-4-5.json....\n", "/content/text-to-image-prompts/names/lastnames/text\n", "/content/text-to-image-prompts/names/lastnames/text_encodings\n", "reading 👱_♀️ fusion-t2i-lastnames-2-5.json....\n", "/content/text-to-image-prompts/names/lastnames/text\n", "/content/text-to-image-prompts/names/lastnames/text_encodings\n", "reading 👱_♀️ fusion-t2i-lastnames-4-4.json....\n", "/content/text-to-image-prompts/names/lastnames/text\n", "/content/text-to-image-prompts/names/lastnames/text_encodings\n", "reading 👱_♀️ fusion-t2i-lastnames-3-2.json....\n", "/content/text-to-image-prompts/names/lastnames/text\n", "/content/text-to-image-prompts/names/lastnames/text_encodings\n", "reading 👱_♀️ fusion-t2i-lastnames-5-1.json....\n", "/content/text-to-image-prompts/names/lastnames/text\n", "/content/text-to-image-prompts/names/lastnames/text_encodings\n", "reading 👱_♀️ fusion-t2i-lastnames-6-4.json....\n", "/content/text-to-image-prompts/names/lastnames/text\n", "/content/text-to-image-prompts/names/lastnames/text_encodings\n", "reading 👱_♀️ fusion-t2i-lastnames-1-5.json....\n", "/content/text-to-image-prompts/names/lastnames/text\n", "/content/text-to-image-prompts/names/lastnames/text_encodings\n", "reading 👱_♀️ fusion-t2i-lastnames-6-3.json....\n", "/content/text-to-image-prompts/names/lastnames/text\n", "/content/text-to-image-prompts/names/lastnames/text_encodings\n", "reading 👱_♀️ fusion-t2i-lastnames-8-5.json....\n", "/content/text-to-image-prompts/names/lastnames/text\n", "/content/text-to-image-prompts/names/lastnames/text_encodings\n", "reading 👱_♀️ fusion-t2i-lastnames-7-3.json....\n", "/content/text-to-image-prompts/names/lastnames/text\n", "/content/text-to-image-prompts/names/lastnames/text_encodings\n", "reading 👱_♀️ fusion-t2i-lastnames-5-4.json....\n", "/content/text-to-image-prompts/names/lastnames/text\n", "/content/text-to-image-prompts/names/lastnames/text_encodings\n", "reading 👱_♀️ fusion-t2i-lastnames-4-2.json....\n", "/content/text-to-image-prompts/names/lastnames/text\n", "/content/text-to-image-prompts/names/lastnames/text_encodings\n", "reading 👱_♀️ fusion-t2i-lastnames-1-2.json....\n", "/content/text-to-image-prompts/names/lastnames/text\n", "/content/text-to-image-prompts/names/lastnames/text_encodings\n", "reading 👱_♀️ fusion-t2i-lastnames-3-4.json....\n", "/content/text-to-image-prompts/names/lastnames/text\n", "/content/text-to-image-prompts/names/lastnames/text_encodings\n", "reading 👱_♀️ fusion-t2i-lastnames-4-6.json....\n", "/content/text-to-image-prompts/names/lastnames/text\n", "/content/text-to-image-prompts/names/lastnames/text_encodings\n", "reading 👱_♀️ fusion-t2i-lastnames-6-5.json....\n", "/content/text-to-image-prompts/names/lastnames/text\n", "/content/text-to-image-prompts/names/lastnames/text_encodings\n", "reading 👱_♀️ fusion-t2i-lastnames-9-3.json....\n", "/content/text-to-image-prompts/names/lastnames/text\n", "/content/text-to-image-prompts/names/lastnames/text_encodings\n", "reading 👱_♀️ fusion-t2i-lastnames-5-5.json....\n", "/content/text-to-image-prompts/names/lastnames/text\n", "/content/text-to-image-prompts/names/lastnames/text_encodings\n", "reading 👱_♀️ fusion-t2i-lastnames-7-4.json....\n", "/content/text-to-image-prompts/names/lastnames/text\n", "/content/text-to-image-prompts/names/lastnames/text_encodings\n", "reading 👱_♀️ fusion-t2i-lastnames-4-3.json....\n", "/content/text-to-image-prompts/names/lastnames/text\n", "/content/text-to-image-prompts/names/lastnames/text_encodings\n", "reading 👱_♀️ fusion-t2i-lastnames-8-2.json....\n", "/content/text-to-image-prompts/names/lastnames/text\n", "/content/text-to-image-prompts/names/lastnames/text_encodings\n", "reading 👱_♀️ fusion-t2i-lastnames-1-4.json....\n", "/content/text-to-image-prompts/names/lastnames/text\n", "/content/text-to-image-prompts/names/lastnames/text_encodings\n", "reading 👱_♀️ fusion-t2i-lastnames-7-1.json....\n", "/content/text-to-image-prompts/names/lastnames/text\n", "/content/text-to-image-prompts/names/lastnames/text_encodings\n", "reading 👱_♀️ fusion-t2i-lastnames-5-3.json....\n", "/content/text-to-image-prompts/names/lastnames/text\n", "/content/text-to-image-prompts/names/lastnames/text_encodings\n", "reading 🆔👨 fusion-t2i-v2-celeb-1-6.json....\n", "/content/text-to-image-prompts/names/celebs/mixed/text\n", "/content/text-to-image-prompts/names/celebs/mixed/text_encodings\n", "reading 🆔👨 fusion-t2i-v2-celeb-1-7.json....\n", "/content/text-to-image-prompts/names/celebs/mixed/text\n", "/content/text-to-image-prompts/names/celebs/mixed/text_encodings\n", "reading 🆔👨 fusion-t2i-v2-celeb-1-2.json....\n", "/content/text-to-image-prompts/names/celebs/mixed/text\n", "/content/text-to-image-prompts/names/celebs/mixed/text_encodings\n", "reading 🆔👨 fusion-t2i-v2-celeb-1-8.json....\n", "/content/text-to-image-prompts/names/celebs/mixed/text\n", "/content/text-to-image-prompts/names/celebs/mixed/text_encodings\n", "reading 🆔👨 fusion-t2i-v2-celeb-1-5.json....\n", "/content/text-to-image-prompts/names/celebs/mixed/text\n", "/content/text-to-image-prompts/names/celebs/mixed/text_encodings\n", "reading 🆔👨 fusion-t2i-v2-celeb-1-4.json....\n", "/content/text-to-image-prompts/names/celebs/mixed/text\n", "/content/text-to-image-prompts/names/celebs/mixed/text_encodings\n", "reading 🆔👨 fusion-t2i-v2-celeb-1-3.json....\n", "/content/text-to-image-prompts/names/celebs/mixed/text\n", "/content/text-to-image-prompts/names/celebs/mixed/text_encodings\n", "reading 🆔👨 fusion-t2i-v2-celeb-1-1.json....\n", "/content/text-to-image-prompts/names/celebs/mixed/text\n", "/content/text-to-image-prompts/names/celebs/mixed/text_encodings\n", "reading names_fullnames_text_👱_♀️female_fullnames-8-2.json....\n", "/content/text-to-image-prompts/names/fullnames/text\n", "/content/text-to-image-prompts/names/fullnames/text_encodings\n", "reading names_fullnames_text_👱_♀️female_fullnames-1-2.json....\n", "/content/text-to-image-prompts/names/fullnames/text\n", "/content/text-to-image-prompts/names/fullnames/text_encodings\n", "reading names_fullnames_text_👱_♀️female_fullnames-5-1.json....\n", "/content/text-to-image-prompts/names/fullnames/text\n", "/content/text-to-image-prompts/names/fullnames/text_encodings\n", "reading names_fullnames_text_👱_♀️female_fullnames-4-1.json....\n", "/content/text-to-image-prompts/names/fullnames/text\n", "/content/text-to-image-prompts/names/fullnames/text_encodings\n", "reading names_fullnames_text_👱_♀️female_fullnames-3-1.json....\n", "/content/text-to-image-prompts/names/fullnames/text\n", "/content/text-to-image-prompts/names/fullnames/text_encodings\n", "reading names_fullnames_text_👱_♀️female_fullnames-5-2.json....\n", "/content/text-to-image-prompts/names/fullnames/text\n", "/content/text-to-image-prompts/names/fullnames/text_encodings\n", "reading names_fullnames_text_👱_♀️female_fullnames-1-1.json....\n", "/content/text-to-image-prompts/names/fullnames/text\n", "/content/text-to-image-prompts/names/fullnames/text_encodings\n", "reading names_fullnames_text_👱_♀️female_fullnames-3-2.json....\n", "/content/text-to-image-prompts/names/fullnames/text\n", "/content/text-to-image-prompts/names/fullnames/text_encodings\n", "reading names_fullnames_text_👱_♀️female_fullnames-8-1.json....\n", "/content/text-to-image-prompts/names/fullnames/text\n", "/content/text-to-image-prompts/names/fullnames/text_encodings\n", "reading names_fullnames_text_👱_♀️female_fullnames-2-2.json....\n", "/content/text-to-image-prompts/names/fullnames/text\n", "/content/text-to-image-prompts/names/fullnames/text_encodings\n", "reading names_fullnames_text_👱_♀️female_fullnames-9-1.json....\n", "/content/text-to-image-prompts/names/fullnames/text\n", "/content/text-to-image-prompts/names/fullnames/text_encodings\n", "reading names_fullnames_text_👱_♀️female_fullnames-4-2.json....\n", "/content/text-to-image-prompts/names/fullnames/text\n", "/content/text-to-image-prompts/names/fullnames/text_encodings\n", "reading names_fullnames_text_👱_♀️female_fullnames-6-1.json....\n", "/content/text-to-image-prompts/names/fullnames/text\n", "/content/text-to-image-prompts/names/fullnames/text_encodings\n", "reading names_fullnames_text_👱_♀️female_fullnames-2-1.json....\n", "/content/text-to-image-prompts/names/fullnames/text\n", "/content/text-to-image-prompts/names/fullnames/text_encodings\n", "reading names_fullnames_text_👱_♀️female_fullnames-7-1.json....\n", "/content/text-to-image-prompts/names/fullnames/text\n", "/content/text-to-image-prompts/names/fullnames/text_encodings\n", "reading names_fullnames_text_👱_♀️female_fullnames-9-2.json....\n", "/content/text-to-image-prompts/names/fullnames/text\n", "/content/text-to-image-prompts/names/fullnames/text_encodings\n", "reading names_fullnames_text_👱_♀️female_fullnames-6-2.json....\n", "/content/text-to-image-prompts/names/fullnames/text\n", "/content/text-to-image-prompts/names/fullnames/text_encodings\n", "reading names_fullnames_text_👱_♀️female_fullnames-7-2.json....\n", "/content/text-to-image-prompts/names/fullnames/text\n", "/content/text-to-image-prompts/names/fullnames/text_encodings\n", "reading 🦜 fusion-t2i-prompt-features-34.json....\n", "/content/text-to-image-prompts/civitai-prompts/green/text\n", "/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n", "reading 🦜 fusion-t2i-prompt-features-12.json....\n", "/content/text-to-image-prompts/civitai-prompts/green/text\n", "/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n", "reading 🦜 fusion-t2i-prompt-features-8.json....\n", "/content/text-to-image-prompts/civitai-prompts/green/text\n", "/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n", "reading 🦜 fusion-t2i-prompt-features-20.json....\n", "/content/text-to-image-prompts/civitai-prompts/green/text\n", "/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n", "reading 🦜 fusion-t2i-prompt-features-14.json....\n", "/content/text-to-image-prompts/civitai-prompts/green/text\n", "/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n", "reading 🦜 fusion-t2i-prompt-features-27.json....\n", "/content/text-to-image-prompts/civitai-prompts/green/text\n", "/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n", "reading 🦜 fusion-t2i-prompt-features-16.json....\n", "/content/text-to-image-prompts/civitai-prompts/green/text\n", "/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n", "reading 🦜 fusion-t2i-prompt-features-13.json....\n", "/content/text-to-image-prompts/civitai-prompts/green/text\n", "/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n", "reading 🦜 fusion-t2i-prompt-features-30.json....\n", "/content/text-to-image-prompts/civitai-prompts/green/text\n", "/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n", "reading 🦜 fusion-t2i-prompt-features-5.json....\n", "/content/text-to-image-prompts/civitai-prompts/green/text\n", "/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n", "reading 🦜 fusion-t2i-prompt-features-29.json....\n", "/content/text-to-image-prompts/civitai-prompts/green/text\n", "/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n", "reading 🦜 fusion-t2i-prompt-features-24.json....\n", "/content/text-to-image-prompts/civitai-prompts/green/text\n", "/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n", "reading 🦜 fusion-t2i-prompt-features-10.json....\n", "/content/text-to-image-prompts/civitai-prompts/green/text\n", "/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n", "reading 🦜 fusion-t2i-prompt-features-33.json....\n", "/content/text-to-image-prompts/civitai-prompts/green/text\n", "/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n", "reading 🦜 fusion-t2i-prompt-features-15.json....\n", "/content/text-to-image-prompts/civitai-prompts/green/text\n", "/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n", "reading 🦜 fusion-t2i-prompt-features-1.json....\n", "/content/text-to-image-prompts/civitai-prompts/green/text\n", "/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n", "reading 🦜 fusion-t2i-prompt-features-19.json....\n", "/content/text-to-image-prompts/civitai-prompts/green/text\n", "/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n", "reading 🦜 fusion-t2i-prompt-features-28.json....\n", "/content/text-to-image-prompts/civitai-prompts/green/text\n", "/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n", "reading 🦜 fusion-t2i-prompt-features-32.json....\n", "/content/text-to-image-prompts/civitai-prompts/green/text\n", "/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n", "reading 🦜 fusion-t2i-prompt-features-11.json....\n", "/content/text-to-image-prompts/civitai-prompts/green/text\n", "/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n", "reading 🦜 fusion-t2i-prompt-features-31.json....\n", "/content/text-to-image-prompts/civitai-prompts/green/text\n", "/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n", "reading 🦜 fusion-t2i-prompt-features-17.json....\n", "/content/text-to-image-prompts/civitai-prompts/green/text\n", "/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n", "reading 🦜 fusion-t2i-prompt-features-2.json....\n", "/content/text-to-image-prompts/civitai-prompts/green/text\n", "/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n", "reading 🦜 fusion-t2i-prompt-features-6.json....\n", "/content/text-to-image-prompts/civitai-prompts/green/text\n", "/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n", "reading 🦜 fusion-t2i-prompt-features-23.json....\n", "/content/text-to-image-prompts/civitai-prompts/green/text\n", "/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n", "reading 🦜 fusion-t2i-prompt-features-18.json....\n", "/content/text-to-image-prompts/civitai-prompts/green/text\n", "/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n", "reading 🦜 fusion-t2i-prompt-features-7.json....\n", "/content/text-to-image-prompts/civitai-prompts/green/text\n", "/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n", "reading 🦜 fusion-t2i-prompt-features-4.json....\n", "/content/text-to-image-prompts/civitai-prompts/green/text\n", "/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n", "reading 🦜 fusion-t2i-prompt-features-22.json....\n", "/content/text-to-image-prompts/civitai-prompts/green/text\n", "/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n", "reading 🦜 fusion-t2i-prompt-features-25.json....\n", "/content/text-to-image-prompts/civitai-prompts/green/text\n", "/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n", "reading 🦜 fusion-t2i-prompt-features-9.json....\n", "/content/text-to-image-prompts/civitai-prompts/green/text\n", "/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n", "reading 🦜 fusion-t2i-prompt-features-26.json....\n", "/content/text-to-image-prompts/civitai-prompts/green/text\n", "/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n", "reading 🦜 fusion-t2i-prompt-features-21.json....\n", "/content/text-to-image-prompts/civitai-prompts/green/text\n", "/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n", "reading 🦜 fusion-t2i-prompt-features-3.json....\n", "/content/text-to-image-prompts/civitai-prompts/green/text\n", "/content/text-to-image-prompts/civitai-prompts/green/text_encodings\n", "reading 😃 fusion-t2i-emojis-2.json....\n", "/content/text-to-image-prompts/vocab/text_encodings/emoji/text\n", "/content/text-to-image-prompts/vocab/text_encodings/emoji/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-4.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-15.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-130.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-33.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-1.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-43.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-53.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-49.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-47.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-134.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-40.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-145.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-116.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-12.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-136.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-23.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-110.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-150.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-45.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-28.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-38.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-34.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-13.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-133.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-25.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-126.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-138.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-17.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-22.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-104.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-120.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-31.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-5.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-41.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-115.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-20.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-50.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-106.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-19.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-2.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-111.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-35.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-18.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-127.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-147.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-48.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-30.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-122.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-14.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-27.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-52.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-3.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-46.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-135.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-29.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-16.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-139.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-146.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-137.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-108.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-129.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-124.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-113.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-37.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-123.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-32.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-44.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-10.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-39.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-100.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-143.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-117.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-51.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-21.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-105.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-118.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-42.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-149.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-103.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-101.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-148.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-11.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-112.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-121.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-128.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-132.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-36.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-144.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-107.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-119.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-24.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-26.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-140.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-109.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-114.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-131.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-142.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-141.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-125.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🧿📘 fusion-t2i-civitai-blue-102.json....\n", "/content/text-to-image-prompts/civitai-prompts/blue/text\n", "/content/text-to-image-prompts/civitai-prompts/blue/text_encodings\n", "reading 🔹 fusion-t2i-sd15-clip-tokens-common-suffix-4 Tokens.json....\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/common/text\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/common/text_encodings\n", "reading 🔹 fusion-t2i-sd15-clip-tokens-common-suffix-6 Tokens.json....\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/common/text\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/common/text_encodings\n", "reading 🔹 fusion-t2i-sd15-clip-tokens-common-suffix-2 Tokens.json....\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/common/text\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/common/text_encodings\n", "reading 🔹 fusion-t2i-sd15-clip-tokens-common-suffix-1 Tokens.json....\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/common/text\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/common/text_encodings\n", "reading 🔹 fusion-t2i-sd15-clip-tokens-common-suffix-3 Tokens.json....\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/common/text\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/common/text_encodings\n", "reading 🔹 fusion-t2i-sd15-clip-tokens-common-suffix-5 Tokens.json....\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/common/text\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/common/text_encodings\n", "reading 🔹 fusion-t2i-sd15-clip-tokens-average-suffix-3 Tokens.json....\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/average/text\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/average/text_encodings\n", "reading 🔹 fusion-t2i-sd15-clip-tokens-average-suffix-1 Tokens.json....\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/average/text\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/average/text_encodings\n", "reading 🔹 fusion-t2i-sd15-clip-tokens-average-suffix-5 Tokens.json....\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/average/text\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/average/text_encodings\n", "reading 🔹 fusion-t2i-sd15-clip-tokens-average-suffix-2 Tokens.json....\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/average/text\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/average/text_encodings\n", "reading 🔹 fusion-t2i-sd15-clip-tokens-average-suffix-6 Tokens.json....\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/average/text\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/average/text_encodings\n", "reading 🔹 fusion-t2i-sd15-clip-tokens-average-suffix-7 Tokens.json....\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/average/text\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/average/text_encodings\n", "reading 🔹 fusion-t2i-sd15-clip-tokens-average-suffix-4 Tokens.json....\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/average/text\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/average/text_encodings\n", "reading 🔹 fusion-t2i-sd15-clip-tokens-rare-suffix-4 Tokens.json....\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/rare/text\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/rare/text_encodings\n", "reading 🔹 fusion-t2i-sd15-clip-tokens-rare-suffix-5 Tokens.json....\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/rare/text\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/rare/text_encodings\n", "reading 🔹 fusion-t2i-sd15-clip-tokens-rare-suffix-7 Tokens.json....\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/rare/text\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/rare/text_encodings\n", "reading 🔹 fusion-t2i-sd15-clip-tokens-rare-suffix-2 Tokens.json....\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/rare/text\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/rare/text_encodings\n", "reading 🔹 fusion-t2i-sd15-clip-tokens-rare-suffix-1 Tokens.json....\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/rare/text\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/rare/text_encodings\n", "reading 🔹 fusion-t2i-sd15-clip-tokens-rare-suffix-3 Tokens.json....\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/rare/text\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/rare/text_encodings\n", "reading 🔹 fusion-t2i-sd15-clip-tokens-rare-suffix-6 Tokens.json....\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/rare/text\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/rare/text_encodings\n", "reading 🔹 fusion-t2i-sd15-clip-tokens-weird-suffix-4 Tokens.json....\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/weird/text\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/weird/text_encodings\n", "reading 🔹 fusion-t2i-sd15-clip-tokens-weird-suffix-1 Tokens.json....\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/weird/text\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/weird/text_encodings\n", "reading 🔹 fusion-t2i-sd15-clip-tokens-weird-suffix-6 Tokens.json....\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/weird/text\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/weird/text_encodings\n", "reading 🔹 fusion-t2i-sd15-clip-tokens-weird-suffix-2 Tokens.json....\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/weird/text\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/weird/text_encodings\n", "reading 🔹 fusion-t2i-sd15-clip-tokens-weird-suffix-5 Tokens.json....\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/weird/text\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/weird/text_encodings\n", "reading 🔹 fusion-t2i-sd15-clip-tokens-weird-suffix-3 Tokens.json....\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/weird/text\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/weird/text_encodings\n", "reading 🔹 fusion-t2i-sd15-clip-tokens-weird-suffix-7 Tokens.json....\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/weird/text\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/weird/text_encodings\n", "reading 🔹 fusion-t2i-sd15-clip-tokens-exotic-suffix-4 Tokens.json....\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/exotic/text\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/exotic/text_encodings\n", "reading 🔹 fusion-t2i-sd15-clip-tokens-exotic-suffix-2 Tokens.json....\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/exotic/text\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/exotic/text_encodings\n", "reading 🔹 fusion-t2i-sd15-clip-tokens-exotic-suffix-3 Tokens.json....\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/exotic/text\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/exotic/text_encodings\n", "reading 🔹 fusion-t2i-sd15-clip-tokens-exotic-suffix-1 Tokens.json....\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/exotic/text\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/exotic/text_encodings\n", "reading 🔹 fusion-t2i-sd15-clip-tokens-exotic-suffix-5 Tokens.json....\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/exotic/text\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/exotic/text_encodings\n", "reading 🔹 fusion-t2i-sd15-clip-tokens-exotic-suffix-7 Tokens.json....\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/exotic/text\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/exotic/text_encodings\n", "reading 🔹 fusion-t2i-sd15-clip-tokens-exotic-suffix-6 Tokens.json....\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/exotic/text\n", "/content/text-to-image-prompts/vocab/text_encodings/suffix/exotic/text_encodings\n", "reading 🔸 fusion-t2i-sd15-clip-tokens-common-prefix-1 Tokens.json....\n", "/content/text-to-image-prompts/vocab/text_encodings/prefix/common/text\n", "/content/text-to-image-prompts/vocab/text_encodings/prefix/common/text_encodings\n", "reading 🔸 fusion-t2i-sd15-clip-tokens-common-prefix-2 Tokens.json....\n", "/content/text-to-image-prompts/vocab/text_encodings/prefix/common/text\n", "/content/text-to-image-prompts/vocab/text_encodings/prefix/common/text_encodings\n", "reading 🔸 fusion-t2i-sd15-clip-tokens-common-prefix-3 Tokens.json....\n", "/content/text-to-image-prompts/vocab/text_encodings/prefix/common/text\n", "/content/text-to-image-prompts/vocab/text_encodings/prefix/common/text_encodings\n", "reading 🔸 fusion-t2i-sd15-clip-tokens-average-prefix-1 Tokens.json....\n", "/content/text-to-image-prompts/vocab/text_encodings/prefix/average/text\n", "/content/text-to-image-prompts/vocab/text_encodings/prefix/average/text_encodings\n", "reading 🔸 fusion-t2i-sd15-clip-tokens-average-prefix-3 Tokens.json....\n", "/content/text-to-image-prompts/vocab/text_encodings/prefix/average/text\n", "/content/text-to-image-prompts/vocab/text_encodings/prefix/average/text_encodings\n", "reading 🔸 fusion-t2i-sd15-clip-tokens-average-prefix-2 Tokens.json....\n", "/content/text-to-image-prompts/vocab/text_encodings/prefix/average/text\n", "/content/text-to-image-prompts/vocab/text_encodings/prefix/average/text_encodings\n", "reading 🔸 fusion-t2i-sd15-clip-tokens-rare-prefix-2 Tokens.json....\n", "/content/text-to-image-prompts/vocab/text_encodings/prefix/rare/text\n", "/content/text-to-image-prompts/vocab/text_encodings/prefix/rare/text_encodings\n", "reading 🔸 fusion-t2i-sd15-clip-tokens-rare-prefix-1 Tokens.json....\n", "/content/text-to-image-prompts/vocab/text_encodings/prefix/rare/text\n", "/content/text-to-image-prompts/vocab/text_encodings/prefix/rare/text_encodings\n", "reading 🔸 fusion-t2i-sd15-clip-tokens-rare-prefix-3 Tokens.json....\n", "/content/text-to-image-prompts/vocab/text_encodings/prefix/rare/text\n", "/content/text-to-image-prompts/vocab/text_encodings/prefix/rare/text_encodings\n", "reading 🔸 fusion-t2i-sd15-clip-tokens-weird-prefix-1 Tokens.json....\n", "/content/text-to-image-prompts/vocab/text_encodings/prefix/weird/text\n", "/content/text-to-image-prompts/vocab/text_encodings/prefix/weird/text_encodings\n", "reading 🔸 fusion-t2i-sd15-clip-tokens-weird-prefix-3 Tokens.json....\n", "/content/text-to-image-prompts/vocab/text_encodings/prefix/weird/text\n", "/content/text-to-image-prompts/vocab/text_encodings/prefix/weird/text_encodings\n", "reading 🔸 fusion-t2i-sd15-clip-tokens-weird-prefix-2 Tokens.json....\n", "/content/text-to-image-prompts/vocab/text_encodings/prefix/weird/text\n", "/content/text-to-image-prompts/vocab/text_encodings/prefix/weird/text_encodings\n", "reading 🔸 fusion-t2i-sd15-clip-tokens-exotic-prefix-3 Tokens.json....\n", "/content/text-to-image-prompts/vocab/text_encodings/prefix/exotic/text\n", "/content/text-to-image-prompts/vocab/text_encodings/prefix/exotic/text_encodings\n", "reading 🔸 fusion-t2i-sd15-clip-tokens-exotic-prefix-1 Tokens.json....\n", "/content/text-to-image-prompts/vocab/text_encodings/prefix/exotic/text\n", "/content/text-to-image-prompts/vocab/text_encodings/prefix/exotic/text_encodings\n", "reading 🔸 fusion-t2i-sd15-clip-tokens-exotic-prefix-2 Tokens.json....\n", "/content/text-to-image-prompts/vocab/text_encodings/prefix/exotic/text\n", "/content/text-to-image-prompts/vocab/text_encodings/prefix/exotic/text_encodings\n" ] } ] }, { "cell_type": "code", "source": [ "# @title \t⚄ Use a pre-encoded prompt + image pair from the fusion gen (note: NSFW!)\n", "\n", "#image_index = 0 # @param {type:'number'}\n", "# @markdown 📥 Load the data (only required one time)\n", "load_the_data = True # @param {type:\"boolean\"}\n", "\n", "# @markdown 🖼️ Choose a pre-encoded reference\n", "index = 708 # @param {type:\"slider\", min:0, max:1666, step:1}\n", "\n", "PROMPT_INDEX = index\n", "\n", "# @markdown ⚖️ Set the value for C in the reference

sim = C* text_enc + image_enc*(1-C)

\n", "\n", "C = 0.5 # @param {type:\"slider\", min:0, max:1, step:0.01}\n", "\n", "# @markdown 🚫 Penalize similarity to this prompt(optional)\n", "\n", "NEG = '' # @param {type:'string'}\n", "strength = 1 # @param {type:\"slider\", min:-5, max:5, step:0.1}\n", "\n", "# @markdown Calculate most similiar items using above settings?\n", "enable = True # @param {type:\"boolean\"}\n", "\n", "if (load_the_data):\n", " target_prompts , target_text_encodings , urls , target_image_encodings , NUM_ITEMS = getPromptsAndLinks('/content/text-to-image-prompts/fusion')\n", " from transformers import AutoTokenizer\n", " tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n", " from transformers import CLIPProcessor, CLIPModel\n", " processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n", " model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n", " logit_scale = model.logit_scale.exp() #logit_scale = 100.00000762939453\n", "\n", "from PIL import Image\n", "import requests\n", "prompt = target_prompts[f'{index}']\n", "url = urls[f'{index}']\n", "if url.find('perchance')>-1:\n", " image = Image.open(requests.get(url, stream=True).raw)\n", "else: print(\"(No image for this ID)\")\n", "\n", "print(\"\")\n", "print(f\"'{prompt}'\")\n", "print(\"\")\n", "\n", "if(enable):\n", " text_features_A = target_text_encodings[f'{index}']\n", " image_features_A = target_image_encodings[f'{index}']\n", "\n", " # text-similarity\n", " sims = C * torch.matmul(text_tensor, text_features_A.t())\n", "\n", " neg_sims = 0*sims\n", " if(NEG != ''):\n", "\n", " # Get text features for user input\n", " inputs = tokenizer(text = NEG, padding=True, return_tensors=\"pt\")\n", " text_features_NEG = model.get_text_features(**inputs)\n", " text_features_NEG = text_features_A/text_features_A.norm(p=2, dim=-1, keepdim=True)\n", "\n", " # text-similarity\n", " neg_sims = strength*torch.matmul(text_tensor, text_features_NEG.t())\n", " #------#\n", "\n", " # plus image-similarity\n", " sims = sims + (1-C) * torch.matmul(text_tensor, image_features_A.t()) * logit_scale\n", "\n", "\n", " # minus NEG-similarity\n", " sims = sims - neg_sims\n", "\n", " # Sort the items\n", " sorted , indices = torch.sort(sims,dim=0 , descending=True)\n", "\n", " # @title ⚙️📝 Print the results (Advanced)\n", " list_size = 1000 # param {type:'number'}\n", " start_at_index = 0 # param {type:'number'}\n", " print_Similarity = True # param {type:\"boolean\"}\n", " print_Prompts = True # param {type:\"boolean\"}\n", " print_Prefix = True # param {type:\"boolean\"}\n", " print_Descriptions = True # param {type:\"boolean\"}\n", " compact_Output = True # param {type:\"boolean\"}\n", "\n", " # @markdown -----------\n", " # @markdown ⚙️📝 Printing options\n", " newline_Separator = False # @param {type:\"boolean\"}\n", "\n", " import random\n", " list_size2 = 1000 # param {type:'number'}\n", " start_at_index2 = 10000 # param {type:'number'}\n", " rate_percent = 0 # param {type:\"slider\", min:0, max:100, step:1}\n", "\n", " # @markdown Repeat output N times\n", " N = 7 # @param {type:\"slider\", min:0, max:10, step:1}\n", "\n", " # title Show the 100 most similiar suffix and prefix text-encodings to the text encoding\n", " RANGE = list_size\n", " separator = '|'\n", " if newline_Separator : separator = separator + '\\n'\n", "\n", " _prompts = ''\n", " _sims = ''\n", " for _index in range(start_at_index + RANGE):\n", " if _index < start_at_index : continue\n", " index = indices[_index].item()\n", "\n", " prompt = prompts[f'{index}']\n", " if rate_percent >= random.randint(0,100) : prompt = prompts[f'{random.randint(start_at_index2 , start_at_index2 + list_size2)}']\n", "\n", " #Remove duplicates\n", " if _prompts.find(prompt + separator)<=-1:\n", " _sims = _sims + f'{round(100*sims[index].item(), 2)} %' + separator\n", " #-------#\n", " _prompts = _prompts.replace(prompt + separator,'')\n", " _prompts = _prompts + prompt + separator\n", " #------#\n", " #------#\n", " _prompts = fix_bad_symbols(_prompts)\n", " __prompts = ('{' + _prompts + '}').replace(separator + '}', '}')\n", " __sims = ('{' + _sims + '}').replace(separator + '}', '}')\n", " #------#\n", "\n", " if(not print_Prompts): __prompts = ''\n", " if(not print_Similarity): __sims = ''\n", "\n", " if(not compact_Output):\n", " if(print_Descriptions):\n", " print(f'The {start_at_index}-{start_at_index + RANGE} most similiar items to prompt : \\n\\n ')\n", " for i in range(N) : print(__prompts)\n", " print(f'The {start_at_index}-{start_at_index + RANGE} similarity % for items : \\n\\n' + __sims)\n", " print('')\n", " else:\n", " for i in range(N) : print(__prompts)\n", " else:\n", " for i in range(N) : print(__prompts)\n", " #-------#\n", " #-------#\n", "#-------#\n", "image\n" ], "metadata": { "id": "7qk3MgPVmApD", "colab": { "base_uri": "https://localhost:8080/", "height": 1000, "referenced_widgets": [ "5dca7b09d56f417398e46db04d9ee6f0", "d5992cc5c2c74667b7950a31d240e8ca", "2e3a582e334b4cf484fe0c96aa2eeeee", "58ca3c2a3c114d9f82c9d4738c599071", "647d99de5f414064a2d5a5d8898f8582", "d15c178984644ed18c745b18cbcddac8", "5f57f909c3044664ac7af0ecfedf18cf", "81b8659dfc10451e9213be7a7aa44510", "547dd36fc5e541f6aef423f7664134d5", "6178bd1f3b9640d5bfdf7bf5bb05a406", "0fbc37ff65e1497e90cc841712512047", "47dac14e4a384b4e9cf3795b8ca1f1ec", "1b0819260b3d4743a56064c0d8bfc830", "8fd54fb9620d4e5483a8cc4b13772450", "93972ad1588643ef82d1cda9688ede2a", "6c0bd737885a415f9e23aae530507b57", "3da1b3a59ce44a5fa864a8811d9249ec", "e02db22decd44fd994905d9dc7109e34", "1c762c6c27d2438e9efc866501037a38", "6ecef1d62b17470d9d2f32258fabf7f8", "69990822ae87496aaae5221e7e341c95", "e8538f56afe147df99ade93a85ddcf31", "687cd93939ac4ad1b3ed258ff84a1857", "b63f2c2f78b246e3ab1809a2d714b64a", "1bfab9a0900540ebad3a64f00d9e39bf", "4da319c577d9495e957413c67515a499", "ea600bd904e34bee87b2703d414d315e", "82ebe02aa7894947935b0ce1daa4d505", "78c7ddcc5ccd49bf9cf2f14f08e2609d", "e31c87d919e84946b0277a92967cb6c3", "6cbe0ec17f7e4cb5b8447703db1f20ba", "f5e67e2741e2485ca8e3f157392440b1", "198d36ee2257424eb1b474c135aa9811", "13b1728bb6d84fb89f9e63933092185f", "0e77e43b624644ed8ebe6acd85dfc52d", "bb84378708c34191a9641db13fc43b5b", "755f9b3eb87d475bb4ce6c21e33358d9", "fbc004fa4416418f81f31bc29ad10930", "7e148a9687724693a13a7771c1c7f586", "daa44708db4a42f0b1f75608225a5705", "4badd8300313476dad92543de778c256", "d235bd543e9348fd859449433e038770", "cfa1e815b60546bf81c36dcd2b53d631", "5181aa4ba5614070b18b6eb589c23bb8", "9aeb391f81744af0a7a1a626ee59936e", "1eb2c749a73e4ec1aa12815685c3b9af", "c83a9a607f8e4c40a7104f43c8d17147", "57b79f775cdf4af8b9b958d63a04e229", "875f86ecd6324684b8dbf923b2ea4568", "6838aea531514dfbae5691f8a34bf055", "30726707cb7b4137831b195e31471180", "d5b5ad4c5a5b49c9985e95a906cf7fda", "921b4a60a3f946d5999e88254ea743c4", "b6ba9d87ee844b5c886f44322276d455", "0c9ae72e011644a89cb4852c33d1e871", "56a58c40eee645d38be668030eae6267", "9ec58932bfc640a5b1ea9b4a53f1170d", "897bf5386cb949c8a11b23cac21dc1b9", "c4e687725f034c62b1bd2170f3b2347c", "5b1b0236c84b4fd8826d0d47864018b0", "0c2adf2827694110b89bf3f170448eb3", "e5f9b5ff2318493f8cb76b981f8b5103", "b86350615d514315b3bbdc813b9956a6", "83f3be93d43747fd8491ce5e317e2983", "8534e88f44104d6087f6282a2aa8bb22", "70806ac31a5e43f3b6f0bcae899e7470", "357c81f51fbe457e9e20449f3a224d02", "a8fdfac3177d46e7a6029de111b6b6c2", "2d5b999476174325ba7006241d80faf0", "6aaf805100234796a23bbab6016c6ed6", "ca8c235feb6b4ae39554e621d2a651e2", "8f85d310615041f99116ae12299ef3bc", "a1bdef3019b1430bbe70b40cdc748a45", "15bde02e567a4da6b230b5cedb15884f", "680a024ed0c04e74af9a8ed7c64ed71a", "cb3de774774941c1b022c9bda771cd4a", "370f2efe33514979802333a3ecb2b7ed", "89e36f7ed4484644ba46d7bac8a9676c", "905e816125ad4122b4f96e9daf3baf15", "c98d3cf5642742788361f97a8f4fbbab", "6515a59e871b48f28f2c5007491eccba", "66406afa18d1444693353faa95792d94", "dd03d5feff1343e9acfac6cfe41a2746", "ab1ce4c54876485a87d81735d5d32476", "3a875d281498401585062f728b4e0c20", "3c756ac7e7da412196e2ed98812422ae", "e64e816b7112446bb21ee810a5d8c0ae", "5032d61130504967b59ab8486824f3b8" ] }, "outputId": "06c05688-97b8-482e-def8-5a61e0253662" }, "execution_count": 5, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "reading prompts-14.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-14.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-47.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-47.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-68.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-68.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-82.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-82.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-91.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-91.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-95.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-95.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-65.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-65.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-89.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-89.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-51.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-51.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-34.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-34.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-50.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-50.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-90.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-90.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-36.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-36.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-28.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-28.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-4.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-4.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-2.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-2.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-27.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-27.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-22.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-22.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-30.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-30.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-76.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-76.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-56.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-56.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-13.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-13.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-9.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-9.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-12.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-12.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-80.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-80.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-73.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-73.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-78.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-78.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-11.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-11.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-72.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-72.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-97.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-97.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-26.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-26.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-59.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-59.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-53.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-53.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-79.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-79.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-31.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-31.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-71.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-71.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-49.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-49.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-5.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-5.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-66.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-66.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-94.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-94.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-32.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-32.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-44.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-44.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-98.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-98.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-18.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-18.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-41.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-41.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-92.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-92.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-6.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-6.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-52.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-52.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-20.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-20.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-21.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-21.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-35.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-35.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-86.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-86.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-87.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-87.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-67.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-67.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-77.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-77.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-7.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-7.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-69.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-69.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-74.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-74.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-3.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-3.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-58.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-58.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-84.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-84.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-96.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-96.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-45.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-45.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-19.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-19.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-17.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-17.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-16.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-16.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-48.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-48.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-54.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-54.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-70.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-70.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-55.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-55.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-10.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-10.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-25.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-25.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-85.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-85.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-42.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-42.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-60.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-60.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-40.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-40.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-57.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-57.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-37.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-37.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-24.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-24.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-33.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-33.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-61.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-61.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-23.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-23.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-81.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-81.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-29.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-29.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-46.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-46.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-75.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-75.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-15.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-15.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-38.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-38.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-39.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-39.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-88.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-88.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-43.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-43.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-62.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-62.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-1.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-1.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-83.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-83.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-8.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-8.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-63.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-63.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-64.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-64.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-93.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-93.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n" ] }, { "output_type": "display_data", "data": { "text/plain": [ "tokenizer_config.json: 0%| | 0.00/905 [00:00|8K tradcartoons studios|most clumsy sexual lesbian yuri|shimaidon_\\(sex\\) |convenient_leg |convenient_leg|distract|Hentai Dark skin|mega giantess|protagonist|h_kasei |besto-|comic artwork|run-|cute komi san wa komyushou desu|omd avengersendgame passages aguchi |fire 1girl|masterpiece Isekai cityscape|my_hero_academia|huge cock anime|kobayakawa_rinko |comic_cover |holler zawa bnha |izuku midoriya fucking her|mature female yuri|imminent death by snu snu|protagonist helltaker|khloe-haves bnha |d rendered hentai version|oil futa|hentai spread legs|huge_sonoda_chiyoko |admins foxtv mirai |Official Art|official art|artist_name |sessyoin_kiara |Futa standing over viewer gigantic penis|big breasts Boku no Hero Academia|boku no hero academia|source_anime comic|femboy king walking in city|fujoshi |ooji_mochizou |yoshioka_yoshiko |miura_azusa |voluptuous hyperfuta futanari lookingdownbarrel|tsuki_ni_kawatte_oshioki_yo |revitalization-vickers waifu |anime 11girl sexy|senpai_ga_uzai_kouhai_no_hanashi |thighband|doujinshi |fantasy isekai|high qualitywide hips|lewdreaper|offender-yui sura |aniston-bnha economical |black haired taller femboy| end impact girl|anime solo demon|better version at the source|abridged-aviva saucy |fixed leg on picture|single_thighhigh |dsburg-whichever zawa |Kaneisha|futa proportionate|hentai 20yo girl|hentai 20yo girl| burn time protect|the average coomer bait dress better version at source|fire in the streets|alternate_legwear |onahole| problem future page|saten_ruiko |giantess giant|usa-chan_\\(idolmaster\\) |destroyed city| hentai success covid|tendou_maya |torn_thighhighs|torn_thighhighs |anime woman|very detailedsource anime|spread legsmasturbation|holding onahole|mirai compelled bnha |comic panel|komi-san wa komyushou desu|source needed|my hero academia|kawakami_mai |She’ll survive us all perfectly well|her feet are off the ground|okunoda_miyoi |giantess muscular|manga|uncensored lewdaesthetics|analingussource_anime hentainaked fat ass|both black futanari have black hair|We will burn your cities down|highly detailedsource anime|thigh_cutout |abridged-homs filament |average thighs|flames in the background|explicit anime|large rugged middle-aged man fucking short femboy|bnha serverless loeb |bnha diffuser ashleigh |inimidating girl|extremely muscular futanari|spread thighs|hell in the background|one pussy juice anime|large thighs|female smug|cum in assanime style|explosive in ass|justice right bitch heroine|source_animethick outline|gila-triviatuesday bnha |yuri yuricrabking|microskirt dumb|in public anime|Keishona|smug D sitting|Now that you’ve kneed her|human futanari|tokiha_mai |beautiful cute sexy anime|bnha nlwx mako |avengersendgame zawa undertaking |ofi publica bnha |northwales bnha differentiate |thicc shortstack|large African futanari fucking short white male|gridman_universe |thighs on side|replaceable-captainmarvel waifu |sky above giantess|1woman anime|jitome|jitome |nochrome manga|Look at her, look at her go|manga girl|kendal-admirer bnha |propeller-demarcus miki |best quality girl|pastel colored Shortalls|highres 8K anime|upskirt futanari|pussy juice fishing our vagina|kujikawa_rise |senpai-mesut dooley |comic book cover|bad_perspective |solothighs|minigiantess|Wide underpantsThigh thighs|huge bulgesource_anime|fire in the background|jocelyn-bnha ullah |waifu-peoplesvote thine |thigh gapdesert|hojo_karen | problem fuel smug|ruined city background|1 girl full body|giantess massive body goddess| city roi edit|waifu|anime female|vandalism-hardship zawa | apocalypse money muh|fj-combating bnha |penile vaginal penetration|Saori|futanari futa|manga art|big huge massive dick|destroyed city pov|source animemasterpiece|yuri xdyuxd|lewdamone|tamura_yuri |hentaib|bnha|homs-thwaite bnha |consequences|Destroy|destroy-|destroy|anime 1futa|burning village in the background|serafuku |serafuku|novel_cover | responsibility reason crop|sugoi_hi|fullbody thighs|big explosion in the background|bnha dori asar |thighs sunset|anthro penetrating female|waifu-swallows hardship |hayase nagatoro|marck-fiercely propane |burning battlefield in background|It’s a weeb, what it, what is this?|When you’re world goes up in flames|panel comic|propaganda|erection thighs|thighhighs town|Megumi Kirorimal | threat post| subreddit stop war| cap girl end| society time incoming|artists like source anime|houtengeki |evacuated| disaster situation dakota|tsukikage_yuri |miho-comicbook parisagreement |Better run bitch now|best qualitysource_anime|huge breasr futanari|thigh gaping|mankanshoku_mako |thighs masterpiece|fertile-admins comicart |yuiga_naoha |exploitable image|sekai_saisoku_no_panda |interesting background|1futa 1male|She has a smile that could end a war|sandalwood-juli mako |fire background|hentai POV| perspective wildfire good|bnha dori pbc | society fuel god|source animelooking at viewer|senpai|Background anime|demino deminothedragon|mako sbridge adish biographical |busy street background|Destroy!|defenses loeb mirai |femanine face smug|anime 2 women|burning cars|sleeping caged penis|Makiyah|oka-|Oka |futa futanari|passages strade bnha |penis between thighs+++|nees-sigue bnha |anime scene|milf is not on fire|tight skirt school| cause destruction rate|lewdert|carcinoma-thcentury bnha |acadia pkg bnha |bishoujo|japanese manga artist|source_animelooking at viewer|kanzaki etc|nijisanji_kr |cleavage source comic book|haruki no saidai no teki wa risei|male fucking futanari|rylee senimasan|premiers-loeb bnha |shorts_aside |leg_armor |futanari fucking another futanari|all_might |jahy-sama_wa_kujikenai! |sigue mako mirai |kyoka jiro Boku no hero academia|nijou_noriko |🏙️|sakuranene_jav|ken ashcorp|thighjob|pants anime|peni_parker skirt|futa nabezoko|female futanari|The dogs powerful thighs| apocalypse rise thing|suiren_yurei |bombergirl |girl anime|1 male 1 futa|massive girl|anime flat style|Kymoni|large futanari fucking short boy|nettedthighs|Ay-O round thighs|character surrounded by fire|2D anime futanari| report time|from my hero academia|GIANTESS who's peeing on her|city big breasts|bnha sown acadia |Nayalee|Hentai Cinematic|futanari gazelle fuck gazelle|hentai 2girls|mirai dori rps |still from official media anime|dickgirl lore|neko girl 1|Kokomi|ameizinglewds|giantess goddess|disaster|curvy porn presenting_removed_panties |strong_legs| raise catastrophe bitch|comic art|homs-reviewers adaily |anthro cinderace futanari|yuri_\\(doki_doki_literature_club\\) | twitter emergency reporter|Visual novel|visual novel|kemokemo|umi1 solo|Yuriah|highleg thighhighs|mai-|Mai|anime hero|anime movie background|rhonda-lockhart bnha |lewd-siam ssummit |tsuki akurei|ripped school teacher uniform|thighs pussy juice|hentai|burning skyscraper|I don’t want to set huge testiclesanime coloring|komakusa_sannyo |sacha harlan bnha |manhua|Graphic novel|graphic novel|male_on_futa |city visible behind her|discord profile picture|suni-breaches bnha |fanfic-diffuser rps |wide hips futanari|high qualityvery beautiful demon futanari|tadano_magu |chihunhentai |Anime backgrounds|hotbrotkuroi|Femboy the hero rides| priority drama pollution|japanese city background| war problem topic|kurata_rine |ass yuri lesbian|highleg_panties |shatter-ushi waifu |dungeon_ni_deai_wo_motomeru_no_wa_machigatteiru_darou_ka |source_anime 1girl|torn_legwear |anime girl|hentai style|1girl tsunadesdxl|sura sichuan bnha |And we will burn your cities down|visible thighs|with her raised arm in the street|gani-preneur bnha |shorts half body|kianamaiart|source_animemasculine male anthro|arson|marukyuu_ameya |brown tighhighs 2d|Kyeria|source_request | devil pollution response|mci-combating bnha |doujinshi page 1woman|no_panties |no_panties|double deck hentai|burning building|recruiters-misogyny waifu |mayo_riyo |Jonasia|jahy-sama wa kujikenai!|large futanari teacher fucking short student boy|gril-|kohi waruikoohii|Futa standing over viewer|mirai adish snickers avengersendgame |report leg|milfeulle_sakuraba |Anime newest|yoru_no_kurage_wa_oyogenai |imminent danger|upbulge futanari|naoe_riki |acadia andolan bnha |trouble\\: the final chapter|hentai milf|mai_natsume |busy city background|mewtowo shadman|animeirl outdoors|yuri tribadism|informs-senpai theone |lewdicrousart|Ooh, the fire’s spreading everywhere| economy end strip|EFT_Juvia aajuvia|avengersendgame afs zawa |Deneisha Roubekas |pancreatic pancreatic adero |imminent footjob|apocalyptic city in background|a pretty asian female character|source_animeshort male anthro|Miga |official arts|official artwork|destroying a city|🧑‍🚒|They will run over you|anime demon pov| efficient crisis education|thighs in all their glory|brown_thighhighs |dori bnha bnha |outdoors manga| arent issue thread|Nahomi|black hair yuri|titfuck under clothessource_anime|We will burn your cities down!|neet-chases thcentury |uncensored human-onahole|Now that you need her|a pretty american female character|flat chest large thighs|lewdtias|hiiragi_hazime |trap futanari|onnaise sacha bnha |one very tall huge minigiantess|explosion in background|required to build the world by destroying herself|teacher have clothing|random background|yamada_\\(gotyui\\) |iyaki-prioritize onstorm |masturbating postapocalypse in|evil monster in attacknsfw|nasheed bnha fumble acknowledges |testosterone-waifu fad |anime MeimeiSDXL|anime sexy|Anime sexy|futa futanarimix|fluffly clouds above|chihaya_anon |megumi|Megumi| humanity fuel|presenting feetBackgroundHigh detailed background|uncensored anime|smile highres|skyline comic|thighs two-handed|adero ulf bnha |Sayada |peni_parker |admins bnha passages | fighting society accurate|apocalypse|bnha halep jekyll |lewdookami|1man ass thighs|NSFW official art|nsfw OFFiCIAL ART|chonky_with_thick_thighs_|lifespan bnha allez |itadori_yuuji |scary background|very sexy ninja suit|fire in background|Would wipe my a*s|tsukioka_kogane |best quality 1GIRL|best quality1girl|BEST QUALITY 1GIRL|Best Quality 1girl|minakami_mai |modern cel shaded anime|full body street|ryomou_shimei |Yariko JK Bitch ni Shiboraretai|voluptuous character from the popular anime|sonar-dori bnha |exploding_clothes |leg-|aki_minoriko |femboys in background|mik-litters circulated |soca juli sichuan bnha |english_text |english_text|bnha eet loeb |long legsmasterpiece|konno_tohiro | war situation solution|manga artwork presenting|akii_kisaki|gokou_ruri |onii-chan_wa_oshimai! |flames in background|tight shorts smug|regulating-scouncil bnha |anime cute girl| disaster war discussion|school_girl_strikers |sasaki_saku |themed_manga_art|thighs weapon|heart thighs|thighighs|anemone zawa acknowledges |fapchiki|thick thighslooking at viewer|perfect anime illustration|kellie drayton bnha | start hotter advantage|source_anime shortstack woman|1panel|purification-nederland bnha |bnha olis offside |toes otoko no ko|imageboard_desourced |striped_thighhighs |qualitative-mosley miho |World’s on fire|bokura_wa_ima_no_naka_de |thighs armor| illustration account threat|reizei_mako |yuriko mastergodai|tsushima_yoshiko | wouldn start birthrate|1girl yuri|strong thighs|udaipur kilt bnha |half body crop|a popular anime character|globalwarming-bnha fdi |superflat 1girl|lisse garza bnha |itou_yuuji |comicart-zawa passports |unknown character|art by jaykuma|youjomodoki| context litteraly risk|masterpiece manhwa|city destruction|postapocalypse| impact world disaster|textless_version |She beat you to it|ichijou_hotaru |art by kantoku|manga lifelike|in a big city|uzaki_tsuki |large thighs muscular|by himitsu hi mi tsu|she stands firm| education destroy|1girl smug|NSFWbishoujo|futanari fucking woman| class smug reason|oono_aya |koumoru doumoru|hero_neisan |steam thick thighs|nlwx sura bnha |Sanika|black thighhighspureerosface_v|rarity-bnha womack |shortmegumi|Cartooncore|sapphicneko|thighs spread high fantasy| disaster corruption poster|kicking Anime 2|anime full colored|action lines thick thighs|artist_request|artist_request |massive futa|Nazaria|mirai springtraining spilling |dark-skinned femboysource_cartoon|Female on the street surrounded|off screen character futa| city burning think|the world on fire|umi-|Umi|serafuku skirt|kairakuen_umenoka |futa fucking another|full body highres| reddit wouldnt girl|semi realisticsource_anime|source_cartoon 1girl huge_breasts|mistresskari|tsunderia |musuko_ga_kawaikute_shikatanai_mazoku_no_hahaoya |A massive explosion erupts with|source_furry 1girl|ef_\\(visual_novel\\) |Nairoby|bnha rendous compelled |senpai-cusa olis |uncensoredgirl underneath|anime epiCRealism|tsukino_mito |tsukino_mito| fault reddit ideal|anal thighhighs|chimkenthighs|hentai plump|And fire through the streets|preneur-jap informing |hentai manga drawing|We’ll burn the streets|You better not resist|explosions fire|tamberlane comic|ibc sura bnha |black haired futanari|zettai_ryouiki |akino_sora | join figure save|The world’s on fire|sex porn hentai|senpai-womack lister |thighs water|thighs shoes|darkhazard artist|sixsidesofmyhead artist|white_single_thighhigh| report location report|clean anime|inserting dildo in ass|solo thighs|The wolf powerful thighs|I don’t want to set the world on fire honey|explosion behind|skirt aside|waifu-amphibious kelli |artist name|walking on big city street|serafuku solo| core civilization couldn|toudori |hiyo hiyoratory|e-hentai_sample |running away| catastrophe god law|waifu-electra hirsch |flowing anime|Feliberty |very innocent uwu|zettai rioiki|standing serafuku|boku_no_hero_academia |Robin honkai starrail|realistic Anime|running in terror from the fire|kawakami_rokkaku|kawakami_rokkaku |tachibana_roku |joutouguu_mayumi |cinematic comic}\n", "{onahole legsless|sakurajima_mai |spread her legsmasterpeace|komi_zumiko |thicc thighssource_cartoon|onahole full body|but i'd die inside her thighs|vertical_comic |her dress showing her crotch amidst the city|source_comic|giantess god|source_manga_cover |doujin cover|art by sunrise isekai|legs upsource anime|bnha loeb adish |tan Komi Shouko|the thighsource_anime|Nagatoro/|anime thighthighs|comic cover|thighs tsurime|hentai source comic book|anime safe 1girl|komi_shouko |japanese light novel cover|highres purple_thighhighs |purple_thighhighs|gigantic_comicbook page 1girl|skirt pyrokinesis|leg up Anime 2|NSFW hentai uncensored comic|source_ world disaster street|naomi sekai no hate no kissaten|Toned thighssource_cartoon|destroyed city background|giantess GTS|carlin-participates bnha |eighteen swaps avengersendgame mirai |bnha abide sacha |girl stepping on futa cock|hentai 1girl|best quality comic|brea-healthylifestyle bnha |Nagatoro Hayase|nagatoro hayase|bsu-mudder waifu |yuri_kyanon |anime 1 girl sexy|juli dori shld |hentai doujinshi|tante-bnha comicbook |burning city background|source 1girl manga page|pomf|kaiju girls webcomic|at_viewer thighs thick_thighs|waifu-potholes idyllic |nakano_azusa |absurdres ijiranaide nagatoro san|destroyed city in the background|stood behind Nagatoro|komone_ushio |sugoi_dekai |komi-san_wa_komyushou_desu |nadacheruulewd|smug cover art|thighsmasterpiece|1girl half body|distinct cover comic|nagatoro_hayase |source request|electra bnha adish |bulge tsundere|otherFutanari in the background| destruction heat role|heavy fire on the background|purification-homs healthylifestyle |implied_yuri |interracial futanari Amazon|murosaki_miyo |doujin_cover |2men hentai loose_thighhigh |city burning in the background|defenses avengersendgame mirai |massive angel fucking 1girl|hayat strade rendous bnha |Sakiyah|anime sugoi dekai|aniapt yoake_mae_yori_ruri_iro_na |anime hentai nsfw| disaster woke world|aozora tasogare aozora|gigantic natural pendulous breasts| group hentai destruction|18 year old nagatoro Beauty|yuri arisato|vertical-small_isekai meikyuu de harem wo|futanarimuscular legs|replace the background|Sayara |waifu-travelchat vesmatter |comicu0book|print_thighhighs |hayat mildly bnha |modernization-embellished bnha |smile riot in street background|large_calves|upright straddlepornographic|komi shuuko from Komi-San|elu_ niji|thick_thighs long_hair|orange_thighhighs |nagatoro in apartment|giant black futanari|bomb exploding in background|gesugao smug| school dont source|hawa-waifu avengersendgame |adish swaps bnha |likelihood-lys bnha |Coffe at povsource_anime hentaifat ass|caracas-bnha sabi |super fine anime|Miss Nagatoro|burning cityscape background|cum on breast motion lines|impossibly hayat lun bnha |zani-ibc bnha |causing destruction wherever she goes|blue_thighhighs |anin-sridevi bnha |Jameya|1girl smugness|vandalism-mirai enen |footjob Anime 2|portray-zawa sizzle | disaster city time|destroyed civilization|electra sohn bnha |thick thighsmasterpiece|very tall huge minijouga_maya |waifu-jetty jagan |kadose_ara |anime yozora_mel |Show her some beauty, before this damage is done|beautiful city background|boku no hero|in a isekai world|Yumiko Rohan | literature worth post|think thighs|highly detailedsource_anime|from belowsource_anime 1girl|sonoda_umi |genre hentai yaoi|shai-rps bnha |giantess|giantess |man fucking futanari from behing|ayuma_sayu |spread asssource_anime|source anime fat obese ebony woman|run|8K tradcartoons studios|most clumsy sexual lesbian yuri|shimaidon_\\(sex\\) |convenient_leg |convenient_leg|distract|Hentai Dark skin|mega giantess|protagonist|h_kasei |besto-|comic artwork|run-|cute komi san wa komyushou desu|omd avengersendgame passages aguchi |fire 1girl|masterpiece Isekai cityscape|my_hero_academia|huge cock anime|kobayakawa_rinko |comic_cover |holler zawa bnha |izuku midoriya fucking her|mature female yuri|imminent death by snu snu|protagonist helltaker|khloe-haves bnha |d rendered hentai version|oil futa|hentai spread legs|huge_sonoda_chiyoko |admins foxtv mirai |Official Art|official art|artist_name |sessyoin_kiara |Futa standing over viewer gigantic penis|big breasts Boku no Hero Academia|boku no hero academia|source_anime comic|femboy king walking in city|fujoshi |ooji_mochizou |yoshioka_yoshiko |miura_azusa |voluptuous hyperfuta futanari lookingdownbarrel|tsuki_ni_kawatte_oshioki_yo |revitalization-vickers waifu |anime 11girl sexy|senpai_ga_uzai_kouhai_no_hanashi |thighband|doujinshi |fantasy isekai|high qualitywide hips|lewdreaper|offender-yui sura |aniston-bnha economical |black haired taller femboy| end impact girl|anime solo demon|better version at the source|abridged-aviva saucy |fixed leg on picture|single_thighhigh |dsburg-whichever zawa |Kaneisha|futa proportionate|hentai 20yo girl|hentai 20yo girl| burn time protect|the average coomer bait dress better version at source|fire in the streets|alternate_legwear |onahole| problem future page|saten_ruiko |giantess giant|usa-chan_\\(idolmaster\\) |destroyed city| hentai success covid|tendou_maya |torn_thighhighs|torn_thighhighs |anime woman|very detailedsource anime|spread legsmasturbation|holding onahole|mirai compelled bnha |comic panel|komi-san wa komyushou desu|source needed|my hero academia|kawakami_mai |She’ll survive us all perfectly well|her feet are off the ground|okunoda_miyoi |giantess muscular|manga|uncensored lewdaesthetics|analingussource_anime hentainaked fat ass|both black futanari have black hair|We will burn your cities down|highly detailedsource anime|thigh_cutout |abridged-homs filament |average thighs|flames in the background|explicit anime|large rugged middle-aged man fucking short femboy|bnha serverless loeb |bnha diffuser ashleigh |inimidating girl|extremely muscular futanari|spread thighs|hell in the background|one pussy juice anime|large thighs|female smug|cum in assanime style|explosive in ass|justice right bitch heroine|source_animethick outline|gila-triviatuesday bnha |yuri yuricrabking|microskirt dumb|in public anime|Keishona|smug D sitting|Now that you’ve kneed her|human futanari|tokiha_mai |beautiful cute sexy anime|bnha nlwx mako |avengersendgame zawa undertaking |ofi publica bnha |northwales bnha differentiate |thicc shortstack|large African futanari fucking short white male|gridman_universe |thighs on side|replaceable-captainmarvel waifu |sky above giantess|1woman anime|jitome|jitome |nochrome manga|Look at her, look at her go|manga girl|kendal-admirer bnha |propeller-demarcus miki |best quality girl|pastel colored Shortalls|highres 8K anime|upskirt futanari|pussy juice fishing our vagina|kujikawa_rise |senpai-mesut dooley |comic book cover|bad_perspective |solothighs|minigiantess|Wide underpantsThigh thighs|huge bulgesource_anime|fire in the background|jocelyn-bnha ullah |waifu-peoplesvote thine |thigh gapdesert|hojo_karen | problem fuel smug|ruined city background|1 girl full body|giantess massive body goddess| city roi edit|waifu|anime female|vandalism-hardship zawa | apocalypse money muh|fj-combating bnha |penile vaginal penetration|Saori|futanari futa|manga art|big huge massive dick|destroyed city pov|source animemasterpiece|yuri xdyuxd|lewdamone|tamura_yuri |hentaib|bnha|homs-thwaite bnha |consequences|Destroy|destroy-|destroy|anime 1futa|burning village in the background|serafuku |serafuku|novel_cover | responsibility reason crop|sugoi_hi|fullbody thighs|big explosion in the background|bnha dori asar |thighs sunset|anthro penetrating female|waifu-swallows hardship |hayase nagatoro|marck-fiercely propane |burning battlefield in background|It’s a weeb, what it, what is this?|When you’re world goes up in flames|panel comic|propaganda|erection thighs|thighhighs town|Megumi Kirorimal | threat post| subreddit stop war| cap girl end| society time incoming|artists like source anime|houtengeki |evacuated| disaster situation dakota|tsukikage_yuri |miho-comicbook parisagreement |Better run bitch now|best qualitysource_anime|huge breasr futanari|thigh gaping|mankanshoku_mako |thighs masterpiece|fertile-admins comicart |yuiga_naoha |exploitable image|sekai_saisoku_no_panda |interesting background|1futa 1male|She has a smile that could end a war|sandalwood-juli mako |fire background|hentai POV| perspective wildfire good|bnha dori pbc | society fuel god|source animelooking at viewer|senpai|Background anime|demino deminothedragon|mako sbridge adish biographical |busy street background|Destroy!|defenses loeb mirai |femanine face smug|anime 2 women|burning cars|sleeping caged penis|Makiyah|oka-|Oka |futa futanari|passages strade bnha |penis between thighs+++|nees-sigue bnha |anime scene|milf is not on fire|tight skirt school| cause destruction rate|lewdert|carcinoma-thcentury bnha |acadia pkg bnha |bishoujo|japanese manga artist|source_animelooking at viewer|kanzaki etc|nijisanji_kr |cleavage source comic book|haruki no saidai no teki wa risei|male fucking futanari|rylee senimasan|premiers-loeb bnha |shorts_aside |leg_armor |futanari fucking another futanari|all_might |jahy-sama_wa_kujikenai! |sigue mako mirai |kyoka jiro Boku no hero academia|nijou_noriko |🏙️|sakuranene_jav|ken ashcorp|thighjob|pants anime|peni_parker skirt|futa nabezoko|female futanari|The dogs powerful thighs| apocalypse rise thing|suiren_yurei |bombergirl |girl anime|1 male 1 futa|massive girl|anime flat style|Kymoni|large futanari fucking short boy|nettedthighs|Ay-O round thighs|character surrounded by fire|2D anime futanari| report time|from my hero academia|GIANTESS who's peeing on her|city big breasts|bnha sown acadia |Nayalee|Hentai Cinematic|futanari gazelle fuck gazelle|hentai 2girls|mirai dori rps |still from official media anime|dickgirl lore|neko girl 1|Kokomi|ameizinglewds|giantess goddess|disaster|curvy porn presenting_removed_panties |strong_legs| raise catastrophe bitch|comic art|homs-reviewers adaily |anthro cinderace futanari|yuri_\\(doki_doki_literature_club\\) | twitter emergency reporter|Visual novel|visual novel|kemokemo|umi1 solo|Yuriah|highleg thighhighs|mai-|Mai|anime hero|anime movie background|rhonda-lockhart bnha |lewd-siam ssummit |tsuki akurei|ripped school teacher uniform|thighs pussy juice|hentai|burning skyscraper|I don’t want to set huge testiclesanime coloring|komakusa_sannyo |sacha harlan bnha |manhua|Graphic novel|graphic novel|male_on_futa |city visible behind her|discord profile picture|suni-breaches bnha |fanfic-diffuser rps |wide hips futanari|high qualityvery beautiful demon futanari|tadano_magu |chihunhentai |Anime backgrounds|hotbrotkuroi|Femboy the hero rides| priority drama pollution|japanese city background| war problem topic|kurata_rine |ass yuri lesbian|highleg_panties |shatter-ushi waifu |dungeon_ni_deai_wo_motomeru_no_wa_machigatteiru_darou_ka |source_anime 1girl|torn_legwear |anime girl|hentai style|1girl tsunadesdxl|sura sichuan bnha |And we will burn your cities down|visible thighs|with her raised arm in the street|gani-preneur bnha |shorts half body|kianamaiart|source_animemasculine male anthro|arson|marukyuu_ameya |brown tighhighs 2d|Kyeria|source_request | devil pollution response|mci-combating bnha |doujinshi page 1woman|no_panties |no_panties|double deck hentai|burning building|recruiters-misogyny waifu |mayo_riyo |Jonasia|jahy-sama wa kujikenai!|large futanari teacher fucking short student boy|gril-|kohi waruikoohii|Futa standing over viewer|mirai adish snickers avengersendgame |report leg|milfeulle_sakuraba |Anime newest|yoru_no_kurage_wa_oyogenai |imminent danger|upbulge futanari|naoe_riki |acadia andolan bnha |trouble\\: the final chapter|hentai milf|mai_natsume |busy city background|mewtowo shadman|animeirl outdoors|yuri tribadism|informs-senpai theone |lewdicrousart|Ooh, the fire’s spreading everywhere| economy end strip|EFT_Juvia aajuvia|avengersendgame afs zawa |Deneisha Roubekas |pancreatic pancreatic adero |imminent footjob|apocalyptic city in background|a pretty asian female character|source_animeshort male anthro|Miga |official arts|official artwork|destroying a city|🧑‍🚒|They will run over you|anime demon pov| efficient crisis education|thighs in all their glory|brown_thighhighs |dori bnha bnha |outdoors manga| arent issue thread|Nahomi|black hair yuri|titfuck under clothessource_anime|We will burn your cities down!|neet-chases thcentury |uncensored human-onahole|Now that you need her|a pretty american female character|flat chest large thighs|lewdtias|hiiragi_hazime |trap futanari|onnaise sacha bnha |one very tall huge minigiantess|explosion in background|required to build the world by destroying herself|teacher have clothing|random background|yamada_\\(gotyui\\) |iyaki-prioritize onstorm |masturbating postapocalypse in|evil monster in attacknsfw|nasheed bnha fumble acknowledges |testosterone-waifu fad |anime MeimeiSDXL|anime sexy|Anime sexy|futa futanarimix|fluffly clouds above|chihaya_anon |megumi|Megumi| humanity fuel|presenting feetBackgroundHigh detailed background|uncensored anime|smile highres|skyline comic|thighs two-handed|adero ulf bnha |Sayada |peni_parker |admins bnha passages | fighting society accurate|apocalypse|bnha halep jekyll |lewdookami|1man ass thighs|NSFW official art|nsfw OFFiCIAL ART|chonky_with_thick_thighs_|lifespan bnha allez |itadori_yuuji |scary background|very sexy ninja suit|fire in background|Would wipe my a*s|tsukioka_kogane |best quality 1GIRL|best quality1girl|BEST QUALITY 1GIRL|Best Quality 1girl|minakami_mai |modern cel shaded anime|full body street|ryomou_shimei |Yariko JK Bitch ni Shiboraretai|voluptuous character from the popular anime|sonar-dori bnha |exploding_clothes |leg-|aki_minoriko |femboys in background|mik-litters circulated |soca juli sichuan bnha |english_text |english_text|bnha eet loeb |long legsmasterpiece|konno_tohiro | war situation solution|manga artwork presenting|akii_kisaki|gokou_ruri |onii-chan_wa_oshimai! |flames in background|tight shorts smug|regulating-scouncil bnha |anime cute girl| disaster war discussion|school_girl_strikers |sasaki_saku |themed_manga_art|thighs weapon|heart thighs|thighighs|anemone zawa acknowledges |fapchiki|thick thighslooking at viewer|perfect anime illustration|kellie drayton bnha | start hotter advantage|source_anime shortstack woman|1panel|purification-nederland bnha |bnha olis offside |toes otoko no ko|imageboard_desourced |striped_thighhighs |qualitative-mosley miho |World’s on fire|bokura_wa_ima_no_naka_de |thighs armor| illustration account threat|reizei_mako |yuriko mastergodai|tsushima_yoshiko | wouldn start birthrate|1girl yuri|strong thighs|udaipur kilt bnha |half body crop|a popular anime character|globalwarming-bnha fdi |superflat 1girl|lisse garza bnha |itou_yuuji |comicart-zawa passports |unknown character|art by jaykuma|youjomodoki| context litteraly risk|masterpiece manhwa|city destruction|postapocalypse| impact world disaster|textless_version |She beat you to it|ichijou_hotaru |art by kantoku|manga lifelike|in a big city|uzaki_tsuki |large thighs muscular|by himitsu hi mi tsu|she stands firm| education destroy|1girl smug|NSFWbishoujo|futanari fucking woman| class smug reason|oono_aya |koumoru doumoru|hero_neisan |steam thick thighs|nlwx sura bnha |Sanika|black thighhighspureerosface_v|rarity-bnha womack |shortmegumi|Cartooncore|sapphicneko|thighs spread high fantasy| disaster corruption poster|kicking Anime 2|anime full colored|action lines thick thighs|artist_request|artist_request |massive futa|Nazaria|mirai springtraining spilling |dark-skinned femboysource_cartoon|Female on the street surrounded|off screen character futa| city burning think|the world on fire|umi-|Umi|serafuku skirt|kairakuen_umenoka |futa fucking another|full body highres| reddit wouldnt girl|semi realisticsource_anime|source_cartoon 1girl huge_breasts|mistresskari|tsunderia |musuko_ga_kawaikute_shikatanai_mazoku_no_hahaoya |A massive explosion erupts with|source_furry 1girl|ef_\\(visual_novel\\) |Nairoby|bnha rendous compelled |senpai-cusa olis |uncensoredgirl underneath|anime epiCRealism|tsukino_mito |tsukino_mito| fault reddit ideal|anal thighhighs|chimkenthighs|hentai plump|And fire through the streets|preneur-jap informing |hentai manga drawing|We’ll burn the streets|You better not resist|explosions fire|tamberlane comic|ibc sura bnha |black haired futanari|zettai_ryouiki |akino_sora | join figure save|The world’s on fire|sex porn hentai|senpai-womack lister |thighs water|thighs shoes|darkhazard artist|sixsidesofmyhead artist|white_single_thighhigh| report location report|clean anime|inserting dildo in ass|solo thighs|The wolf powerful thighs|I don’t want to set the world on fire honey|explosion behind|skirt aside|waifu-amphibious kelli |artist name|walking on big city street|serafuku solo| core civilization couldn|toudori |hiyo hiyoratory|e-hentai_sample |running away| catastrophe god law|waifu-electra hirsch |flowing anime|Feliberty |very innocent uwu|zettai rioiki|standing serafuku|boku_no_hero_academia |Robin honkai starrail|realistic Anime|running in terror from the fire|kawakami_rokkaku|kawakami_rokkaku |tachibana_roku |joutouguu_mayumi |cinematic comic}\n", "{onahole legsless|sakurajima_mai |spread her legsmasterpeace|komi_zumiko |thicc thighssource_cartoon|onahole full body|but i'd die inside her thighs|vertical_comic |her dress showing her crotch amidst the city|source_comic|giantess god|source_manga_cover |doujin cover|art by sunrise isekai|legs upsource anime|bnha loeb adish |tan Komi Shouko|the thighsource_anime|Nagatoro/|anime thighthighs|comic cover|thighs tsurime|hentai source comic book|anime safe 1girl|komi_shouko |japanese light novel cover|highres purple_thighhighs |purple_thighhighs|gigantic_comicbook page 1girl|skirt pyrokinesis|leg up Anime 2|NSFW hentai uncensored comic|source_ world disaster street|naomi sekai no hate no kissaten|Toned thighssource_cartoon|destroyed city background|giantess GTS|carlin-participates bnha |eighteen swaps avengersendgame mirai |bnha abide sacha |girl stepping on futa cock|hentai 1girl|best quality comic|brea-healthylifestyle bnha |Nagatoro Hayase|nagatoro hayase|bsu-mudder waifu |yuri_kyanon |anime 1 girl sexy|juli dori shld |hentai doujinshi|tante-bnha comicbook |burning city background|source 1girl manga page|pomf|kaiju girls webcomic|at_viewer thighs thick_thighs|waifu-potholes idyllic |nakano_azusa |absurdres ijiranaide nagatoro san|destroyed city in the background|stood behind Nagatoro|komone_ushio |sugoi_dekai |komi-san_wa_komyushou_desu |nadacheruulewd|smug cover art|thighsmasterpiece|1girl half body|distinct cover comic|nagatoro_hayase |source request|electra bnha adish |bulge tsundere|otherFutanari in the background| destruction heat role|heavy fire on the background|purification-homs healthylifestyle |implied_yuri |interracial futanari Amazon|murosaki_miyo |doujin_cover |2men hentai loose_thighhigh |city burning in the background|defenses avengersendgame mirai |massive angel fucking 1girl|hayat strade rendous bnha |Sakiyah|anime sugoi dekai|aniapt yoake_mae_yori_ruri_iro_na |anime hentai nsfw| disaster woke world|aozora tasogare aozora|gigantic natural pendulous breasts| group hentai destruction|18 year old nagatoro Beauty|yuri arisato|vertical-small_isekai meikyuu de harem wo|futanarimuscular legs|replace the background|Sayara |waifu-travelchat vesmatter |comicu0book|print_thighhighs |hayat mildly bnha |modernization-embellished bnha |smile riot in street background|large_calves|upright straddlepornographic|komi shuuko from Komi-San|elu_ niji|thick_thighs long_hair|orange_thighhighs |nagatoro in apartment|giant black futanari|bomb exploding in background|gesugao smug| school dont source|hawa-waifu avengersendgame |adish swaps bnha |likelihood-lys bnha |Coffe at povsource_anime hentaifat ass|caracas-bnha sabi |super fine anime|Miss Nagatoro|burning cityscape background|cum on breast motion lines|impossibly hayat lun bnha |zani-ibc bnha |causing destruction wherever she goes|blue_thighhighs |anin-sridevi bnha |Jameya|1girl smugness|vandalism-mirai enen |footjob Anime 2|portray-zawa sizzle | disaster city time|destroyed civilization|electra sohn bnha |thick thighsmasterpiece|very tall huge minijouga_maya |waifu-jetty jagan |kadose_ara |anime yozora_mel |Show her some beauty, before this damage is done|beautiful city background|boku no hero|in a isekai world|Yumiko Rohan | literature worth post|think thighs|highly detailedsource_anime|from belowsource_anime 1girl|sonoda_umi |genre hentai yaoi|shai-rps bnha |giantess|giantess |man fucking futanari from behing|ayuma_sayu |spread asssource_anime|source anime fat obese ebony woman|run|8K tradcartoons studios|most clumsy sexual lesbian yuri|shimaidon_\\(sex\\) |convenient_leg |convenient_leg|distract|Hentai Dark skin|mega giantess|protagonist|h_kasei |besto-|comic artwork|run-|cute komi san wa komyushou desu|omd avengersendgame passages aguchi |fire 1girl|masterpiece Isekai cityscape|my_hero_academia|huge cock anime|kobayakawa_rinko |comic_cover |holler zawa bnha |izuku midoriya fucking her|mature female yuri|imminent death by snu snu|protagonist helltaker|khloe-haves bnha |d rendered hentai version|oil futa|hentai spread legs|huge_sonoda_chiyoko |admins foxtv mirai |Official Art|official art|artist_name |sessyoin_kiara |Futa standing over viewer gigantic penis|big breasts Boku no Hero Academia|boku no hero academia|source_anime comic|femboy king walking in city|fujoshi |ooji_mochizou |yoshioka_yoshiko |miura_azusa |voluptuous hyperfuta futanari lookingdownbarrel|tsuki_ni_kawatte_oshioki_yo |revitalization-vickers waifu |anime 11girl sexy|senpai_ga_uzai_kouhai_no_hanashi |thighband|doujinshi |fantasy isekai|high qualitywide hips|lewdreaper|offender-yui sura |aniston-bnha economical |black haired taller femboy| end impact girl|anime solo demon|better version at the source|abridged-aviva saucy |fixed leg on picture|single_thighhigh |dsburg-whichever zawa |Kaneisha|futa proportionate|hentai 20yo girl|hentai 20yo girl| burn time protect|the average coomer bait dress better version at source|fire in the streets|alternate_legwear |onahole| problem future page|saten_ruiko |giantess giant|usa-chan_\\(idolmaster\\) |destroyed city| hentai success covid|tendou_maya |torn_thighhighs|torn_thighhighs |anime woman|very detailedsource anime|spread legsmasturbation|holding onahole|mirai compelled bnha |comic panel|komi-san wa komyushou desu|source needed|my hero academia|kawakami_mai |She’ll survive us all perfectly well|her feet are off the ground|okunoda_miyoi |giantess muscular|manga|uncensored lewdaesthetics|analingussource_anime hentainaked fat ass|both black futanari have black hair|We will burn your cities down|highly detailedsource anime|thigh_cutout |abridged-homs filament |average thighs|flames in the background|explicit anime|large rugged middle-aged man fucking short femboy|bnha serverless loeb |bnha diffuser ashleigh |inimidating girl|extremely muscular futanari|spread thighs|hell in the background|one pussy juice anime|large thighs|female smug|cum in assanime style|explosive in ass|justice right bitch heroine|source_animethick outline|gila-triviatuesday bnha |yuri yuricrabking|microskirt dumb|in public anime|Keishona|smug D sitting|Now that you’ve kneed her|human futanari|tokiha_mai |beautiful cute sexy anime|bnha nlwx mako |avengersendgame zawa undertaking |ofi publica bnha |northwales bnha differentiate |thicc shortstack|large African futanari fucking short white male|gridman_universe |thighs on side|replaceable-captainmarvel waifu |sky above giantess|1woman anime|jitome|jitome |nochrome manga|Look at her, look at her go|manga girl|kendal-admirer bnha |propeller-demarcus miki |best quality girl|pastel colored Shortalls|highres 8K anime|upskirt futanari|pussy juice fishing our vagina|kujikawa_rise |senpai-mesut dooley |comic book cover|bad_perspective |solothighs|minigiantess|Wide underpantsThigh thighs|huge bulgesource_anime|fire in the background|jocelyn-bnha ullah |waifu-peoplesvote thine |thigh gapdesert|hojo_karen | problem fuel smug|ruined city background|1 girl full body|giantess massive body goddess| city roi edit|waifu|anime female|vandalism-hardship zawa | apocalypse money muh|fj-combating bnha |penile vaginal penetration|Saori|futanari futa|manga art|big huge massive dick|destroyed city pov|source animemasterpiece|yuri xdyuxd|lewdamone|tamura_yuri |hentaib|bnha|homs-thwaite bnha |consequences|Destroy|destroy-|destroy|anime 1futa|burning village in the background|serafuku |serafuku|novel_cover | responsibility reason crop|sugoi_hi|fullbody thighs|big explosion in the background|bnha dori asar |thighs sunset|anthro penetrating female|waifu-swallows hardship |hayase nagatoro|marck-fiercely propane |burning battlefield in background|It’s a weeb, what it, what is this?|When you’re world goes up in flames|panel comic|propaganda|erection thighs|thighhighs town|Megumi Kirorimal | threat post| subreddit stop war| cap girl end| society time incoming|artists like source anime|houtengeki |evacuated| disaster situation dakota|tsukikage_yuri |miho-comicbook parisagreement |Better run bitch now|best qualitysource_anime|huge breasr futanari|thigh gaping|mankanshoku_mako |thighs masterpiece|fertile-admins comicart |yuiga_naoha |exploitable image|sekai_saisoku_no_panda |interesting background|1futa 1male|She has a smile that could end a war|sandalwood-juli mako |fire background|hentai POV| perspective wildfire good|bnha dori pbc | society fuel god|source animelooking at viewer|senpai|Background anime|demino deminothedragon|mako sbridge adish biographical |busy street background|Destroy!|defenses loeb mirai |femanine face smug|anime 2 women|burning cars|sleeping caged penis|Makiyah|oka-|Oka |futa futanari|passages strade bnha |penis between thighs+++|nees-sigue bnha |anime scene|milf is not on fire|tight skirt school| cause destruction rate|lewdert|carcinoma-thcentury bnha |acadia pkg bnha |bishoujo|japanese manga artist|source_animelooking at viewer|kanzaki etc|nijisanji_kr |cleavage source comic book|haruki no saidai no teki wa risei|male fucking futanari|rylee senimasan|premiers-loeb bnha |shorts_aside |leg_armor |futanari fucking another futanari|all_might |jahy-sama_wa_kujikenai! |sigue mako mirai |kyoka jiro Boku no hero academia|nijou_noriko |🏙️|sakuranene_jav|ken ashcorp|thighjob|pants anime|peni_parker skirt|futa nabezoko|female futanari|The dogs powerful thighs| apocalypse rise thing|suiren_yurei |bombergirl |girl anime|1 male 1 futa|massive girl|anime flat style|Kymoni|large futanari fucking short boy|nettedthighs|Ay-O round thighs|character surrounded by fire|2D anime futanari| report time|from my hero academia|GIANTESS who's peeing on her|city big breasts|bnha sown acadia |Nayalee|Hentai Cinematic|futanari gazelle fuck gazelle|hentai 2girls|mirai dori rps |still from official media anime|dickgirl lore|neko girl 1|Kokomi|ameizinglewds|giantess goddess|disaster|curvy porn presenting_removed_panties |strong_legs| raise catastrophe bitch|comic art|homs-reviewers adaily |anthro cinderace futanari|yuri_\\(doki_doki_literature_club\\) | twitter emergency reporter|Visual novel|visual novel|kemokemo|umi1 solo|Yuriah|highleg thighhighs|mai-|Mai|anime hero|anime movie background|rhonda-lockhart bnha |lewd-siam ssummit |tsuki akurei|ripped school teacher uniform|thighs pussy juice|hentai|burning skyscraper|I don’t want to set huge testiclesanime coloring|komakusa_sannyo |sacha harlan bnha |manhua|Graphic novel|graphic novel|male_on_futa |city visible behind her|discord profile picture|suni-breaches bnha |fanfic-diffuser rps |wide hips futanari|high qualityvery beautiful demon futanari|tadano_magu |chihunhentai |Anime backgrounds|hotbrotkuroi|Femboy the hero rides| priority drama pollution|japanese city background| war problem topic|kurata_rine |ass yuri lesbian|highleg_panties |shatter-ushi waifu |dungeon_ni_deai_wo_motomeru_no_wa_machigatteiru_darou_ka |source_anime 1girl|torn_legwear |anime girl|hentai style|1girl tsunadesdxl|sura sichuan bnha |And we will burn your cities down|visible thighs|with her raised arm in the street|gani-preneur bnha |shorts half body|kianamaiart|source_animemasculine male anthro|arson|marukyuu_ameya |brown tighhighs 2d|Kyeria|source_request | devil pollution response|mci-combating bnha |doujinshi page 1woman|no_panties |no_panties|double deck hentai|burning building|recruiters-misogyny waifu |mayo_riyo |Jonasia|jahy-sama wa kujikenai!|large futanari teacher fucking short student boy|gril-|kohi waruikoohii|Futa standing over viewer|mirai adish snickers avengersendgame |report leg|milfeulle_sakuraba |Anime newest|yoru_no_kurage_wa_oyogenai |imminent danger|upbulge futanari|naoe_riki |acadia andolan bnha |trouble\\: the final chapter|hentai milf|mai_natsume |busy city background|mewtowo shadman|animeirl outdoors|yuri tribadism|informs-senpai theone |lewdicrousart|Ooh, the fire’s spreading everywhere| economy end strip|EFT_Juvia aajuvia|avengersendgame afs zawa |Deneisha Roubekas |pancreatic pancreatic adero |imminent footjob|apocalyptic city in background|a pretty asian female character|source_animeshort male anthro|Miga |official arts|official artwork|destroying a city|🧑‍🚒|They will run over you|anime demon pov| efficient crisis education|thighs in all their glory|brown_thighhighs |dori bnha bnha |outdoors manga| arent issue thread|Nahomi|black hair yuri|titfuck under clothessource_anime|We will burn your cities down!|neet-chases thcentury |uncensored human-onahole|Now that you need her|a pretty american female character|flat chest large thighs|lewdtias|hiiragi_hazime |trap futanari|onnaise sacha bnha |one very tall huge minigiantess|explosion in background|required to build the world by destroying herself|teacher have clothing|random background|yamada_\\(gotyui\\) |iyaki-prioritize onstorm |masturbating postapocalypse in|evil monster in attacknsfw|nasheed bnha fumble acknowledges |testosterone-waifu fad |anime MeimeiSDXL|anime sexy|Anime sexy|futa futanarimix|fluffly clouds above|chihaya_anon |megumi|Megumi| humanity fuel|presenting feetBackgroundHigh detailed background|uncensored anime|smile highres|skyline comic|thighs two-handed|adero ulf bnha |Sayada |peni_parker |admins bnha passages | fighting society accurate|apocalypse|bnha halep jekyll |lewdookami|1man ass thighs|NSFW official art|nsfw OFFiCIAL ART|chonky_with_thick_thighs_|lifespan bnha allez |itadori_yuuji |scary background|very sexy ninja suit|fire in background|Would wipe my a*s|tsukioka_kogane |best quality 1GIRL|best quality1girl|BEST QUALITY 1GIRL|Best Quality 1girl|minakami_mai |modern cel shaded anime|full body street|ryomou_shimei |Yariko JK Bitch ni Shiboraretai|voluptuous character from the popular anime|sonar-dori bnha |exploding_clothes |leg-|aki_minoriko |femboys in background|mik-litters circulated |soca juli sichuan bnha |english_text |english_text|bnha eet loeb |long legsmasterpiece|konno_tohiro | war situation solution|manga artwork presenting|akii_kisaki|gokou_ruri |onii-chan_wa_oshimai! |flames in background|tight shorts smug|regulating-scouncil bnha |anime cute girl| disaster war discussion|school_girl_strikers |sasaki_saku |themed_manga_art|thighs weapon|heart thighs|thighighs|anemone zawa acknowledges |fapchiki|thick thighslooking at viewer|perfect anime illustration|kellie drayton bnha | start hotter advantage|source_anime shortstack woman|1panel|purification-nederland bnha |bnha olis offside |toes otoko no ko|imageboard_desourced |striped_thighhighs |qualitative-mosley miho |World’s on fire|bokura_wa_ima_no_naka_de |thighs armor| illustration account threat|reizei_mako |yuriko mastergodai|tsushima_yoshiko | wouldn start birthrate|1girl yuri|strong thighs|udaipur kilt bnha |half body crop|a popular anime character|globalwarming-bnha fdi |superflat 1girl|lisse garza bnha |itou_yuuji |comicart-zawa passports |unknown character|art by jaykuma|youjomodoki| context litteraly risk|masterpiece manhwa|city destruction|postapocalypse| impact world disaster|textless_version |She beat you to it|ichijou_hotaru |art by kantoku|manga lifelike|in a big city|uzaki_tsuki |large thighs muscular|by himitsu hi mi tsu|she stands firm| education destroy|1girl smug|NSFWbishoujo|futanari fucking woman| class smug reason|oono_aya |koumoru doumoru|hero_neisan |steam thick thighs|nlwx sura bnha |Sanika|black thighhighspureerosface_v|rarity-bnha womack |shortmegumi|Cartooncore|sapphicneko|thighs spread high fantasy| disaster corruption poster|kicking Anime 2|anime full colored|action lines thick thighs|artist_request|artist_request |massive futa|Nazaria|mirai springtraining spilling |dark-skinned femboysource_cartoon|Female on the street surrounded|off screen character futa| city burning think|the world on fire|umi-|Umi|serafuku skirt|kairakuen_umenoka |futa fucking another|full body highres| reddit wouldnt girl|semi realisticsource_anime|source_cartoon 1girl huge_breasts|mistresskari|tsunderia |musuko_ga_kawaikute_shikatanai_mazoku_no_hahaoya |A massive explosion erupts with|source_furry 1girl|ef_\\(visual_novel\\) |Nairoby|bnha rendous compelled |senpai-cusa olis |uncensoredgirl underneath|anime epiCRealism|tsukino_mito |tsukino_mito| fault reddit ideal|anal thighhighs|chimkenthighs|hentai plump|And fire through the streets|preneur-jap informing |hentai manga drawing|We’ll burn the streets|You better not resist|explosions fire|tamberlane comic|ibc sura bnha |black haired futanari|zettai_ryouiki |akino_sora | join figure save|The world’s on fire|sex porn hentai|senpai-womack lister |thighs water|thighs shoes|darkhazard artist|sixsidesofmyhead artist|white_single_thighhigh| report location report|clean anime|inserting dildo in ass|solo thighs|The wolf powerful thighs|I don’t want to set the world on fire honey|explosion behind|skirt aside|waifu-amphibious kelli |artist name|walking on big city street|serafuku solo| core civilization couldn|toudori |hiyo hiyoratory|e-hentai_sample |running away| catastrophe god law|waifu-electra hirsch |flowing anime|Feliberty |very innocent uwu|zettai rioiki|standing serafuku|boku_no_hero_academia |Robin honkai starrail|realistic Anime|running in terror from the fire|kawakami_rokkaku|kawakami_rokkaku |tachibana_roku |joutouguu_mayumi |cinematic comic}\n", "{onahole legsless|sakurajima_mai |spread her legsmasterpeace|komi_zumiko |thicc thighssource_cartoon|onahole full body|but i'd die inside her thighs|vertical_comic |her dress showing her crotch amidst the city|source_comic|giantess god|source_manga_cover |doujin cover|art by sunrise isekai|legs upsource anime|bnha loeb adish |tan Komi Shouko|the thighsource_anime|Nagatoro/|anime thighthighs|comic cover|thighs tsurime|hentai source comic book|anime safe 1girl|komi_shouko |japanese light novel cover|highres purple_thighhighs |purple_thighhighs|gigantic_comicbook page 1girl|skirt pyrokinesis|leg up Anime 2|NSFW hentai uncensored comic|source_ world disaster street|naomi sekai no hate no kissaten|Toned thighssource_cartoon|destroyed city background|giantess GTS|carlin-participates bnha |eighteen swaps avengersendgame mirai |bnha abide sacha |girl stepping on futa cock|hentai 1girl|best quality comic|brea-healthylifestyle bnha |Nagatoro Hayase|nagatoro hayase|bsu-mudder waifu |yuri_kyanon |anime 1 girl sexy|juli dori shld |hentai doujinshi|tante-bnha comicbook |burning city background|source 1girl manga page|pomf|kaiju girls webcomic|at_viewer thighs thick_thighs|waifu-potholes idyllic |nakano_azusa |absurdres ijiranaide nagatoro san|destroyed city in the background|stood behind Nagatoro|komone_ushio |sugoi_dekai |komi-san_wa_komyushou_desu |nadacheruulewd|smug cover art|thighsmasterpiece|1girl half body|distinct cover comic|nagatoro_hayase |source request|electra bnha adish |bulge tsundere|otherFutanari in the background| destruction heat role|heavy fire on the background|purification-homs healthylifestyle |implied_yuri |interracial futanari Amazon|murosaki_miyo |doujin_cover |2men hentai loose_thighhigh |city burning in the background|defenses avengersendgame mirai |massive angel fucking 1girl|hayat strade rendous bnha |Sakiyah|anime sugoi dekai|aniapt yoake_mae_yori_ruri_iro_na |anime hentai nsfw| disaster woke world|aozora tasogare aozora|gigantic natural pendulous breasts| group hentai destruction|18 year old nagatoro Beauty|yuri arisato|vertical-small_isekai meikyuu de harem wo|futanarimuscular legs|replace the background|Sayara |waifu-travelchat vesmatter |comicu0book|print_thighhighs |hayat mildly bnha |modernization-embellished bnha |smile riot in street background|large_calves|upright straddlepornographic|komi shuuko from Komi-San|elu_ niji|thick_thighs long_hair|orange_thighhighs |nagatoro in apartment|giant black futanari|bomb exploding in background|gesugao smug| school dont source|hawa-waifu avengersendgame |adish swaps bnha |likelihood-lys bnha |Coffe at povsource_anime hentaifat ass|caracas-bnha sabi |super fine anime|Miss Nagatoro|burning cityscape background|cum on breast motion lines|impossibly hayat lun bnha |zani-ibc bnha |causing destruction wherever she goes|blue_thighhighs |anin-sridevi bnha |Jameya|1girl smugness|vandalism-mirai enen |footjob Anime 2|portray-zawa sizzle | disaster city time|destroyed civilization|electra sohn bnha |thick thighsmasterpiece|very tall huge minijouga_maya |waifu-jetty jagan |kadose_ara |anime yozora_mel |Show her some beauty, before this damage is done|beautiful city background|boku no hero|in a isekai world|Yumiko Rohan | literature worth post|think thighs|highly detailedsource_anime|from belowsource_anime 1girl|sonoda_umi |genre hentai yaoi|shai-rps bnha |giantess|giantess |man fucking futanari from behing|ayuma_sayu |spread asssource_anime|source anime fat obese ebony woman|run|8K tradcartoons studios|most clumsy sexual lesbian yuri|shimaidon_\\(sex\\) |convenient_leg |convenient_leg|distract|Hentai Dark skin|mega giantess|protagonist|h_kasei |besto-|comic artwork|run-|cute komi san wa komyushou desu|omd avengersendgame passages aguchi |fire 1girl|masterpiece Isekai cityscape|my_hero_academia|huge cock anime|kobayakawa_rinko |comic_cover |holler zawa bnha |izuku midoriya fucking her|mature female yuri|imminent death by snu snu|protagonist helltaker|khloe-haves bnha |d rendered hentai version|oil futa|hentai spread legs|huge_sonoda_chiyoko |admins foxtv mirai |Official Art|official art|artist_name |sessyoin_kiara |Futa standing over viewer gigantic penis|big breasts Boku no Hero Academia|boku no hero academia|source_anime comic|femboy king walking in city|fujoshi |ooji_mochizou |yoshioka_yoshiko |miura_azusa |voluptuous hyperfuta futanari lookingdownbarrel|tsuki_ni_kawatte_oshioki_yo |revitalization-vickers waifu |anime 11girl sexy|senpai_ga_uzai_kouhai_no_hanashi |thighband|doujinshi |fantasy isekai|high qualitywide hips|lewdreaper|offender-yui sura |aniston-bnha economical |black haired taller femboy| end impact girl|anime solo demon|better version at the source|abridged-aviva saucy |fixed leg on picture|single_thighhigh |dsburg-whichever zawa |Kaneisha|futa proportionate|hentai 20yo girl|hentai 20yo girl| burn time protect|the average coomer bait dress better version at source|fire in the streets|alternate_legwear |onahole| problem future page|saten_ruiko |giantess giant|usa-chan_\\(idolmaster\\) |destroyed city| hentai success covid|tendou_maya |torn_thighhighs|torn_thighhighs |anime woman|very detailedsource anime|spread legsmasturbation|holding onahole|mirai compelled bnha |comic panel|komi-san wa komyushou desu|source needed|my hero academia|kawakami_mai |She’ll survive us all perfectly well|her feet are off the ground|okunoda_miyoi |giantess muscular|manga|uncensored lewdaesthetics|analingussource_anime hentainaked fat ass|both black futanari have black hair|We will burn your cities down|highly detailedsource anime|thigh_cutout |abridged-homs filament |average thighs|flames in the background|explicit anime|large rugged middle-aged man fucking short femboy|bnha serverless loeb |bnha diffuser ashleigh |inimidating girl|extremely muscular futanari|spread thighs|hell in the background|one pussy juice anime|large thighs|female smug|cum in assanime style|explosive in ass|justice right bitch heroine|source_animethick outline|gila-triviatuesday bnha |yuri yuricrabking|microskirt dumb|in public anime|Keishona|smug D sitting|Now that you’ve kneed her|human futanari|tokiha_mai |beautiful cute sexy anime|bnha nlwx mako |avengersendgame zawa undertaking |ofi publica bnha |northwales bnha differentiate |thicc shortstack|large African futanari fucking short white male|gridman_universe |thighs on side|replaceable-captainmarvel waifu |sky above giantess|1woman anime|jitome|jitome |nochrome manga|Look at her, look at her go|manga girl|kendal-admirer bnha |propeller-demarcus miki |best quality girl|pastel colored Shortalls|highres 8K anime|upskirt futanari|pussy juice fishing our vagina|kujikawa_rise |senpai-mesut dooley |comic book cover|bad_perspective |solothighs|minigiantess|Wide underpantsThigh thighs|huge bulgesource_anime|fire in the background|jocelyn-bnha ullah |waifu-peoplesvote thine |thigh gapdesert|hojo_karen | problem fuel smug|ruined city background|1 girl full body|giantess massive body goddess| city roi edit|waifu|anime female|vandalism-hardship zawa | apocalypse money muh|fj-combating bnha |penile vaginal penetration|Saori|futanari futa|manga art|big huge massive dick|destroyed city pov|source animemasterpiece|yuri xdyuxd|lewdamone|tamura_yuri |hentaib|bnha|homs-thwaite bnha |consequences|Destroy|destroy-|destroy|anime 1futa|burning village in the background|serafuku |serafuku|novel_cover | responsibility reason crop|sugoi_hi|fullbody thighs|big explosion in the background|bnha dori asar |thighs sunset|anthro penetrating female|waifu-swallows hardship |hayase nagatoro|marck-fiercely propane |burning battlefield in background|It’s a weeb, what it, what is this?|When you’re world goes up in flames|panel comic|propaganda|erection thighs|thighhighs town|Megumi Kirorimal | threat post| subreddit stop war| cap girl end| society time incoming|artists like source anime|houtengeki |evacuated| disaster situation dakota|tsukikage_yuri |miho-comicbook parisagreement |Better run bitch now|best qualitysource_anime|huge breasr futanari|thigh gaping|mankanshoku_mako |thighs masterpiece|fertile-admins comicart |yuiga_naoha |exploitable image|sekai_saisoku_no_panda |interesting background|1futa 1male|She has a smile that could end a war|sandalwood-juli mako |fire background|hentai POV| perspective wildfire good|bnha dori pbc | society fuel god|source animelooking at viewer|senpai|Background anime|demino deminothedragon|mako sbridge adish biographical |busy street background|Destroy!|defenses loeb mirai |femanine face smug|anime 2 women|burning cars|sleeping caged penis|Makiyah|oka-|Oka |futa futanari|passages strade bnha |penis between thighs+++|nees-sigue bnha |anime scene|milf is not on fire|tight skirt school| cause destruction rate|lewdert|carcinoma-thcentury bnha |acadia pkg bnha |bishoujo|japanese manga artist|source_animelooking at viewer|kanzaki etc|nijisanji_kr |cleavage source comic book|haruki no saidai no teki wa risei|male fucking futanari|rylee senimasan|premiers-loeb bnha |shorts_aside |leg_armor |futanari fucking another futanari|all_might |jahy-sama_wa_kujikenai! |sigue mako mirai |kyoka jiro Boku no hero academia|nijou_noriko |🏙️|sakuranene_jav|ken ashcorp|thighjob|pants anime|peni_parker skirt|futa nabezoko|female futanari|The dogs powerful thighs| apocalypse rise thing|suiren_yurei |bombergirl |girl anime|1 male 1 futa|massive girl|anime flat style|Kymoni|large futanari fucking short boy|nettedthighs|Ay-O round thighs|character surrounded by fire|2D anime futanari| report time|from my hero academia|GIANTESS who's peeing on her|city big breasts|bnha sown acadia |Nayalee|Hentai Cinematic|futanari gazelle fuck gazelle|hentai 2girls|mirai dori rps |still from official media anime|dickgirl lore|neko girl 1|Kokomi|ameizinglewds|giantess goddess|disaster|curvy porn presenting_removed_panties |strong_legs| raise catastrophe bitch|comic art|homs-reviewers adaily |anthro cinderace futanari|yuri_\\(doki_doki_literature_club\\) | twitter emergency reporter|Visual novel|visual novel|kemokemo|umi1 solo|Yuriah|highleg thighhighs|mai-|Mai|anime hero|anime movie background|rhonda-lockhart bnha |lewd-siam ssummit |tsuki akurei|ripped school teacher uniform|thighs pussy juice|hentai|burning skyscraper|I don’t want to set huge testiclesanime coloring|komakusa_sannyo |sacha harlan bnha |manhua|Graphic novel|graphic novel|male_on_futa |city visible behind her|discord profile picture|suni-breaches bnha |fanfic-diffuser rps |wide hips futanari|high qualityvery beautiful demon futanari|tadano_magu |chihunhentai |Anime backgrounds|hotbrotkuroi|Femboy the hero rides| priority drama pollution|japanese city background| war problem topic|kurata_rine |ass yuri lesbian|highleg_panties |shatter-ushi waifu |dungeon_ni_deai_wo_motomeru_no_wa_machigatteiru_darou_ka |source_anime 1girl|torn_legwear |anime girl|hentai style|1girl tsunadesdxl|sura sichuan bnha |And we will burn your cities down|visible thighs|with her raised arm in the street|gani-preneur bnha |shorts half body|kianamaiart|source_animemasculine male anthro|arson|marukyuu_ameya |brown tighhighs 2d|Kyeria|source_request | devil pollution response|mci-combating bnha |doujinshi page 1woman|no_panties |no_panties|double deck hentai|burning building|recruiters-misogyny waifu |mayo_riyo |Jonasia|jahy-sama wa kujikenai!|large futanari teacher fucking short student boy|gril-|kohi waruikoohii|Futa standing over viewer|mirai adish snickers avengersendgame |report leg|milfeulle_sakuraba |Anime newest|yoru_no_kurage_wa_oyogenai |imminent danger|upbulge futanari|naoe_riki |acadia andolan bnha |trouble\\: the final chapter|hentai milf|mai_natsume |busy city background|mewtowo shadman|animeirl outdoors|yuri tribadism|informs-senpai theone |lewdicrousart|Ooh, the fire’s spreading everywhere| economy end strip|EFT_Juvia aajuvia|avengersendgame afs zawa |Deneisha Roubekas |pancreatic pancreatic adero |imminent footjob|apocalyptic city in background|a pretty asian female character|source_animeshort male anthro|Miga |official arts|official artwork|destroying a city|🧑‍🚒|They will run over you|anime demon pov| efficient crisis education|thighs in all their glory|brown_thighhighs |dori bnha bnha |outdoors manga| arent issue thread|Nahomi|black hair yuri|titfuck under clothessource_anime|We will burn your cities down!|neet-chases thcentury |uncensored human-onahole|Now that you need her|a pretty american female character|flat chest large thighs|lewdtias|hiiragi_hazime |trap futanari|onnaise sacha bnha |one very tall huge minigiantess|explosion in background|required to build the world by destroying herself|teacher have clothing|random background|yamada_\\(gotyui\\) |iyaki-prioritize onstorm |masturbating postapocalypse in|evil monster in attacknsfw|nasheed bnha fumble acknowledges |testosterone-waifu fad |anime MeimeiSDXL|anime sexy|Anime sexy|futa futanarimix|fluffly clouds above|chihaya_anon |megumi|Megumi| humanity fuel|presenting feetBackgroundHigh detailed background|uncensored anime|smile highres|skyline comic|thighs two-handed|adero ulf bnha |Sayada |peni_parker |admins bnha passages | fighting society accurate|apocalypse|bnha halep jekyll |lewdookami|1man ass thighs|NSFW official art|nsfw OFFiCIAL ART|chonky_with_thick_thighs_|lifespan bnha allez |itadori_yuuji |scary background|very sexy ninja suit|fire in background|Would wipe my a*s|tsukioka_kogane |best quality 1GIRL|best quality1girl|BEST QUALITY 1GIRL|Best Quality 1girl|minakami_mai |modern cel shaded anime|full body street|ryomou_shimei |Yariko JK Bitch ni Shiboraretai|voluptuous character from the popular anime|sonar-dori bnha |exploding_clothes |leg-|aki_minoriko |femboys in background|mik-litters circulated |soca juli sichuan bnha |english_text |english_text|bnha eet loeb |long legsmasterpiece|konno_tohiro | war situation solution|manga artwork presenting|akii_kisaki|gokou_ruri |onii-chan_wa_oshimai! |flames in background|tight shorts smug|regulating-scouncil bnha |anime cute girl| disaster war discussion|school_girl_strikers |sasaki_saku |themed_manga_art|thighs weapon|heart thighs|thighighs|anemone zawa acknowledges |fapchiki|thick thighslooking at viewer|perfect anime illustration|kellie drayton bnha | start hotter advantage|source_anime shortstack woman|1panel|purification-nederland bnha |bnha olis offside |toes otoko no ko|imageboard_desourced |striped_thighhighs |qualitative-mosley miho |World’s on fire|bokura_wa_ima_no_naka_de |thighs armor| illustration account threat|reizei_mako |yuriko mastergodai|tsushima_yoshiko | wouldn start birthrate|1girl yuri|strong thighs|udaipur kilt bnha |half body crop|a popular anime character|globalwarming-bnha fdi |superflat 1girl|lisse garza bnha |itou_yuuji |comicart-zawa passports |unknown character|art by jaykuma|youjomodoki| context litteraly risk|masterpiece manhwa|city destruction|postapocalypse| impact world disaster|textless_version |She beat you to it|ichijou_hotaru |art by kantoku|manga lifelike|in a big city|uzaki_tsuki |large thighs muscular|by himitsu hi mi tsu|she stands firm| education destroy|1girl smug|NSFWbishoujo|futanari fucking woman| class smug reason|oono_aya |koumoru doumoru|hero_neisan |steam thick thighs|nlwx sura bnha |Sanika|black thighhighspureerosface_v|rarity-bnha womack |shortmegumi|Cartooncore|sapphicneko|thighs spread high fantasy| disaster corruption poster|kicking Anime 2|anime full colored|action lines thick thighs|artist_request|artist_request |massive futa|Nazaria|mirai springtraining spilling |dark-skinned femboysource_cartoon|Female on the street surrounded|off screen character futa| city burning think|the world on fire|umi-|Umi|serafuku skirt|kairakuen_umenoka |futa fucking another|full body highres| reddit wouldnt girl|semi realisticsource_anime|source_cartoon 1girl huge_breasts|mistresskari|tsunderia |musuko_ga_kawaikute_shikatanai_mazoku_no_hahaoya |A massive explosion erupts with|source_furry 1girl|ef_\\(visual_novel\\) |Nairoby|bnha rendous compelled |senpai-cusa olis |uncensoredgirl underneath|anime epiCRealism|tsukino_mito |tsukino_mito| fault reddit ideal|anal thighhighs|chimkenthighs|hentai plump|And fire through the streets|preneur-jap informing |hentai manga drawing|We’ll burn the streets|You better not resist|explosions fire|tamberlane comic|ibc sura bnha |black haired futanari|zettai_ryouiki |akino_sora | join figure save|The world’s on fire|sex porn hentai|senpai-womack lister |thighs water|thighs shoes|darkhazard artist|sixsidesofmyhead artist|white_single_thighhigh| report location report|clean anime|inserting dildo in ass|solo thighs|The wolf powerful thighs|I don’t want to set the world on fire honey|explosion behind|skirt aside|waifu-amphibious kelli |artist name|walking on big city street|serafuku solo| core civilization couldn|toudori |hiyo hiyoratory|e-hentai_sample |running away| catastrophe god law|waifu-electra hirsch |flowing anime|Feliberty |very innocent uwu|zettai rioiki|standing serafuku|boku_no_hero_academia |Robin honkai starrail|realistic Anime|running in terror from the fire|kawakami_rokkaku|kawakami_rokkaku |tachibana_roku |joutouguu_mayumi |cinematic comic}\n", "{onahole legsless|sakurajima_mai |spread her legsmasterpeace|komi_zumiko |thicc thighssource_cartoon|onahole full body|but i'd die inside her thighs|vertical_comic |her dress showing her crotch amidst the city|source_comic|giantess god|source_manga_cover |doujin cover|art by sunrise isekai|legs upsource anime|bnha loeb adish |tan Komi Shouko|the thighsource_anime|Nagatoro/|anime thighthighs|comic cover|thighs tsurime|hentai source comic book|anime safe 1girl|komi_shouko |japanese light novel cover|highres purple_thighhighs |purple_thighhighs|gigantic_comicbook page 1girl|skirt pyrokinesis|leg up Anime 2|NSFW hentai uncensored comic|source_ world disaster street|naomi sekai no hate no kissaten|Toned thighssource_cartoon|destroyed city background|giantess GTS|carlin-participates bnha |eighteen swaps avengersendgame mirai |bnha abide sacha |girl stepping on futa cock|hentai 1girl|best quality comic|brea-healthylifestyle bnha |Nagatoro Hayase|nagatoro hayase|bsu-mudder waifu |yuri_kyanon |anime 1 girl sexy|juli dori shld |hentai doujinshi|tante-bnha comicbook |burning city background|source 1girl manga page|pomf|kaiju girls webcomic|at_viewer thighs thick_thighs|waifu-potholes idyllic |nakano_azusa |absurdres ijiranaide nagatoro san|destroyed city in the background|stood behind Nagatoro|komone_ushio |sugoi_dekai |komi-san_wa_komyushou_desu |nadacheruulewd|smug cover art|thighsmasterpiece|1girl half body|distinct cover comic|nagatoro_hayase |source request|electra bnha adish |bulge tsundere|otherFutanari in the background| destruction heat role|heavy fire on the background|purification-homs healthylifestyle |implied_yuri |interracial futanari Amazon|murosaki_miyo |doujin_cover |2men hentai loose_thighhigh |city burning in the background|defenses avengersendgame mirai |massive angel fucking 1girl|hayat strade rendous bnha |Sakiyah|anime sugoi dekai|aniapt yoake_mae_yori_ruri_iro_na |anime hentai nsfw| disaster woke world|aozora tasogare aozora|gigantic natural pendulous breasts| group hentai destruction|18 year old nagatoro Beauty|yuri arisato|vertical-small_isekai meikyuu de harem wo|futanarimuscular legs|replace the background|Sayara |waifu-travelchat vesmatter |comicu0book|print_thighhighs |hayat mildly bnha |modernization-embellished bnha |smile riot in street background|large_calves|upright straddlepornographic|komi shuuko from Komi-San|elu_ niji|thick_thighs long_hair|orange_thighhighs |nagatoro in apartment|giant black futanari|bomb exploding in background|gesugao smug| school dont source|hawa-waifu avengersendgame |adish swaps bnha |likelihood-lys bnha |Coffe at povsource_anime hentaifat ass|caracas-bnha sabi |super fine anime|Miss Nagatoro|burning cityscape background|cum on breast motion lines|impossibly hayat lun bnha |zani-ibc bnha |causing destruction wherever she goes|blue_thighhighs |anin-sridevi bnha |Jameya|1girl smugness|vandalism-mirai enen |footjob Anime 2|portray-zawa sizzle | disaster city time|destroyed civilization|electra sohn bnha |thick thighsmasterpiece|very tall huge minijouga_maya |waifu-jetty jagan |kadose_ara |anime yozora_mel |Show her some beauty, before this damage is done|beautiful city background|boku no hero|in a isekai world|Yumiko Rohan | literature worth post|think thighs|highly detailedsource_anime|from belowsource_anime 1girl|sonoda_umi |genre hentai yaoi|shai-rps bnha |giantess|giantess |man fucking futanari from behing|ayuma_sayu |spread asssource_anime|source anime fat obese ebony woman|run|8K tradcartoons studios|most clumsy sexual lesbian yuri|shimaidon_\\(sex\\) |convenient_leg |convenient_leg|distract|Hentai Dark skin|mega giantess|protagonist|h_kasei |besto-|comic artwork|run-|cute komi san wa komyushou desu|omd avengersendgame passages aguchi |fire 1girl|masterpiece Isekai cityscape|my_hero_academia|huge cock anime|kobayakawa_rinko |comic_cover |holler zawa bnha |izuku midoriya fucking her|mature female yuri|imminent death by snu snu|protagonist helltaker|khloe-haves bnha |d rendered hentai version|oil futa|hentai spread legs|huge_sonoda_chiyoko |admins foxtv mirai |Official Art|official art|artist_name |sessyoin_kiara |Futa standing over viewer gigantic penis|big breasts Boku no Hero Academia|boku no hero academia|source_anime comic|femboy king walking in city|fujoshi |ooji_mochizou |yoshioka_yoshiko |miura_azusa |voluptuous hyperfuta futanari lookingdownbarrel|tsuki_ni_kawatte_oshioki_yo |revitalization-vickers waifu |anime 11girl sexy|senpai_ga_uzai_kouhai_no_hanashi |thighband|doujinshi |fantasy isekai|high qualitywide hips|lewdreaper|offender-yui sura |aniston-bnha economical |black haired taller femboy| end impact girl|anime solo demon|better version at the source|abridged-aviva saucy |fixed leg on picture|single_thighhigh |dsburg-whichever zawa |Kaneisha|futa proportionate|hentai 20yo girl|hentai 20yo girl| burn time protect|the average coomer bait dress better version at source|fire in the streets|alternate_legwear |onahole| problem future page|saten_ruiko |giantess giant|usa-chan_\\(idolmaster\\) |destroyed city| hentai success covid|tendou_maya |torn_thighhighs|torn_thighhighs |anime woman|very detailedsource anime|spread legsmasturbation|holding onahole|mirai compelled bnha |comic panel|komi-san wa komyushou desu|source needed|my hero academia|kawakami_mai |She’ll survive us all perfectly well|her feet are off the ground|okunoda_miyoi |giantess muscular|manga|uncensored lewdaesthetics|analingussource_anime hentainaked fat ass|both black futanari have black hair|We will burn your cities down|highly detailedsource anime|thigh_cutout |abridged-homs filament |average thighs|flames in the background|explicit anime|large rugged middle-aged man fucking short femboy|bnha serverless loeb |bnha diffuser ashleigh |inimidating girl|extremely muscular futanari|spread thighs|hell in the background|one pussy juice anime|large thighs|female smug|cum in assanime style|explosive in ass|justice right bitch heroine|source_animethick outline|gila-triviatuesday bnha |yuri yuricrabking|microskirt dumb|in public anime|Keishona|smug D sitting|Now that you’ve kneed her|human futanari|tokiha_mai |beautiful cute sexy anime|bnha nlwx mako |avengersendgame zawa undertaking |ofi publica bnha |northwales bnha differentiate |thicc shortstack|large African futanari fucking short white male|gridman_universe |thighs on side|replaceable-captainmarvel waifu |sky above giantess|1woman anime|jitome|jitome |nochrome manga|Look at her, look at her go|manga girl|kendal-admirer bnha |propeller-demarcus miki |best quality girl|pastel colored Shortalls|highres 8K anime|upskirt futanari|pussy juice fishing our vagina|kujikawa_rise |senpai-mesut dooley |comic book cover|bad_perspective |solothighs|minigiantess|Wide underpantsThigh thighs|huge bulgesource_anime|fire in the background|jocelyn-bnha ullah |waifu-peoplesvote thine |thigh gapdesert|hojo_karen | problem fuel smug|ruined city background|1 girl full body|giantess massive body goddess| city roi edit|waifu|anime female|vandalism-hardship zawa | apocalypse money muh|fj-combating bnha |penile vaginal penetration|Saori|futanari futa|manga art|big huge massive dick|destroyed city pov|source animemasterpiece|yuri xdyuxd|lewdamone|tamura_yuri |hentaib|bnha|homs-thwaite bnha |consequences|Destroy|destroy-|destroy|anime 1futa|burning village in the background|serafuku |serafuku|novel_cover | responsibility reason crop|sugoi_hi|fullbody thighs|big explosion in the background|bnha dori asar |thighs sunset|anthro penetrating female|waifu-swallows hardship |hayase nagatoro|marck-fiercely propane |burning battlefield in background|It’s a weeb, what it, what is this?|When you’re world goes up in flames|panel comic|propaganda|erection thighs|thighhighs town|Megumi Kirorimal | threat post| subreddit stop war| cap girl end| society time incoming|artists like source anime|houtengeki |evacuated| disaster situation dakota|tsukikage_yuri |miho-comicbook parisagreement |Better run bitch now|best qualitysource_anime|huge breasr futanari|thigh gaping|mankanshoku_mako |thighs masterpiece|fertile-admins comicart |yuiga_naoha |exploitable image|sekai_saisoku_no_panda |interesting background|1futa 1male|She has a smile that could end a war|sandalwood-juli mako |fire background|hentai POV| perspective wildfire good|bnha dori pbc | society fuel god|source animelooking at viewer|senpai|Background anime|demino deminothedragon|mako sbridge adish biographical |busy street background|Destroy!|defenses loeb mirai |femanine face smug|anime 2 women|burning cars|sleeping caged penis|Makiyah|oka-|Oka |futa futanari|passages strade bnha |penis between thighs+++|nees-sigue bnha |anime scene|milf is not on fire|tight skirt school| cause destruction rate|lewdert|carcinoma-thcentury bnha |acadia pkg bnha |bishoujo|japanese manga artist|source_animelooking at viewer|kanzaki etc|nijisanji_kr |cleavage source comic book|haruki no saidai no teki wa risei|male fucking futanari|rylee senimasan|premiers-loeb bnha |shorts_aside |leg_armor |futanari fucking another futanari|all_might |jahy-sama_wa_kujikenai! |sigue mako mirai |kyoka jiro Boku no hero academia|nijou_noriko |🏙️|sakuranene_jav|ken ashcorp|thighjob|pants anime|peni_parker skirt|futa nabezoko|female futanari|The dogs powerful thighs| apocalypse rise thing|suiren_yurei |bombergirl |girl anime|1 male 1 futa|massive girl|anime flat style|Kymoni|large futanari fucking short boy|nettedthighs|Ay-O round thighs|character surrounded by fire|2D anime futanari| report time|from my hero academia|GIANTESS who's peeing on her|city big breasts|bnha sown acadia |Nayalee|Hentai Cinematic|futanari gazelle fuck gazelle|hentai 2girls|mirai dori rps |still from official media anime|dickgirl lore|neko girl 1|Kokomi|ameizinglewds|giantess goddess|disaster|curvy porn presenting_removed_panties |strong_legs| raise catastrophe bitch|comic art|homs-reviewers adaily |anthro cinderace futanari|yuri_\\(doki_doki_literature_club\\) | twitter emergency reporter|Visual novel|visual novel|kemokemo|umi1 solo|Yuriah|highleg thighhighs|mai-|Mai|anime hero|anime movie background|rhonda-lockhart bnha |lewd-siam ssummit |tsuki akurei|ripped school teacher uniform|thighs pussy juice|hentai|burning skyscraper|I don’t want to set huge testiclesanime coloring|komakusa_sannyo |sacha harlan bnha |manhua|Graphic novel|graphic novel|male_on_futa |city visible behind her|discord profile picture|suni-breaches bnha |fanfic-diffuser rps |wide hips futanari|high qualityvery beautiful demon futanari|tadano_magu |chihunhentai |Anime backgrounds|hotbrotkuroi|Femboy the hero rides| priority drama pollution|japanese city background| war problem topic|kurata_rine |ass yuri lesbian|highleg_panties |shatter-ushi waifu |dungeon_ni_deai_wo_motomeru_no_wa_machigatteiru_darou_ka |source_anime 1girl|torn_legwear |anime girl|hentai style|1girl tsunadesdxl|sura sichuan bnha |And we will burn your cities down|visible thighs|with her raised arm in the street|gani-preneur bnha |shorts half body|kianamaiart|source_animemasculine male anthro|arson|marukyuu_ameya |brown tighhighs 2d|Kyeria|source_request | devil pollution response|mci-combating bnha |doujinshi page 1woman|no_panties |no_panties|double deck hentai|burning building|recruiters-misogyny waifu |mayo_riyo |Jonasia|jahy-sama wa kujikenai!|large futanari teacher fucking short student boy|gril-|kohi waruikoohii|Futa standing over viewer|mirai adish snickers avengersendgame |report leg|milfeulle_sakuraba |Anime newest|yoru_no_kurage_wa_oyogenai |imminent danger|upbulge futanari|naoe_riki |acadia andolan bnha |trouble\\: the final chapter|hentai milf|mai_natsume |busy city background|mewtowo shadman|animeirl outdoors|yuri tribadism|informs-senpai theone |lewdicrousart|Ooh, the fire’s spreading everywhere| economy end strip|EFT_Juvia aajuvia|avengersendgame afs zawa |Deneisha Roubekas |pancreatic pancreatic adero |imminent footjob|apocalyptic city in background|a pretty asian female character|source_animeshort male anthro|Miga |official arts|official artwork|destroying a city|🧑‍🚒|They will run over you|anime demon pov| efficient crisis education|thighs in all their glory|brown_thighhighs |dori bnha bnha |outdoors manga| arent issue thread|Nahomi|black hair yuri|titfuck under clothessource_anime|We will burn your cities down!|neet-chases thcentury |uncensored human-onahole|Now that you need her|a pretty american female character|flat chest large thighs|lewdtias|hiiragi_hazime |trap futanari|onnaise sacha bnha |one very tall huge minigiantess|explosion in background|required to build the world by destroying herself|teacher have clothing|random background|yamada_\\(gotyui\\) |iyaki-prioritize onstorm |masturbating postapocalypse in|evil monster in attacknsfw|nasheed bnha fumble acknowledges |testosterone-waifu fad |anime MeimeiSDXL|anime sexy|Anime sexy|futa futanarimix|fluffly clouds above|chihaya_anon |megumi|Megumi| humanity fuel|presenting feetBackgroundHigh detailed background|uncensored anime|smile highres|skyline comic|thighs two-handed|adero ulf bnha |Sayada |peni_parker |admins bnha passages | fighting society accurate|apocalypse|bnha halep jekyll |lewdookami|1man ass thighs|NSFW official art|nsfw OFFiCIAL ART|chonky_with_thick_thighs_|lifespan bnha allez |itadori_yuuji |scary background|very sexy ninja suit|fire in background|Would wipe my a*s|tsukioka_kogane |best quality 1GIRL|best quality1girl|BEST QUALITY 1GIRL|Best Quality 1girl|minakami_mai |modern cel shaded anime|full body street|ryomou_shimei |Yariko JK Bitch ni Shiboraretai|voluptuous character from the popular anime|sonar-dori bnha |exploding_clothes |leg-|aki_minoriko |femboys in background|mik-litters circulated |soca juli sichuan bnha |english_text |english_text|bnha eet loeb |long legsmasterpiece|konno_tohiro | war situation solution|manga artwork presenting|akii_kisaki|gokou_ruri |onii-chan_wa_oshimai! |flames in background|tight shorts smug|regulating-scouncil bnha |anime cute girl| disaster war discussion|school_girl_strikers |sasaki_saku |themed_manga_art|thighs weapon|heart thighs|thighighs|anemone zawa acknowledges |fapchiki|thick thighslooking at viewer|perfect anime illustration|kellie drayton bnha | start hotter advantage|source_anime shortstack woman|1panel|purification-nederland bnha |bnha olis offside |toes otoko no ko|imageboard_desourced |striped_thighhighs |qualitative-mosley miho |World’s on fire|bokura_wa_ima_no_naka_de |thighs armor| illustration account threat|reizei_mako |yuriko mastergodai|tsushima_yoshiko | wouldn start birthrate|1girl yuri|strong thighs|udaipur kilt bnha |half body crop|a popular anime character|globalwarming-bnha fdi |superflat 1girl|lisse garza bnha |itou_yuuji |comicart-zawa passports |unknown character|art by jaykuma|youjomodoki| context litteraly risk|masterpiece manhwa|city destruction|postapocalypse| impact world disaster|textless_version |She beat you to it|ichijou_hotaru |art by kantoku|manga lifelike|in a big city|uzaki_tsuki |large thighs muscular|by himitsu hi mi tsu|she stands firm| education destroy|1girl smug|NSFWbishoujo|futanari fucking woman| class smug reason|oono_aya |koumoru doumoru|hero_neisan |steam thick thighs|nlwx sura bnha |Sanika|black thighhighspureerosface_v|rarity-bnha womack |shortmegumi|Cartooncore|sapphicneko|thighs spread high fantasy| disaster corruption poster|kicking Anime 2|anime full colored|action lines thick thighs|artist_request|artist_request |massive futa|Nazaria|mirai springtraining spilling |dark-skinned femboysource_cartoon|Female on the street surrounded|off screen character futa| city burning think|the world on fire|umi-|Umi|serafuku skirt|kairakuen_umenoka |futa fucking another|full body highres| reddit wouldnt girl|semi realisticsource_anime|source_cartoon 1girl huge_breasts|mistresskari|tsunderia |musuko_ga_kawaikute_shikatanai_mazoku_no_hahaoya |A massive explosion erupts with|source_furry 1girl|ef_\\(visual_novel\\) |Nairoby|bnha rendous compelled |senpai-cusa olis |uncensoredgirl underneath|anime epiCRealism|tsukino_mito |tsukino_mito| fault reddit ideal|anal thighhighs|chimkenthighs|hentai plump|And fire through the streets|preneur-jap informing |hentai manga drawing|We’ll burn the streets|You better not resist|explosions fire|tamberlane comic|ibc sura bnha |black haired futanari|zettai_ryouiki |akino_sora | join figure save|The world’s on fire|sex porn hentai|senpai-womack lister |thighs water|thighs shoes|darkhazard artist|sixsidesofmyhead artist|white_single_thighhigh| report location report|clean anime|inserting dildo in ass|solo thighs|The wolf powerful thighs|I don’t want to set the world on fire honey|explosion behind|skirt aside|waifu-amphibious kelli |artist name|walking on big city street|serafuku solo| core civilization couldn|toudori |hiyo hiyoratory|e-hentai_sample |running away| catastrophe god law|waifu-electra hirsch |flowing anime|Feliberty |very innocent uwu|zettai rioiki|standing serafuku|boku_no_hero_academia |Robin honkai starrail|realistic Anime|running in terror from the fire|kawakami_rokkaku|kawakami_rokkaku |tachibana_roku |joutouguu_mayumi |cinematic comic}\n", "{onahole legsless|sakurajima_mai |spread her legsmasterpeace|komi_zumiko |thicc thighssource_cartoon|onahole full body|but i'd die inside her thighs|vertical_comic |her dress showing her crotch amidst the city|source_comic|giantess god|source_manga_cover |doujin cover|art by sunrise isekai|legs upsource anime|bnha loeb adish |tan Komi Shouko|the thighsource_anime|Nagatoro/|anime thighthighs|comic cover|thighs tsurime|hentai source comic book|anime safe 1girl|komi_shouko |japanese light novel cover|highres purple_thighhighs |purple_thighhighs|gigantic_comicbook page 1girl|skirt pyrokinesis|leg up Anime 2|NSFW hentai uncensored comic|source_ world disaster street|naomi sekai no hate no kissaten|Toned thighssource_cartoon|destroyed city background|giantess GTS|carlin-participates bnha |eighteen swaps avengersendgame mirai |bnha abide sacha |girl stepping on futa cock|hentai 1girl|best quality comic|brea-healthylifestyle bnha |Nagatoro Hayase|nagatoro hayase|bsu-mudder waifu |yuri_kyanon |anime 1 girl sexy|juli dori shld |hentai doujinshi|tante-bnha comicbook |burning city background|source 1girl manga page|pomf|kaiju girls webcomic|at_viewer thighs thick_thighs|waifu-potholes idyllic |nakano_azusa |absurdres ijiranaide nagatoro san|destroyed city in the background|stood behind Nagatoro|komone_ushio |sugoi_dekai |komi-san_wa_komyushou_desu |nadacheruulewd|smug cover art|thighsmasterpiece|1girl half body|distinct cover comic|nagatoro_hayase |source request|electra bnha adish |bulge tsundere|otherFutanari in the background| destruction heat role|heavy fire on the background|purification-homs healthylifestyle |implied_yuri |interracial futanari Amazon|murosaki_miyo |doujin_cover |2men hentai loose_thighhigh |city burning in the background|defenses avengersendgame mirai |massive angel fucking 1girl|hayat strade rendous bnha |Sakiyah|anime sugoi dekai|aniapt yoake_mae_yori_ruri_iro_na |anime hentai nsfw| disaster woke world|aozora tasogare aozora|gigantic natural pendulous breasts| group hentai destruction|18 year old nagatoro Beauty|yuri arisato|vertical-small_isekai meikyuu de harem wo|futanarimuscular legs|replace the background|Sayara |waifu-travelchat vesmatter |comicu0book|print_thighhighs |hayat mildly bnha |modernization-embellished bnha |smile riot in street background|large_calves|upright straddlepornographic|komi shuuko from Komi-San|elu_ niji|thick_thighs long_hair|orange_thighhighs |nagatoro in apartment|giant black futanari|bomb exploding in background|gesugao smug| school dont source|hawa-waifu avengersendgame |adish swaps bnha |likelihood-lys bnha |Coffe at povsource_anime hentaifat ass|caracas-bnha sabi |super fine anime|Miss Nagatoro|burning cityscape background|cum on breast motion lines|impossibly hayat lun bnha |zani-ibc bnha |causing destruction wherever she goes|blue_thighhighs |anin-sridevi bnha |Jameya|1girl smugness|vandalism-mirai enen |footjob Anime 2|portray-zawa sizzle | disaster city time|destroyed civilization|electra sohn bnha |thick thighsmasterpiece|very tall huge minijouga_maya |waifu-jetty jagan |kadose_ara |anime yozora_mel |Show her some beauty, before this damage is done|beautiful city background|boku no hero|in a isekai world|Yumiko Rohan | literature worth post|think thighs|highly detailedsource_anime|from belowsource_anime 1girl|sonoda_umi |genre hentai yaoi|shai-rps bnha |giantess|giantess |man fucking futanari from behing|ayuma_sayu |spread asssource_anime|source anime fat obese ebony woman|run|8K tradcartoons studios|most clumsy sexual lesbian yuri|shimaidon_\\(sex\\) |convenient_leg |convenient_leg|distract|Hentai Dark skin|mega giantess|protagonist|h_kasei |besto-|comic artwork|run-|cute komi san wa komyushou desu|omd avengersendgame passages aguchi |fire 1girl|masterpiece Isekai cityscape|my_hero_academia|huge cock anime|kobayakawa_rinko |comic_cover |holler zawa bnha |izuku midoriya fucking her|mature female yuri|imminent death by snu snu|protagonist helltaker|khloe-haves bnha |d rendered hentai version|oil futa|hentai spread legs|huge_sonoda_chiyoko |admins foxtv mirai |Official Art|official art|artist_name |sessyoin_kiara |Futa standing over viewer gigantic penis|big breasts Boku no Hero Academia|boku no hero academia|source_anime comic|femboy king walking in city|fujoshi |ooji_mochizou |yoshioka_yoshiko |miura_azusa |voluptuous hyperfuta futanari lookingdownbarrel|tsuki_ni_kawatte_oshioki_yo |revitalization-vickers waifu |anime 11girl sexy|senpai_ga_uzai_kouhai_no_hanashi |thighband|doujinshi |fantasy isekai|high qualitywide hips|lewdreaper|offender-yui sura |aniston-bnha economical |black haired taller femboy| end impact girl|anime solo demon|better version at the source|abridged-aviva saucy |fixed leg on picture|single_thighhigh |dsburg-whichever zawa |Kaneisha|futa proportionate|hentai 20yo girl|hentai 20yo girl| burn time protect|the average coomer bait dress better version at source|fire in the streets|alternate_legwear |onahole| problem future page|saten_ruiko |giantess giant|usa-chan_\\(idolmaster\\) |destroyed city| hentai success covid|tendou_maya |torn_thighhighs|torn_thighhighs |anime woman|very detailedsource anime|spread legsmasturbation|holding onahole|mirai compelled bnha |comic panel|komi-san wa komyushou desu|source needed|my hero academia|kawakami_mai |She’ll survive us all perfectly well|her feet are off the ground|okunoda_miyoi |giantess muscular|manga|uncensored lewdaesthetics|analingussource_anime hentainaked fat ass|both black futanari have black hair|We will burn your cities down|highly detailedsource anime|thigh_cutout |abridged-homs filament |average thighs|flames in the background|explicit anime|large rugged middle-aged man fucking short femboy|bnha serverless loeb |bnha diffuser ashleigh |inimidating girl|extremely muscular futanari|spread thighs|hell in the background|one pussy juice anime|large thighs|female smug|cum in assanime style|explosive in ass|justice right bitch heroine|source_animethick outline|gila-triviatuesday bnha |yuri yuricrabking|microskirt dumb|in public anime|Keishona|smug D sitting|Now that you’ve kneed her|human futanari|tokiha_mai |beautiful cute sexy anime|bnha nlwx mako |avengersendgame zawa undertaking |ofi publica bnha |northwales bnha differentiate |thicc shortstack|large African futanari fucking short white male|gridman_universe |thighs on side|replaceable-captainmarvel waifu |sky above giantess|1woman anime|jitome|jitome |nochrome manga|Look at her, look at her go|manga girl|kendal-admirer bnha |propeller-demarcus miki |best quality girl|pastel colored Shortalls|highres 8K anime|upskirt futanari|pussy juice fishing our vagina|kujikawa_rise |senpai-mesut dooley |comic book cover|bad_perspective |solothighs|minigiantess|Wide underpantsThigh thighs|huge bulgesource_anime|fire in the background|jocelyn-bnha ullah |waifu-peoplesvote thine |thigh gapdesert|hojo_karen | problem fuel smug|ruined city background|1 girl full body|giantess massive body goddess| city roi edit|waifu|anime female|vandalism-hardship zawa | apocalypse money muh|fj-combating bnha |penile vaginal penetration|Saori|futanari futa|manga art|big huge massive dick|destroyed city pov|source animemasterpiece|yuri xdyuxd|lewdamone|tamura_yuri |hentaib|bnha|homs-thwaite bnha |consequences|Destroy|destroy-|destroy|anime 1futa|burning village in the background|serafuku |serafuku|novel_cover | responsibility reason crop|sugoi_hi|fullbody thighs|big explosion in the background|bnha dori asar |thighs sunset|anthro penetrating female|waifu-swallows hardship |hayase nagatoro|marck-fiercely propane |burning battlefield in background|It’s a weeb, what it, what is this?|When you’re world goes up in flames|panel comic|propaganda|erection thighs|thighhighs town|Megumi Kirorimal | threat post| subreddit stop war| cap girl end| society time incoming|artists like source anime|houtengeki |evacuated| disaster situation dakota|tsukikage_yuri |miho-comicbook parisagreement |Better run bitch now|best qualitysource_anime|huge breasr futanari|thigh gaping|mankanshoku_mako |thighs masterpiece|fertile-admins comicart |yuiga_naoha |exploitable image|sekai_saisoku_no_panda |interesting background|1futa 1male|She has a smile that could end a war|sandalwood-juli mako |fire background|hentai POV| perspective wildfire good|bnha dori pbc | society fuel god|source animelooking at viewer|senpai|Background anime|demino deminothedragon|mako sbridge adish biographical |busy street background|Destroy!|defenses loeb mirai |femanine face smug|anime 2 women|burning cars|sleeping caged penis|Makiyah|oka-|Oka |futa futanari|passages strade bnha |penis between thighs+++|nees-sigue bnha |anime scene|milf is not on fire|tight skirt school| cause destruction rate|lewdert|carcinoma-thcentury bnha |acadia pkg bnha |bishoujo|japanese manga artist|source_animelooking at viewer|kanzaki etc|nijisanji_kr |cleavage source comic book|haruki no saidai no teki wa risei|male fucking futanari|rylee senimasan|premiers-loeb bnha |shorts_aside |leg_armor |futanari fucking another futanari|all_might |jahy-sama_wa_kujikenai! |sigue mako mirai |kyoka jiro Boku no hero academia|nijou_noriko |🏙️|sakuranene_jav|ken ashcorp|thighjob|pants anime|peni_parker skirt|futa nabezoko|female futanari|The dogs powerful thighs| apocalypse rise thing|suiren_yurei |bombergirl |girl anime|1 male 1 futa|massive girl|anime flat style|Kymoni|large futanari fucking short boy|nettedthighs|Ay-O round thighs|character surrounded by fire|2D anime futanari| report time|from my hero academia|GIANTESS who's peeing on her|city big breasts|bnha sown acadia |Nayalee|Hentai Cinematic|futanari gazelle fuck gazelle|hentai 2girls|mirai dori rps |still from official media anime|dickgirl lore|neko girl 1|Kokomi|ameizinglewds|giantess goddess|disaster|curvy porn presenting_removed_panties |strong_legs| raise catastrophe bitch|comic art|homs-reviewers adaily |anthro cinderace futanari|yuri_\\(doki_doki_literature_club\\) | twitter emergency reporter|Visual novel|visual novel|kemokemo|umi1 solo|Yuriah|highleg thighhighs|mai-|Mai|anime hero|anime movie background|rhonda-lockhart bnha |lewd-siam ssummit |tsuki akurei|ripped school teacher uniform|thighs pussy juice|hentai|burning skyscraper|I don’t want to set huge testiclesanime coloring|komakusa_sannyo |sacha harlan bnha |manhua|Graphic novel|graphic novel|male_on_futa |city visible behind her|discord profile picture|suni-breaches bnha |fanfic-diffuser rps |wide hips futanari|high qualityvery beautiful demon futanari|tadano_magu |chihunhentai |Anime backgrounds|hotbrotkuroi|Femboy the hero rides| priority drama pollution|japanese city background| war problem topic|kurata_rine |ass yuri lesbian|highleg_panties |shatter-ushi waifu |dungeon_ni_deai_wo_motomeru_no_wa_machigatteiru_darou_ka |source_anime 1girl|torn_legwear |anime girl|hentai style|1girl tsunadesdxl|sura sichuan bnha |And we will burn your cities down|visible thighs|with her raised arm in the street|gani-preneur bnha |shorts half body|kianamaiart|source_animemasculine male anthro|arson|marukyuu_ameya |brown tighhighs 2d|Kyeria|source_request | devil pollution response|mci-combating bnha |doujinshi page 1woman|no_panties |no_panties|double deck hentai|burning building|recruiters-misogyny waifu |mayo_riyo |Jonasia|jahy-sama wa kujikenai!|large futanari teacher fucking short student boy|gril-|kohi waruikoohii|Futa standing over viewer|mirai adish snickers avengersendgame |report leg|milfeulle_sakuraba |Anime newest|yoru_no_kurage_wa_oyogenai |imminent danger|upbulge futanari|naoe_riki |acadia andolan bnha |trouble\\: the final chapter|hentai milf|mai_natsume |busy city background|mewtowo shadman|animeirl outdoors|yuri tribadism|informs-senpai theone |lewdicrousart|Ooh, the fire’s spreading everywhere| economy end strip|EFT_Juvia aajuvia|avengersendgame afs zawa |Deneisha Roubekas |pancreatic pancreatic adero |imminent footjob|apocalyptic city in background|a pretty asian female character|source_animeshort male anthro|Miga |official arts|official artwork|destroying a city|🧑‍🚒|They will run over you|anime demon pov| efficient crisis education|thighs in all their glory|brown_thighhighs |dori bnha bnha |outdoors manga| arent issue thread|Nahomi|black hair yuri|titfuck under clothessource_anime|We will burn your cities down!|neet-chases thcentury |uncensored human-onahole|Now that you need her|a pretty american female character|flat chest large thighs|lewdtias|hiiragi_hazime |trap futanari|onnaise sacha bnha |one very tall huge minigiantess|explosion in background|required to build the world by destroying herself|teacher have clothing|random background|yamada_\\(gotyui\\) |iyaki-prioritize onstorm |masturbating postapocalypse in|evil monster in attacknsfw|nasheed bnha fumble acknowledges |testosterone-waifu fad |anime MeimeiSDXL|anime sexy|Anime sexy|futa futanarimix|fluffly clouds above|chihaya_anon |megumi|Megumi| humanity fuel|presenting feetBackgroundHigh detailed background|uncensored anime|smile highres|skyline comic|thighs two-handed|adero ulf bnha |Sayada |peni_parker |admins bnha passages | fighting society accurate|apocalypse|bnha halep jekyll |lewdookami|1man ass thighs|NSFW official art|nsfw OFFiCIAL ART|chonky_with_thick_thighs_|lifespan bnha allez |itadori_yuuji |scary background|very sexy ninja suit|fire in background|Would wipe my a*s|tsukioka_kogane |best quality 1GIRL|best quality1girl|BEST QUALITY 1GIRL|Best Quality 1girl|minakami_mai |modern cel shaded anime|full body street|ryomou_shimei |Yariko JK Bitch ni Shiboraretai|voluptuous character from the popular anime|sonar-dori bnha |exploding_clothes |leg-|aki_minoriko |femboys in background|mik-litters circulated |soca juli sichuan bnha |english_text |english_text|bnha eet loeb |long legsmasterpiece|konno_tohiro | war situation solution|manga artwork presenting|akii_kisaki|gokou_ruri |onii-chan_wa_oshimai! |flames in background|tight shorts smug|regulating-scouncil bnha |anime cute girl| disaster war discussion|school_girl_strikers |sasaki_saku |themed_manga_art|thighs weapon|heart thighs|thighighs|anemone zawa acknowledges |fapchiki|thick thighslooking at viewer|perfect anime illustration|kellie drayton bnha | start hotter advantage|source_anime shortstack woman|1panel|purification-nederland bnha |bnha olis offside |toes otoko no ko|imageboard_desourced |striped_thighhighs |qualitative-mosley miho |World’s on fire|bokura_wa_ima_no_naka_de |thighs armor| illustration account threat|reizei_mako |yuriko mastergodai|tsushima_yoshiko | wouldn start birthrate|1girl yuri|strong thighs|udaipur kilt bnha |half body crop|a popular anime character|globalwarming-bnha fdi |superflat 1girl|lisse garza bnha |itou_yuuji |comicart-zawa passports |unknown character|art by jaykuma|youjomodoki| context litteraly risk|masterpiece manhwa|city destruction|postapocalypse| impact world disaster|textless_version |She beat you to it|ichijou_hotaru |art by kantoku|manga lifelike|in a big city|uzaki_tsuki |large thighs muscular|by himitsu hi mi tsu|she stands firm| education destroy|1girl smug|NSFWbishoujo|futanari fucking woman| class smug reason|oono_aya |koumoru doumoru|hero_neisan |steam thick thighs|nlwx sura bnha |Sanika|black thighhighspureerosface_v|rarity-bnha womack |shortmegumi|Cartooncore|sapphicneko|thighs spread high fantasy| disaster corruption poster|kicking Anime 2|anime full colored|action lines thick thighs|artist_request|artist_request |massive futa|Nazaria|mirai springtraining spilling |dark-skinned femboysource_cartoon|Female on the street surrounded|off screen character futa| city burning think|the world on fire|umi-|Umi|serafuku skirt|kairakuen_umenoka |futa fucking another|full body highres| reddit wouldnt girl|semi realisticsource_anime|source_cartoon 1girl huge_breasts|mistresskari|tsunderia |musuko_ga_kawaikute_shikatanai_mazoku_no_hahaoya |A massive explosion erupts with|source_furry 1girl|ef_\\(visual_novel\\) |Nairoby|bnha rendous compelled |senpai-cusa olis |uncensoredgirl underneath|anime epiCRealism|tsukino_mito |tsukino_mito| fault reddit ideal|anal thighhighs|chimkenthighs|hentai plump|And fire through the streets|preneur-jap informing |hentai manga drawing|We’ll burn the streets|You better not resist|explosions fire|tamberlane comic|ibc sura bnha |black haired futanari|zettai_ryouiki |akino_sora | join figure save|The world’s on fire|sex porn hentai|senpai-womack lister |thighs water|thighs shoes|darkhazard artist|sixsidesofmyhead artist|white_single_thighhigh| report location report|clean anime|inserting dildo in ass|solo thighs|The wolf powerful thighs|I don’t want to set the world on fire honey|explosion behind|skirt aside|waifu-amphibious kelli |artist name|walking on big city street|serafuku solo| core civilization couldn|toudori |hiyo hiyoratory|e-hentai_sample |running away| catastrophe god law|waifu-electra hirsch |flowing anime|Feliberty |very innocent uwu|zettai rioiki|standing serafuku|boku_no_hero_academia |Robin honkai starrail|realistic Anime|running in terror from the fire|kawakami_rokkaku|kawakami_rokkaku |tachibana_roku |joutouguu_mayumi |cinematic comic}\n", "{onahole legsless|sakurajima_mai |spread her legsmasterpeace|komi_zumiko |thicc thighssource_cartoon|onahole full body|but i'd die inside her thighs|vertical_comic |her dress showing her crotch amidst the city|source_comic|giantess god|source_manga_cover |doujin cover|art by sunrise isekai|legs upsource anime|bnha loeb adish |tan Komi Shouko|the thighsource_anime|Nagatoro/|anime thighthighs|comic cover|thighs tsurime|hentai source comic book|anime safe 1girl|komi_shouko |japanese light novel cover|highres purple_thighhighs |purple_thighhighs|gigantic_comicbook page 1girl|skirt pyrokinesis|leg up Anime 2|NSFW hentai uncensored comic|source_ world disaster street|naomi sekai no hate no kissaten|Toned thighssource_cartoon|destroyed city background|giantess GTS|carlin-participates bnha |eighteen swaps avengersendgame mirai |bnha abide sacha |girl stepping on futa cock|hentai 1girl|best quality comic|brea-healthylifestyle bnha |Nagatoro Hayase|nagatoro hayase|bsu-mudder waifu |yuri_kyanon |anime 1 girl sexy|juli dori shld |hentai doujinshi|tante-bnha comicbook |burning city background|source 1girl manga page|pomf|kaiju girls webcomic|at_viewer thighs thick_thighs|waifu-potholes idyllic |nakano_azusa |absurdres ijiranaide nagatoro san|destroyed city in the background|stood behind Nagatoro|komone_ushio |sugoi_dekai |komi-san_wa_komyushou_desu |nadacheruulewd|smug cover art|thighsmasterpiece|1girl half body|distinct cover comic|nagatoro_hayase |source request|electra bnha adish |bulge tsundere|otherFutanari in the background| destruction heat role|heavy fire on the background|purification-homs healthylifestyle |implied_yuri |interracial futanari Amazon|murosaki_miyo |doujin_cover |2men hentai loose_thighhigh |city burning in the background|defenses avengersendgame mirai |massive angel fucking 1girl|hayat strade rendous bnha |Sakiyah|anime sugoi dekai|aniapt yoake_mae_yori_ruri_iro_na |anime hentai nsfw| disaster woke world|aozora tasogare aozora|gigantic natural pendulous breasts| group hentai destruction|18 year old nagatoro Beauty|yuri arisato|vertical-small_isekai meikyuu de harem wo|futanarimuscular legs|replace the background|Sayara |waifu-travelchat vesmatter |comicu0book|print_thighhighs |hayat mildly bnha |modernization-embellished bnha |smile riot in street background|large_calves|upright straddlepornographic|komi shuuko from Komi-San|elu_ niji|thick_thighs long_hair|orange_thighhighs |nagatoro in apartment|giant black futanari|bomb exploding in background|gesugao smug| school dont source|hawa-waifu avengersendgame |adish swaps bnha |likelihood-lys bnha |Coffe at povsource_anime hentaifat ass|caracas-bnha sabi |super fine anime|Miss Nagatoro|burning cityscape background|cum on breast motion lines|impossibly hayat lun bnha |zani-ibc bnha |causing destruction wherever she goes|blue_thighhighs |anin-sridevi bnha |Jameya|1girl smugness|vandalism-mirai enen |footjob Anime 2|portray-zawa sizzle | disaster city time|destroyed civilization|electra sohn bnha |thick thighsmasterpiece|very tall huge minijouga_maya |waifu-jetty jagan |kadose_ara |anime yozora_mel |Show her some beauty, before this damage is done|beautiful city background|boku no hero|in a isekai world|Yumiko Rohan | literature worth post|think thighs|highly detailedsource_anime|from belowsource_anime 1girl|sonoda_umi |genre hentai yaoi|shai-rps bnha |giantess|giantess |man fucking futanari from behing|ayuma_sayu |spread asssource_anime|source anime fat obese ebony woman|run|8K tradcartoons studios|most clumsy sexual lesbian yuri|shimaidon_\\(sex\\) |convenient_leg |convenient_leg|distract|Hentai Dark skin|mega giantess|protagonist|h_kasei |besto-|comic artwork|run-|cute komi san wa komyushou desu|omd avengersendgame passages aguchi |fire 1girl|masterpiece Isekai cityscape|my_hero_academia|huge cock anime|kobayakawa_rinko |comic_cover |holler zawa bnha |izuku midoriya fucking her|mature female yuri|imminent death by snu snu|protagonist helltaker|khloe-haves bnha |d rendered hentai version|oil futa|hentai spread legs|huge_sonoda_chiyoko |admins foxtv mirai |Official Art|official art|artist_name |sessyoin_kiara |Futa standing over viewer gigantic penis|big breasts Boku no Hero Academia|boku no hero academia|source_anime comic|femboy king walking in city|fujoshi |ooji_mochizou |yoshioka_yoshiko |miura_azusa |voluptuous hyperfuta futanari lookingdownbarrel|tsuki_ni_kawatte_oshioki_yo |revitalization-vickers waifu |anime 11girl sexy|senpai_ga_uzai_kouhai_no_hanashi |thighband|doujinshi |fantasy isekai|high qualitywide hips|lewdreaper|offender-yui sura |aniston-bnha economical |black haired taller femboy| end impact girl|anime solo demon|better version at the source|abridged-aviva saucy |fixed leg on picture|single_thighhigh |dsburg-whichever zawa |Kaneisha|futa proportionate|hentai 20yo girl|hentai 20yo girl| burn time protect|the average coomer bait dress better version at source|fire in the streets|alternate_legwear |onahole| problem future page|saten_ruiko |giantess giant|usa-chan_\\(idolmaster\\) |destroyed city| hentai success covid|tendou_maya |torn_thighhighs|torn_thighhighs |anime woman|very detailedsource anime|spread legsmasturbation|holding onahole|mirai compelled bnha |comic panel|komi-san wa komyushou desu|source needed|my hero academia|kawakami_mai |She’ll survive us all perfectly well|her feet are off the ground|okunoda_miyoi |giantess muscular|manga|uncensored lewdaesthetics|analingussource_anime hentainaked fat ass|both black futanari have black hair|We will burn your cities down|highly detailedsource anime|thigh_cutout |abridged-homs filament |average thighs|flames in the background|explicit anime|large rugged middle-aged man fucking short femboy|bnha serverless loeb |bnha diffuser ashleigh |inimidating girl|extremely muscular futanari|spread thighs|hell in the background|one pussy juice anime|large thighs|female smug|cum in assanime style|explosive in ass|justice right bitch heroine|source_animethick outline|gila-triviatuesday bnha |yuri yuricrabking|microskirt dumb|in public anime|Keishona|smug D sitting|Now that you’ve kneed her|human futanari|tokiha_mai |beautiful cute sexy anime|bnha nlwx mako |avengersendgame zawa undertaking |ofi publica bnha |northwales bnha differentiate |thicc shortstack|large African futanari fucking short white male|gridman_universe |thighs on side|replaceable-captainmarvel waifu |sky above giantess|1woman anime|jitome|jitome |nochrome manga|Look at her, look at her go|manga girl|kendal-admirer bnha |propeller-demarcus miki |best quality girl|pastel colored Shortalls|highres 8K anime|upskirt futanari|pussy juice fishing our vagina|kujikawa_rise |senpai-mesut dooley |comic book cover|bad_perspective |solothighs|minigiantess|Wide underpantsThigh thighs|huge bulgesource_anime|fire in the background|jocelyn-bnha ullah |waifu-peoplesvote thine |thigh gapdesert|hojo_karen | problem fuel smug|ruined city background|1 girl full body|giantess massive body goddess| city roi edit|waifu|anime female|vandalism-hardship zawa | apocalypse money muh|fj-combating bnha |penile vaginal penetration|Saori|futanari futa|manga art|big huge massive dick|destroyed city pov|source animemasterpiece|yuri xdyuxd|lewdamone|tamura_yuri |hentaib|bnha|homs-thwaite bnha |consequences|Destroy|destroy-|destroy|anime 1futa|burning village in the background|serafuku |serafuku|novel_cover | responsibility reason crop|sugoi_hi|fullbody thighs|big explosion in the background|bnha dori asar |thighs sunset|anthro penetrating female|waifu-swallows hardship |hayase nagatoro|marck-fiercely propane |burning battlefield in background|It’s a weeb, what it, what is this?|When you’re world goes up in flames|panel comic|propaganda|erection thighs|thighhighs town|Megumi Kirorimal | threat post| subreddit stop war| cap girl end| society time incoming|artists like source anime|houtengeki |evacuated| disaster situation dakota|tsukikage_yuri |miho-comicbook parisagreement |Better run bitch now|best qualitysource_anime|huge breasr futanari|thigh gaping|mankanshoku_mako |thighs masterpiece|fertile-admins comicart |yuiga_naoha |exploitable image|sekai_saisoku_no_panda |interesting background|1futa 1male|She has a smile that could end a war|sandalwood-juli mako |fire background|hentai POV| perspective wildfire good|bnha dori pbc | society fuel god|source animelooking at viewer|senpai|Background anime|demino deminothedragon|mako sbridge adish biographical |busy street background|Destroy!|defenses loeb mirai |femanine face smug|anime 2 women|burning cars|sleeping caged penis|Makiyah|oka-|Oka |futa futanari|passages strade bnha |penis between thighs+++|nees-sigue bnha |anime scene|milf is not on fire|tight skirt school| cause destruction rate|lewdert|carcinoma-thcentury bnha |acadia pkg bnha |bishoujo|japanese manga artist|source_animelooking at viewer|kanzaki etc|nijisanji_kr |cleavage source comic book|haruki no saidai no teki wa risei|male fucking futanari|rylee senimasan|premiers-loeb bnha |shorts_aside |leg_armor |futanari fucking another futanari|all_might |jahy-sama_wa_kujikenai! |sigue mako mirai |kyoka jiro Boku no hero academia|nijou_noriko |🏙️|sakuranene_jav|ken ashcorp|thighjob|pants anime|peni_parker skirt|futa nabezoko|female futanari|The dogs powerful thighs| apocalypse rise thing|suiren_yurei |bombergirl |girl anime|1 male 1 futa|massive girl|anime flat style|Kymoni|large futanari fucking short boy|nettedthighs|Ay-O round thighs|character surrounded by fire|2D anime futanari| report time|from my hero academia|GIANTESS who's peeing on her|city big breasts|bnha sown acadia |Nayalee|Hentai Cinematic|futanari gazelle fuck gazelle|hentai 2girls|mirai dori rps |still from official media anime|dickgirl lore|neko girl 1|Kokomi|ameizinglewds|giantess goddess|disaster|curvy porn presenting_removed_panties |strong_legs| raise catastrophe bitch|comic art|homs-reviewers adaily |anthro cinderace futanari|yuri_\\(doki_doki_literature_club\\) | twitter emergency reporter|Visual novel|visual novel|kemokemo|umi1 solo|Yuriah|highleg thighhighs|mai-|Mai|anime hero|anime movie background|rhonda-lockhart bnha |lewd-siam ssummit |tsuki akurei|ripped school teacher uniform|thighs pussy juice|hentai|burning skyscraper|I don’t want to set huge testiclesanime coloring|komakusa_sannyo |sacha harlan bnha |manhua|Graphic novel|graphic novel|male_on_futa |city visible behind her|discord profile picture|suni-breaches bnha |fanfic-diffuser rps |wide hips futanari|high qualityvery beautiful demon futanari|tadano_magu |chihunhentai |Anime backgrounds|hotbrotkuroi|Femboy the hero rides| priority drama pollution|japanese city background| war problem topic|kurata_rine |ass yuri lesbian|highleg_panties |shatter-ushi waifu |dungeon_ni_deai_wo_motomeru_no_wa_machigatteiru_darou_ka |source_anime 1girl|torn_legwear |anime girl|hentai style|1girl tsunadesdxl|sura sichuan bnha |And we will burn your cities down|visible thighs|with her raised arm in the street|gani-preneur bnha |shorts half body|kianamaiart|source_animemasculine male anthro|arson|marukyuu_ameya |brown tighhighs 2d|Kyeria|source_request | devil pollution response|mci-combating bnha |doujinshi page 1woman|no_panties |no_panties|double deck hentai|burning building|recruiters-misogyny waifu |mayo_riyo |Jonasia|jahy-sama wa kujikenai!|large futanari teacher fucking short student boy|gril-|kohi waruikoohii|Futa standing over viewer|mirai adish snickers avengersendgame |report leg|milfeulle_sakuraba |Anime newest|yoru_no_kurage_wa_oyogenai |imminent danger|upbulge futanari|naoe_riki |acadia andolan bnha |trouble\\: the final chapter|hentai milf|mai_natsume |busy city background|mewtowo shadman|animeirl outdoors|yuri tribadism|informs-senpai theone |lewdicrousart|Ooh, the fire’s spreading everywhere| economy end strip|EFT_Juvia aajuvia|avengersendgame afs zawa |Deneisha Roubekas |pancreatic pancreatic adero |imminent footjob|apocalyptic city in background|a pretty asian female character|source_animeshort male anthro|Miga |official arts|official artwork|destroying a city|🧑‍🚒|They will run over you|anime demon pov| efficient crisis education|thighs in all their glory|brown_thighhighs |dori bnha bnha |outdoors manga| arent issue thread|Nahomi|black hair yuri|titfuck under clothessource_anime|We will burn your cities down!|neet-chases thcentury |uncensored human-onahole|Now that you need her|a pretty american female character|flat chest large thighs|lewdtias|hiiragi_hazime |trap futanari|onnaise sacha bnha |one very tall huge minigiantess|explosion in background|required to build the world by destroying herself|teacher have clothing|random background|yamada_\\(gotyui\\) |iyaki-prioritize onstorm |masturbating postapocalypse in|evil monster in attacknsfw|nasheed bnha fumble acknowledges |testosterone-waifu fad |anime MeimeiSDXL|anime sexy|Anime sexy|futa futanarimix|fluffly clouds above|chihaya_anon |megumi|Megumi| humanity fuel|presenting feetBackgroundHigh detailed background|uncensored anime|smile highres|skyline comic|thighs two-handed|adero ulf bnha |Sayada |peni_parker |admins bnha passages | fighting society accurate|apocalypse|bnha halep jekyll |lewdookami|1man ass thighs|NSFW official art|nsfw OFFiCIAL ART|chonky_with_thick_thighs_|lifespan bnha allez |itadori_yuuji |scary background|very sexy ninja suit|fire in background|Would wipe my a*s|tsukioka_kogane |best quality 1GIRL|best quality1girl|BEST QUALITY 1GIRL|Best Quality 1girl|minakami_mai |modern cel shaded anime|full body street|ryomou_shimei |Yariko JK Bitch ni Shiboraretai|voluptuous character from the popular anime|sonar-dori bnha |exploding_clothes |leg-|aki_minoriko |femboys in background|mik-litters circulated |soca juli sichuan bnha |english_text |english_text|bnha eet loeb |long legsmasterpiece|konno_tohiro | war situation solution|manga artwork presenting|akii_kisaki|gokou_ruri |onii-chan_wa_oshimai! |flames in background|tight shorts smug|regulating-scouncil bnha |anime cute girl| disaster war discussion|school_girl_strikers |sasaki_saku |themed_manga_art|thighs weapon|heart thighs|thighighs|anemone zawa acknowledges |fapchiki|thick thighslooking at viewer|perfect anime illustration|kellie drayton bnha | start hotter advantage|source_anime shortstack woman|1panel|purification-nederland bnha |bnha olis offside |toes otoko no ko|imageboard_desourced |striped_thighhighs |qualitative-mosley miho |World’s on fire|bokura_wa_ima_no_naka_de |thighs armor| illustration account threat|reizei_mako |yuriko mastergodai|tsushima_yoshiko | wouldn start birthrate|1girl yuri|strong thighs|udaipur kilt bnha |half body crop|a popular anime character|globalwarming-bnha fdi |superflat 1girl|lisse garza bnha |itou_yuuji |comicart-zawa passports |unknown character|art by jaykuma|youjomodoki| context litteraly risk|masterpiece manhwa|city destruction|postapocalypse| impact world disaster|textless_version |She beat you to it|ichijou_hotaru |art by kantoku|manga lifelike|in a big city|uzaki_tsuki |large thighs muscular|by himitsu hi mi tsu|she stands firm| education destroy|1girl smug|NSFWbishoujo|futanari fucking woman| class smug reason|oono_aya |koumoru doumoru|hero_neisan |steam thick thighs|nlwx sura bnha |Sanika|black thighhighspureerosface_v|rarity-bnha womack |shortmegumi|Cartooncore|sapphicneko|thighs spread high fantasy| disaster corruption poster|kicking Anime 2|anime full colored|action lines thick thighs|artist_request|artist_request |massive futa|Nazaria|mirai springtraining spilling |dark-skinned femboysource_cartoon|Female on the street surrounded|off screen character futa| city burning think|the world on fire|umi-|Umi|serafuku skirt|kairakuen_umenoka |futa fucking another|full body highres| reddit wouldnt girl|semi realisticsource_anime|source_cartoon 1girl huge_breasts|mistresskari|tsunderia |musuko_ga_kawaikute_shikatanai_mazoku_no_hahaoya |A massive explosion erupts with|source_furry 1girl|ef_\\(visual_novel\\) |Nairoby|bnha rendous compelled |senpai-cusa olis |uncensoredgirl underneath|anime epiCRealism|tsukino_mito |tsukino_mito| fault reddit ideal|anal thighhighs|chimkenthighs|hentai plump|And fire through the streets|preneur-jap informing |hentai manga drawing|We’ll burn the streets|You better not resist|explosions fire|tamberlane comic|ibc sura bnha |black haired futanari|zettai_ryouiki |akino_sora | join figure save|The world’s on fire|sex porn hentai|senpai-womack lister |thighs water|thighs shoes|darkhazard artist|sixsidesofmyhead artist|white_single_thighhigh| report location report|clean anime|inserting dildo in ass|solo thighs|The wolf powerful thighs|I don’t want to set the world on fire honey|explosion behind|skirt aside|waifu-amphibious kelli |artist name|walking on big city street|serafuku solo| core civilization couldn|toudori |hiyo hiyoratory|e-hentai_sample |running away| catastrophe god law|waifu-electra hirsch |flowing anime|Feliberty |very innocent uwu|zettai rioiki|standing serafuku|boku_no_hero_academia |Robin honkai starrail|realistic Anime|running in terror from the fire|kawakami_rokkaku|kawakami_rokkaku |tachibana_roku |joutouguu_mayumi |cinematic comic}\n" ] }, { "output_type": "execute_result", "data": { "text/plain": [ "" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgAAAAMACAIAAADdbUgZAAEAAElEQVR4Aez9CbClyXXfid19X96+1N7VVb0v6AXd6AaaAAEQFEiQokSKkjghcUbDkOwYa+QJh2PG0jhC4QnFjEYOz0jyxEgzsmxZI1M0JYoUCYIg9r33vau7q2tf3qu3v3f3/fr3P+fe7331XlV1FQjAdISzXn03v/wyT548efLkyZNb9MSJj0TuxA2HwyB6NBoN/Lf2hGOG/Z4qHBKPxgJQ4fAgZhDomMTj8SD+DT1B/NHXmHAOB4b9/ikIwRMf8ohGYsNYLJaIR5P8RWKJaDQdiYEqLhKL9iKRXmTYj8cH0UgyTJLhblkikdhgMMhkMv1+f3t7O5FI5PPFbrcdG0aiMeVhsIy2wwFoJCxp1PyOVTzq0SKR4TAZSyXj8Wa9UalVQSdTKnQGw148MhhGwUHwhpE4pQR4XCG4YTQy9gh+KhqPRSlLJD6MJAaRxDCaiMcT0Ug/Ag4Dyq00RqtYROmBFsenj91ULJ5Ox4k/7Pf5iwz6mVSi1WrEknFIUet0Dh4/kSxPf+173/+lX/3VZz/5qVK5sFXZ6rWa+XyuP9jlH2VxSwfCgyFUHSRj8WGrOROL5xud+tlzke3tWKMRj/Wi0cFw0Il2W4lWO9YBcnTQ7g9S8V603+23e912fDhIUWmgOoi3up3BoJdIxGLJQS/a7aaHcWohVkxEKTclG7ap0VQ6lc1H0vlIJBMpTwxmZ7qL8+c77Wi+mGpFo71BIgb1ILPIBAeC4TCiqhp2e+Vi6Qff+e7v/87vHpo7sLOxmUok+91OdWer3++lk+lWq1UuFpPJZG27sjA3N+gRGI/2h71+KxGJptOpWGTQ6PXXW+1WJNLvRcBVdTqM9aOxgfCPefVRQcp3MIA38FDbe0hoNTgKE56hBisuSMQ7nRY8ASbwMtxIlcN+iVi80WjkcplsNtvuNAlJJhPdZiPaaS7OzkxMTRLS7XZ5wqiOQBiyQixPEBM1PNNYHBQHg2E3MohFE91Bv9sbtLudXq+HH9oNI7ADUeVXwoHKQlPjqSqB73og2M6l0vl8lqI0O51OJNkbwnR9gJCE1DiwsszH+dqLB4bx8cg8+X6z555PDhZQIpS5IC9CAN7rd/XsgZTA+lf3e/zbfAZJAg8Jw/7bhKN2ficucSeR//9xdylA3SAydt+9tsaMGA4P+0nkHEngntoNACKXLcl1wAMgAf8RglyjGQ9oMsZ8QZywx8CO+DIIl7TjHx2EfzYRH/IGEW/sGXUklik92bAfUe9lcqHT7SJHNjY2kr3Iz/zMz3zyk59s9fu8ZgtZukbaSTT2IR329VlCDKgxknFqcGprvVivn0RiDRHGksVReuR0VF3ZEDkj0TikN4xFUvRotMw+crifyKTisVQ8kkqqQ0Dodb3T63e6w2gMqUZiJGq31442YonusNOudTvdNp3DZHkQGcb7AyRAQlSjlY9wdDr4C3QAsVKp1G63r1y5UsjlEVbJeKxcLiPustkcvSckWr56lW67gMtkkIJ0cMlkGsyQbr0uAPqgrl5Wnf2Q/qhPXio2vQxNVV88d8giCUkkl7sjjD78R/DNEVVw1YXonbzxu3Mo+PHQH1C03cjGM57Qo+15Uka+Kj6iyMCJSkNVfW+A1OajnH2B4mSuXPY450/iUPHkjuZFkogV1ROPIQjMnrQ3e739mPshkBYS3QzCzcL3w/nQkDCosP9DE/7QEf5UdwCQALrfumwBmT405q3h/NBfhUAIyVvgA4YwLooDHpzHxKP2Yf0B4sVe1SI98GZYeVo6gFQq1elJKEbit6rKMJLe4ghBe5bU03//4xf5IoLr67hQe/2GEwVx2QwOyEZeiR+Lx9KxWA6BHYt94hOfWDh21+Tk5OVrK6m0cEN/zGYz3d5IkzIwH/4QWLR8kGJ0MkTd6vT7ndigR3eCSoyYHwwTvWQENTlhGnGDfgGpMYwk+8NkNwZKkWQM4iBJAcOYhvFWhHFAfxDp9iJS4iLDhFBCBkMZdNROt9Xp9HvdWGM47BYzpUEP9bwvqkXV26HOhpz0LVENSP3OsDM3tzA5Ob10+cr87Fy73khn04wMC8kikr1Zq0ON8uQkInXp2vKhgwfSiWQ+zTAgxtio3WklYtFcLletVsFSmrHGltKg+z3vfBjXgUJMwtFkNkMy8vUeQLV4e45KZzBHDZFEyshgEI/EITK9jwMgWCM9iNXr0wMVi3l4jEyp5CCCV3eQIb1W4AcUDqLqnztjp06n2xPIoXOLfVQii6JxypiQhA1AEJC0FXpmclfnqhGD8pHePe66gkxv00Ne4Zjh17CfOP7Kk7J4ksDjr0H8wBOGfAv/zeLvCd/zeguAez7dLOEe/INUt5IaQaSfpMcLEKDLa+C/IRpB/HBMknj4DZP8CAOVi+dlfMKrGJ9maYEj3hm9SizCvjg8RMBDdNTCEQRJkg8pLJAtB+VCIwQOI4DeQINq7De3WS6yRgY6oDE8tTdDXrgHcITeuD8ASVo1GpkXDR1OdiJAofFJf+wSmVIlE4ki8iKR+OhHP1rt9tbW1oiQz+ebnSa9FH5EZQD/Qz2S1WDmTjo6iTFYDOKYCUwOSM+kB4rGu1FEJp3LkDyQD8lBlH4pOujEer1cOoMgbrc7dBKUTerpkGGI8AYgViBVgUpNRrJBMMjAQpKKZxrIqm4PiSsLEnRgsIEZTljIWWrHTE+6jGQ8gYh/6KGHGtWajBpIduoFc2E0ymgA8RdPJXOFfLFYXN/cBFfJNaje60raRxnNKWomlRrZRbD/YFEcRBDDfegAXkORgNzhGHIXXCrF5DIecBBvfJhz2S0WGMl/iKmORD1B3IBYBSF8ySdJd57LJehlTWe/IexwpoHfUKOvkSCHzxHf0AcgICuTkOKB6vU4i7ko4UjiEgVag2YikQIxVR89SCLW06BP2ArIuLx4nAK3iaElHdEqAOJpg1f38LwhZMJxe9C4/Vq4IZ5BIJAD/4/bc7tS48eNxx74ToIwQW9YDaQiJp/Czz2gfkyvwlAMPHK8Wsh1mBASRhs/EgGHBwf3jJh9DOR2fkmFnAUy7conIQAl/00SG1ojqe0yg6bvcQ1hqb2KY2ESK/LJrE2wvamHk/o7ki+jMpMjaEgyOv1N6ycQjRoRXNnYWFpayk5OIV4x4DabTYQx3QB28Ds0AZEt+KISSnmXR91lH5uJDAJdTOS9DqI+l4lkGHvEmZ5J8bnd6rfb/V5z2M302q1Gv5cCKYiF9Omj8A4HCUxngEjgjdnoAgMMOi/iBpVTWTCGQBoir3qdIWYLjDV8QQyrJwimUtRfQDHkFi5OX5zODLv9hx59ZPnq0uXzF0qFcqvRzOdS3W4HOhyYPZiIpy5dvsrcQK5cpBaxgzfaTAAMc6Qs5DRhUKthEEIvACzIovyDCQo7g4MudSJpj+hWFYEj6Fp3LCZSnY2rVb279U88VXFWkQoyRzRTP8R+pBDzMLISREQtAj8GibzfJZtUGgUj6ZMNSkjmyleqDK+40aAglDuynnyYLxPXmJiG4TsQ0MW+tRkxDoUT1mO0zWwnSoodxW82KBCDWV4aNwM52pcKxUeyttJ8+MNjCtdxksAT5O4hQXjgcei8UpbAH3ggoDsi4Dw8+BokCYd/qD8MJ+z/0IShCCNUQyHy3gzan9IOwLEH6duho0cLIt9Okj3U+eFenaZ6jvkjjLbwsfcAHzxwDO1BY2rzo9oYkFExb1x11yMHhJjNe8sj27Xc9VF230YYOBpqNyPrgTKSSJMeiBdkwGA3mbFLgLYXkOaqRm8xkZW9yAC7LAIRmY54AgcZo2xCjIS1Wm1zc/Po7ByThui5rXaDxPlcllYczuU2/U5JSonAkdyQ6ENg0eWh8aMgJ2PFcmp2Jl0qYRFDcPZqlX6znhZVOp1mrYk+3mwn2v1hB0WUieAuk74djCsMWpqtYiyZ6HWpBhkWIIXsI8h+Cd+4BK9owVf1diY4HWcnLGI6cFAAPOnqDh8+fPz48XdPnZqfXwRku9OOAwbL0RB/a2p+tl6pVuoNDEGZFNI+zXyEDETtFl26mZg0/4/gp2NAZ6aaMNGkKDzlArUo8hksJTsl6McNRHXk9Xi9JArQu6EnqGJXSjQEodNjqoPSRukPYoVcTvQwRxAugOM5+mvghyxUEYGEGHZDOjkEt6T2aEZgBEARzFkHP5q3JkD9uwEgHtTA4QE9WepUJ/DPLg7gQ+AI4m387Ikcfg37geSvPL3IwWvgcdHPkxAPvI38FeVmkfeE73m9TeC3gB+uuzC0P3UdgJc8QJfXwB/GO/AHlLp1tCD+j9aj3J0LjS15VYi5/fgQAsfQGPCYn3VDrkErgYI8pXNJ8DIO9F/gS+QjUM2ChOx1Len6WLtvwscwdPBIDc8myA0zjqlihgDeUL6k9WgOBKDmEXCxvi1eYplGMo5B3pS1YZ8lNulsNlWpraysnHz4EXqCvpYMpVvdFrOjtGcM2rvI3YZPSjlC3xy5dwdd5nTpRh3RKDpqsRSdmknMzkaK5X6C1TL9WCGDTI/w19juRzDCxEuzqV6jNWj3mh36gQGrlZiQ7lYq6PbZXp+ehc6ETkVzsSIDvYGsP4lUAjN9UoMCvjKCGKEr/XtUyf7jHwbtJhPe/VyxNL94QAYyGyF1mfaOxmvNVqWxjDnlM5/5TKVSOXXqVD6dqteq7XaX+RGo3mo0UL+ZG663m0xv56QhYNXC4AF6dET0LupumLAmS2Qs/+gKFMkGRiBOuGqHh0nQEU5C2QNGyCuxRjrCnH4bAHAkEpZ1VmIrM9Qw6woO6WSqmGdCx3oacCQm/QP1Tl5jJhd0XIhnKDSgGQgSzENDQsQ7KUU+voi4mA/VECyK5l40iAqDMdyi0VSCgVMCkrKyQKOiSIz+3h1oe9Z4lHLMqKPP1//wNQhwvxKMAwOPxwle3cMzyAt/4IS/ynbHHUCAyS085HKLrz/aT3/qOgAvHiRwuvMa9v9oC/8ThhYwa1DGMAJ89XYkVseFGlU4Gn7vAGA+xUICmNsT59avpjzS9EYyzbI2sTGi9o1Tiy+94Vk0eJ94LGzVNGanhRBhNIC9PFUoYDf45je/+YnP/gyiv95qZXMyJXRaTQ1ZbnuuwpFwqkAMckfmIf3JCHtNCqMBAyhU1FI5Wi51MtlmJMrs7aDfnkqlimjyO7WNc1c21pcKE6X8oQPJUqENxlE6XbqoVJYp8PXtfiLVXboqGiJHIApzC+QqwkZZQhpNpugooIubMlDIO6x3YrmmhgrXOeIgPrvtDvOVYEmpWey4sbXVatRmpidR/BvNJiON5KB/+PgxVgo9/YlnT7/z7ve/953zZ89OF4sHZ2dRurtN6NdSpdARaepAQyxcHwEex/QhmQ96KoTEKA++UB+qPftyHUq3frH45ETvGtcAhMEHNKDk5EAPysiONVSJWC6bpVKViXEagpuESG6T2vuoILowOKMPlkP3VwdgzKxOXKC9BF6VigU0WIInGUBWyOhcb37mJOSobdDz4pDERn4qs1LdRsGJdmtShL9+aGQihJ2KYLoAgU4lh7bnNZzFnzY/pN514bLdzL8be9QmdyOGP0EOdx5IpOBr2B8EfqjHU/GE6KL7GKCLP/ICAoE4/zrOf8S7wSsRgphhfxDBQfmrY+XRgox4lQgyOEG04JUkBBKZJ4GGrNoxQ36W/2MiQGI6AshEh+Npw5E9LSE4x8GTAE2SlEUqGP0Rf5YFefnXIDLhOE/ontETYChwIp6GEURw9JxiBKoBW0IwNp1LjZwgIuvrWOshoSfv9kUHCsXEpkOjdKz2YS70woULZ86cwe4/AmhT1piJHKvbf2JAJi+tQEeYoJd3+rFECisYPU8zGmnHYyzTTE5NdfUa7aRT3WKe5fyR7iCyvNV481z07Er3wso7338pkk53sonNbGwtH6vkUsRMMIfSQERRGKw+IibVgaOYkAiNGA9ivceGgQTLjAYgjwMTCgXxJaw1mRzXRLGtfRSELtG0lH52dpaYVBP6PkMfEq6vrxM9k823GATFoo8//dH/4Nf/6id/+lPblZ1ao05eVGsmk6WCWCuDeok5Jp9N57LpBHp5t1nMpXPMHmjtkwzhjBwZhsBhjA9kNhlXN4SVGB11Flrfw+jBv3oNgglYddtdiEkIS/7Rr8EfnZ8SUS5VTX8wWZ5gJWuv3dGMNMhZ1WtW15hBuYxbnNlmLMpYFKLxQ1T4B/Zwegbx8RAfxPnT5Lv4Cl4iWzleASsrV09EJnK73dSAj10WgGIVkObKx9HCRbaxNUh6Ro6kPylj4PgaOGU0dh7o0YIIgcfDIRrO6aBSmQQAgEdzj8hkoonXINM9nlEZr886yOsn77muA/iTZB/Q4oZAwl/D/htGJjAcx/3hkJulup3wHwKOJ6EiHT6vOH/FE2AbjrAfE5o3zGFJR0wj9jcpvD/yLUKMx0Z8xg8xncNulkSD7zGbEmeEsMmIoO6RF4FzaF6WoEQ0ZqQkrd9VvyAyHopAn4SphyZBo6WRsA+AhPjpAMAQdZgQH8vzNZz2dvyIWIiNnABJ9HOhhLSNp+rswMmko+XyIJdlZNFipTlbAKIJBgdp1P9r2/2zSxP13lwrltls5Bv9lbffz8QShw8fjWezO612PJWNpEu1rTqLTJjdwPLBHiXwgT5ITKoFhDGD4PMqI19QgN4LCwuXL19GrCPiEUZo/RSwj7CX+p9MJZOXL1y8cumyBkbJZL1e5ysOP6SbnJmOpZPaUBeLM0mNdvwf/43/1ZNPP3X23AVU/oMHD169elUFtB5a+bGYlYVAiVgGXAZ9jFHZZDLLQivq1LoBalAWPENbWBu2/rwZbakClREY4w6PmBi6vJjq7lmtlGA1lxbQSiUwRX/EslR3iFVIqHGIc5csOZoeh/6Uiz93cA79AY4yeXyeYed9FR8VSUWWyQvCjsAaexMfyEh/MlP/MQ50OB5zjP8ItkPjOXq3H38NnngcSTzuiEUIfjwOFj8U874cD25/knAWH+p34B8a7ScW4cdiAgoqj2KE/ftf94d8aPz9SQj54dyevG4IxOM4f1jljdqb8aFSKMKYz25Yuw4BNRDWoXHC3B6NcPy09hvme7PAAJOwJxzZ8NkN4FWtVMYbTZ2CfdCYPRLhfA8SSNZboyREaUONQRFH5VV0R4BCsXKxXt1hXQ3aZbvZ5BPl2tkhxDaa2ivdA4FExkSgxLfroBjkovkPMJWz8wuLPVRkPy6bZjPlUmp2us8aUzR+qIis7Eew7WSbnd7Zy7Wzlya05yARqdXiw0z/6kYjczmbTM/n81uxaG2nUaqg/8cSyTSzjOjfYGSUsDIi6bTTGf1efYBAQxQZKobI6MXFRaTaxtomEYp5bfjCxFPIFbOpzCDef/X06RdffHltZX12avrYseMos8hTsIM4x44dSzIQaZLvYHttlWmA5eWlmdlZIEBM1k0dOnSIPkMkN7Iz7aBBAz8a/rAIFac60UyrzGCIW6YvVHvCDzZEIDNbbOmlWnvlURbgCaL99bEnqQeiLlyiUU5qitVQiENSkAHCH2zV81rJva5U+FCtOWxhA1R6SaGs71Q0nQaQoamWbPqf2E+DyOthCJzNGZjMNfoSAsGZo2F5BNJYwzFhBXjresxe5HiEEVDFhZx/IgDPCMPxV//EE7AeIYjsUfzVAeJ3EvH0yEESj6bndTk7jNt9OpDbjf3jifej7wDClbGH+uFPXpxwyMgf4rLw16D44cCwP4hwm55w2rB/T3I+BZWNx5icMALFQPtdGFTYjxJBZKmVthsgALS/SeyHebMQhx/OBX9APw+n2ZN8T0yzG0jOS7+1BPziwsg4hkHWjNeJSBypiCYXkD84Gnwsk0Ze0Fzp5ChdNpXaRozV608++STNDMNCeaK4sb0xWSy0dczBnTp6yD4nVSQRg/1or40xQGSMFoqJqenY1GQzm2StESXR2v9ef5JFR0tX2peXorU6ZuxIcpjFaMTKq+Zg5a1z27Vm4eSxeD7NkQJ1VO1Mth+tY4uIJ5h1RfkEX8kc5oNtlxX0sGWi9vQKR+wihtudDhyAYt+o1ZEOBxYW243266+9tr6y+vabb1V3KtjEICCim68yi4NeMnnoyGFW2vQl/4f5IkaW/Pe+8Y0//uOvsnCICWRmgDGmYYyRBPdaxDSFgJH6z/SDlm1pGaxOSVBFdNrddp/9D3H1AeMqviFxg6pU9RlkQkCMJ/VFceiUKZc4gRxY3xVnG4QBtRl7wiWBb+IE09B1flB6J6J1J2RxQw2HVMDzgkgrUG9GSpUcZDRgMic8GU8oqmspmn4n0L/600G5P/gUeMIx98cJRwvgEIijFDio5IQiJAAV+IOyB59u3xMAIUnYvwfCLT7tiTl+vXlVjWOEf++4AwjIFIbi/vCnsJ+v4dewf3/C/SFB/MCzB6Anuf3njwROGMj+rP1rwDO8wkw8vQNAaFKv5uz0k/3pbx4CkMCpYZrUHoeM5YaFjl6c+GPuhTuQ/mHwSqv6USAohT+p2Xu7C4eO/UqCTTbK2TIdWizGejqAbLGI1fbs2bPPPvssmvJ2o0HBSUFkV1/HqW/3l5OGUP/R/BDTrOPsNDEQD4eZTG52Mj492cllmnHU/yHjgxTPTi8bTS5fvNrf3pzMJjsRDmMYsFAo0ukmt2pzyfTahfXL6zuJk0fufujBbG6yvr1W29zJ9QYpjpCQGaTLHANaI6YUb/sgD01sGQtrnsAiwvTG5sYmgx6MPBzqUMwXkrHkpXMXX3/l1ddffY20tUoVUc60QRPLV6OPDQcJwqZjhLmbyBBx9F+5bO7V11/7nd/5nXIut7W+cfi+++gqUTQ55AkJarxB0ZH51AFPToKIs5CUyQEmoRO2jDjKbuW26dnakLdbp5bWGcOlpeqUQKc4tYAfDgQrpD+O1BRTwwwbI2LjILY+0E+Zxf52qgqY6tbMQcFREtmFrF8ZI6BO1AZSFkEjkzDmnooQmglz0RDe6S8ulGMVkOY8PNrNno4DX/GE43h48NU/7c/dE0rqj609HjOARpJwquszCWd4U38AyvO6abyfyIc77gBuhlWYKDfzkzb8yUHtCbnZazg87L8ZPjcLD6cN+28WP6gtIrvzVoWfJOInqS1y+srgmu0qodbo4fZdY9vwJyVF2RytxPEoH/5ULuY8qhAwF6TkYyD6CeR1Fz2NxGWwklHDTOpCSEE3aFQWPPrKjzIZx1Ko1hDKsZK9UasWchm+88qTHQCU69d//dfZBpzM6yABLOasgPQxUIDnbXmksOo4HJkjBuzwYrVRNxFLZUoT2anZTj7FksmWUMPQM8D8n2R0wGER7QbWpniOedoek5gZtHvOiev2UulilhnYXhtDUjydiuQyc8ePbVXWhhwVxLwsGvGIHBSNtTHAVfbqvqR3i6j0YrVaQ9P4KLkd5psLfHjl5Ze/+bWvr62s0h8sLh5k9pglr2jRFBxdHd1aB76Ru0ltJC8iGEMQIyQWShUKJSaOT9x9z/bGdnI4nJqaqrfpK6gjk5RWdXowGYBNBGU4MmQOYZiQGY3jkDgtToZF8d11rCWUQ04EMmfVKXHv0o3hCD03Mpj3kXGJIQBz0JACqGE2CkFzr2CCpzcBrZNS50RTCFZqBinELIq2K5EJcZSMj/SVzBjh0SCYO6Y3g0TUE3FUAc7DxBpBUCEM4KhQQekIDNyewP2vHuKgSMWrOyeOxL91AHxSfpZjAPxP4iGXIHnYHwT+hD3i7B+tuwWx9n8Kh+APv4LVnlfH84aBP0QRbhOOVxKR3XlGBAZNDj9ME44WIBNOEiT0yCTHBTHv1EN27oCGg1kdAjkGoPbnHnzFQ/IgSTjmyC+dU6CUxDzjDPemoq2Su6JFNHLH9I9o+8IXvnDX3Xdj0EDoy1xjTfqH6QBGPCCdNMKaGhTe7jCZypZn5obZTAstm4VAsgxJhHHwAtK2029lFyezM+UOZ5WiTOt40Db7UjkZLtLvtAe98tzUwpFDrUi/3azHDxycWTiQLxbo23SOhJR8M/0bFagg+zVxAxXMKkRxemwvq3NwZo6QL/3hl3/zN3+TFT7YfOgY2o1mt9NhKpgFlPlMFvOX05lUMzMzHDTqfQm04tOv/uqvPvXUU3QMjJwYLfHEoOQVKn6ymgQBxh1mP7fJW8xJ9E6Mh+IcGpHI0Y0B0fp1R5VnMHOt6qO6xiYYPhHii3/wjFy457DiCgFo4eLPrC/EtJ5onGTfL8gyI4HzVDLaqOPc5TFSOB3GSeH8oMdSKwiQ95iafja3/5PH9HCPHH4GuXhh+RR2I6D2A7ZBZDyOPN0zXOrDo/DXwA80/GEXhn9HfoDcTvxwXrfjvx2Y4Th3LIN0UBO1N2DCbWB/PdnvpLDoD0bhk44XliF1kKQNchYux6QMOv6X7rcz9pfvtgu9Tr7byfY6mV4vwyKHfo9UBkcMx3Jixv7iX60+0x9+gyz42m3ibKNpGI+mwSXqov0BYPyHJmN/hOMZh+4SgcRSgoT9OPvdj0qC+KHMMKxaGvmCmK2HI1ZQJY6NLLY3cUFMPEQJhAuwxikCzzgg9BvUEytiMAnwBXGlM6iHHEatRRcqmrVwmywb+YnGa5zq0AzqiKr4KYXK4hS8ng8Vk51HHocooMcfwpT1HaplehrMBZwDwfoTHavAAQZMayDgCB0mE2s7O9147Fd//a9cXb02OTeFOESF14mYbTRqTT7elEChwgZeCZF4AquwUb0Xb7eT3S4baCPlEvuPkf7shUpwsAMbZzlQhyYdi1YjveLhA/G56So5MZMZT/ZaHTNyo+Bz4HMkXS5Nzi/E0vltna6QiBw/MZxdaKZzLZ0gx3wt2jUptUqR/gMLDlukZILB9A4ZpJ9qlIM0ZwTwlS/90Qvf+34mnuToN+aBCcd+ncmlkSCrq9fo/5gb4RQE5Hcqk2bVEH0GfSR4MkSgw9CSpHi8zq7gfO7y1eWpmTmfmxWr2IE8VKjJZC30RERRZfROtgSIhoYtKJpJa/KWr+DMn3QKE+g8nYaCFHJUAYLdCqd9BjCSr2QlIyKKtahdW8KvxZckVrlHbKmGEwLlXqLAeWoQOhSctLstgk9hd31Sn3DwMJlG8fmTJBYKkWl43oWIBqKAuXBkT+9JxgmFgIcHT08SvLpH3GLOX/ESQgdGB8DTgQQoBZE9Sfi5B+wP9+rZ/XBp/4SpbIFCACNEOnByNqLwqgBb6SzNIDpkIVp3p1LO59hnrwV6iTgr1Gh8SJsEdkXYVNKIZAPkBjKdTe2S4DpkBWYdcmojIilLD8LZu+1uMpuLJNNDzkPPpleqtSGmWJZmqJ+hhpj+i3VZsACHdIepSCzdR5yZ+IvHGP6zMhwlj/Ewq6bZJE6LxmqJURMlieZAnpQMOBrNqpVoPz27Z3TA/Ii11MngKBSsK/lEGUysY9AEBI0EucIhX8zDadkykLSGGyGhP/GBimaZkAULPjiFmGg0FQMLTEE3xypmoCAAFciuH60CtP026uEQr2bosAY/GuoaBPUU9E40UyEjVdrsoorNkkNoXGuiFffT+YLatTKSUVW5q7fD3It124wQ1irUqiwL9QAgai2aYqrv48k/dQygw8SjokILoUVfA5ETpIhgXqF15DI5TNsAz2mulNsJEkzNpvKlt8+e7qWS/+l//r+vIT3zqR1U7wxTmhFs4cxUsqRGlhMUhFHRjC63fFAi9hNBt04f0d8qs7RkOOg2q+36dntustbvxluxfDJNbmwO7sb6sQyH/ieT+Xjm2JFOtdq6dDndj5XjhUGzG8vn1vud1Pz8zIkTyXSxEUl0C9nV2LAwt0hdxpLZ9pXLkXqlDBNo+pONAMPKsNnoV7LD5iBRYOFRuj9IDOPrjWq6kKf+33v73S//wR8ePXyEFVDb62uQiENP2702BaK6stk0K0PVd8YSuXyh0Wlz4KckS3+A1FbjghO7WjjLNoDIYjzDHuBur5DN0Tn0OJKaEyDgV1hMJ0fJVBOzdT+qXrY+UFMa9SBvoxwrvVGp0YVQ9VhNaKcYT9Qf63A3GkJCAy8aH+WiNWmFvfZS8cpqUgVKZ+NyCK5MiLY4/T+uk/tglnq7lWV3RbMB2ysjqzJneMoHF5kWJI0AkaBwoKjV0R9JVIMc7CPGpVnAUhaiSGJNouoPnxoNx/eJsbSaAOKwq5yG2Gy202luzmhSJmykpGODH5ky9QIuwITIegor8ak7Q0Ih7gKfPAQqPl+UnL9EUnMh2ms9HrgIsjA04HjcWRZ4rVGNwsI/QcRwIH6BuqUTDcdxHLi/hp+3ABCk3RPHVQcPDOM8zmpUEP/E887mADj6fTYVmy+k4730dMY0y0S0nYqiWPXZLDOMpVhxYSMA7WNHGYnE8jEOk1KbkB03NtC6Zg6Z6kdot7AdzMO6bBbKNaOxGsKh3diKM65H6qmaYFR1MJLkAEN7MbIiMFEJtSYQoIzkO0gytA8YxAeemEvF7Ka5mBCnFSqhTiURFjdehkh18M841h7GXeJRq0fJdGsrJIb9xddSvslDJ4yJk8dOOIn1LcTS8iUg9ziWfsGKWMQHgvo0AwIPWvPSO24EzWHypLelF9GBKOIeLbOjCWldSJRz7iXFCTGYxh+0TO0bIpVDAw0NH/ihJmjUapYUGiE/4kUhTkl5k5RQD0wTFabDQaNen56cyKQLHLWG6Bdh+4Nmo55J5Wr1Jp9Wtre3Ws3/zX/6n0wePFBnwxaUMhpStKhqD0z454iA8u06KZWI22QykxuyLYr1ihyWsLGynJ4u5jl8TbonPIeI5MyAQZcdvCyywsA/Nz95vNVs9drL12Da1GRxo91MHV6cuvee+MxMpxdtcI9MLIXuQvFSpcn4IoPUQWQl1qnXUkwkYIPmKB5OE+XgOQ5j6NHxI56klmRzWU5wa2xXvvKVr5w4fvfG2trs9NTy8nIiyS4EEQtHYcVLYh2OWhsiTKFjvlRExtFbQ3kkb7vVnp+euffeexcOLC6vrE4WSvlcfnltpVDIYudCGdfErk3YwmgIcdWZqDg6RFadlOakWa7jchz6ileJ5pR1D3n5q560ImUtLYTuW9oO7KD/Fkdqnhw1z8iKpoImjEyXVq+CjGoOMCBhaoFAivmkIFByInjpQznqoxxgw56R8AKsONNT7UYjQ9n/mZKnK9b8NjEUR1iEHDBHcEKBt+MllSd0z57n7UD4kcRxHAJQe16D8B+rh0zvrAPI9drPLhYen5/IzaTLLCVucJxVvJ2ItFAVObGK5Q2YhiSbYQJ2qiBvY4M2IhJmM50H2yV9L390+I1WLg2va5zOHs5GZLhR7241G2329aj5+cAwKtsich1Egc35j2jAmCdikW4i0hXUKMsx6FFoewgc8qVv0G1ZrAWsN+hsaDPqhpBlIADHwEx0FbAwfIe0k35NToxU8FuLI1tYWUq5dDRjezVkKGVyE3VoBFKgVGnKGj9OXI4n1AjDledtgBR43E+CUAT8YujRp9AHy8W+jlq4yqG8kVM2/JbexfFh3bZKJKxN+BhwykVRpZUZehRBcVUIpIqwtliOvuEPXDVk6k24Sd7Q/NVtRAulCQZ23SrG8146nylkM/oaj21s16bZwbS28uVvfuO//K//q2ee/cT5a8upeIo0QYPFA5V0rn+oXLfjBQmEP0JU0iqV6pXTvXJmsNZqrKwVFg5k57KVVKzCTWRc84LlhppFFA3iGC8iLP1ZPJiod1Y5jK3dzBVzzWh+4Z6T8btPRrL5OvYilmWy+WoQS3cj6XhmODfNHrJ+pNO82k7UsGrKnAWZuPdNg07dz8WuYyqa+dxeKV/4o699c2N17e7Dh3MZ7QLDsCOKSVTJiTISyHJM6WILKk9OHDh4ECLgsNdx7iY9QaPVPHT0yM/+/M996ytf29qpMIUwu7hAy8ihNTHQZcJbMwpdBqBsJWOGgKNxAMDB+pLjFDghJYgeEQdYZx6xOwxgjCTOMU5xpiIVQxCaBvVtsVQc0pnAJkyjBMW0ZKzswniVoYPk1po7qTbPXeXc5/TJAh0fIWcOD+VSID+0R4aJVhw+ghLdlkfj6UnCWYT9QbQ9nnBG+MOOvHBByJ6Ed/QKkNuPH44c9juEIASP0+r2IYdjhpMH/sDjMe+sA0hwUdLSxWJ+OMG2TxpRs54dprlfrk2tMQLgAHHdmqQOgEUVCFY7dquIwEd9IkzDE0am6I/42MgDuC6zLrLzJjDkDtr5XjPJV+y6HNYo3UM6KBsg42zXwbzEYmgu5UPvZjyskyAlolscp24imLZPHsgAWZvYJUoqhLP+WPJsOSKS1ALpobxtjmhlNiUEP81I+gYEIlvasJoD9Je8pKUo5eidOiFHsyOhnqqN8UZkY2Lj4hFkS2Kxnb8tWAnslR/3e+zAL4+AyVFYMHHn4YgbkgkDSX8ObpTAVmxeBVaSVj0eN1TKliG8CJHCjlRDCMtnhLNugHSyKQDCelOIpTZqxQaiywMNGobcuBUfskBlECtki/lMjg1fbU4OSKUL0zOrtdr3X3n1//T3//6nfvZnT587f+jYXbVOm2Pu1fGPxKBQFF01GNttz6OC3eKHMaUW8XeQ2E3OXEhH+xO5TL05wExy5VohW2gUM9z+2KFXp6ti3X1/mOJ4n2aT8/hL6Wz08MF8dFjdWt+KDicOLwwXFgbZdHXQa6FaY6/hCpl2N9bB3hXrZDNDtul2WsMWK41Wk11Mj6k0nUk0i60SejOw6OqkUS6mbBXy2XfeeefwwUNM5CK1K9vbdAAIdK+0oB69WIgwbEHlqUl2gSVSLBHCLCrVvlguXV25lk8mP/6pn5qenn779Tfef+fd7c11uA7LKE1gslScnpoqTk5A6lq1BhvQIwWkolbFmIy23ZJjH8Rq5sCBXxduQYgkHaMl9r2ZWk2dq3I0xBaH0UpsYD1ipRYHGHFQHdenaTZitMQgyN3iW9OytB5ORg7Kc7TndRweTh4kEVuICaVswXv8QzXhyFz6KvpUyiHWgbcNeEBbfw0/9wMPh5BwjwvkfuAhPnHCqcL+W3zak9Bj3jp+AHlPtPBr2B/E/1CPpxI9zfF6a/+ddQDAbHTr0RSTURgXB0y+ZRI0PC0o1hSV1qhxhBWbubEvYLtlqEjjrcG6xNEKL2pSPQHziViM2KQT52Y+evt+TEeopGK9XAFL8RBtihMm0eWYkkGgs4O/mM4hzZvdXoMRAEYNGhHcTP9At5EYYHc3XpF2DzZaGKKeBxM54280Nu0eFYNLACVRKDUnirpjBILn+EP6IfTGHYB4Er8CEYFqdT4cEZualsS7Cgtr8t99xsMme8csRGTevRp4BtWw61clUUHUkH4sAhxPTAulHHJQUvHMgYqN4sFemJEI5EVpyMtRMZ5CoPhHEfCImCj9Mr0ARYCIb7+yIVAAC1LT01wiYdq8xAfe8ZOK7lwjLuI1e1nuLtRMCMMH5E4qUUixyvPdpeVzy0t/8//wtz/zC7+4sr42NT23ypKY0oQqypAWqSA5Xb69j4plnz70IbRtApraxvA0zHDlSi630+rXdoZLq7HyVDw7iyaPfGKXnU1SaEJ6mMh0I12kfGZqOpfP9mpzXUYJBxcqyXgbNtC5nnbKcLcf7zEhFOPAm53UkO1s+YXZNCtEOTB6bSs1TGY5LIGDGGQB0sDIrlweFAq5C+fOYtKfLZWgAlc8IiXpDGWugXpWJFWM/o0cFOMAibnFBeYzzPQiTSWTzXDR7ub6WrbVOHbPCW4R2FhZxdTzzjtvbW5uXLu6vHJt+dzSEheGlbL5bKlUr9bou2FTLPtUPc3E5v6tsgIGGefI7y7XOJMZamBCB0OAM6ZwNDYgPk0F2o2KEItyn3Kj3S4XiiGQ13kpoxdRv2M+V6aWURCVEOVn7B08/atHtu+GkUVVZESyjsJWrwO60hvHxSFHYlmOQQ7y3DDQY+yJzKs7ZWKIjQP060nu6BlOFfZ/KJA9kYNX9wSvHwrnhhE8udM2DAq/0yqg2J11AAiPWrvXGkRa2O67w8wA7YapLPSuKFsSEQxsoZS9XvYfTXKi66BJgSKzTggyk6TSNxEKDGkZsiNzGMLyCZHFnBfHXaVaXPOnizB0cx2SZtBN92IcMcMl5nCGtoEKd/4khBlmcO23OJdQqQlad5SmLTMl0WposoE2g2CT4hWn1+JQrpX2sE1sIxsQBETQSE/giAVEOP5rqkzJjS/ITkMC+6R2g1oCm2r+y2EZQAMsEitayAUhXgH+NWA3g6H4/tXTBbo/gR6TVHiRwLov3nCRwZ82QWfIWffDBhgTx9q4hvOgr1dVuZVOYlxdnWUk7lep9WNWHvNoxKDTOjXBTa8xWhGkAUWUe5kw2SGhmh0U/1QmX2g2Wius+W83f+Nv/a3nnnvuvbPnDx89slWtsJKSWV9sFFYk4MqFqeQht/mkaDCUTuxJ9THCRAvZRJ6ZwH6SaxSXl6NTqfz0RBtCwJDJFB09WjkSmWUELdbzIdSK5Vgpn+p1dpLo+iY+4+gdXNHVRn3J0rsxaxpJcBg/1MtwafuBSLzWiTRlApdZhxUMgwjHRHSUAyvdh6WpyRfOnvWFktxyyaJ5hgrYS9gYBjUpMp2Fymu1ZrgPkpn0/MICY4V+q4noR9TSE6wvLx05eGg2tQDOLATiwvpmr1Mql5545plMhiYT21hbvXDm7NkPTl+5cGlpfXWqWGYjGIt4qFeNXXAMsNXT23p5q2NyVjh1J1Eu55yGsEOhBjeZqhToqovqB3wJMI/UCmDCI1BPm8xaHI/EFMhoyKYaNKDEwFEK3P7RnHOpAwyejoY+jVHiE8l50mSkHbiThgN2QNe1GVpoYW9qUc5C486AtII2fo6S3/KHyHsc0QnxRKOMxq+3hHTjjwGoG3++PjQcOez3WEEIHkfs+tS3+xZOHvgDj0O5sw4AXT6aLg5S5Z6M85x03qMCe/16KpmxqqHmVFOarmUAapb1TgtBQzH4L12WKqZnhz2ZD+5ja2WgZ+tpuFIPs/FkIleOpypc89RlRY+MPwx7c9giW1EOTrGrD5tIJWAhflHauIJws8e6FCaLGY5g/e3nB7FSJF6OxsuROAsjCjpKhRaPhYmGFt2OZb7brXWw7IqrJQqN+10mCjEYUGGS+1gGGBOjbqFei1FoHfpkjgDaHvHV5BSi1kHpcPg9TvC0wFFTDAciLjwqc6RS18V8JHdg8lofINwQ8wAmK68tABLV4uvcLoxjNCEMzQhqd+CNQir1SdPVUv+tQEJk1PdJDRxlT6g+uLOEUtZNVaUzZ3qZVVmCNIhy+TCzsZz2zxH7lzfW1je3GZD9r//z/+LAsWPb7dah48drzQYHHKyurh6aP8TRpyOYYwkyyiEIvR2PTHHghjkvSTGYCc2iEhdzsVwy0+s3Vlb7s4X8RBGjGEc9ZxJZtBEJO7GmbGFNDUaZd0qyNqnZ70rF4E+kJRxORcEHfIITVpk5RpVppKM5bvCamoxvt4erO0mYOEZh4w2uJER/6HNB45A5cNT2FDuMu50GG9wyaY655uR6p6JVynUFIzyXz7MGFGEK2zCHCzHBcG5hfocddDvb3JimiVxuCysXKB4D1s1mA6mem5h45lOfeuLpp85/cOb82TOn3nqzXWuwiCfDiiD4HeFM6UCvrQ4AmPy3k0zpgHY5UOHmIIuf8MOuNGM0Su9s743TrILUlG0JhotaHG5nd1XC2WPmuK5cwYuBtwYwDjJS+MO5dPxh369Hoh+h4wnaD+xG46SPTKqBy5HOf9zvr0ExCQz8+3IYBXiEIBoe9/szSHU7oILIYU8YTtgfjuP+PV9v8brn035QNwzxVAGheL21/w47APXQ6E8x7O6av43g0coGZLHYWwwEw5ilR5Yg5c7mF5Zd8olqNk6SYZ9XGB6+ZVu/LBTMF2DtzWQXsqm5aLyKxVdm+5iu44gOipFIcdDLtAfddr3bbnIduNbBDYZZkkQGi9ksiMi4ySoNrp9NxCcSqYl4agaVLDrMsatc1h32B2FH5pjdLhaj2BA7KIIBfEbFF9LWECQVJCZtzRJ6MCMaopqoROgSjFMxZE3ioT9pfAgWfZELyL3Hbx9Hj+viyNCiRhsEhv3hVPjBE9lhPSmFUl5MBdLI+eRP64BBl+X5mgoFMnYbRAMwFUfjIVO5WONj7d+6khHOQFFHrdYkXCgswlJmB6Q/3UA6jYqKchhPZNZ2tla3Nx/8yMN/5pf+/NSRoxKg/cHK1hbHYbYqtbnZhdWVdb8InkwDB8JyQuQOnWzd6BlaKcjcbaxUSEwUWK9TX1tPrW8WDi9W6aWtBrkbmTUB1LLudMcluMwdRtXdX4lUBhWEEQwbF5jPYEEhcpjjjtFidBZaPMWRbqxxpY8ZprORXK6faLBipp9McWcAjAUczhSCjtWt7dpO5eDigdWl5VwytdPYEXE49s4GW26voz9Wj0kFwBjxeDaXY9U/yENZHHgRgftxCGFymPpgWwDjYhZUbFV20rqsIAdHNDud+sYG07BHTpy4++SJ06dPs8OO1TkYR7Fj6oYxwIMhHZtXmAlKy0H1hyjnCT9C6yCQvqPHWgGxA3UKUcU5YccHUgCWQAYNAHHx73XH0/U8tTiLydMbQhjIHj9oKPJNHF9hZD6PsNEoRAyJCNCkOzmKLRWiwlwPas/rTXIwVB3hMSluGNNyGEXeH+EWRQh/CvyBZz+oIOR24gSR78gDZC8OqcL+/UDurAOgcmChZLRTSEeT3LjUYd1zc7pUaHYb6EBqcDAymkkE431HoJEX6JPc5sxqemQOftR1azA9BfYZgzO/ppuvGS23W3O5wpFyulqtang+gdKfbG9uR6u1ZG+YTsTno8OpQiaOCkR7jcWzwwjNdC5dijNTwJ2pNAxWnyCgyNbOzmUyjZ2hqBLNQZtGM0jHGMj7zbCwrQhkjKVxugyCfMJuogG29E71AeJ+BhiYIVmGwVdmE9Su2Ovv95vTiCQcRVU4HELzlU4LKUOItv7TQZofASErAWcD2LZYYsqR2sil5LLlwN/6w+aEoxUqXG0A2aYvvJAVU7v6TGzT4kmIaYIWwiiHmLRwnlQFT2/cXDWFLQSyk4YZYDDBQgIa7I8FPk0TnJmoIQKvNGZuJYEM0DiXyRazOe6FgthA26nXCpPlerd78dKFVCH3Uz/3Z579qecWjx5drdTz2fzWzmY2m2MZ+/bWFtWHucNISgYQ9od34ANFWKWvtarDGBoyqxC4Omvq+MG1lbdm5mdWri43JoqzD9/XqFWanRqH8HSodGQqTlRC5+aNi4Ixu0hQSqbQZWLP6bJHlwENpylwzSAdSD8biauOmWdi0X6jxSplltPnDsxvphLVdqdQLKR7EbqNDz44u7O9mY4nirns9up6Ns16fx2Z5iZ5rYui4gDNTWDUVywGNT7y1JNUPblDH0JXN1YXDx7gihj6BoYFisZUFsdn0jTIFPN3T4GYTWFGGkmjx6bmwV/69b/yX//dv1vO5mMpZsX71CNbrtMJHbUNc6oSNQutRsgnuI5GQp3i+ERGmiump7GN2bQ2ZzEUbxHKXDadYRBJVREZXsUIw/6KXrcT5fxq40vw5ytPCqehDAS2p6pIfOTj5FEch0njIAkY8FT8kFQiRM5g8gvR+IpHbCN1SPxPdy77Lk0mHsNi7AVRjRoae568ehZKHHKE+ydHiSevfA/n6NEt4ujhoDymPz1hOI77Sbs/kBCxgbmbRSA8nMv+aAGqN4S/P75HuyGeQV6eyl89/p11AKRhGwvbgbgAKtVt66wTLm5Dhqt1YTBAm5XqwxBcO/f5pTLZoyULjEQlQpUfsudiPyYRMfDAoOhBVAiL7hj1RVu1fG5YHLRqdc4UWOHeimi7s5gtHZycTqHyp/MxrlDl9moORk8kMv1otjOMblcn0jnUJ00yA6PbQCcSbJBhG2qCBfKxdCzOfs46FwI2GzFmEtUC4AJaBPoFFYjaq0loONv0X7ooHZlrUxp0PEwyDrAGUTIWGCGSgEwqE8vwnJNx9IT6lIgnDn5F6PIBSDhlSELstkYB/OoyWGhzHQC98IXk/vRXeNtf4X7rHtRuR4xHeo+uLkIS3MciAm/IYXwAJVo+rZoeET8ig68YmsFEc6asSWTnxNhVG3XlBSWYd23JEmBvw0wx/8HF841e764H7v3cL/78E89+jLwuLS2zTpKqUm8XjbIcvlgozM3PXjp/gf1Ee0omoXbHTh2zCoZg0i0w0C7ejg+qcMNUobbVYPTXWlobsKJ+ZqLBKXQoHuonpYKbWNLIEnEvYrDYjHAhAeIosvJwvDQdJfYcjgBgiJjoRRgbtpq9pfWNhZk5hhqsc8ayVsyyPI2zN+PZZGrp6mW6a4QiE7/kx6CHOSYGjs2uLrzE9CnlgJ5YJ0Z067VaazCYmpxk53ClWYc+8wcWuTH4g7NnWPkDBgFNwInWgUO/4GnCAzucggkjsFAuP/7U06+/+DKSmhWa5JiB7bXkQtPf1J40Z2Mens4/ePY45SDO4L8yx3kEiAVXYF9COaAlyvrDTE8+R4c67LRGkcbA1WRwxoHgZwJ5Tz43fhVW13+xYo6C/CtcLF1IzKsWNHLe04yxJYEiqwhyYb+H7Hl+aIQ98fe/AmF/YBAShh/2BxFu5gmKcLMIP4HwO+sAVDW+/Jx2g+DHkspy5kEXJSVdLMKFdrsqUpSlJKgjarrcwqrTbGkY7JLlR/OLmuJnmx9zTejag1iPLgIzqAadnUF2kMy3aqnqVpFjvPK5iemJ+Xx5JpvHyJ1Pp4GLFYjDHdMMI2D9djdbyA5T3XqniiKMKsqQuNds0aYHnW5Kp/ByUR8L+zimOMr2zSn2GWtxItUp1RRWxiO5EIky64CayEwBIxU6DPYQyFLM9Dadh6zKKNXa0WZMRwNnwSFMAQMbZ8C0kuR8RMSbzmI9AZoh+hQOPg54iOKP3KgdUsvAsS7JeVodJeJAWVl2hqNYUNIfVIBliIv18ehpWz3xgqeEZKgLqdSqRMCxBhExLZZSeTV1bDLfkhNGBGgUjU5PSHnnK3Gw/+DwSO1iTFAqcxQl3fXrb7652ahxu+Hc/CKLFev1JhZ/jqaZm53Gg5ibmJ5i9T0J3YXb+Tjstn811UKNafd4EqtANNFKscx/kDk012pezrUTO9dWO5cKB2amWKvJBDV7WkU0aoTOFa0E/jIiWkFEHhz17h78uWS8Ud1iDDBTyKXqzZ0LV6qXl5jX7U4V4nNTvQy1PywlM6zTZ23Bdr168eJFhhFUBKszxTBiblUIvIHQN2s2XM6FKtpY1mi0EjmmlosbGxtMBR88cKDSYBNCh/u2iA/v6Hm9G3cDo1BxBp06IJOJp5599vvf/T7H2YmBe33GZ3V2YNvQTVXJGMRkMx/VEqlicw5Ixbe8CCOCdzMj5rEQBkXqzKLDNteTddglnSsVC1oWBhyeY1BKTnoDPkLRfu6oJwgSghXgVLuOnOcFeChjNjRdKwCRtaV5VKIgLR4lt2YSeMKB+/3htIFflLne7YfJ9/3RPNH+yDeLGc7EU4UhhL/+JP131gGAGQb99DCRRu3hugb2LLJRJZNLZQstln0zNFCTg1raky67j45Bp/KoYU40Z8Enq+pkpGCjO9c8szMUYrGVi/qXzV+tMT2dih9gFUQm00tE8tzmms+zZrPZ2C4m0pwFzPaYLINTlvfEogijaI7tl32OeyGcUT0LQVgOw2xdmsMpGZCwewdNVhsSsHmTKGKbehAfMJNyFsZqBMZ9ZjXKYv2IRNJdMgc7aWCIfXRDKox1KDY2ZRrRhCxCRLOy4h5AhessYFbZeEz6o30HTBzEV9My9g2nxU8gAHm6RyG7gfSjojwFgqSy5NN/KT1rpEbiRMMOMmZ0YU8ehq+Eu2LgaKw24lGIMpKVAEdCXhl3E8UJRCtUy7N5BuQg+iAziZxc//abb77z7qmFQwePHLvrriN333//g7MTU7V6JZrK5vNZjvdghCik/uRO6qBEgUlzdh7SJ1u/H4+w+Ce2uT1sdCKVbnd1vb2ymimW2LhrI1GTFpY7yohqWIYgOTyCKJnDm0xBrP1P9tppDujs9Zor66sXLnJMx+SB+cF0aVDM9lPJYZs1Q8MM9Z9OnzpzentzC1CMW5lmybBMnr4S1QG12fpdAcXDLQhdCKkjGTgJlX43k8awKRsaSVrtVjqrXhb2c3EvzMwJKQ1DTZpbvVJXxEHkV1uNhcMHC6VipVabLU32OWYumqg3azDhiJtVuTLRq/2pifErpzo2/uSpgY+ELQww+mRRRBxuM2OYjvRvViuccnpocbFczHMUhOy2giSq6bRPGotG9vCIsaW1ICkv5shCH27kbvFpT3ThSW6GM0QCIH6o6iEg7lnw6p/Crw7KP+0BG369dYTw17A/DGG///ZjOsLh535oP7GQO+sAUKlLyXJ6mIly4G0LgYgiycIylmezAUfHxySYU9NOLkkpRDDafbTbQRRzOq8aMhyPQsbxjTKRJ7SHS6sO2MXK6sJ2hqk5bg9vdxaSyeL0DOehdNkE2lPrYsl5Jpnu1xuJbnQil8sAHKNTv0emO1vbiVixlEqSM/bfVqNK82MJH0tIMXugr6LRc+gut61W680uZw1pJ4yGlLAyrUutAcedvZxrzJQpXQtdWrebYjkpVh/MqRq70MoRi6KVmq2NtRns0zbdGOpWF8FhaKBlriMhjhWXEArH9B1T3PZdD69dRifyWIOBKPKr2Y7az6jZIQ0YTEikk8qmFa0FK9QapZ58ZE2SAGnFjrdvBQn2gJMpgYmskWCxX+VpNWcmFeWLnBccdRVQhDJBQgkT7ftCdJLQbku3fbaquNliifxq11Zfu7x0pnTqtRde+sRPffL4yeO1egMRzZFndAGGoASuu8BDwtt35K61+JLgqAHMAyS0zU8jkgGLPZOzU921bWYqMNlvnzk/9eA9nKbA1C1pyELWPCOK1lhJ2Iu6ylrri40CaDPQsdecy7LCtHPt9Ac7l5Y5b6q8OBudKvbKuQZTJtpYHm3XW1nuOo4M3zr1TrfHsYa9Vhc7ZJwFPPSeCHpO0kHWi5/pibknsjfEZo0mxCl4DEZfeeUVDHHFUqnB7nTuIka8o5Q4StfTQnUmDK1voL6NVt4HsIYBtebo3Sde+M73FqbnWQXEOmsCqTWHEXBO8BqEUBeqjlFdaI3NqAewfmDEKGhoqGgMLPKFuakpTvpiEEwvJzo6MY0zgalfEdbejdSjHL1mR7l42HVPQ8IjjcKBQaA/CfKkLvLFJwgMMSPk8NEqw3v1NZ4kAB284hGQEV4jfwDfc+HVQ4Lk7iHQPUFyj+/PPZHDr54wSMUn94fjhP03/HrDwHCqH5//zjoAx4NqQN/mWBaEXas1YNy92WpmJidQLVmQCH9JnNAwJDm7LMSUDh4dpjjmifUYHNfOsbzs22delJ2bLDtH7nCKxEB7fFlVStNJ99hXgI6aZoxdGbA7E4tnaqtVRS7Hu1HaIXo3B/uwBZQRSLFcqDYq3B3NWDuGjTZdgJocK9Tj/FGdBJ9sdPo7rTrzWWh7fdaSkkzCALaWIuMlQk7TfXGuMZO2TG4DYiKZnMym2Qd6LRJjVoEhM9yI9m3cyBSHtG8yMu3rutpxTRCWFZ/ZhVl0AFAsUGE8tn8dtV0LMiYQPvokJwhjBD2RWNuEgj7Q8kFJ2qJ4V+vYGb9Li9ciEzVQ0jDz0mpp+Tt+EDA5pVrDsdGTxKiP1lM4fDU51qKQBbKSIuD4ABrEx4/2SqfQqavKGZlN5kqDAkp5/NSrr+5sbH7mZz938oH7GCxt72xOTU832F7lMk6ZyxkW8txJH4D0ppakVKt+ENest6IWov1GtzNRKvRKbOGNxKuN2vJK99B8MpNNcnAYy+Q1PqLjGuVK1tQWBDIJy+iID6I9V8wU08n+ztbGpaWdq8uRVjc3O5uZLkWmy8wjqUaYbo1w/1c7my+fv3zp/TMfTMWlrzC45BBQTbe2dRiqHFSGLeAIbdTSiBd7OmOmVC77xquv8frEE0/cc++9qWxmZe1aaYIDcBlTGRIiiVxAH/zUrH8N+gAsSAA/ec893/zK1xhcQAKfZ6O/gRWMYfSgtki++6raU0jg/N0Die7Sn8pGXep1msj9A4sLE9lsu9ngDLl8NsfSKNIGAJUFmOpphkG9CbZCrstHgR/qQEMADP/9kSEqJlTajucuzMX4yhoPgf4MXh1CEBiEB5E9wv4nEYLAIHng8U/hOEFkPE6KcGSP6eHhmGG/fw0/w19/kv476wDQvxrDZiveTWQ4I5HVE7FeKlY4MMtq6FoPgwvHa7Fgm0pCPGNUbzEDkIlmhhWOYYeftQkFezxzrPF0ZrPVyExMsuwa1UlL+9vdnbWNtWtrx2YWWtU6a4T6mF6krHDyTHliYZb1RQW090q7s77eqTdSbD3IsjBvAKh2pJkqT8wfPZgpFZIFzhbVhbTYg7PJfDaeblRb3LbRarQrlXp1m/NXnIOQpLRSqsBWhiBYOz2WX7CEsBxPsGlnLpMpxRKdRGK736VtOw866zNqYZWGWIb/9ADWcL3WnQ+8XvGjpWH8oan7HCkp/JOSGgdLqtkYX0yNs3EAVgp5R9LLJYCyksUKh2yQ80EyifXFDB3A1pSn9QHgRHegNaNZJKQ+KGtkomSHTHERFGhnezVco4NFYiKQoZSGAkKV/wx8sEHzxACDZtvvJvpMjMey9NX1JvpYfmrmgRMn17e3f+/f/pvPtT7/9HMf71cGleo2yy6VzVjECSF7D8wF9vYhD8om1UDmOM7jiXDQtNbpqjh6HXIw9OxEt9liCxaDvs2rS7lMJlaYZ8k+Z47SB/CU+c+czOhYINmeTsWDi/UBcEB1Z3Xrg/fal9bLnBE6OxuZKnQKqVgxydVgWQ4AbWBzSsJjvVjkjbffWl/fnJqf0hCDBQysDbU1NlQuw0PCJIu1W0w5sjIHkzoeVgExB3Dm/dNcJf+J55776MeeLhWKnPtPBKoOsgTO6xVOVIjqDwlrXvXs4g3yWDh4iC14zAFrMiSitTHsy+CYCjoYE5QUTWCs3nZBU5s4QvkkjhnnpMkinPpKLnZOJ7OpqXKJ3b+smGuLx6EzYy1+SDYCOwKuHATLX0c+vd3UgYCluWmE4IPHhI1lP6WRjkqjlkacAE7g8YTh17A/ABv2hCPs8Yez2OMPQ9jvD8PZ/zUcEqZD2B+O8xPz31kHAFqwOTYZVp1V4OJIBNH8wE99PPORh9GLxJNiFFpXL8Ltr7XGsN584xvP95c3uZAvowPVh63EoDOZScxP/+wnnk0fORSZ5Qx0w6HeqL/+1vs/eKly5gIbY2DHbmzYGnRmFqfv/9wnT372UyzSk1J0+uy5r39r+a13telFCzbY79kuLEw/9Lnnph9/JNIws1ShwOybhiEMaXWuRAqRx/Fhz3/rB2vffrkfmZBmLPmISICLbe43wo6BISseZqOxQ+nM4Xx+AtWj2Vxv1tiMQNHUVWgrmXokEQFulmFWPAlfO1fKYI7MBEsbsRKN87zanSayIuubFahta4QGQ5lr7dzuFgIP3n1aZGu01njU4nCGAwHIU0SjTvbSP6xQEhdKopbuzVN1gYwgkRZhmQugMy4hAHCCaSWwV8yvWqmleRsg2sFKI5EkWSxjESdvUmzmRaAi3fD26ipjr4XpycvXVl7+wfMcebZ49PBmdcczApoAUVJTacedWIDFh3gossZe0BTCa5II4zCvQjGSyKGcZ6Zn1y9f4wPj0Z2rS6liMVuYYh2r1S+TQZiMLGtGjMKEI6MZUugwWs7+54yH5KD1/ptvcYsjnSTLK1NTE5mD85V8YocZrWGMWxu3BjvwCRevMNY8/8EHkVYjNZxOM7DURbyMojSTlU6mWS6FER17EVXPAho+ZdJsQOT0oh4WFduSPGSx/+//+3/PnfJ/4S/8BTRraGuFVzU6FVTT5iRwVVR/E59AAWYOEqg82SxmJWboqQpsU5wzmi8UqEDQUKWLO1T9NvYBMiBNfAdgNQWiGifAeBURLy4k/fRUqVTIZ1LxHtuVIwPseLAvS8K4LZmhk/AZoaOacC8QsNDAb+Yxfh7jPIp7yx/x3bg5uD8cQlJenW3pVBXTMVcp9ya8ZT57P4aTh78RHn79cfuDsv+4M7o1fC0e9xjGP9eRIEwp/OaQDOwxZWK0lUuxgCK62Wj3p+YjhUkJVczftZ1INhFJZbqtVPLkfVgSPvL0Yy/8j/8s9WIl12zXO7XoZPren39u7mc/BdtFDhyJrO0MtmuxxYVIfiF/bOHxB06+8E//743zSzlpnNE0+7nuvefkFz4bySUiG02OeIw8ctfxIzPX/qv/bqIT2dpYP1Ca3KisHzpx1/Snn9xu1ScQ90vrOrmRPqWn2/+GrV5ycrrD2s9jM/PLR3rffRnTElsUMDylslxiUG92GgymWevcX9uYL5QfzE0ussOgsc3pRTI25LJXGWm3OpwejmrMGfxcRtvi8CG2QmBC4cguLEESN1oxhDRnUWE2xeH13SZrPZjkjicLiH60GHpEhLA4WG2JJm0NRwKVVx2JQbNVc4Uq/jtqpfRVpoGpXqA/ep+qSWnoZtzao/2tfGPhq+S4NXBFtTGK/xLOP0kcpCBwaK9mHVKHqkRKhkN48QGGALpUZ2WHnOBVvzIvEUX6Iu2f8yzZ84Ghju6oO5Gf2N7cnMplttbXvvO1r//Kr/1lel3Oc682mkWO4azVq806N2ShZiJS6ZBCwk35+rjHfAjrsKwhVz/zFWEN+QbM4dMDIMIQ4NRtrd+Lp0qFg8cq1ffyzcbhRHzp1JuNyUx08WAxXuhUsTbG85ki+9TYCNKJdZmr0jKFTgPzdq7X37xw8cx772PfSWcy6YXpxOxsa3qyjZmrn2SNWW/I1ocmezeSxczW9iayMFrfPjk/V6L/ozdAJrFsAT4YDhlUIevREcCWORhJTDltP1PdsdRN80WxQWfA5WSvvfQya5wfffyxjz71lFYlt5qlUon+g1kTBgrVOgdtJTjcv1aDajWkMGY3rcSFOj0dgztRLDF0aPXb9CvXVleL05OssiYvSEr/DfU0oS+prOYl9kJdY24X/mPkx0QKE3Xs8qW7Ggwwl7JmuddssqFhbmGOSz1JFGHyRvJ9AD701hyZp4kfiVzYwEpFKaUEsMQagPwT82jMamXWMEVODO4M7yoGSKnPIq6+wluWymS6cCeu4I8c7QR68sLtNzqRrq0NNOpNjSc9Jk8AeYKwnxAPJxDHKwVXnhbZA/GDTuAPkgRxCPG0HsJrOITAIJxodPZ8HYWMS0G4CG4OIgXxFdMCBcJQ4ul5eeT9T4+2P/xOQwI4QXYecscjAM3hIhsx/WpQr9UZLW7gSOneiRjnq7Qa3O7SiUUbidgESwaZti0k2TPTYytvPruTiOWPzc49+0gkN4ikS1dfevGFb7/4/tkLuYXZJz721Cee+WTk3rsf/qlnnl/5/cpmtZAvslpnZnqatUFcBvjSH33p5e9979N/7ucfePrpZ3/tl7/8P/zP3MjHzXxzE5NacZhk98pw9f0z66++m6QtJgYXu9uLxw6mO9F77n8gNbfQYbzC/rJUsrHTSk5NIwkaO9uDaKOc07kqkc2Nk1Plu+Lphchwst1kWTgM1kXFwmyO+Vj8qr2gyCfEOpMJTFZkcxnUSpOrjFXoFrW7it1Y1Z112g+CE1O7pCutCFKxFoi4u0y+W30aBNzceSXx9GpjXKxuZOzUzuxNIh1hQ66wIkzG5Ii0e7GmSftxgtv4lclFyic5Xtcs1dota9oxHsoCKZDG6UyKExHIid6DQymWL1/67je/9fFPf6paqbfYWGS6GzIOWcYeMXa6+i2Gt4GIosBi4EKJ0C7ofagLL65JoZRWEPM9l48UcqwQ42bFcnRw9fK5QiaZndKmO51ZB2OwII3JUgZyrXouOSxjelnbuHbmbHdpbRahkswmyuXk/HxidnqYz/fYZY65R+KUCkRStBrdJmL3ytUVFgig7LOMmNoFExNcknx4JN1ADRKAoSpg9Ae2yBrmsKAdvFfI5TGpnzt3bm1zg9VBDz/2kQMHFrZ2tplRYzqBymWpLtutO5UKvMRZEdATtqXG2ZRXa+8wLO5F2VfAEYgccVTCzrm6cm1iZp46F5V0cLKJZGqHMSi2WIYjHM8F48FkOh1WMxNskqa/Iy4LftirM5HPzU1NYvrnUCO+qyhWHOrXCiVZSTMAMB6NPORMV7CaUCVJjYDx6JXlYFV7XifXlCaIb9Fu52F5CQ7uduJ7vnti7klrwEYAhZUQ3n3uT+tfPTzwh2HivwWEAP4eyH96Xu+4AzCrBWqHTslC3PDHABQxk0wmrp5+79rrr9Za1c3E4MhDjzz2WD4RTUZq3eh6lVUSm/HBSin+0Mceitx9NFKpotG/8FtffP/ND7qR2Mry1jeX1hcyUyee+Vju4x+b+P7zVzY3ywnOau9PS5lnx2T/6qWL0UZn452zkSc/FjlxsPTkfd13LrJAu9eqFeMpDv6pv/fW+tdfzDEk6fQ2OjuD6fQDTzx1/gdvvP76F/MHDi8cvztV5y6p6iCdrQ3qxXh8Ip/SacA7tXykNx3LP5CfWRhGZtjtieWDo1Y4KjjRayW6aEucuiIJbIowlS0WZ6aRu8x0vlxMOxiQmWybajTZXdqsNWU0loVXmrktrlRTwl4kBfuWzjmJKIEnHF0ZG7cZ/9HixHkeAmC1fg01XLXRPKekkdxug6QZ4/TNTKuCY36FCgJ9OzCJJKiEBPD12WLyAWdxJRoYVTAS0N2H3Pne6XIP7kZ153vf+s599903f/CI1pVzW5xGRr3VlRXiHzhwYGdnC2DXdUuGlbK4kcPmY7i4vB3H0KluCRbUQ1lO2omWJ3qVnXa7k40nslc3UrEraCWp0lQ9kd7qbze5RiLOgv54KRkrdDr95ZXm2YuDqyvFWhvs03cdYB9Zam52WMo3dHSzbGsM66g7cR7df6fPxuaNK8tcuFNgqMjSqDEW0Acn7rAawx9QO/CjutKZoB5pEYJ6Fe61bNevXfvGN76RyKQPHz6IPp7JsfyY6foWHQCcQxzE8ebKGonKLHCLxblxnhVHmN2IAxk3tjdUW/0+V1G2Pe8QSo4DNjyN+Uzzxo8txcnI2RIYJrmOht6Na3wWp6e5V0crWXFmIFKRKI4Jdh7qE2AqcfionPwGxXSxriRKYer/Pklvn8b43cmvQQXsWPMI8eqtwXiOQb7GsaMU0BnHp7EJ7jpIhAeRPfme1+ti73sJctzvIe4o8Jbcvg/kjz3gh+kAzKDKdkczq1I76BgYBtud6rXljTPnKpXNrWzsxIl7ZDyg+irN6pWVxUJ+ZXstet/szLNPRLTjPHH5Oy8snzo3nSmVFhY2B933Ll5+7eXXTjz8YGS2dPyJBzfPX2LRA8p2Z3MnjxEmlqjvVD72+BNbSyuRM+cjDxx55pe/8L21f8VeUPaz0kgwWlTOX21cvHasPB8tJabyUweefThSntg5c3lY61RWWzVOL8NsisuwlpUlSl0MPLFWm1WnBycK983MzvT6Eyx70BrWaDc+7GFjiA9b6EkddpvptAq1ChsewxO0Jm0u07JLTgxDBGjEx4WQbIFmuMpCP5baMFKmSaAs6bRU4HFEJSq5tbH9tRpwzC6jWKRwOPnq1Z4BXzooJDuiyr7uhQ3O1vIVTgRP6B49x83VQ9TEKZ0a86jhEe4Q3UNyHGG8IhH4pGMDMP1Foyz/L+Xjk4WJqysrL333hSeficwuHsAoUatss7p3cW6eEcHKyooddekg9QTz6zqD3S8388m+bYNPUYNhdjKdSZTKLLZnrW0xGp8fRutXVmqdQfnuWHp6mmsjIfsUljh2m9fq3asrlbMX+isbhW6EYxW6qNaLBxqT+X4mDVM2tOWPcQydiy5CoX/jKPJ0IrF+5eq1c+c5g5QFDlqUatQRBYwO5sErsWI0DlGMlZSsLLAzOLlHDIqxI4DBEJ0aO+aef/75Rx55CHoi9LVPmzE0J2RxxPS1FfZhHTpwkGM8UPM5YuPE8eNo66ffe//9995jUDU9OQWXbtfrLEQaJm1Z87iahJtZVUxeCxNMqYg8pLiIDa05zq5RJTlbneemp+ldWC1Ni/ZaUFk0ptFyMoGSykCHqOoWr6A3iPh4jQGkPyiyPfVDTI/sT+JbwA/5EFzjWPC/U1Ce1jPGf5sYeC4eP8jRX3l6SBAOzP2Qg5DAc6c43CaqP6pod9oBYMmQToBs04SXmoCkH6Y2hoD5wXByEOGwklwmdRezu9kU5zFGOLFLI+BoKzY88eSjkYOzg+1KLJF/8fmXE6lcYmLy4sYmp/9jMl7b2Iy0mbyNTDz98MxXv59abbBSpbW5hfUTE8Di3Bw3JHGg7ovf/u5Tj/6VyMljH/35z1158bXB6ir5RVhWMYyV0zmUzdagu3j/iQgbeba3GpXa/ZMHO914rdG/xsRFqzHM9LII7XZnZ3NjOh4/sXjw7rmp2VgsV6lkOBdYNxBg/WRmmJGvLA/IBLUdjD9sb1PRNRamKaEVMqdIu6UvwbiK1pZN66hK7Ko0H6oHlV+qHHyjHQn0KUoKJNoTk8lEUDPCKUzOOSbgm/Ar1PNXPBK6AHGethYIcQlxvkScmkwXTISvhL9aqL4CYQTn+lYZQBZcQ8MGEeEmZ3kKHAAl88ZCQQMOrCsINegAHMZAzJLMlCY+eOfds2fO3PfQgw8+8vDioYN0qhweinGlyN4iOxxJgsUcRPASjd/1K+qYgzZB70UAaujoIzkb4WTyTsawrcSBXKtwTGERPFvt5uZWt3QtnU+heZBXotWKblc2z5yrXV7mmnYW+3OlxHBmInv38cj0RD+drMciHHKOGgz9qDzPFDt/ju48En3lzVPb19byiG0t9Bcl3e0qwuBm3SGVDYGMRKMioO8zdwuYDltaGAZoub3Op2IdLbYgrGIzc7PEASDdAJPG2HnmJqdRULlskn51ZmIKheqrP3jhhR88f+H8eWaSiXPsyBFww97ItMFOU8ttcUBwD0+ZqYzEjGSk/TMSZfc9e276HEJXLxeys1PTk8UySHPXDCOUfJZJO1vuKdT5UzEMjkyOYmFexD/SFzD/aXLD8lMPQaj8FiKvEvLizKZQAsfVTXThtYupIt/MgTAOOLibxdkfToYEBk8gBHGEjOM3bi+8Ajx4eswgO4/sr+Gnw/evwROPuyA79xC4J+RP1euddgAjyooPYAIUCxZ4yvrHnECMcWyq2elW2fQUL3CkIiv+o9HalSuYPtk0xB79ow/ej6SWFlFr1Zn7jScrrdZmrTqRL5fi2Y1L1zhsnuabmJ+amZ/dWjrNuoTOkOXqPYTy8buPXHvrzKPHTl7d2TjznR+ceOqx1HNPzbUbp7+9uphhvZ3Oa2O9C/p2rdu8dOnSgWNT0Q47PBNMz3EMEEevnOlWahwVgBGgW093B4uz80enJxdKBbqu7UYVLmUpCBN2nBHJkblMgKaYzOZ8UcrIvTXMA6gzkDmDS8wSw5j2OmGRxw7N8ARtX2eMSWhi91AnieUUG4K2WiE1NXmLGGaSTiKMCQPG07tSbpcfAl4JPAEPATkIdF7kEyEWbl5JZ7XL4Osu3HHMPdAcZhB/DO06fvU4JBx7Rg3GQWGfoUw6Y6jdRcZh/mpGmhPl6Z1aNZfLf/dr3/j2N7757Cef++gzH5s9MAeHXFtbDZ8R5HLB87tFE0c5DboBsrNUWoJJ/8oBapwAxNR8amIS+x6ngPSrjXwyxWn+lStX2fRRWpzvt3rr3BywyerUerLZYr48ms8mpyciBw9GDszVubKRKU3MAmjKWPR0m5x6bFRjjqfinuu1K0uXz5xhpMNGFln0JBzloABPevuAqgpRmBC0CCoTbIkfoY/jFX5iZIFfC8PMEWFjaxOysJ6HiYHa9g7xOSuCPQSXL1784tf+/SsvvnT18pVyqZTPZCfmFpgjwECE2U1rYyRNPS9+NARRbz8e1VFlYknW6rBEmyUMcEdiyD7KuZnJcqHQ67ZY6srRXpQbyxJE1mSB+mOp/3h4gC/MKz3PSioe8EJat628ZP8lnmsZnmRvTZIWR1qS3r4jPuTxhBDNYIxI/aFAiEwcf4Y94YSOj0pkuAXPII6HBK9BfA9x4GAIRfC7CyIHHsL3+u+QDkHyH5PnTjsAGjxF0oID1acUMG33UgNt1FgUkkukYmxZQbmYKNOMmIS6trNR7zQyVCeKfKnEUWTxRE7raqKxHRY/RCNzE1OlIRN47UuXr/W36xy0Huk1548fYka3Fut1uIpjyMRyRNu+Go2Fxclcf/idb71QmpmaOxmrTKWbE5mt5CCfGKYnS/VeeyaRnCyWLl66erT3KOf7yv7CVQWx6Hpl+72NS/mpcqLZT/Y6NACMEly1tFzbbtW2mQKb6vUX47HFSIRlHuydZc0BexZYJ4HgR69EM0T6ax0MU5+wPJvmmQPQSXMcasdcAJuerZG3uI2KU6iRMTQ9qCTBr0Pok1E6DBku6KmkvdowINQH3IBRrMI9/Ho2RXcFiKQMDTxgC2oCvylnHF3nXuO+QP8i0Hjd4umgfwGnGgVIkoseixAlNSe/xxm/2i9x+NUnnLo3jNrIElRs9XNcqM6L+t1evbk4Pcv9MN/9xrdOnXr783/2F57+xLOxtd32YNB2H/4hyJ0P8JRGHOEUwQjAmjcHl/WbPa7NLdEDTE03d3baHACFKsKGRIRjtV67uNRZ2+6327X1rWSzPVUosNe8hv46N5W453htdqrCFg2uNbJa0uoWBKQcEk+URDXuNlqvPP9ifbuiNTNWcEkly514qgE5vYOwBGLgsZJI5Ca5axiqyBGHywfgmByG+F4P0c8RbHRjOKBoQiUWQ4M6fPAgF+38we/+3gvf/wFdAhbO++69lzOo0f2rOzs8SUhgPRbH6sVkiEhllerUNMRM7ffapZJR0gaMc2iZibmpIkKfWw2YCOCcV7ZSgAnna3EWBslVND2crwRVMhiKUGqViP8wAC8QAbgUlwKr7DjzK4YxkfGJ5h0MpIhjfovuScYJR8kdSPgpgCiZplfhCX/6UL8lVRKrHkXH49Aoy816FOJ4OwoSBvk6HH964CgLimGOJB7ucQI4ynv8yf1/qp532gHILKiTpFA3EEJMNOnyNlN445zYwCW/g3aDTSTcnZHQ/dOwWnSIgvPI9OLy1S2mpeIcYahlmmkubWdWNIcobfW7q2szU1NVJpLb3Xh70N5aTR+bb5aT3epOrJWMtKuRQnHhyME3/vDrS9EzWEVjmW7t2voch7I/+kh3eXmzsjnXqs8cWLjE8dG15uHygUar+sELrz34xGMHFhbr6zT5THl2urZ6Zm1rm5uj5qfnWfq2urp+tlVDvHOORaLfyWEeymbTuSKPDC2xz3nJDNjZwpa2xQ/GwdKwkHMMrFk5UuZ0AiMH3SBkkLql8QYHVMBfOmdTrYfeDIZA2mopn8Y+pszIvqQ54V1xeyOmcH5y7nGu2h8Lg4eBUbNUTGuNNBb4D8EkpEJtYH/yG4aE+Xh/BPuqDsA/aShjTYutdjNTJc71a9TVGXCTLqr0wsxsLJN66/Sp3/03/5Z1U8dPnGhwiI2lhBYSCSMw+/PZGwLfUVRJEnecDRdn03KUA04HWVbYFCP5Qnu7Us7mWMPIYfKFfKHa722trNGLsGc4VShyBD+Wn/TCXPquo/3pyY1kvBmJlVhTw/5GadNsEpeMlpBjuy9XmiKOG/W3X39tgnUzmWyPiVPGbtT2WFn2glAECUqjPMmDWnM0UdXZIYDIhkXoJnlNkmNKZywTc319HQ+rpJDCLP1ERh85dOjse6f/8A//8I033mCGYmF2jlQrS8vaVmb6Jr0FmyztmiWOdM002JBhAls4SPoaSXlqfK7RpxbNykYZy2fSJeZCkgnWhPIlB5v3+zuVLdQXOlBtTLbkEutWolHpdOWYS3zVNJ9QgWwnvHpjXonmRbb4sBt/ntQJ8Cd6OmQKoXL8UC5IaDAk3wPpH3wKA/ZAz5dwXgMc/JXnqLz8eH9mnZMHhkEF/lt8CuL8f8tjHDIuktMIVMA4KDn0wu8dGkK+xdHx9AAJTrPi1j/WunD/H6dvZuCFjY2tKDZgdqakuXMrulGvs1y81mhwFHm9Xj2wOM9h8xHuJ6k3I9m8Nmh1BvlGf7LePxLPJda2U21OiMBmklhZXY7cPbuWZ9nfYJLjhXYqERYPlnP1RH+pU4lN5j//Cz93/MGHa6fORa5sHD18BGNNG7Gby8KaWrax3VwcpEvbnXNf+x6LPCempiL59Bun30Xocv9GPpdr1pmNXN+oNNqxVDebY3ndOmcK5XLnO51ztWq/WEaTbHf6HLbOyQOUjpXQTAvyQNpyrhelhjE434GBPOqYU0Yy3whFS25j6zVrLyGsEcL+w+iFlXZphgz0jSxMlrauP2TOzSremYane4JoCBr9qdNVNYUdcbwG1TfzN+bL3TjWth0Uw3w1YHPgwS/UU1nUpvWnbMxZk5YpwP6UAyEsD0dkWEEx/mTKpUnkl6+sQEzYqAgI7ITr1neqx48cZYzwb/7Vv8aczU5lCII5nOEjoCSkdNHCiA7kvMf5KqAg3LsNeg7ICA5kbYZETvBIpSYmWMXP1thuIlvvR7brbIFLlA8enL/3ZOne44Oj861D0/0ji6njR6Ozc/VBvNOOphOc+oFE5dCQNMdNy8SvGXtN4fDkYDvmaTXZQ4G5T7TfrTALxSDQNHrKjgeK8cRPHHns9EpKhDJE6aCf6GXnQcEtBGIoc6oyM4z+zl3BvPoB3TYQiFV3Kv/yX/w/z505e2jxAEOQdqPJKJbNw2QEWBzQiEl2PMmR5PhxeFR/Yi2xAZxJdtgvWSrNUnqO6Z6emJRh1joGuIf6YyyqNWy6VUZwBEELndXYceCOusMqemoJ/mcg63FMA0oag6mAcpzIaAypZGQw4iDxNx9l9tJBYcJT9agS7K1m/+qY88QRglWAMmr6xLbT04l68fck97Sel0BLE5PDA5wRDgaTh30fRfCvQQTg4CcwQMZDeOLABJh4oBXRAucAg6cnJxqewDkm/kpC/+qB4U9B/LAngLzHE44T9gP8hi4cJ+y/0xFALJsvIAq5xZRD03TAcCxZzuR0Sg6a10Ab37nclIMTI5ksTMpWyUIxF52dOZQtnb12aeX1t+an8tHJ6Ui9OX/44JXWpVq1Vqm2p4pznK4+c2AGe1Ckvtra2G7c3Tv61CPDL7/BEsvu1k5iYwu95cT9J6cypUX2nZWK/XdOX3zptZ3qV4qHpw5/5F7OA4jEs499/GOr33u9QUtLJ9mLxfHtVd0jG+/nMvOTB490qm+8fiqSm2DTJpUsIYkyxVFf8CtaGdaAeL8W4/x3DvZKprh7yjQqWEYMPRoUizlwMElARL2b5dQ0Hx0RQHT4CEZBTpGOcTC8g+hHgWXpEVeCmH6mZwDkdjzKZyxTgvhCxgYBNDMkNDwKz1sTU1z+w26wLR5PYsgGqeUxsKMQb7pSzPcksXwt0h6cdQgBxmjBYTEA16xr0awcB15iZEZ4dXqtTDKXT2W2Nza/9kd//Jd+7deWVq5xWBBTAhxVjWihIlgYQyN3JCQj9mTiGRuR5ZVc0jFtGmCRu1apa9JmmM0lp2eubV0qcE9FvpQrFhLlQoL54VyKw6byDFlbLax5g+Ikq+6HXcxEbDRCp2VNWB+7I9eEoSZzAInO2dHhfNErVy9fOHuG2wJY4dZo1Fn0xmy2CRYRU/Q1TFUFY0EDtfELJbVzkdGqZRRfUknpJRIRKHQtPOn8kNTEJ4i03//Od7c2Nwln0SeVx8YDyKvOgzSktbEdULxCVb+jiiXpdQ6YmP7ZgkAnkNM1Yxp0gJBXroaNQlUWfJ5e78bGktEycqkUI4D2plc8xCcdUl4J+SeQFlPWxHECS+dkGYG48x9PDkyc+3lCJQ3QbumC+HhuGDEIxxP4ien+IITscA7B/eQe9JThT8Tx1/Dzhln/KQy80w5Ay9rU3qNxFn0jQpO9yGQyG2Gx5PrWoNXJ5KU3s+NQpwBlOLYzvTgzd7rzaq2zvXP12rWvfusjydj8x59jMiB3ZOb0W6+mysVsMffG+lIsG//sFz4eKSYja63BWoXu9rHPf/bUO1fZEVlaWc/eeyKxVX/u2Y9F5uYi5anImcvnX3i1/cHl6vpKY61017EjyfIkB/vmThxuvn/6zKVVHTk9lcuW89FSfn5mIRnLN1kf0h+cXWu8uDVspbHJJ+BlZDFmfdgdFmOfF5YAtH0sFJzzxUQgVhxEBHuJEepoPWonOGnWMBZ/Yg5agmT8mJFgORaAwifEU8tgO6mmFmm5RO/TfJkbkApJwyOdFlBYq8I75nJghv3OMc5Yo/BRK1bD5wYcehQ1RENGPxLcCHyTyPIIV1WX/XlPoCB7tdLoxVqKHZJp+XkE0gBaGArquAtRoOVoEPWQ9OWrrNg+7kGNZEaV85BpLTEMhJzq1BswMdNq1N5/650v/d7v/8Kf+6XN7S0iHD12bHl9tVZvouVZzrf7QH5pgl37nOhfE9iGuBlomM2nFxdbnJCJxSVf4IKKOOcgsTGbRb0sU07H+nnmjyJNrI5a7pUo6pY4TgZEn1dXzc0/LGdtSePlOnKOAcy+8eJLK9eusU4M6wjrvWJsAtCqByEpskCGsdzHI8VQtBGTMJZCRotMFodn4EQxc7SjiQlOXctCNEYDaLusJENtf/H5F7ioMl8uo7bDmupxWGPHKjLrHpS3cd2Ycbw6PPi6J9p/mz0s3T4LmTjep5Bhgz7dEpZIsZ3ENyxH3akboyx6t5I5zuQ5cvRjKuzYURC6NmNuFV/ahX3Sbg0rrN6NCMYa+ubhdHryeGxLQnaWTSjIwv2BtCVfSu3kIi1OgXbabijiyEs0IviLJwnihMODCLRJz4IQ4vP0aO4PogVpiRw4/+oJgwjuCZ5hOEH8n4DnTvO94w6Aq+woZCLNSh92X9ZTA+bVihEs+6VogX2w8FycsxRLkUyuwB6urUppaobTkDfrnTKnVm3Xz3znhalsMfmpn/7Ez//sy2ffe/W991lqPVtMP/Psk49/+unI9lrk7TPrr5+eevDuuc99+oFPPX3+7XfrW1tTV5ar754rnbibKw0jtUr77Xc3zpwtDZLHZuY2GvVLL7/9wF13a9Xp4dL9v/pnIytbkU4jgkhhJ3GnHzl0V+TMtc03T3GCVqHPXG6rxc5cqt+4Hus9qwRZ7qmpWZZIdzlBYshWHAwVHPnILSqmHolR4XrkhaLxxySIuE3L/E1QqjmZckJD0IiZVoWNnwkAmg98w6mGSFVCOYKCE5EQEGp1zv8hpiCpM1DgCX1UjhZOQjz6QoiWJdKKlfdA99nSIvVU48GPULfritW0eSOue/iq9BboMfc8r/80iuk/ejo08wCIAiLCMJJgAKFolAtp0GnUgZmOcapCtNlolNOJ6WKZ6eJvf/3riLbP//zP0W2uXF0qTZSZM5A5CJgG8OaPkYzS1JPOCcBao/kojl5A/LbZ6co9oRPlck4bUKjTDstXrLvFmk81DOjIdT8pc/gcTt5NRXTGDTlCKaoGbkAcau1/t81nXSY86H3w/rtpTvTmLKBEAnuSBDtI2oQPzINkxIsHi54q1ApAYXGgJ2qrarCNUNfqHnB61+SZzCXYf07ef59b/7GskgRhV60whK6yIIiTROsdjtoaWTCQVgCEzmCspzk86nQsL3LzHHkNHBFguRwX6eWw/GPoUbfElmAT0FLblUjbMEBwRAflMk5vAHkxRlKZXP1XBM0BkK9BCIYgIGVTgyKSYpsbAxm9Ks44HD803O1qRlFGPyQkAgXHeZGFm663vFkKawmjNnJdp3U9YKsVQwP47sIRAoTdE7wSB3/41dNqLZbqWs6+75bdA39MT3K/IeQAmRt+3R94xx0ATZ0zZbAAYyZnSWUxk8WeE6nUI+9/0FxZZX09Zvh+tRpZWYvMHI7kS/0z34nZ6J6lx8V4/+Kla6996esPtXu5P/Mzf/Nv/Sd//ML3Wblx/+Lhex94QIcIXdzefuUU8rr62gdzDzwY+dxP3XX8wNp77+288vrmq++3T13oLZQ4ma16+kqCG2C5nZhLWnv9jffO1196m3Mc81MTnB0RmSxHdjawEUSYKqs16YZ6la3LFy+l44V4s93rc4gJa+JQ6uFonRWHS0gcYAfQKlK0MKta2E0LDbUuXFzKn1ctHtmICWF6DBiIALEkAliqFTPcHGOErDfbNQYFvmIj4YmzwYCtKyJA7CKDgMGS30S2Py3susduvZKR8iYd0kAoIWEQpo4e73w1SS9wskOQBQ3T4FurRanUq2FLnN1cCJHWqq8igH3QZ4Xp1fzW3AkRz5vyB4nIBgSQkiClDoDFMwqS4GAoRIROq9nYqRKBvRoHZ+a/941vvfbyK3/1P/oPD99919UrV6bnFyAHMwqjPHYxCnwQWLgHTjRArmKujmCcRqxzhg3pdaDbIJeQeOJIG772JS2IAy9wPHhCdqMY15FSQNJzWYTMVeSqWRqpANjFAYoliMulL549d+7MB3dNzLW3q5hQOFaiyyQAYxosimYwJ6kkuWgph7ACiKbERXA5BTG94X3bKI6Fi6QycB85coSF/NuVHQARk9JpHKDrU3WFHCG0NQYKICnaWv8hwoOwyk8hxVe4gCxjv2jFTBMQUP8ZZDC4gUuoa4oGOCCQxv94UW2K9CCPw2dA9StHLvqRHRFngwaT/moRfPFo8LhH4zlOKGQ86SiOiKxAZ1FjSkIE/EYOCohYFkEZm/PkN4o+CiOWR94TJ0jocHgSwf3743tkBxXACSf0tP7J++Ag2v/Pee6sA1CNJzjluE3b4hjOSY4A6vW2f/BSMxE99/YpdlrOcWhatL9y/lz0y3984PADicVD7337+SLCIRvdblXT6eRkMr1zefnNP/zawvLqsZ/+qc9/4qe52zSyscPRobVXT6PmNy9dmU4XI5c31n/3KzMf/yjTCMOdxuVTp4era+vs5rrC0b/xyA43gU/sNOt9boru9iYzhRf/4CvDUjY7P4XpZqpQ2tleZ9AOM1TrDTYZ1FfqtY3aRLbXrbHb36SJWw+wHSAezIiOCOOPqUUmLukc4HeUNwwsEg5wNX+0IGNoM3cgxtUOeIqTrUGKqXRnAOKBMQBLhLQClH0DGgzQziQOsHszuEBcSn0MmorzU5hHAz+fAj8QaGZicAKN0byF8USKgfOuGzE3qCseKfgU9lhqCzf9TkWwOMBhzBDEDCf0PIFDIM4h8IRo8EA04x2AMKTP7NB3om5zx1abQwETbG5Cx+ekMdnGYl2sglw6+w//L//dx577+C/88p/D2M0cPuq5ZLFIitAxJEZ5UEcSLxCZT0gPw8932NGl8uamDHodbHicAKvteshQ1t7qJBL1XhQfumHyAzmU4oTqFelJLxXnAjlQpeL5zn/uPEj2mMSJDN56+w1uF5os5He2qmgI2RjHA7I3XKuDIJVTAIQ1lgNbNHRD2U1hVg5hz3BMZ2eZoyPEEdMshEPsP1wOTAgfXdz7EAGkONOCtEh/PmEgsiQDTSOZI2v3BK8qjP7AZJQznxiMcSRJLpvB+k8dQX/hqnWuEInIiGxpB7x5iLOKcFYGQj5wCtEox36M2dRbWo2IAjgwsIQ8+RT4HYK+E26c4yG38ww6AMEPFflD05LR/jhACAKJAEmhdhAS9vAVR4hn6gn9qVo2x1fihP1BfAfl8d3/E3468vszvRlKd9YBUO/M6jGtl84mo81eLpFp9DtnuA+k25niTK52C4nHqcmIuaVT7y29fineGswMtN++lunvNBpox5OTkxO1TnOztfnlF7a+/fbc8aOZYo5t8Vz23travPjeB1P5SRba9K+hs1+tvn4mmo0h6DlfnlOZBzmJVZponYWWiWgZhWaQaCaGbJDZubYVa3O2G/NlrWp0JcllYl224MfRDDvxZiqRX2RnMhuGOF5R1xQMUKiQCYzJ4XW1ewiGLo5gZnzRY4F/gn3/yJJ0Dt42RlGbCPEQJh2mEcecZsQVQ9AeJNolqTVehl8kuoxdaDH0XMwBdCXAJMvUceyCtMBxI7lhLQKf6OFMRw3P2iByBhBheIosqCNH6v1gw4HuD0LMM048bt7BO19lNZDTYRfS+JHFVD8Fh6S+GIbrIjgpM8aprrosFzErCcjCzQ7zQ5kH77v/9Vdfe+vdU3/uL/zqQ489ykkJAA8IAgFHg6Mgy7BHlhTJXQo8asmabJE0Y3wqpJTapm1M9MG3xNYdWth/kshkJn2pYJTkONeeMCzQfm/O/uAG01ScfVbVnSrrcNiPyIpSbqJmTEFeTAoxy201a1koF3koEbnxAb+mj82BLBQKqoNP7iwcadrnuCRGACzx9D6AcGQ9k+G8YrDCudzHQ0/AyADaeW2CQOBxaCbcwlVNMJEGTMfR9QJQ0EyJkblKbK/PEvPqyXjhqbpUALDGkOQ3QMRhFMKrHALeKkaCXjFHRfSPih6UWS/XAdQruVgoD+U4yoK3vU5ZmQsg8yYeuw1HTGI5hMCzJ6/wa9jv8fc8eXXnkN1PKlw4L38NAseJfiy/YUzCGZB7+PVD/XfYAQiexvupRJr9Pj3Wy7BArNfjMNlER5aTJKZZFCVOU++1uIyFWxWLXItarzAHyy4U1upg+sx2oykuc4+k66s7jdbZa3XuSuWm02p6GHng0F11zlPjuu1GZyqWbly4pkPZkgO2rjDyQOi3OLttMk3bpUmk+1HuLYoVchurGwenZ9kZv7aztTA1tbO9OZErDHvNVCzFqKDF+pBMphNPr21Vu5EepxjLEIA+Q1Gkt6EUSWKBPB1XKx6V9oVXMg1ZTSNGrqhVq+jSTWkqakzOx2o+vMh4QrNgjIBkkSM+op+1UQDHaoCZghYkgzwqooYwxvqSSlIAiQxf31ghMWihByteADxqBo4VKAIEAcRKI+4GASO1dv1EKYUs5DhFGXGGMe3I75A1GjGQFNXLRezRJ4/Nm7JRk+cpVRIfHispItj1NZJ4QkLADVs2/SlbjnrsguCkpDQ346ZZjF/I5xF8lbX1Y/OL6ztbX/viF1G/737gPjCmdFQJSICOoQKvQVUjqnAz2cNH/MpJtQBhCUAy2PYUDrKmKCSAR3SBmwkN4ZrLF9udOj0TNUAqMGQEEE1ir1OlMF9DHyDujUZgqu31jZ3V1fsOHauvbU9n8+1KXQow54Sy3NMUc0G0okokgYjtDyAtaIsmwkrVBMYa/Nkreai+tIxQp4UwAT49PclkOOYdIOlbv889AZwbwdIdOk4C6RIIJgLkAlsNJ2RVY9xK36YN+MpF7CdDtCrZ6mxEvQFTYAzD1G1ogKrpeHLgFj62zYs/IQ3Y8BFkDIgCDYAe7oePSGnEpM6tABAUeKKhczpRYTfB81TeLTicMEAPcfqovI4DT/tAOOB44jwkAKgQA04qHK+a+TGiqmRK50+xhXhfGptYADyVUNwh2uNRYsVW7io8RLPasWDLhWZrFcZX6i94kpvSWCpVvH01Xc86Tm8joScx95fdc/nT9pT0Ewdb8exhXkKM1o5uuDBsH2dhZb3SninOVNv1ErevDFpoRxg7STmMJVEH2aHPtNagvhnNZFcb9ZmF+a31lUFzyOGFVy5eYcVOh/2+3XZmMs+NE8kMh6oPZmZmVpeWWRIBn3VbTXQX1tnH0qlOu1HIFZEwUtuisQY3tBQS2UGKxTrpXD6Zzdc5kZjep99nPSlnmnM8D4p/jb3HmST3irEAkFaCuO/0W5mJbGt7rcoFj/kyS1M4fCvKSfDxBJd9UCK6LMbMrUJmK8YSxmK8UaGVkSsmg1Qmzz56GA1Tan/QtnZNWZE04mf4QV2E+gBYqp9iQgEe1M4iO2CLNUDGttocS1CjncimWZ6RyeZY5AEra37YtHdXHcVpxu4sTocX1fZM/AFDYBAp4jOYUzVjdSdbN23UJhLhaFWn4QTBJM+Z1NCBFF6d9pmHlFbpsvQ/FMEgWyekVgL2BFnFgwy/8DtwbdpcofJzYsJI+jPLzkxMslqvsFSRrp8FtELTjsFgshf49NxAZYKWERNbTmPcit5pYt3IcONyvXU4V2Kr97f+4Isn7747WcpV29x1zj0DupCL1QFor1jq1RCFiUk9dRLg6O3cymNiQzGcUHYfJCMEUkjwCV+5RktzqhQdUc6vHZOv0R2sleAEk25bekEyzhUrJ48d/xf/5H8+ODnTrdQZbjY6bUQ/0RhAsFpJp/YghEV7k3x4YHwOnh6JCHoVIihfrzj0DUhUr1VYF4s0JqNMPleaKH70Yx9d39xAu4dd6RHYl4ug5/hUtje+9errLNunUyWcTrTZbHOhNKatlqYDTP2S4UgUEQNGuzCiDz3JWUWEURkLdQcTmXwxyYi3o14RZmY3MJIQg5OqmHVou06UoX/x3pL6pmwm7lllRSmALx3IeI8MxDjj1VDAESxxF9la3hZNnCtiK9D7B3pKtQ9RhV/nXI3aaHtsF+EDcV3I8lWuz/mJdI3yUky9Y9ujGxPxTTiboKeBigwWTYKZTEGfXIS/cscwSGIBV/nkhAMRmamjGGJ3pQqe+jp+J/0e/54QIgJQKIKfqUEkFwSmB21rC54RMJFUL04oUnk4YcTH7wM1xbEkQtScfyXCHkc0vgeBgT/wOByP4JGDTwQG/g8fAYQBkZKKROnn6ke4VcVE4e93mjv1WdbXx1HcEUdxzpZS0+3X281qLxnbbNaOHz02ubi4uXRtcXFx9doaO19ymRxHpOS5MKTJIS5VcuFMsVanwwZ+ZsZoC9vbdexFxWSi3WwTAYx5XZyZbzaaWe6tHQzOXrgwPT/XhbUx6UQShVKBPS8ZluGbeGJ+Fq4FX1mL4VEkHndxS3egBGzFZMV3YsjVZnCdZDV7lJkVZFsXZ8voiLek1u/IaIwaqQYDCHGLKlBa0ZhXaRtSGj0CucCJQLP8SM4HIHBwEKyrywVEdlU2Qon+RrUA61qAAyaAtETyJx4lMugKNA5W8n1ubIpVO1S24gz7U8HJQtJdgCUQla3KFsrI4JHRGJVxjp4PkmKM9ygGTYo84GbyxWxi3QZQR+13lMoGASqgf5AsEGKyxLPKRonV69L6Ld8uFwkcfvAeCj46ihkuowdmBhXMSTpyCBFzoK/fXYQ9mKdFlvQ3tz+C16KkEg786WywiSCU+5yHwIapbPaFH7y4ubRyfGGRFWDSn+kyWE+g1TwmOaxGHDpPSTXoSvuX4HDiixQwGY4IzE7ns9nYzAxLpIjJGIh7Qg8cOoQRDGazqqbQojCO+FMz0+j4gsSEBUs/TZpQBQTCh1JYRUP6HggKgZB2SHcAGAtarYASNc6pohw/q8WyKgLRvWfSDITmzlVpkEA5ki+QqSf8OPxOXAMKcFVr8EcEchxFVXS8Rkr5R04J9zlamIpJAXiSxuJYP04lCAkhIEJKIBIZ6hlJRm0hgKfOQB0SoEReGjSJiEmj5w29wFGCBg6Nbt1hWhnk9TxI7DjwI+D2BBM4xoskrPb594To1Rwer2487ggGPgXB0RnwVLk0Fc8/Ze2OyKplgzNKOf4hwth7g1/g3yD0JkG3iDxqDzdJOKaRfQ4wdg+lokg4djciYS5duTw5PcVW22qtVqk3ylOTh48dZcv76toG7ShXLG2urL7+1pvMzBHn4x//+Pz8XL1eQ69CsZdm3KxzowDTgag829UKf8wYMj7Ag+1odmEe6c+5KLrSF1E+HGLNv+e++xA/xXIZDkLJSueyjJTpWkB2f4EJwdEOuEw2qiUiKM06/RGDDysIOc8TTZ2aYNSMsQnKY7JitzML7dXwzAXFB77XTTgkIGAQOQghmgcS4lzCKwzhQIJooBf2C1trAzzdQ1PmDz4Xq5sLJ3FkgtzdoydcaPxGCql//CFH9AcFpMhbg1BqrZpR25SDpPyR0FrndfzqEYjvUcGNYqkj0FhHrGwOQUM1MWWqyhrnKLzHLUHIwEAIQf5A8/333zdk1T8DWg2aM7dN4o1A/nh+wEenNSBGGcLq+M/0Kz94AXWeWx/RT+lJKKkjxsw2qIaxCOiPx/1E9ggewtMbP0MHPHylA0CbYQMwi3NQ/ikpDOblJTIRDh065BDww5AjmlAj5gjEeSDRPBcFSS8XR+FUa74w13og4ggg3ZOpJp6WaKp3vtB/Q22PY37iOhCYgTj+KgghR4TQ2429xPFo/iQL8bHtgOPpOVoUPXgNQqygmlIixNN6Bh6ZQCqFP28LQSo8VCJVplozxyiJX2jIEwiApa7deRYOcM/zxoW5eWgAkCjCzbPWEE1+FFmqns6e2R0kG6otfkII5ytxcJ7QS+ohHki4B94889GXIH445g0DPUL4001HAHvyDl6dgXjC0OycyRcLR47MNdqNQb3DlY8sc3/85z4fyaYvvfjiuWvLLHN+7lM//f7ZM6dOf1Cv7GBx4VTOwsnZyKFDxyYmzp8/TxcJUaAOjRDk0JKyLAyvbk3mC8kYZzYwb9zLRofX1lagGjo+BwFBwVa3t1rZ+tQv/MKhaOSNF1/Z2NycSGVz+QMLBxarjZ04Z7t3GhQSpUKKDTJM4oS+F5WTg/3R6NgAjGxi3Qh5cs0Ty9VRSXup/jDPqQCy4XB1bJz7BuucQ8pcIVJUnbZqGDqIFOZxOtqrCKvmZB/14o2TJz5rLHzx+DwVSzDFAhZ39+FxeEdwB6FBYBCCJxzoMIOv1M74qxq5KXu7mJEzzGfl0SePGaC3x2OvAWCVbwxZfj7wzo9yUaukO5GGxj/hR+lM8ZdWRWxClYL+y36EhBeD6olzNvInTe9DqUPM0mpFzf0a/C4uPxofjRRroJSZLkuAUltr60uXLh6YmaEPoG1o/ZaQ1UiOcYD44HpnhVQgs2HqaG2KZkQZJLsJcQ7J4F5GZq3yLMiJxdBRpjiexJyoYiRFTsGmKIoMkdF4aFxY2dUBjA/J8HYHMpAEv2ZtQEY5i0YAcYCiucEkrb6ZozIIU0+MKYsTbFVjI4ePJHq3hoIGTXOhgkin+sJrJTaQu6nGqW/w65j4M/jsr6KVMb+HE0hN0wTAHT+OcH8SzeVjOAQ/+ot6MjzE5AdnCUEUuc+bw+cpv1iNOhgBt4ijhxKO8/Ic/alQK688d+IcrqdwUHQMoOGOsoyKw0glztVvEp7uiOZ1dCe5XReXLIJ39wdl4TXw74njr0S4aQcQJNgDosdkEnKVjSUR7lOKMHbO3XUsh4E1Uzz1pa9cPHfx4+Vy6eSxGtafRv3gkcPpn/rUle98J5vJ3XvPPQzHPjh99rHnDkTOn2fBfjrDah3m1docHUN7p+2gZN3zcz9zD7s3r1z55je/yWEzB44cOHLs2AEbQ81Nz3zrW99aq9efeOKJCxcunL/wwbFjxx56/CMUc3tpZXnlGmseuKq+lEGxgio0gJG+ZqNDCR60hoxWwnEzKk2S+V9N3tFM4MJevc49YBnOfsM602PCIoo1ep2VS1HOl1QbDQgiD8waChGJQq98t5oQFiSjmQLfG6sF6GvQmIy8ozfj4VE+NA7BscbhQcQkngB6Xnozv1CzF4+nRIoFY+GVcZXeDurSqKwx8MqnEQYmLtRFAtNgyBYreS6g7sh2lKO9O8KhEISk2dXVm7HnQdKfUYokmgrNnxCX9DE7r87A00jMDAmWCTGZfV3b2mpUa+nyBJuxiEB8EUnr+H+8nYCM8CxCtUmLcr7wvR88367WD8wvxNpsH9aIyZE36S8+cgE0Io3R30voBCSy6tsanhJKCsS0uj+CAqOLbVF0OOcZKc8EL18VHznFoMfoA+dxyCDdw876ppsGCHdKBhxDCNUovMiFukWLGJ8oxSsY+UgAHdNnjBRRowMpwDA8r+qkzVE5VD1VYQygWsfkBkJkoHq08Z9yGzv3Ex6q/fG30G+QZATLPmEphi40NicOYdYoJBnpa1wOEshXlcgIyNOdIpu2YJCFD+H81yuEkMYhZyQS68uNPzEbpwk5c/5Faa1r9NfwUwDtazjw1n7orFTKcPfJK7XmCQmndB6BGIwHQJ+vJCQcNqAnwIPz+P50JMMh+/3hOPv9jo+Hh/174I9YYT90D/GUgZ9XHECpDzDG5IL2HdneWr108du/9Vvo73OLC++8e2rj3Ln77r9/anr2ldffiJw+/cCDDzF2vrq0PDUze2Xp6nsvv7yzsTa4cqU8wWr+MuWvNxvJtFarwIqXX3yJu9dTuTzrabgXaXNtncnhmXvvmz9ydHlpiapDN+RcgY88+uiZM2e+/vWvxxfnH3z4Idb2LK+u7FQrMDdnDJAdjCCz/WjBDOxjI0LMDh26MD5SBaZ0MRXcasYa1XKkPzEYzEQT3CoFJr1EvB6Pb7IeQ9JK3KbmpAammsaFPYF/zH3XcQPkwim3EFuPGfpDpJsl1YMs3N3MP/6uX0fPPfhhfmEc8uD3+BZ83SMI3w8nSBX+BHAMNZIvkiRUmiwa5iiv/mzyBHMTjVS9rbd2mMebpNKasZuJl7W1NbYswQ/QCTjEkAq3W3RH7Uf65F4HVljS6lltyaRWJHbu9Ac59oFxoDTjJNMe6QOkAUBVJK1dC+EYeCEDv1qwFQoqBZ/wo+9jzGTWifMpaCCc88zy/9nZWXZCQIEgJh5AAQGTwZFjR4kJh3jFwTl8IgIhHk34WA2GAz3OKALcakYGCxTjyaO+STvSEfc4nlDePQo0mDw9U746txPB81KasdsfMv6y+ysUx82EUEoB/u7wI/5wdL6wD6V2ddhFoacy9hgZbQzS7gNolMUNQRQNrQ4HGE/CUzVhDr/DxONgFdXcLqIhH19Cb7flJR/HzGMDYVzK3V/PUZ/MJAgyRKb46ATYM3DYA/ETQpoAB091MySCaEQI+4P44cA9oMKfbjoCcHoF4IJXyI2eoNUTsHt0gOyu7OycuXC+PDM1U57OJDPvf3B2c6eCRZ5DCCemZjgkjnWANAoK+cILL9x///0nHnn0O1/8/YW5edZcw3icwQZC2UK2ul3lbMLK0mrr+VdZLZquc0ZKpLWzky7NRhL5N3/v3168eJHG008l3vvey8dP3L2QyFfbzde+9KXHnniCLiNVLjHxMDM3fenalXa9y7ww9JbgtvYIG6NG8McyVSqAJUZYdxBOyX53IjKci8dmOAq605kaRqdZe9AfYhXe4S5AOm+an9FPoJBM1maghvec0qn5N2Ybo5KrI6RUQxNHmfKiDoCo1iRUzcxxakQ7FsQGIVwxEGVEfOs2FM88QY2EI9tH5etfvT2Dm0ovjc+IwBsYSF0SXWhDykCKuJOJH/ElIsAhg6xsOtc7SXEBtVDLjoWKMo2TF7JF0SWztS6FhVsqA0GwiexDJOJFZVdCugTGknwAh1GO15aW73voEbgrlU5waAQfGUeM8roejR/hGyrYqGq6fS5jae5UWUMsJmf4YV2mVmJSRlmBRCBtLQs5qGFlJGgUPqKe6X1IH/Y3UGQgEINXJqsefewjcCtb5LB8iWBjbVTZACseg8lffeElxAGLpoCGR7cPyUE9G9hpbCtbjdOTHXTUrP6oMAERVIKQTFg+cTCggLszQz8FseoXQ+A1s4r5VAyF2VdjXzHFKLl8H+o0uBThDAnF9swR+cof0TGeO3Q5yG47oWgCWkU0ZwA49UE9H58goPuROaZHEYmiGvEUVYBpb+AtKkAAa2gKRFZJjzCvQXb09cWSuyd4CluniD3Hkf139zluZwpBg/EPDtCfhIAqT8tTXYL7eXJUFYuWRWaplJQjzup2EGAKkiRwCA6PUPJKHPMVaW/oghz3f+UTcPaE74l/0w4gnGwPFH+Fidlkns4nSjPTmcuFuYnZKpcupTkZOp3N51g1UWEofeDA+vvv333ynqtXlzm0hRJPzc5cfu8dZli3K1vZTAb9i8g4oF1bWSvmSyxdf+P5l9QrsnQwmpicXeQk9Tf/6T+jUh+++x6mHOgbrq1f2+GEOGZ9Mrnl1TWudsIk1ajX1zbWj528a7ASYamlCu48qE2PRnEEHzd2ZVPNJCeyseO3m40NJyPRQ9n00UJuinvto8N8f1jkRLB+rxIZbMSGa7oaShVFTZKaOrFGJ9qohpwFjVJwgb/RMqE6XCsbjOSd1YHpBRquWn1ICMITzrhIS+tNwtAAGX7Fr5SW1p+W5+7DIwdJAg80AB+tUBzxgXDGH0QIQCiCNShCwhHMH8SSZ08Ir6j/Askn5L5MagJkTVpTcviRf2ZrUHJaMpEgI5UCbby/oWJoeDsbm3QZWH9Y/tkecoMuvZFUBCX7sTlmZWWCikUbvVqVS0kHQyaEENVaLa/lMRRGD0qo/VNIFlBXzxqQdIQZdWraAJ8lVSk+XQvLyQiWkQlbENkkk8wE3nvvvVCMcPGV0RMaOhSvl9n5eTwQqqPDfCQ+jOb2EeAQywQ2aYxuhCtL9eNCGWeDFYZQrGGAEyVN6FW1D0AsqVusVYrA6fPYuTf4aoDH3/5kvxRBsq0jmtDq3QIGlTDy8QlnmOuB35jHZqqMPlCAXpD8ISOnsSsOQSZVhZS1I5Lg9eRQw0Da0E0d2m4BiePwSe6Zhp/+leftO++ZPD6ggoRg4n5HLAinL3MkPV/CecWpv7f5HuLvSRKk/VAPcIgTRuPWSYgvOir/MbqOFq+Ohz8JDJx2ycLIySSLGcBY2uTEFGzNTi60tjPnzmZy+UNPPPnW2+/Mzc0Vi6WzZ84jshHoGxsbQMNDQp7KItJnW9D0zMyxpz529twFVpZyu+9mdYehUb3ZZN00jZNLU2EXcqckpDp79iwhcwsLV5eXWHSE3M8V8qe+8hXsquQyNTOzvbODlUncxN59+n+YSU1SBeXBK/e8sC+JviUVH2Q67alhfyESmWzU8zvbhxKxAqfItWqsTe7k0x9sbdYZtrNpDF1VPCnnmAigcSqveEREY0ci2Jfd5hXQDQ9fpc21dfmqiwY8xEdAqgVL0OgPqcgfko+m4X+8umdPoMfkyQpv/0NMWYPQE/I6wiDvlhYbN8epMkqEH4GAJEJ9x+BgHsg1kmteKKmo47O3hOfYORGkg9lmJZ6UyyPQHnBEgCCEePE9nVOAo5boMUCAxoz0F92GsQ4G92GkXWvsrK6X8gX8CAjioxY4hP3PMS5/0l/YmdVlCCbOqrpw7myn00KtwbZp2DJEUY2DJIWiOFAsjInnTTgOv/MAjYJUxIcmRIaHKSkNBD/mIKz/tAvnAaJ5vYhRTaOnamhH84sLd99zktV0EB/DEVcCsMnR4WhHmKmW5IJTvqglNh7FBoKdHZj0VhCV3fWsqKZyYSlyARkgkITkHDXBtcRiPSaZJVWtq6Dbs2EZzMDoizWrss2BWch52T3AC+v0CaIQAcnAJ48JyTBq8JVo6ywHXOP+m3UQYyIENOAfyuVOTGOOtDi8TlKevALBe1Pwp5mzNoQ/9v1Utnf4IwSy8IlMiQxA6KY+zCZIHJoDcayACXz38wyQd0+Qr3uCr7wGDmiBCyLs8XgEkgQxPTnRgqydev5KAYmAiGNRDI7KIib1xNcACB5H2D0BnLCHVHwNXDj3ACW+Bn4dRB6k9zJ4Hu7f/6S1QPF+No7MxWwldsSwhQ0A4RFPzC0s0qqhPaOA0sREeXLyyvrmKy+/9uQTj3HGzuq15WazXq3uUFu9TuvEyUcnDh/94PXX52dn7n3wobMXzq9XKgjmux96EHnILUgo9VOHFw8eOXo0k1m+eAnuvucjDzOIpv0cmTuZLpValfXDR4+ygvDJBx686/DhVDpTqW595PHHMbDWtqos6EwMU1xMCZfrEDhETLfDBIOmgdm6Nujme/3paGw+FV1A0nFqTbMXY7dNJ9ZIxtfanUo80YxzL4CYSTrFdW1hP2FuHDKmtRI7Yb1ueLtxgpuHkhAIPG8YJQAe/grOQtu4nAhkaU/LOgRmD0ziwBWOp54G0VKHYcsPWWjhkNeduiKp8mJBlU+9Go7v+Oh8BYqnNFC4RFuTEAL8Uyhy/8KZs5zqgZSstVrTc/MwFMyW4WrmH5tDtCCMkM4opbFcBs2DrODNqamJ9s6OaAUpRDNKA6JgGpTVyki5biJBrEzjpssGY4podnZveMC0ZnKDgiGbEGFMBfMNMlIRJPFcvMcVKIcGGaEmZsxoDC7Fwghyqjj7ihBELGKJ44I7VjRLyGOU4zSLMTN43mQBfJ7QQVnrio8UXTJEQCTheOWrO2WtLIUPsolAqjsQ1i5JWPIE/qQS2rbE1gW0mzhI6OUSHazmHaQjI9gispXLPB4ePEe8Nf7kkfmKB+EAWs63jgnQIIjsYjdxpHJ8HELg3xM9HC38aRRf+P4oHdlBG/pR4ENbG17jlSMbvvJ0f/Dq2fsn9+9/3uzrDTqA/YmDELhtolRmbhZbHjUKhzHABCko/vDPfC6ysY3Zpr58rX11+cknn4wvLkaWV5799NHI/CL76yP1HRSdiZnp6YceXHv15dnjx+ngzrz1Jne6fv9f/ctn/7P/Xe7r33j33Jl+PJo8MJ0vlq40tjuJ/vzBA4mD85Hp6ebm8vz8fJYFo5025z1EmG3+oz9qZxOXry1NT06CIZrFtWvXtnY20xN5Wlc2mWXJP8oA4l9/tmFTApFFnph4MfjEYqV4fDqenIhGuEUQJWPYbmKlqnVb9WFmqc498Yl2IsMlILAR4xyRnwqwpzxADL+bbCBmEEEfxz0tZg9erRLF4jjePALPG7pRfds34gfVT3e9J/4IMecMyzQcwSWNsCIeMoKxhaHguh0T3IYy36VJgj1FkCMX+M9QRUXXr+druajpCpoiUjTCbGQkJBH0hNNQkTVjTEeYKQ+SuRzkyYveAU/O0WIm99ZLL5x/7/Tjzzx9/uqVdqPOREIxr+Pylc2PzTHGQT7We03w5p5cVJkEe8jZTSLtVwWCEE5z5CSE2IMIhPEQ86gq5AnVF23YuhB9AhjSHdJouBbqTJTJ2Ek7TSZY0Pzma68DCrGdiLPRXWd8uAuAk4p2h4jn8DpM4xBRt2Nq1Kj5Vo7D4zK7LjMNMGEm4ythULk7rTYWTsCiRSGmETRIfWnNXhA0I02+0FuPxnAu6EdZG5JqTKbpCwHrAvHIb45V7pRMu+oYTJnTmI+RqbY0WJ3DHjY4HDUBzfRDGVFHOIjeWK70a68juliwEdes/05ocROOnsaYSiMvi+LI8CRxMIQdE/i6X1J7NMU0CgSvHjIComx2Y/IpHC2AuCdOEB720MjCLuAn9e5qHF4iTQywsBXpz1wRlYUjR/Wa49EVeV0H5/rX8Kf9/nBajVKDGIE/HCP46p5Os8Vgs91q66qhWDdfyEUYsGRyr37xi616q5gtZXLZM5cusdWr8vyLb7/9Npz70EMPofdvrnM76+CZv/IfRD44DcNFFhe//c//b/liGVmfjyVf/+f//NHHn5ipL7z27puxD95/6hPPcVXw0uoK9iJaBJO0b7zz9rE690s2GNjedfz4yWEP0X/y7hPtarOYynzve98r5XLMot//0INb9Z217U2WctjucUinyQSO+WK3vhqwnbULp2AZL8XTZTSeQYc1q7nUsNvqZjJswY81orGNFocZFXtRjrOn3ZsSu4cQ9uqEcrrx3E83QsLVRiJ/deGiCr89F0AOPDdONwYYREN64Qc3OUvD014UNaj83fgW5HEJFMNJ2Nt/Sx7EtDc75kgmMuKo77CjqREL9B3KR3Gkh1nXox9vRVIhsWNjY+CdGFgD4atPPP3Mf//3/89/5Tf+o4//9E93ooNmt8dIH51UQH5sjkF3kxXAtuSGpcEYYQoT5csry0U0X1CnfwzkN6IK9lGXqeGRYTQSCkYu+Qnng4pkZAQs3It40nQ3QrCvwyREUptQ8DJ5zJBfREPXARKfEKtMmEEpHAlx3kMTCbyQeFpLoJtHZajsyJKnXR7iWZlYuYW4XZEJRRd4IApJi5bPuUzo++j4NEOKn83kdb1HhkteNV/gsgb4lptEteMWeiqEnoOYdCUS6+YoKT0PFd9uQ1E5t2DQwxCZ7CgNKT0yEFQ6hNpNNPT9+XqIozP2C5NdgNYNKAi4/MC41Bevt3QkJ3o4igP3kD1+jynwhkfYE8TfAy0M+Rb+ICNPDvEJweQLjXUThdn9CMEBZE8WHngL4OFP4cj4x3oF3pALJ9jjbzXrCFK2gMFj9FHM30YaDezyVL7z08z0HLu9GFZT5ZiJJstF9udi+SmWCkTonTr1wve/f/7C2c0Xf8BqB2w19z34QDqfX15br3O6XG9wdPZga52RRIb7ZBby5elUfq4wUb+4NJ8ptta2FgsTJe73a3TeeeGVw5OzE+nc9toGSs2Ju44/8/THaF0ffPABE8Wf+PznS2WuqmQi2bQDGq55WCiAfoUe1matKHd8s2Mejo3FOJaHPWyNZKSXSfQyyRqHDg1ZClgYDPI0GdjI/5wUUm+loYgJ6Ld9JLunSojp5MTDJ//qT6oWWjko4ohP9/xJExjl6Z8QGCTY/0dq/iicBJOjYiHOJJ4WQAgCRwOZ62IXYYGu6KMi/CMkNRdhYsVQDjAPkMdjqKlRwTdeMFnIuOkMRVq8JL90Gen37CgQPE+CEEI0SGqBljRHHiNHCG/5dKaxXTlx9Mi/+9e//T/8w3/EQdJMxoo7r2ubivujdb7TinwwDx676y4E0k59pzg9qRWfFID5EkOTUSSVbidnjfL3+rUavA4jb7peNvx840kD9hBsu9Q+fsJ52shJFYDH/QxBmCHFdupGAIfvcPC7x6sMCICFRKgyWIH48xFbgBIjCQwgKEwVbbnnMEIdegpYbptJxlKc2tppdhvV5vbm1gZnra+sV7YqnPBIFinu2dDFfuyOHkk6pLwbhXiSKa+MzPCQF40amDwl/mMx1rkyFkdRo3S0Rxwe+htiBo4QHEBwTgde8QSOV48chLiHwFGl0PkZk9Gu8Ygg5hkFWnunwyP+HgjBaxh+2O/NiCf8vOfPA4MnngB+GELYH2T3oR4HJbqMncOBsDgI6xGAE4Z/M/8Ns7th5L1wPRLPG4MYcr8oe5nT6VSK6ieOJivqdc53ZPcKlXjy5Enq/tKlS8tXl47dez8VTwTGg0wqlQr5XCZ16tTbC4tzsAXaweKhg0iID86dL5RLxfJE4Z57q/UmCHEOM9cDNLYq3DGJ8ZLqXV+6VuD6706/mMawMzj5kce7tWZqGGPRHqdT07vAl4wVnvz4x+lyrly5cpXbaVDrme1imxnGTJvkhMXoU9Pss6SxcNwndwlo7jHGVX/cJtZKRBA5jWSMgfGOll9kI5HckFPntILoBo5qItQJ5VUWvLon+ASXQ6sgDnWJuwHEmwR5jQQf/fVDn0F8PI5JEOKYWOvbfXggT+RVkCRISLi31QCIe5xLqDJrFdqNaZfhWB/gfaQG6SgK6hjUeHmTnOObOhsyo8UiCJGtzVqd8/KmSxMn7zp28YMzf/e//D8SkymBPTn+yF+xhDDnBkqYK1iAz/Ll9858kCnmtSEOpUHtw1R79fpqhepCx40woI+HBOF4VEaeZh3F440FGsL5DtAj8AkX9hMHZkavAhM+0fh5dYbhGeQoSWeVQgcp4psC4ALL4zAWUHyMyKxpbmGQaTM+4D+KObKbT2CC1g98cm83WW69g+BGk9vZ3KIp+TQ1X4HmjiQu4vHgSEU4EXDgSXNmwoaFHqQlC4gJ2oQTZ08BvbDB0z0eB7+7ICEeHIGOA34841gKtO96gFLwOqo1DA6734OI13mCJITix1nh9j684EHxPdoosup55AgZe3/I36BogYdMobB3saAFXD7xJK9wdmH/DfMORwj7dyWRw71h4nAgnEEdU9/cXArbsYmXWbMTJ04gdgmkHhD6peKEoOVyUppicZQCuI1eAea+/977VldXYTb6Ce5CoqpIMr9wYHll5eobb9598gTcw8mglI95MNRUmLKyujpVnmCLEECWlpaARo4speD10MmTNC06JETsyspK5N57H33mGS6jJC+pIa0mS98QQbQBrKioCbSHVCJVyJUnilOFbCkWTXFYTZceJ5WoJbkrOLEz7GH/2eSSwnguOsxE+1oagai6hQtT0/083ZHK27Mbsp3CzqlE2A+ToD2hEJA/HPFh8ODP4UN//sIuaAQEOvyRx7TxcI4gA248cVCGv+BVQYwkNGaSI5VCxs6R2QUlGNy1jnRkk4UlUBJCdc8C1m44zIWUa0zE3g+QQIRXqVBcW10Fj2eeepp70P/xP/rvWSqwm9GPx2cl1IAMXZTFL48/+Vi2kF9ZXVXxbeuSBjvwEMMl/sZ1QXynjD/DqDkJnFr4oSpfvQMgkMYMAzgRPFXYTwgtgiTwNmNoXmn5SNJwLXsqxfQOAK7Q4EHamMstRwkgyhQLCztOI9yMVKPZwoc8MdWyvBnWpLpk/jflnRrj9FaEOAt11lZWNtfXqzs7zOiGNX2P6WII4CCGoKfBkormRsNU2zQHbkQAoN+vR3FAl7+Ax0CSQnF6j8e/4dMLEqaPhxCZQHfyMwJgSOnjTdjY/qRe2N8d9QFAcxqGn4HcDweCCa883QX48xr478jjlAmSOBye5AIPQECIzyulJs6eXPa8BkBu6NkTWf2/O2LjuWGaIBBVpFsoNDO5eDrLdamxeGdnY736Xj2Rz05Plg8tHDn//unV5eXHHnyQK1ze+PofP/zIA3P3nGT781f+1f9SLOQevv++yEMPHbi21Gw2qpXK8V/+8yd7w3OXLp988smH77v3/Tde//Sv/src6WKrWn33619v1BozkzOoLu+fvgDShWKRg2+L6fzDJyff+dp3UvnsCuf+T0xwsHCn0ZgolZgwHLz2Gse6cSDozk4VkqHipBOZLudLMJ3CefQ9lrlxljXzjQxiMki3SK1V4XoQNW1uFsxrPrKXqEfTXEEzzNM1yXbibT6gwB6PMxnR8FDzPN2ZYcRVFW4gl8HDD5PxCNQjM4NcnUbvSFJLopawPy/YFzS9DwAXVdEoh70/iFeh68xhFTnChWSA8KclEqpauMViV+wbUnOhgFKwlQtJomty5GhQNAeJcuJfl6uievYmd4Qg7ySgx1BRAwOPslUjUantDz+N1cBSFHUNwNFgnkNU+31ECQM4eoK3X3/tkQcfePv902++/MqDTz4uHffDXIChU/jDou9+x0KNjQTEstnM5ubKpz77M0w8fP3LX7rn8BFWYABWtKEOZQqkcHQVEERNnxAVzYYvSF9iUk0S9uZET4tg1n/N5okYAOFwbBzDCHU6u06nnqp2WfjB4hnuR5N6TmeA9GH9WobDs0UF0wDIBRQMASQ7BMYiY3MEVKgWZVnWiFokdBeIul6pz2GLTUbDDCw0zzGI4kddAwjChXwZIrOOzxmD5AybseMj06lfznMEh7AAkg2o3y8USjzpHkir7V0Qhxv0IAj36kjNEliEmjsnlNOEcHGEJJu80MnqX08R15iNJ9JOpbMQEVZf0ejF42Bl1IXYgBDL2hPwVgbi6oQbiCR6ooJYNtSPNtzAoTQ+e4JEEDLyKzdLC2SQHD8FH1T3PMnXGh3gR5wgX+AXe1/fXg1pBd7IOXEgFI7vgYeCqxPnUGPOzqWmjUk8zo3A3CzMS20N2SjsTVi53H33oyQie8fA874ZmMSwk+1VD/c6ny5OPDldKvTr3f52Ox+JprkKMpnoJ1M9TQ1zkBULKvtxrWzNp/JoJ/ABSwN4hTloA1Q+LOgMRwnVOkRdSaBuvdasN4dx5qZKqVg2Fs9x/3ezz0Wu3XajMZ9KzzCw6PQHyUi7kGoOmrWtDdYXSI1JsIyzw/oNck2kMCAnaSay+COXmPFNxrdq9Xe2amezM1upYiKTSCei6TZLPqv5Qb+cTpXZIRZPMA2xtFW53OruJFONVJb7YWwvqtoXiDvPovjA9q6gOaGMNa39i01Nb0YjNvUc0Qgjqc0x3yDzqxRAWg7Nj/kPGo8VnPo25Vk3RmK5TCCVoRXR1NRRAej8lYqtNB2YDgh8BWy4ygI/AFWXlq/5HUdrTHgtKaklg4ypaXUqZULHn6KwcpGDej4+aXIPJh7JGky8BFJSa73KH0iEwJQqK4CFlWqSqgZvXsGBOuWPr1rrwa8mXcxeYQIAGz+DBmYnVUVsnGblA7no1G7hKatuIvHX/rf/2SCurbCwkKx3MR3eIODWnEiHgxTKwxwByuj2nFuUqVBZMtkZ2G2XS4XttfXnf/C973z1q/cdP96q1LhRAWZCX+HgaOxC7TjqBCWVHR+UDA3HIsbSeW1eEGnRVUw4avNVnE2RhUKu1mBzS/3w8WP/xd/+25vbGygn4nqrdzUBiu1Srd9GZhUzhX/5//gXp159Y3pikn0AyCX4GwjJdBYtm1kutr9cvnSVyTYu3KGrgPraWhyNVms6BhF5DTTsOc6lFDCZTaLOFwtl7hWYKE+99957HDsKG2O04cRGEGBAD/7QAVsQvMkoHGsQu64oDNHI3SkKWFWEuo0YCWFRlk5B/5m52auXrxRKxUw+c/HypdnpOdDgJgIA0q9TX6RiLxpJGC2wyp/FI3QwgEUq0HmUiyXGKAwBeXJrCDclAJOdQKw3odTTk1OM5sGEEzXomSA//Mp+skKhCA+yp4G+jhAM00x6o1zm80w3xjllhySYvSjLtavX4K5CtkCzZ6qjOFFkGASqjSqtPMXlE3QNyRg3r7EWNmk2bpafcW1Hh1tsCaHi0Ca9g8FEJ2HG9Ii20Wh7HVUcsJvTh6e1HQXjD554UDIVas4/uR8SjUJDP7RDyKZ9ihxh3Osyl8qT705PPGFWh+BK6kGQT+1CDVnO7x1RiJohIkTqhLlRvfrLhz5ZbgzBNvr96jDej6Viw1YyktK2qR6XLOogmKSdnKD2jhM+w06D62IQJhCCDiDe5x+ig72WXRMOxJIWRVQREj2kwLLleLKbyrcj6e3moMO+rX661u9kJ/KyKXS7zVotr7v82K/bQqtnR1eWhc6xOFNn6PeZdDGbzECyRltbWbBJoVuhoKDX9jq6BBBBy9FzXLwNRjU20acS9FTDAUdCxDI9zqNmCVB6QIQ0HQpqiPpcKOvEhd29zlxvCsillkwBxk8qAo6gTKKCZBMsQCGR3jqCAuUoleDKBK6b5N5JBCPTHBqt0xlAE27cHFBoW1lBwbQh2gyshIAQ7x2sIoYP8t95yd5kWw9wELbGdoRQ1Y6YcKFXGOEp25ucvlIfGjbzj6bFD9gig5yDAz62xAHvmvAHhrqhwJEPclHl5U9bePWnQYZUJRDRk640SAF5Qi2HFqjDeBA3NGbuskr2uj3E7urytbkjR2gA6oqZuZbwpazimB+FkyzjOHDKCzbSe1up8uzMU898vFKpvf/O2wvlqX6P2ajqdLmse+3jSQ6EoH/y3FV8ozM4QX5eKT5DPUfMf6hiwt02Avwt7XYesvmd2FDaxhgqG3AoE2KFhQko7yBSqe2gAsMV9P/0ux2OwPVTSweD1WsrbJnEYc85eGCBzVCr62uMhsm3kM+SS58TrwZ9lteROwI9Xyqyg/LgwYPIXHiIJRgTkyXuVsIYSxeCdNhYW2MiBN2ksr2Zy2a5WAlPj80Rw2S31WNlJ+WkFLgmdxlxHG+jwXFGayvL9CIs+aHb5jqHdDLJSr/B+nB6eorOhvJMTkxzvhMW7EIhr14knnr//XcPHz4IVvV6Fc9nP/vZ73z7+xcuyGBLE2gyCTQ5xToOtsthiaI4dF0s1oB63pEUi3mJwnabcRGdR7WyQypmHxGS5NhqNuj5jt91FxbgpvXNk6UyB5Jcu7qExZi+BwNyLk5pEsxzQC7oBlhqjqWwoNcfdll8RXdFpuxVolC+zwlsOcaGp0k00QH1Q/wsh9im6YyYkXdwVnsac6eRjTDciB0kFMaNBlCexGPsf9JgyM9EoxKBEsv2ERekIq0BdbCjpAbQJLuQGn3yJk0tG1IgPEbO+oA76wAodjyGUaXeyyDGc1w7xAkW6HHtDrcBZ5hZjfW1gQ0tWEp3hL243MYFw7OeQMIBCSOhhVCgCGpGhquIAE5q1PxVuMcrndqKxa606pd3anVt2UrVmOrd7jDbkG+25oaxE/mJ+Xwx1Uum0Qh6LG7mxOh4vTVod7gBEZsQF8sMUtlJVDqEDnSAVqia1Hw+z0VjGlOhymnBG8vjOI4qNmz0WAPaTOk43kGDZNwlzF1aptCZzkuVS4WB21Q6qmGsEDnhg/oIXiGU2GVcB4TTbKwBY3tFYebEDHQUEGOwoh0fAKcP7bMUlbkKhtRwFRzc77VqNSKRHV2aOEH31koCjjIayxpCNGnpHDriwnEcMdF1XBLG1kERQr0oR824G/tqBY7xuQQ6PAu/A0i1SLgoKBVCMe2feAuPQcPob2YR5JtFo8el5we8iCGPRgmSfmMdZFQW42kJP533EmPKh86w2Wi8/+570wcPApnrDWmlWDDwE00NwxBSYxw3L3lG5Vbg7ThKjVLMzqV0NtvuabIU/ZRVCZ/+zGe6zca59z9YnJ6mz95Y30Qd1oiN/FUQldaqUuaMICMCxcRQ0xzhcFk2V6DmUNuHG/3aTmVna5ujD1mGxloKNrujuDSbLZSXdCpbyKB4Yq6UwgQqiCeKzMG1lJdF/cViGXX74NQUI8mV9TWAI5g4IAvZzYK6v/yX//I/+Af/gBDOVkF6cuAEz2trq5Mz05zIQj/36KOPEvnee+7/rd/6rb/8F/8iZyki93/lz//53//933/4wQeZukPx/6Vf/MXf/M3ffOaZZ2ByDuhGGqKCnPngHLdxUDLk9be//e3HHnsMCXv69Glm6dY3N4H80aeeQryeOnWKDulTn/7pf/JP/slf/+t//ZVXXnvjjbcef/xxuhmJ1273s5/+mbffnsoXsqwOP3z4wP333MvxwMw0cArsRz/6UeIAltXA8zOzfGodOYrcZ2fPJz/x3PLyMr0CWL308guPPPLI1tYmrYncwRCbIR0bxH799ddP3sO1cnf/43/8j//SX/pLnBZML/Lyiy89+tAjLy9fox+i+KBKFlzFTHGef/55hkfQ7Qc/+AG9IPjzlXlEnsD06qM7oTfFeXuHAtDcRcFIYaeqpVSPnbGFRBz1rkajX5z7jOGJL+YJAo1fggjjiKFfj0B8PFSKwGGvM63CA3kS3XELeaxdkpMF8fA8BE1BvEovwXNnHQCpQQE9jalUFNJhF+sLNkukKc0CMxXHGmHVpkn2GKWpfYC0bGrsTbFchbLGAsTgs9nghBmIaBJH7RnrDjuyMluR5NVe58Igwp3ZdNAM/5hxziXTFc7H6vSm45EieXYQ0fFIplCP6v4u7lpkiEBQX4r2sFHdYNkDYhFJBVhfTr7U7tfjiHmsgBFuqEeacW0SaiX3DkoBkEYW4bpK7DIcEMwu7Ha/m9fxrRqI4fBANeoeF7yqYFbPTtBwrcAK9BiqNFvOwa/Mpa7WoepJrdVZCkYlTafTlbn8IiaDDey2vpyOutKJeZrNZlW4btNSNerHOk+rSCBZPrus4K/gpk+GohAdOwLlNSBiB/6bGQIDBxYhiXezTqhORC3KId1BjuqjWt3PZ8l7wbJMwFQQaRJW+dL+teBH3OaZ8VQ986SkkpS8qjMQ8ogA6QXkrUzE8bRzjBWPPP0UYo3cMQhwi29AfOEv/NSTWAk94A6eojbaADXCllfOsMrlaO31VpPVkAsL85/+3M8im1D8JzCds+mdIX+vy7XxRoURhrs0F4mFhigE4/Nnr2zEZcUxRvXKoMs8bK6QxaRz1113cZYJoh8jA53BRL4ITTkgp7pTQeuEtnA586uUul3jVHKORe8hlWAGzrtlo/tzz33yD/7wixcuXvxrf+2vffmPv4TlBEGG5EJAc4zEv/t3/+7pp59GXMIqf+fv/J1f/uVf5tPly5cRsowGDh9cfPD+k9l08qknP3L18sXF+emHH7z/0KEDKytrGDpO3n3X5z77qQMHDj322KP/7J/988c/8giHv7NRALnJ1k46ko997GMgT73QATCjgIymOjiVnSygIRo0hwH/yq/8CjEZHODYD/iFL3zhH/yDv/8bv/EbKNrU78FDiysr19LpLJYZaPWFn/v5N994+2c+85lGq/V//Uf/KJvPP/mRx44dP76+uvpLv/hn/9v/5r/56BNPXrl0qZDLP/3Ek2+/+dazH32a20GwjLFKauni5WNHjkoOxKL/8V/9D0+9/97C9OwvfuEXjh08zMKQ+07ew6naHB0PNTiGEmQQ9Mj0T3/60xjH6PBYsojE/5t/82/SBxDtlVdeYTBBHwYxYQOKzFAA0c+TWvaKdt4KGIAmoRGbsWsQha9E0xmyN3TGqWKSccfg8W8Y1wODmCBDZNgV4TNKpaxGbi8cY261NVmjFV+NmuZIEuNST3ZnHQC2Em42mskkp3Ic38w5Mty4ibjlckjsoxEmzeKaZaXwkQQ2C0qoKRgIMUZXRGJCANoIKXWfEAucjBb6OIxlYoVqP15tRra7iXo8H82V0ZNY0smdsiiFbHeJs/ooXWDvY4xGkhm+16lfRlCyflnUYYdAG5Mrgh0LMrZBLUzR/hdO99Vp7DUss+wQpq0qb4lg9lliGWKVBjq5JB3hrK3mR3JLk1oSNyilY90fIGEB5Jg76d1vMpUyyYnaxg34YSme2BNp3uiYyB2dDcbSbObiXIgpU0kQkcE8xRxnpGZQ+rgVtl2vofehMzJ4Ii0yVYMRoo3hh/2OCRmZru1VDlyPb30xORjraLRqEtjAKA7VJmuN0DCQOj5VU5/iW2Kq51bfrc5Afwh7+kJUVpDnlYpWLoxSEIKS65CTg2hUyRqJWJuQaMcjZgw5JmC0UCsywJIA5gzzgcTqrwtXl9ZXVo8ePQoa6oRh/fHxRKQ2pEZ9QAjYHXiBBl1Z3c4hPLRn5mmiac3TbO5sHzh48Jd++c//1v/y/7oKAgcPcJoN9mEZyqAZ7deKY+SzMquwsAtFZU+xjXA11GOBcbq6ukOhkI+FdLaUL77y4ktMO5+8955CLIsuwnGh1e0tLDZoVNxHhukZLuFKPMzTJe6jF50YAmLT5zrJbKLRev31N+fmFrBpcBI7Umx2Zv4b3/jGJz/16a9+9auotIcOHlleWpmZW8AG1KpVMMJwBg+L9IqliRdfegXxvb2xDv1yGU7Z2liYm8VkNDVRvv++e779zW99+jOfYty3ubGmm+kzqfvvvefNt9965CNPZvLpqdnJequWL7EPv8E4ZW1z9cDhRdRzJD7Pje31N998E+Bzi7N/+OXzn/nMZxCsMPyZM6fvv/9BzFlIXiYbLl26wOgBXRs6YYFBnH39q9945qlnuUTkwl0X2bjDPNTc9NzWxvZdx6KPPfr4v/93/565BFaCoFO+8fpb3A3+6MMPb65vYKA9dOAQFNva2CoXSh+8f3pianJ6crrb6ly9fJVbCRfnF996623uk7vrruMMnjGtOrPih4l4Zb0rq0ampibb7VY+n7v33nsIP3ToIN3kE088ztiCoRJzDFQZSGo8qtmFlvjNWoXx3Yj7xAAmT+XRd5w3ql32HvcF1mRHzCJuCQH8EI4V0PHQX9PBpowqzRhakF7tdBwugTJy0pFcVaL1qVkqXM2RD3fgaOHxXmO2nCkXkv1Bs8eFd5jW6QPiLBdAcLJiud+JYsTtMzZAC5Kwl2wAXzRfqVCikeQ+IkRrB/kEYkgctRk0nVi0FouvtgdXau211qCpCYZsNFZIxYqtWr+2yfZcjorMMmXD3AtLd1qxRKVQvJLKXIwll1PZlXxhPV/emZhqzi9UJqd2JqcqU9P8bZXLW8XiVnmiWZrgAjBKrXpkzjOWQM3n2MlmNFaPRhvxaId7ndjiiKmNkYyGXFLf3VFherdjqggJU+0Wr3xCovKk8FQhMp9dl5qCGFc/QgdrGtCoE6QmT2Qr70yWJuNRNuSUctlJllzkslQ7ByQwVhEtZWcbqeGOCQDdCVTIOd/wdOdf8AfRlJ3xFp9gEfpmYUElmSOazdmPMFRFSenXtJf97eakbl7dgmQgJdJctg0DKQU9BkKHoSIh1pOoqI62c6FysfWRYAKFRa5OF45A06S9sqeEVRCU2kcGwsGo5xAckDDfZfcx7Nv4pWFjadF8I7Ygm5mns6eCoAMGn0PH7vrpz32W3YyXMQ4wHzOuOAAHJbdCK29qBMdTGpAoqApF/UfrYG55fnb6xPFjhw4uvv7qy7/zb/7tP/+f/tm3vvr1rdX1yWxhfnpmolDUZHhvgOqa5wR11jK0dYuPeMMmXbHnIFKxvGPRRmPlUsnHH3sMQwfhkItSPPfcc+jjGNMfevQRD0TIMiDA8I3RA8TQ2aEtMTHsHLvryBtvvJHN0TEldypblP3oscNYWliggdQ7fOSgbugc9jAuof8CFvMO+jLV8eCDD1JS5D4iHrKhSkMuomm3f7MJYth8wJO0RPgbf+NvvPvuO+gHDGvK5eLm1jrnyACQCGAIMowqQAb877nnHkYnn//854HGRYEMfUCbjH7t137ty1/+Mn4GNyTBroXliiQUh+xEbeMWxiLvvvsuRh4IwppUeIlj59955x1MPYxOsDjhgXQUFh2fAuJH02c0ALnI18cxlAI6ABDdHzhgAhpkgQcM8Xil7396ywqeHtNf8bsjlbv9r+Mvt/olFZ89LRhSwACOfwoSI1T90/gpUUOX5K1DknfsPMKdjQDQmGODKpt7U5kumks2xQFrg2asG8dCQY/MUVOMArjZDq2FwRELHXV+ulaajtu7qYDWUZqZQJLfnfAaDtqx6FoqdXHQWeoOWfHA0sxMkg3EbIlJ51j+UdssJzNz2Qyr2CrsYhxGqr3upWp0cxjvJnPc4KizrpIpJE03nkaB77DOEmM9K46wqyPjZJ3qZZmP4O53xBMqp7QDVgBI1OuwFI0XmHJg6mnAOAJzDTTiyjLkjosnkdJEf9jj+AcsYqyiFWyMM/Cre0MO2AJwyopY0YuZHZjQZ4VqVqtrNEIiKihqUKn1M+oD4FSwI+tCJp1Lx+tRXbLGVDGU0jS66Rl0ZWRg/ZmxiISjenXhaXWNRBVphZYFGhsRQAeqHAVFSdzJ0I+KC88Tn7kRJdUgSBEASBLrKghGxR8n9BKrmOq9vHcXOBDQYh0ygsmUWMXnETj6fuCqa+ELQyyIzz/0fKMQfI5aMSjSqa+v03QZCUEKPrlzpJ2tAy7iNfAH2dza4xMAOnoFHh5o9Q6rSigwK0zIsbHZeOLpj7WanS/+3u82h6zHH9LyKD40Aw0KbGt8wYWCiAKiqIYlIjWDNGgHJ5VzBZZIwAjpeJJztMAwxmmDy8uXL1745te/gSi/5777Ea8zs/Msc0JhT5QTO9tVHcYpxkyyrYpRChYMbbXpdrGcIFux1GMRgiAse8Mm8/f+3t9DmCLiEeIXLl/i05e+9CVkHMMaDOUclEJMtFpE4dVLFwvF8h9/5WtrXDoWjf/u7/0+XcLv/8EfImQ15dAbXLp89bf/ze889dRTL730EhyYzZevXr3CLC57d9BeNjc3Dh8+jFJMIKYVehHw53LvY8eOMgQhC6Qwkf/pP/0nDz740Ftvq4/5f//2v0Zw/+7v/Q7CF9n9+uuv0W0gbRHZbPJhyR83NJ09f+bFV15Ewb967eqhAwfyJbZiLHPpyPLK0uKhxW99+5t/4S/+xXdOvYVdieVAtWbj9JkPVjfW2ep/eekqC4cYQlCKH7z8InpDZCd26r1333nvXQZ2jEtQ9n0C/Ld/+7eZCSBfxiKMWkAbhOnxeYWkf/RHf8RcAp0Tkw3wG6Sjt4NodAm0R+igVqlmZjVrHvxiX3Qa1biaLpGNeRXHwvEolbV5BQasGAgQARHz3NR5KuLg3E9GNAdyUlrDZ09iU0B2wxBraoskVz5KJaO9MhU+d7YMNN+rTzWXfu6+Ew+wCqFSKaVR7bqVfgOtNtnl9C/me7FQc9qy2jUmFLVGHiLDqPxqIGMXNgKobMPhTir7/jD3VrV1levh2aEbL5W4JDCVhbSdbq22cXU2FTtWLuYbtVirwSL/7Vzum9ud7RwTOKza0UZ9rwIdUGdnlEIpzlViMzB5ah6102f4gLSJZRPpPMtwom2tusE8lGCGNoV9JsqioGGt2WJJAZY/OgQWIbASGjjOAeAJZK9sL4eRclQk/B5B1DZlUDLRiM5SDsQZFhHwZDGo89aw28mxLX88u+CQEdl44EXiIBMBCP/xRAuOJVNX19d58kkLuq28CGuyR2kVEuieor0cSeSHiQORNGZBlFb0GkpBRtg7eFoK08uNdijsfEVhhzL4GQQwdKYHYfqHDkVPafSqXnBguVWE2VH0DDUDMSWO+XT7pTOT7Ec0y+ZGr0ZeyHnbBMQcoEZhDBHoJ3s6pYB8KDjQaX7URisSrXIk3MzMb/yNv047Bwh50TEgpqlh4O/pAAiRfe+OnI5B5poODfCRgBANpR3dEOisEuGeCmw4zEz+4LvfQ1hPFQvpfo8ElEFDJSKrIaobZZpT/R1XSaPhwr1MKhkFGOgiuwGIIR9x04WMRgEmpaAGe9XZDtlstLHecOrtwuLi7PzCwsEDr736xlf+6MsLs3OA51I8NFxOxuWJuKfqwZPTHUCYxaCIKhYyOIdAN5RZ8qIjYVUM8UGGQQC9AjIXu/zGxhqsB50Rl0wq8ISY9BbkAgIAQRoipoGMfk1GAGy2dKUBoKgRyks42vpbb71FKVCrgYx5h3IBivICE3zU6LjRoc2y7QZjheXlazntamZxKl/oz+oMTQzV9ampmZ2dyrGjx+m6mLMlF7oQwIK2un+JUTnyolxYZlgNDgJEIy+AAwc/GVE64oAJGj3avc8AMxSYmZpmuAE08iUhZQRVnvihoWeBn69AAxR+qEQcsiYLPMThK/QhxB3E8Vc8hMimMWpwJnz4BrfbSMJiGpcYnxDZk/B05yHjtxv/ShUzx+cRBGtgIEwITKj8xp/woOTq1eLQ8eibO3VU8K1kMpIp0MjvrAOYaNdPtrZ+7vix4xwVsrWdzcQG8W5t2IER+42OjBmRJGsouU+RJsFyHBAZJLhr3fouGUZNJOmhs0Sk8ZkjnDEj8nE9lf5mtXE5kkCFZy1OtBGbL8/OFsrtenVney0zbC/Eo1ORQa5LncU6qf7VSPzNTrqaKsAlVBVP8sVp8Y+Jafd7vgpBMdfq4D6iP44phjWgLOQFSxvoobEBBOqwRJ+bztrExCjM2kRp8XIOx/0kwePPcIhzlcdEYRRiIwGq8YSGRi7glRzL2QAdA8nuyEM+4igaq/61GhLpq0IBDQf9AMEFgxuVCiTkNmZNb0j+SBg5DkJpzI8IWfUQIA/E8WcHJclN32CO+AAhXEhI6Q7jqaMdqEWZmyCtDWugro6dMQdkVifSs4I5VAUUQoM8aTyGMWnFCa4Cqeel49EC3FGLoQdDxsAGdAOZtJoZCV3u0GjzLMbIpC9t7zz61FM//dnPkAtSFVUDEcMEIHNMFGF/B8Ck3List/Wrnun6iBQF+lh5o8hyal3opdL/+B/+o8r66kI+n45EaX4IWQn6drs0YavUIzGkc1yLibIc5Y/0ofaQxVyTNwLP+EJGNrUBzvCkgHigDENN+JGOjUngRrPNuLbV1iVlnLYCZeiAoZ+LV5KTig4DSUf3gnjiSgy0WiQX4cQhAlPZSDGSE8IksGeNzEWKEZ9FnAVuXWY2olBA1kNwpCFFgBGIyStAEPREoCIQkQQyH84FCUAGLPkSh7ECQpY4+AknLZ8AjnKNnxEqrwABAXVUlQrbDtY3VtmC0O2Nzh9lfIOUh0MoO4c2ermoVpABc5JAQ/XBtgoA4c60AZKd+KSCPbgEAMjkRRbkxQwHBityDMqCB/QoCxoG8xmcMgI0sCWOMu1y1SCL/TNEoOxgDnwyBTKBZA1MuhZCIIJ3k2RHINTAAxzCwYShFV17FWOdkYK00JnwWrXhbAx61KkXhFxAmNyxXQMHD8/AUdIgJPDwFb+rd0QIIntjdzTEPNYQdiOIrcYdAB6T+8gB4zsEtPWpatOSJ9T5iEUC6Lf2IFi5r6kzTHVihUQh3ssm2PDV6DawAeUm08zhsbSGs+swVDMHFYOLhsPaoCWlzwpj/aVENK+s4MR5a0fIqDyR7nY0sTqoV+lJyAmVHelA36DLKViU3CxlEhPZXIlejXMo0C9i0TqWYY7bldwHhmndlE3wNciRZCcn/VJc+wDU0SBIMoiloCijmk/Vdy1f4nek1Q3U7DWOk7y6AxfUHx4b9gAvNlryo4qxliZ7sRzCm86HvPUn6ogTtBMr1LUQrqoyjkHCosFxmJfsbYQFzKQUI+cl1cuYx/yjW6hJZNAjWH+JAtmlU5MrZTWHV1xHdSDQZTRDVU2wXZZZaKkO1AjJoLAN3wBVLJdAGl7vsFWHhEy8A7av2TP1QMQlGUSUzoyPYnj9K1wa5ngmgxZCs/SGCjTUVNij0emgyR67+zhNmgUw1BPmORohEcCEjPa4EBn2fLnjVzCHyOoHtEMtzuEJjz/15Pe//k2yZkwAblQKyFMCQiAj5cWRCknB4i1ogilfEm2EJ12s6pjhIKWAp+AumI8XzGp4oRxNC5pwIBLaCToBVCcLsafVI1IeqYTqfezYkfXNLTYrsRzvyuWLCFamczMMVFKJVqN9dW3l+PET65trjGU7TYYNTRYSTBRLSytLpXwpUeCwW2p2yOFvyGuojWBFfoE5xN/a3kKyIxapdwZkXTbIxKKo/rQ1ZB51s8Wiz1TqwOLi6toau6QOHzly4fx5psop7xT7CUCIYyfG11oB02aJZ9lwABA0vFEnJE28AJPRkTA6qVR3sGuh3R88fJA+aWd7hxkLErY6LeTy6voqNKzUKgWWOhWLDBR4Hji4cP7cRbYyMDeO7vDOqVPTMxK7WAG4cmZyqry5tTW/MItwYWsf/QfHl1EoN0BRWUhnHLXEmAOrGtPpjGMQ3KCHBIcPIQtfieOcxivhIIy4ZwaCV2qfEQm0IvnswoIajCkusAHdGOIKnCEs0YAJHfhKHF7xs1wFP+zoT+fLsD/MqRLrFjkceGu/kuB4mE/6jUSf2iBNVh9hKmCyWsc67zvrADqx+Ha+cDqWqgCYJTbdSDsy3Gr1Is1+Y3sFFufoluZw0MA2SkfBcFdD+EhbpuXdAksqaGqRxQ5ScyAKqEA7XIuRAboDMeKyoaP+II/ag1abETZGGnb9oSyhosfZtxlt9HvbKD7ZmI6FIwvJUjOmGwlodzRO80rqQgVySUT6ScSa+gAAqw+gN1HLVD+ppoYDDSoM6sk0oQsZWAgnhHEE3qyqPAJPoCqOjb0kuqWhS/Z5T6KaoMETS0TQSIxfxfj/MPcfcJ5dV4Hg310559g5R7Vyzq1kWbIt2zgbxoDHGAYPgxkYYIZl/svOAsOyLHEALywzA4444CRsy7KVZeWsbnXOXVVdOYeuqv/33Fv1U7klM7bx7GefSq/v7737bjz3nHNPuvE+6tcPffAqSJouLYxbIFE/NADuqSwrnUBpjW5g4wwgQUWixJRn4Vn6qdeKdsFWkSFwblxEWx4afJQApwnlWxvTk+N8bTRWs0NgFd2BMdhTnMXaxv4x2hxtS20NmjIYrG5cdjqENqVJvDM3ZwOXXBZjmOPKDfMpjBpPAhX6Olqd7kFlY/SjRiA6j79mKX/GMW1rVjPL8yZWZmVFXmlQbhSa5sw9dX3hZ64ufnzfV+Hz/EUMejQmsDN6F0uI3+nE5OVXX3Pg5T0jx46KgwJBGxdj6cLYIqNx5iNodaiAQzJmDFeZ6IeVlVXM+dMQBAREqViTmPFQaGt3CE35VKLkFC6JpqVRnGcLisTYFCezWJ/Nnn/+eTDOiy8+39V9ikkPf1oG/3XVVbxEm5samAwJ5NbZ1sl3IqxOpyerahvYO7P2YTaONoOZyfGxqbmz5dV1EDpyYjzpEmBe2AqCc0nb2Rhhsw9zaS5kN9TfFye/lhQ7g8vIIDyz01PlZSUr2lbvP3SAzX5P92n9FSQYNGiV3TMlwZNPPk6rQfF7/PjR5uZWMAelQrISUCVIS+KaOMyLtxoKdKanq+t0ODbzkjh+LGqPg2Iry5kkjS/jR12jFnk2rF+LITh0YH9VVQ3xBqbQ/qixoU4H161dfejQAUKm8VE7idoz3V2wrh3AqtUrKAYolumfnfFBG4G1p+YlmxoZHTJlU9NMQEICYYbectebGNFSCaC1HAvYnlkgtMRNzQ2G5cTJYwrJ2wg/Jycntm7bfOTYCS0F/tBGyN4qHADHIWkiq7uT1iygyN5MN3U88bQB6YUroG3JZVV6teRBrF4/892rpRmkXUvfAkg/AwslsA4WNq7YeYZhRnAcIbDNm8sQeafX3++NKuT4yPTZ7p7K6Xm8GSIyUzTHTVeba0vK1TrDiqCkaBrzUlxcEWwur8dyujPSlQIrnREZS+cIPxBCjhAEBxOULpqfhBKAk8O7lk1gKSJCz+zyhsp+IDg6OVpc3siXt6JueHayZ3hgulbkidDLweQJ3+eOh3l6SGAsKpObUGBgZoXyVYjq5I0rYWtjBJyCEMRQJQSV38Y9jbym5THyoJB+3VErvE0JmRMyDSQXJ7GYHfVoG7SiqDAN8k+asuCPoz1aHkITP3JjAnWmmryNh2hAiqVKe0m/4fvYYiSMvLQ9Muev5PDcZ0EJXEoL5D3PvyG3AcZxxehFPXMWqi8oTrCgoXXwEBFAkVNUAMDN+1qVarT7kq+istbMWg+cLtwoCsxcELSF+qPQPHap+qg96k3NMBZpGqLhcE2sEOiBgbHG8EpNe/Cbb72VNk88gGgTaSzNeWj0M5aODxe6+V1LJp7/M68ggTHYWho0EPw2NDc53fqZo0eQRiMTnnskHslOXLZY29QlZjjp6Nit6xHvJw3OLYl5iFUZkCAZwxIzi9n3OOYIroH3w/QA0KgVoMzan8WOSuEY2CNHD1VUljU3N5481QVvErxTXRg0eM2Y8ocfHOhja/TK3v0Up51trfsP7acb27p926EDh9tam08eP1VRVgpXqpTOTsC3ivKy1atW8rQAAK0tzdAurjxgI4lisMZdJ09ce9WVZCyk6g888IAjVzUGv8zJgJb4q1/9qvR6lvizs+zoKY3Fbrzo/IuefeFZJqFAHeK2Xzl58iRiANezFBJQgYzlv/7N3/EO85appZ3lNdddretIxbp1G5555im+EW9961v+jvXt8cN33fU2UeZefPFlvgt1dTZAzyF7WzdvFOyL1wKjp3e+88e+/OWvojTr164e7FcmYVH/ZZdcdO+99/zUT30Q9DbUNjz55JNqh6Zpd2+88Ua2nugcnTkzIXZHX/ziF3/3d3/3t37rt3bv3s3GiTcA2c4v/MIv2B9g83UcpTSnO3bsoGynK9aLb3zjG4bIpDOOqqkL2qBA020GZbbHMCngB6FlrCFheL01vO4O6THCLs8zYEhLBKS9HpLxPL/NmSNbWlxLM+dXC9kWF4KcFlq+ikOkEmdwQvjoJhCsLClmyR/7k8LH308C91za1DBSVDrJJ2YZx6+iuVJmqcHJkk0r4SyKyggHgraERQcirSHVDCAO7JsQNHSgXWzDK5bDJCKiaWlgZHTSR/PLy8RlKCbeidLC41tOvsBzy+uqR/rHhwdHe2anG4trKkoqB4rL+kuJKYN9tfJ8ABFFYWlg1UeeHfdYTLHS4Ax0j2oitt5QcKhLcNsh4Nak0CtCd/CpvJqBpAQbn9jgND3xe3GqpL/XtZBHHTqZmhI99y35CBYa6gwnaW81NCgOTIkMJK5ftTIuJwX2MLYpcmp1ZEolRB8jNgU48/HsNP9VepbgqP3MeSKx2NqcTiKbTIqjas3LBIHMHZiKCTbFiBcDo1Ba3wo68pCo2bwm9J/wM241WzGpO8WkAkY+AdDuZ+McKtyTzZ7h9ZG4UCFPwIilIdJ7jdeWaNgCnU6Sq2hG6peF4K3ZTw8iXiZ8xwLHIO264IKdu87rGgqZLx8Iqyts9gWfSaXJH4WmfUCa5EjHSP0gVxrz1/8gADLgMoL5EFX39Q9u2bb15QfvF50tbFzjrdYmo+yY7QXWTH/pjfh/IRKOr0VfF0o3iKl1mmpOE4GJYfGTmCj+LWVJXRZKcHAH80d8CJQ3idTE1rKIi5cLUdDc3GA+ePDeffc/fuQj/+7FF1/6/Oc/d+VlV9z19rf++1/99Z/6wAfuu+/+zVs333bLbb/xm7+xatXqO958JxOnj/7yL91+2y3W2Fe/9vWf+5mfIaDgD3zl5Rf/4i/+4ic+8Yk///M/v/qSu+y0YOr/6Pq1X/6d3/mdNe3NH3jPOzQE4mNrL0qG5YMq8726/NLLpG/nKEftUVxMBE/deuH5F9Q11PPUZfr55jvuFNzE8+uuvwZRAQ+Q6a7zLnjppT2dbe2O/wR5wUFMz2zdsmHz2rW0wedt2ST8Rn9n5+bNW3ds2nTnrbcePLj/Dbt3A6lPnv30zTfvbmlpG+g+/c53vpvIa8eO877ylS8hBjdeffVZwWaKltl2dB8/imAcPnzQnmOwp2vv888T2jgpBL+vAQYcLy9hD2HuYgdgNIeGOA/TozABsgEi4TECZoAw6tvf/vZHPvIR1MLUMG1CDtkUgUDzu3v3bsapjKCUaUA8MZ4BoqUVCBvDJ8RmdHSstqrapifW2PQ0IsHkKUhCnJQXF6go0IAMISqSyK+Wphfg57v/SWUsAHvOXPj21YxprVtXoX2zhIFywF6ROJ7Vjr5iZ2EWX839faQQkdGzM33TYwPzZ8dKi4ZLi4eKlw8XFQ3OLRuOv7nBs/Mjs3PDM3Mj03MOiR8hHQoHV3G0StI9EoxY6MpKK4UU9VPAneKwD6fVRR/LKkqWiexTPru8ZCYRGOy/UC3aDehLqirm62sGK0qOTE/tHxvtmls+VVUTvvlGE7sGD6Y/i8lfjr8Wd2h08c8Iq2sWSclkYXG4dd3YG8egDYizbBL5oIklw1IY6CXPzk3m+ctP5c+XnybbladtaR4S4UQHY/+BcoWalKCb3gMSCJl6YqUTHta+IBzEI7GXCzMehVt+Cpc4px3xKv8lexsTDR9BWg7AkaACz9G8iUfF4fJXyx/G9r6klOtNXV0TznF6em54aLyvd6inp7/L32n+WAxShvsGxvqHxwZHJ4fGpoYc4sP3ehmX3SpyiaqaOnKQ0fGJZJURW46lrfLTBeHGFmFxsgpDYZ0QkeqOCxESksFW4LobrmcsS3VJmo7aRUSwRKr0vVByLqrw80eV0FRFaR5kYeKQJRHKYA1LOmwNE8PurWwaLA/JgLuGQR/y589lg3FChRK0MhO5gAHgGnkSG5gL0XM5y0SvdSpvtvLGMAQbFXNvDWByjxw5vGHDevaLuEntYXyJAxWyzLSuXrPqi1/4wqrVKwVlrq6sOHTg4EsvveiIJG6GWssUcteOnR/96C92trdNTYwOD/bt2rntp3/yJ8ZHh+771j0tTfVXXHbx+9/7ricee+RM96ntWzeVlSz387JLLpwcHxGai/zk4YcfxvOaI3gc4tNUSO3ee++FYaE8ppPYeT08uP8AjIn97+o6BauilPh9vWxtbYF2Se2PHDl0zz33eE7GYqzoKIDd5vXrD+zdc+TAgfHhIVY+jhvs7+mBpK667LKuE8cZYlWUFHedOGGvsH71ms7WluOHj/ScOnnJBRfyiTl68NCJI4eb6urbmhonR8cevv++xtq62FVccaW3F11wobFHgbRNCzkHuOuCvpjHQNaVlYyacPRZzKhV9913n83BM8884w65O9kwq4i11s+rr77ahsaUeUhAZJdAjIZAXnjhheRXLvRDgarzIZqBxiA/lkOAQZrWvDk2p4UrT3EBbj0/J52f5PxenZMhPy88DH4RlgiOJK78FkeXUFtwGw4QpUSsLi8XWKEC35fzff/3knIhfUSkAfVlsc+x/sBzRDC3l41gtgQypWLIzhVXE+0w1V82TlGcy89CBqxMgDQ3r5Apg++Iux4FLiuqmC2pIdhYVjpV5KyW5VXzpZV0bpOz1eUsQFRaOldTOVI0NTwzQeEcZupFJdYTnI2dt1r91uUgeHnp6j4hQ6ygeBp8LCtDrU97cNJIGQloIjPEpLFwaXiuWsFJfg3NBuGMoYxFmy5lFdL5yWvvkSEPfJqFVDkpShRkQFxBYLQ2ZQvvgxDksORJGaP46EvikmG7oApQh/+UmXoW0hIQphyg45JY2qTo7UJjoy4/ddwzwxBq7SwLgoWTSspdsyanpyNUpZA002effPo5jL6l7jIQ4D7YUNYggi5FUbFRSFUk1mH5XF09cJp3ok9bc5PYW+KIYX/KK8qYXgTHn3zWcjPSDjBGOvZBaZ7ieciLYnZUB8sToEOgloohgvdFMcubd2+1xHN4R5v1Iw1t3jMpJkrIlxFOM7b4+3/0b56R1+bCqakUH5GGCFWeL2V5UlLc1txy8NRp+lmzEAE4IzIlp8cF0q4cgwMi4The80aKPGCx8JAp5QwLIBADka8YWuCGtDuxyAiEF4rxCjgS3UTXzUnUaDSeevqJbdu2KZ+7VkNdTVVb6x23vwEHdcVll/7Z44+tXrmivrbmoUceFh29s731b//b3/zsz/2MaD98j4U4FUV0y4a1Lz//1OrOlmUiLQ33tTfXwWjD/d0ly2b8CYxy7NArnBfmpsfWbF539PiJ2uqVTz/5IKXCzh3bYECKMaL5keFBuJJYiZpDAJ5/vPsrBPGitKxZuwor/fjjj2/fvhVD/fgT3xkeHoIfo0fBB08jGA899AhGGBZmE0vhVF1e9vLzz6EB4m5+4hOfamlp4hOBx3/8kUdu44JXUSHgPIN8ACoeH2x1+vjxNStW8Nl74fnn3/CGNzz99NNTAhaVlKAZl1988d1333315ZcbKOakN99wA8ohIBEsDNEbOthZF2iYgaiJIMxBBnD3vBkQrdDotrZqGy00zE7aQ+xGJQDX0wrg8ZH/Bx544P3vfz8i4QnwQEhQF7QffjeMcspLlKBAnAAlRmvrVmIlxWrSo48+evjo8dB4QgOJdTDrrpw2xYtwkkAolkhcMhTuOREAvgQLLc2gqIwQ0nc+jEXqn/gDTimB/WJoUEncuDzsF35gAgAQibjEfsPK2/yTsNAkAF9sD/k1iIZRw6iNvSWDEPiV/VWWcQa4WxHBk7sRj8RnMFsYukEDIQOiKjg7yVpgHgKwXalAr3x9VjxgQSbYGBTPVcYyLK1UcChLCZ7DGt7llpCKpLKCmaZNDRmO/sZ/kSV0rUGvXCYJurduIc+gAYFIgzE9S7Iby23BRj4IZzKris+XTEkhbXzPubyKNsTY539T/X7bjqUmyrCQJxqjjQsF5NyxYYmKDFGSIgXejitoZyIrEE4YPxQT/hizQOghYQskH5Qsehr1Jtl9tEFpJE+Bs803VBVbAUmKhNIwjejts3B6u8+csTCEXNb2uoZmO1kWIzWtuKU6KwfskiFE4XGFdbaopdYJ+S218dh4/+BQ39HDXfv3HFK4rURra3Nrc9OGDetiA0NOki5fJlpP6aR3ibp5IJGYk9iqivDKXkBUwdKSyqpK2v6u7u7Tp7vbNmzisUF6K8aZaGjaKZ6lxlt+ISVLkL0wgj/SfwwtMICUY5DTJgDKI0DHOobLQ/hXOHRaJKxEnxm/8YfXNWS1nJo0WCOrS9eRVYg8F2K2YgYCWMVMiYlP/Q4ORt9BpbudmgvUpQtSCB2SlpgMDCZ20tQPDY9y42LA+OCjj4wMjb75zW/GVjNcbl+56k8/9jFxunZdsOvxp5998umnaxqa/uhP/xzPvufAodKK6vnioe6+fj4uk2dnn3vp5bKq6paOzj//v//KXuPe+x961/t+4sEHH6xpaP7bT34GrnzmhZcbG5vpGZ5/6WXx7ATR1euG5ha1k8txz77hppsfefQx03rDjTc9/tTT7D74sj3z/AsbNm958plnqVtXrl77yc98ZveNNwsAt3L1uru/9o3e3v7xqelVa9bhvtmxMpTla71u43qk/f7770f812zY9Mjjj99www1tK1a0dKwwhvc//OgV11yDqNz/8MOr1q27/6FHr999I2Ohhx59vKm1Q+jSlvYVn/zM526++WbY9w13vPnzX/pSfV0jzTyBh2j1Tz3zbH1js70pyf66DZu6enoZKK5t7zx05Nh55+2C5R965Dvjk9Of/fw/4Nn/63//u527Lvi7T3zK/njrju3DQ6MCtgz0D53pG0D4T57utopPnOrCBl186eXi+h06eITyw9QgD1YKlt9MYTGBCpJgvrKgKRbX1CSxEmHGMkGGg/G1aCGwmORY3GlxSZ8DwgHfgQus67gin5/n5vJceUEXSLWz1VliNayqEBL4JGwp4QEbWeiUN89yhmYeBqMXfgC5YvecyN/ku48Liahc9bCWDsSStf4yBx/PgwW3nkNmnVurNfFcltwNkOzj2PxbDnnpKjpldgf01gZ5UDlm3iguYwlQzE6No2xxRByaYYjCMkRITyLy0UkxsuIEbIDL8Dks+RPpsyiVo87ob3qS5B4xPNC7VypKMu4i/slRd1hnRSsjba3HoaliQ4ayPiQziRTYzfg6OhLF5i5FWp74KG3/8ysL1ZVr0U30xBUVxFfGPQ8LXB2v8ocWfLb9jxJdiSgGpk6uA5A6l6tgDBMG91UMbxE+tIw4YnJmsri8mM4cfjYAMLJVBAVrgz2WjgOt2ZnpuvpqJlnKJmAAlIjdhGhn4zNHjhxljk3qqhONTQJurmxtba9lV1LhKJyQabh8pfEKBKvmJPqzMLnR2HyJvU3ai7kbHx9FCc6c6e450zU8PEAS2t7asnadYlvMUYizzQjqPzXFkMmAGEDNJdlXB1yG5YdK6huaOBbQJxeXV0D6b7jrbRdfd8MgY/wkclGRPBqmMal5McuLDVmYHdi08OT7Sby2R/mrpSUXyjHQR559/pFv3hv+vZWVhFOaxDuBeRI/4bGZKYiSt7ZY8401dXaYeM+auurJ6fBd0l8SZ3OEbUQV2lpaSUUiPTXJVl2P4mdN3fDUtOEnWPBJeKyzsp+OM/jO27XrsccfxVbbCnlIqhDmkj3dVdW1/Bb1wpqneKA7GewfcggM72VHm5G2HzxyGIYSr39UUOvm5v7+CLMMWsisMcVYcvViBY4fDyMcLaTyVR0EnY1hKDVpeu3kVq1dMzY8UttQP9jXb7KYllojxILSQrMNjTpobJx/hm7iiOkGFA79OQ+c8ra3t0d0OKy3lrvq6xpUan6xxueftxOxoY9VI6kLMkB2RMwFhypKHiuFfJ86wc/tO8/r6e0TJHEyeWwZBB3B+ugLLhKeVSM4pCJeu3a10+UqKkkO2UwEryOPQVYLyqRYzVAyuDUjhhojr0Yjw1VbRaLyETnS5HM/pPM4cOigfa55ISO1OWusbzjT17uio/PU6RMr2tsnJsfMox7lphKCqUjaE4VrIYJBl3Omp0+/ArUUOUCr8kw6iUEDKL01IJRe331RDXqA0XUPFgH/hwLjGREMoQPT/pzRRPB2jGkwH7FIk8coPEDQLcC8n2hAsOSzLQ2NcAQEx8GyjsSWKbMvRFcsEIBC7XlJFBbAOSvkn/4Zbf1uHFFAfLn8pW+l88+cMGSBrxEJrFAYRC+zT6E7CEIiTrqCAr9h/JeJl29VEFhgGWAKPLENu0JCipIQhGwxB+YYaYEOYV0oNb4O0X7MPZZZOwOBBAYx1PLb4PtJHoIGqMVDPzFtCEDOlruQ0z6XyOnca8XmDO52DlH+4iUbIpR/ee6tzsqfCIDGLLzKu6IwkNVCWxT2JOm872i4aVYCR+XlbJ+DABDulpaDjlnyZVMdxUKss0EJcBeE+GzDtQjtTF6cAda9Z/pPnRIhuJ95eH1dM3NsyjfRxBoami1a3UTyxELTnNx4zQ6ali7rR/vzE/d8eWLfYF44bYc1KXmFPcGkE2Un9h/YayM/Nj5cXVO+ei08s8qhKMa3rqTYaXA+rK2tMa0MB9UFr2GcYQ0QTqEceqrKKvuS8y+74i0//oHBqcnQxoaONLpp2EC21ZjaE7QtrZQFAgBWPPn+r9zT1+bXwdc+BJbF45P/5Q/+qKmy2g5XDERGliweRqcnqXAnnCtQVg4Vnp06CxeLamsWK6ootJbhl6E5cg9IKpB+OiPFmMCSwC0Yp2RHhKfha6QDgUDHx4UoQrM5/UIQ+w8cIHRGXeQ05nAf8YWxGJ6YqBWWubeX1ELIaG8zaKXzZyZITX178PAhBB5gKA2PZEuXLd890QAqU3gftjK8DQ2NWmiEQQt6gGkl3nVCAKpA0K9wcCKzhEJ8AuESfRDyQKwBfolOw3raj34wocGVewj/IkIaCQPausmgLonRsbG6unppxTLwl03DCF5U4XN3PLW7DDrrLUc5uqYYGWdMLnMYuc/FhQwAJaRCEU+fPqX9nR0daFhHBxE8HQOh/6DSPNFgzdC2rPhVqRHAucfn6bBM48OwFTEA7dK6md9qAJotv881AyWjTkCkScB8SRynm4qSR4Y8gPqoOqOkcHTOJyYoKNZkGHTJrEx7kQxjag/ctXhl2MNeBwpKDE0QANtpC1Me20cu8bNz08EXhxwFy+gvTLnx+Pxwg4Vlp+AEKgxzcWUooYoaa2tEU+Cmw80ozktxLrrVnQmAMgvgrrioAjJFN9KVn+R0flVIv/bna598PwTAV2DOFQQAADPdgeqK5tBcPsXkHcEmZ1mCtkHk/JKc0zE+OWYcvUHxKJOZ61mQsGf4W4T1lZZDEoscd/oOjKbtOIohf4EASIJ4w2Ic4ij5RADQg+h76OpexQWFNHCXzpdshYvwVmmvbnsWxzOLaOSXE8bP/Q0JQwjlC9Qi2gyzeRsEQF9tcaL7HrIeiHxnEYLiot6+PofHiIWCACAgAAikpDJDm1gGm5YgndEdD8HlmZ5ejAlpj7cd7bgW4SQ7RBhiR2FnQIUCHINRCI37wgm0GY/4PHcNyOpX7q+Ey3PE2vbMd4RtRlRDw6RXlwAuH9LJ8TO9XSJrMV2Xv62tlVR6y8Y1DXXVCkIeyJIa6uusNdIkpeVVUV4RFN26heyaVq1+xwd/ZmB6Uk1cDDRSNk2ScDd/UfXipW0puQC3i4//B/8q8HVzLJb2XS+twMaKyi9/5nMvPPnUisamycERukennzJVmLSlEUVq2XKimJDRmdb5ZZ0rVhw4fKCxrQV3TEoADZkLA4s8SAA5GAE6AGGQBXowMDQi5icBGeiFp9ztLcim4U0yHyU0t4WjFvSEbCADaAkAgAeFGIR3YEllwg5K44MKhZGbeW4noCIInUZXlFHFGkCjba2AHHjNE1gyDy+cfuZMn0ZCW8xkOBFYTX4qWVGIkGwk7Gi2lqjRAGkA9K2KjFILqw/6M4x5vuQEgcr0EyF0h1shZfFKw21hMty+Ag+mPbS+a60WwsVIl9ohUBl8hSjy8+pob1eyJqlLe4RQ5YtgKquqw8w0pD3r1tmLSpdXVFlzStD4HOZB4T4xdIiNMU9EscTY6oIaHQgqkWmkGpWpFgkVGXNI3whoBrJn4rSB64w7KmscDLv8vl1sVah/vNVNw5V3CZglGexyAMPwaHxrNn1oq59BzZOc+F4EAJPEGCebisD0Mlvplh1TbsZ4/HrsgeB6AcQEyqguL60qKUEDIDOUEmuYuSVoMOT0hmbTpgv948ptdT9nSfxAP1/7+T9NAOTPlzE1SVjdIABJ6AH1klJhK2FACuZoIgE9eKIKgO4dBTxNXzAzjG1MOwC8P8QLRQZ/r4h8BTcZmBS6QPXUQAihrrgy2cvi6LSDjmkLAjAJIrUKAZCLGVwenMWWxoxKA4uFKhYxSOQLZ8jglEOXnHD9q3moHRavAgEwOFodLrPpgtH8G7sTgTM1nOHTEgKgF7E7EnV7+TKSFvReNIi04+HMMlPBPxZQzDGnssxJzkocdGd3efLEaYunt7cP/G3atIW1A99RiFOQbUMBXRhGRMvI8FpiyQYOLUJL0RV7IVtWmp4sCEqwYUwMVL5CJ1wSIjie2rLFlhNU2XVSgJYzjGG7yaZTvK0zsNip0yfZaM/OOepjhSN/16xeSRUzMtSH5DBJjkkXhHU+BAhOBbX3U1xZQ8O/+KV/279IAMyFGWZsqqI0gbj9hdViaDUyDfD/RAJg9Evtqcan/vrP/gtZpGO9LK3RkSGCLPIfBmbjZxklTlYyc5yaNnfnX3Sh6IkYcJYhbGkgSr0DhvAINIRjPXX8BDwCdUI6HiJzOFxWp6R2DqWBs8wFxhl+GR4ZM0d8IGLEU8wiSHNiimHUeGytisMsB/AEzk3Aae3DMvYByu/viwg5MJ1ZaGltGuc/VULFLUhnhFtQTuDiYdxUyJpgXpDrocF0b6itQdRBSE1tlfvAYJ9J5w3ikIDBoX6HfJHvByAl01iSd/DP9TeiF4LCimpBIAC+r5oaWwAG2ON+5Ymv6mob7JaMg76ntSJIw6zdquDndpNAFOR4HvzBtLUW6wlqlYbV5Ul8RjGIsjuhGiHsilEaHq5vqNWGCHE6uwzGR9igb2No9HTN0Bln1NdowP76K51HQAVgvqm1BX3KrSJ6Yhhqf+Nzr3wL6oCl/AgM+uFJZZkwR0ECvVKC+fUQQncZeUPqeSb2nsu5coVtymnPQ6UUqy8cj2OhJUQkQwZj90wAALyrsAOQAQKLnQGSbA9hSth3+gHrBeDbSITjH/OeFt2uqCR7xdyxRhDrzAhAjBRN2BSWhzg+5byqBAZqyiq0AIhI/792qVoDID8kCvIOxaURMQgRJNLDrChBxdB9/4UEAL5wQTxGQacDYdvqBGO+LNjYFAgFTYiSE3yFQUp875dueROSlwXsrbp0yVxISJvs4G8XMEsMRiFt2s4ZHGsp5VjYMSz8XMzkZ+HbxWcpu6fmZIH8B1XKbz3WavKnwoWzi0aHCZO9AAV2SPdCsxv7pDlH93GyqaqqhfpJeHoc8NFFtTvWPzi6ZvXa3TddZTcNAgJJExqVlA8OQShhmlbKHqwstvwjYxOUAv3OAgQs2WiDoUYyv9GU3Ay9MD7KyXwTWtBQ30ppbCsRoB+H5wCjswRq8sBZM73DfJdaG1d0tq4Z2zI2NDa47+grR44dfGnfV9atWnXxRbvER8aZsPEwZWGzJZbEtORU8EMq9Ts6qcvgPrrtjxQvFkAa7MXRKgzS/9yESqdm550oe8sdt3/tc19sbGzq7+5uqKm2gMWHsDPjTRL7uQjswwM41hsCap/OdYvB7M7zzncQFbCz3ts7VvT2DWzetv3+++9nzRKhN+fmL73koq7evu4zPfj7mqK6jhUdmNnzzt8VGOT48R//8R9/4vGn6Gmvuf12wZEcfdW4rH54oPfH3nrXgQOHkPa/++QnRMaH90Nic+BQE1PFlSuJbi7cuRMiIynffcO13/nOIxAuFEZiAKHBEoNz84T7CFdLY2NtwnGa94H3vvcf/uEfbrz6ymeee7azs+MDH/jJRx99ZPv2HZ/+9KdsGW+99Za/+qu/fs+73sUL4X3ve+8f/dEft7cLeFd+4403fOpTn165or2+vkGeb3/7PsFVsRo3XH/Ngw8+tGO7k2dWP/74Y3fd9da+vl6I96GHHrrsoguJv99w2xuRik9+4tMlRRW7dmw/eGg/1gNXYZVzX3j2medf2bfnLW9+60MP3r9uZfsTTzz23ve+n1M0AeaOHbc/8sgj733H259+5hk4d93aVT/3cz/3la989brrrv3Hf/yacbvg/GudhPPv//2//7Vf+zWRJIz2e979TvNF/fuL/+bn/+zP/qxl83qucB/84Afvvfde4H3hxRd9/vOfX7t647/6V/9K8NTjRw9u3rj2pz7wfqaiRpLjGLcyxqA+v+6aK7Zt3eHUMzoGAUd9i8dCclALw4viqh1Osy4+8IEPcDdDn+SBclECdlzkY9aIBShPAWrzQivcY9VZBYGYczItwzBxCeyVxNPJDcXrtChwk7TNLGjrqqtjx4FUTEwyqIQWQ/QNyYl6KcKxUOdztOTBpS6Jr7sEuxUa9D81Ec1eghajl67QviJ+MSqB6UIojMEI9lBAeZfxst2j/41YWaUlOI35qUmiWOjawiOHUIRPWA1lubsSYI/4Mn2bexQ/0BkYNYuJEu42HLB9RnAqgfuhReKUwidLRyMjU/g0z5+f+SI9ki0mOl2FRH6o2vzcPdoQP6LL6Yv4JDWHsC/aHC/TP+ZVjrypMdOh8aDzEmwD8memUEw7YJckCgNWYmZ4iOV+H6YPnayoqnvbjXfYVukFI3M5dYoD6fDIeHVVtf2jw6+mBXOaiuB3YyOjYxO2ooFwc9M03ghTHhsTlEBjcptJPJyNRWOA1xwYOCKyVrBCdhBOsKlScJyqbR9VVVlbUd8C7ljFsP0oLqpsaqrYVVe384KLBCV+5umnPveFr65fs/qSC85bvWoFhbV50ztKNsQV9NrJVtdWqzMGIWgA9U8QQff8M0bn//WrtKqip2/AKVNdJ04eePZ5ilbCKZE1YszsWVOQH5PnMmhIwuzM3NjU5K51a6HgA4cP3XDTboiVnxTM+8ADD5i1N9x+O5bwXe9+NxqwZt3auuZG3MCxYycwiUTVCADZseG1h4CnbCOYnbBf/NpX7yYbaWqoe+LRBxllXnnFZUDxkgvZNF6AQrzz7W979PEnoNeP/PzPQWdXX3UtS9Cbb76ZlvX0ieNbtm5au2Y9A0fSjLe//e3qpYO9+eZbzeBf//Vfe3jJJZeS2Fxz1RVQKnKlVPuMbVu3dna0o/TvfOc7g71tbPBcwAYC9yuvuFwXiMUvv+yyw4cOmTt29F594F/8hKjUIEcte/fscYCB6/ChgxdecP5jjz32tre+9Wd/9sN/+ZcfI+U/f9fOl15atuu8HTDj7t27hWHQ5W9/+9v8jfWos73jvJ3b+eKuXtkxOTb6hptvdH5DT9eJlSs7r7jsogvO26lGhwzD75p391e/yig59CujEfjh2muvIbDavGmjxtMofvOeb/B5Jub6zKc/xan8umuvCXunp58aHxvdvm3rxk2b0IY3v/lNthS8LsDzr/3arwpbfeZMT0ND/e7dNzY3o6qoZNnGjRscHWPKqUlYT9h55OWPuJpnXba9QxWQimwghDyjH7/6q7/6V//335hWVqdGjPURRgqScRVEQAl20kJLeGHBkDpQU3CDFkCwgWklZoxARouW52c8Ye1Qa8pLa7n0YJ/tP8Q0C4YtrhAgeyZwz/xZoY4msGkEbrGk06VQIFu4cjv+593VudCNjFYWfxInuDQUqtItuIaQWSiuQMfBjOtprC/SWEiIRSoT4NCUhVA/C7mICQhS5IyScvuNWrJIjZLxaP6U78odl8lfYP+U3whAQC6JhSdJ+R5ypJTId4cFOtuPuVhQIzsQVpHjEx7mGqHOfOWfKvIzpwtPvisRxCrkO/4y+iiMT0rEDsV4wY8aC+0zhLRcK+BmPIS42UXltVX1Y8Pj+/cc3vvSK2d6nHndcuHFl9126xudL1JeUVtSWsH6YMzmf3KGdLq6to5f6+nunsNHj+w/eODQkYNdPadhf6PLrxsskj+RJ5FFsAKcmJrm2xUAuvjnra2mt0gIdQMtyejEWA85z+lTTjrsdgJrX395JfF0kdBXQ5SY0L89Z2xdmJ8h3FVbt5z/jh977w033DY+NvPNe+7/4j98dWDQDsRxbVVkWLb9zmTuGXTQQyD9xN28es/jlsnA0iHNo7f0yY88HbsQsxCinukbbr6pWiC8CChL/5GOjZtmSr88nAUILvDJFay35ulZ7FDFSqPw5CH98U984pd/5Vce/s6jwtkbmDXr18nuSHcnBtsufO5zn8MSOjSRrQ4xCAsRIhEB9CnMDxzYj78mdRHsDFP5rW996/JLLkXV6+sb+xgptnbs33fwgl0X2iDRQOCeN67bWFNZc+zoCdIYIZff9KY3d3f3YE6JntesXmc7iCHduHGzLe6aNeuwEevWrcfO/9qv/boty5bN206d7GIyAG3BoeUVlbiAl/fs3fvKvhtu3P3Ms88NDA5t37Gzo3NF/8DgwUOH29o7dp63C4eBhTjd1V1TWycO3pnevuGR0edfeHFicorGctPmLWvWrpNubmn14YaNmw4cPPTZz34OqSO6dAiBMwkam1oYNQ0MDqOpDi3YsXPX6jXrnn3uBQ3v6FzZ0Nh86nTXjp3bCIVY6bz5TmdNvol4Ex2FTO1aVq5c/eJLL1fX1Fqp+w8eLNPuqmoKg6PHjsHsA86dn5urJ3kRyPPw4euuv/4Atr2oqLunRxRumidv4X24BPtCPmLjxkHSMXDHjhy1yrZu3iIhwJ+qWXC1NrecOHYcY0mIBLfm1U1w5HMkBC1kyYpyEw0hliRvqJrnVOVGnkzJLLvyV+cgh7zwC6AbeGoRU3mYsEqgoYzaYP8k/Qk+Ou+Kq4qLGsoraiwiQf8gNKLVilI8I4mes0QGJyZYgAyzo7Kzhz4h0lx6rk/pQFl/NK7Qgv/XEnqeL3g+mh54OaRd8H6ovAkmeJMkdwkqbGQtho+9YDCpJc4QpzsNGhHRnllkhIa20PI80H5m485s34kMZP49V5pG1jhGSBaI1aUKRAVmzxeObCEVEUymLELU3nKy6TPTEn56WKh3ocCE95c+LLTqtYmFdi5QgtBSWM+FbEH7GOokLZnm4bptusuKK+JkgOWlzz71/Msv7RsYGG5tWXn5ZVf5W7lyrUO0KJKJaIm/kqA2fNYPHT6KQYP6uWuOjA2TCRnmqCyMNEMoya4RUosdEnOy8G/nNejA9AjCE4RTMwxMmCjFPEw7SrmIkxRRkt3k7NDo0Kmuk/jWZ59/jqIMpSX25U8AKxFxkDsLAULBMTmGehRt3bjzDbe96aKLrxIr/stfveexp57p6R8aJ3Yy9fQx9JCdnYhNYQT+v5BwDlJtXd3pM70NLS0XXXHF8dNdxgcrYUbAId17RDBMIKW14MT6BxuYd1wqGTScJdoMWxECYopBCfCGN8elYhs//OEP2fcQPfPb2rBxHR4H4//8cwhA7Y+/7/0OgVGwc4A5AP/ET/yEYvG8pOG7zr+wq+dMY3PLug0bDx4+4hRGSwbZHhgabmpqFsBnz959a9aub2vvdMihIArbz9v12JNPXX7V1bfc9oa/+W//3YfIeXFpeXvnyvsffJjV/NDoWFvnCvP1uS98+aFHHr3hxpug4Jde3nvhRZfgG/gBrFq9FppGkwm1Xt7zCumWt9ASuRbLywMHDx8+cmztug39A0O+vfyKq77wD1/ycP2GTUEVyyoe/c7jGzdtqatvHBufPHDkKOasrLJqYHhk9br11XX17IBtaDtWrnruxZea29r97DrT29TaJuG0HGzC6rXrwPMzzz4vENvmrdsvuvQyJGVIWNHhEZtdVbetWHnw8NH9h49ddNnl+w4c0OurrrmGdd+Xv/rVN7zxjcOmZHz80JEja9evr29sfPrZZ71qaGo6cOhQcyvb3LGenjOtrW0WV1dX98GDh6677vrjx08cOnS4pYUxT7chRVBtd2VIVtQCpkqHNsXigvHJf/D4mPq3vvWtvMCkUQUkCtePwNgZmHTyHwsZpjXpcvp8KWwn8Enoa4FHjQcyxNJLl7o8KWAYixw2DMZ0braqqBT2p/hlRRJLuLx0tqRoZNnZ0fmZwdkpRkgjmMCkOlYplXmWKywUpXDlahnMWCh9oc4f9T/Kz0VKoDruqlavuyswXaJoIQzCjS4vIiDAaIWJUJh7amQWggXyE9yusqK8vqY2NgHOpgyrmIi5Wrj0SBr2V6O63D0x9JCdO0GPij2VJ7fKW3mw2NYYFozSCTuWyHwgSqShurqygRdmjYlHKW04rP8Sbo1WtbVq9+pzfcnV+TI4xFSmJ4WOS7sQXAMQY6HXsU8JPJ/HxLOUKMHU6bge2wb5ArNTzpe7rEpIPAN28MCR++97+OSJnvbWlddec+MlF19eX9/sPGSiZwphhbBLd9DSnn17nn/p+X0H93X3do9PCd3ETw82h/TDJ8UQ0KwgtTGgOhmkMARnFE0g1DDln5gKT0IvnBMRkTSUMmxS3TMhCWu1onn2ncdOHN27f++xk8dE72YNidWFrSZHJzAk5cvKZsbPTo3O1FU1XrjrMmTg4kuutLoffPjxJ559cWZZ6ZgjGWbnWleuDGuHabNj+Eu00t3wBpyQ+aV9nA4aYWsMB42r8fN1LyP5utfrZv4nHrJPZYIsCHbv0MDWnTvWb91se2pPEAM1M40NsXeNmBrOtjvTbRQZO111xWXHjx1pqK/FVVJ9P/Xk4xvXrRVnbfOG9aeOHxPBjRUMAdyO7Vu/8pWvCGT21BOPOzxyz0sveky59ba3vPlLX/zCQw884HC09777PR//279TlK1ff59TgQcZRAjDAd2H5pl59NR095n+9Rs2M5LesnX76NjUhRdf3j80PDE907lq9ZPPvMC7qr6hubqm/vNf+NLQyOi//ZV/95Wvfv32N775j/74Ty+59HK05OixE9Ao1PzEk0/XNTZV1TV+4ct3C7jyq//hN79+733fefKZbedd0NDS/sKefad6+mobW/iLVdTUv7h3/5oNm4+cOO3vwJHjpZU1/sanZ7360t1ff/u73uu5QoR42bRt51e+dg/rPd/u2X+osbXj2Kluz6+98WbkX2avVq/fpPCOVWs/9v/8twsuufy8Cy957Klnn37+pX/5sz8/Mjrx2c9/qbax6YMf/tn+geFvffuBqpp6I7Dv0NGu3oGWzs49Bw5U1zcdPdlF1XnfQ4+qblTEvPkijb/+pltPdveuXLtBLBOZ65paVV1Z28D3bWRi+vSZfnvQ8YkZLg2zZ5ezk2YdZ7vX2bG6rLRq5Yq1p072VFbU7r7x1oce/E5720oP8UqXXno5HT4RENSPEbTBAJ/2JXALSkDQZxeVEQsCQNRGZGRDwCtYBmAsD87A1gF+WHpl3AViM24EkJ7I4C7tuSWLAQNRgAcw4H4lnNvQUVdfhWcioYUty0pIe7ot//HhgfmzI9g7cuJKm3M0yxmDcVbU8vXrd70uuEcdr8FWr32Ssy0t4ZwngZSXXOe8fW2BFrOHgYQCNSYqF/gkwqJZVfQbIdKCqT0hESFjtUXAJxeX4uhHyTgwvcWliXiEzkN1cYVxUEZr5BvpQZLnwHB+BAJO+56UJ7JGe5M/QX4ePxPNyKOfETrKIb/n+S6R3zoYyivuQZkAeJszQLCFNJQrnToYqF/XstWSbnoe7DVD+OSUYJ5lS9g4IkC4lOMUPRgvRZ7q37/vgD1Pa2vHhk3bWJjhw8VZ4mCJ3AxHrKvhgeGhEDEic1xVIfwQJiFI4dilT9GxoKdmKdKIDyF2gNhrLt96lvuy9J4z6kX0yLiHCtQvAYvCuCk+SZE+LQxiiqaGhvHRCSoB5Bih0Rh0JALglxd3rGg9cOSVE6eOvrzvJaZgjc1128/b8eu/+RsldXVmN7qQ2Ja8BqB7Q2EJpR7FgEtbeKivs1he0/Z4kNv8uq9e92GezXNeBQvGFYgT8txsDZo/M/fE/fc/++jj1YzrEebJsK4ZGBqaQqfLSkbE1m5scIwBFTmtu60Bz1IqcfQMhRAaDG8xJop9+E+EdNeckvxQ6VAexvoUpqm+ntAgqeFn8eCoXmfHCiZq+g5ldHauxHJqYUTKr6X8LyZl9iF/aSfaGw37UU5pXJY8hGUM2gUXXUiHiVQfO3yksaV5ZUfnsZMnKkorbGuEedq8beuBV/bpY1VZVXfvGVsZbl/ObMQBYAlb29qQHHSO5gkegkMiRlNlJSq0bu3akyIisE1yThHux4Ga1dWe19U6B3jAxoj8/sTx49Keg/umxkbfKlP4fk2jBEbbHCr18osvrd+4wUjV1NUOcDdbNs8ok1q770yvFljy7W2tDnQN+UfwVMTXcUzNVVddZYuDua4XDojIMp0So78wL3G8gbKj6uvt1ea1a9YMDQ9zIpPWcrKg5qamp55+WvsNENe1o4cOX2I7FQKlaboBI0YzDHQp1aF4aB3zjqnnlSYDhQrU397ZBpuDFqic4kRjbDDYEd14442001kEBPZ8LrP93LGjJxUis0kJGWmSGpEjYXRcynFFKhZnYlVxhbBRshGyoAIbZEse5gYs5YSlmpvn1TU7McU5sbmifH1jYzlEv3x+zDggMMvnnHnOWhISjSVveRcXh3dcGMmk5blu3XmpunNvaio8Wrp4lqZlOOfna5/8oAQATlAmU7O4J/Y4ygxaTOtbJLgH9BYeGokAoAzj01PJGrIYz0uwRa/CoIqtrXt0IfUidkfBa/sLAZev4VxPggCEqjgNhKepxoz6cdwuTGtGMXk08tykjLFfiRLSCOR0vguO4RMGDC4j7mEu9p8gALqWCV7oAaRTO3VWMfByaki0WZ/1mlsb18qBvsGnn362u6sXe7Jx01YS/6qa2pLiCgITpxnT6BK/Qv1gkdwqkHL0Kk+W4Q10k5qe7pE2GjlNuI8AxICcc0VjFqdbUxbT8qbnaTByyeRJ5kuZItvIBjfD3cC9va3D6ec15dUwoOoQAGVC3SaxvKK4rJIgj9tS6enuE8/veWHPK3ta2lve+e53vPGuu1asXW0kqQrtyVRtYCWsHJ/rCjRndmRQSwySMXq9y4vXe/w9nxXmd2mOYCw0l/X31ERTXS01yHB392f+9uPFUFhJ+ZijrBjjzs31jQ6FX9jMzImTJ1esXnWmt2flilVmYSrQ0/TK9hU9Z7rBFq386PAo4ylidyadRpcYSS9QFtJOTkw0zDCInAT9BOW6SeYAFXqCCFF2aUlzS9vJrtOZkQQqxoRBp5ipOE3CSeoByI7oibDIoAkf1DsQMSQgXyjPEQKkwRzEDVlNVa1KrQj61fHRcWnwIi0Ox8DQIPaBYa63UCZjASiboNyTk8dPNLe2QNn2XjyNkTo5oW9vjx4/xiIgmIE5xgiVzp/AeLLNBwXuvjVR5Jj4GGf8hiy3rJQlVV1jQwQdHBq0ZDtXrXRnmeZuKOQR/jqOeKRU37WLHEwHzUgy8RQhppwon6BGe8AGwkDaHqS6qAh6dZyMSKUE+mrEQbKObW5s2vPKXtt72heevdQw9rk6Mjs1TZZgJBWLfzdoAMDwAjBkgCuDnwrnmaFY66u+vo5hK1KNWiAAMqDKdAAIEkMg02FCs2RYZnkmxgN6la+cBV/fFDg6m4FmqFu4xzq1LAOeWa+7mxHdCR1TmIDY4ZDzz3KWckIfIy5sb0d9XUcF79BZqH9wemJ0btZZLDPFRQyEuauZCL4p8teIVhum9LyV5pd/LwKQF0xh2bw2oUGuwvP887VPNLrw6rVvX/skE4DkDLvAv8sD/yknti9BAERIC7fYjMIxL3X19RYDvxjcGS0TFQcW2JOMSqN2liOB3KO1eLQYw/QrSkik1XNqn4wkF3h/4u8keIkOpt1AlJNItCeuPEn5YX6+MG2wHiFIio5ABGz6VWe+lxKA7CYWz3WLJZYdAJKnbWk8EQBpuockeiolLPcTDGXjaGKf555+/pVX9ldVVG/auJU0FvZnyiliCYwCpCjoQDMLa6jKJ9FCBGAB/QFIMBNkicfgYuMDtvKVmI4gABanpbv0bqAKTzRwMR0EQOEFrCuZqC1RXOxdcLX5SeQJ+lC0cc2GptpQY8LjzD3TSpifqKGADQABAABJREFUmpkk/6pkvlBlf1pGHb1n395X9u89deb0irUrP/ihf8mMxGq05IZGh5VT11CrC74lnULtpK1/z5WZKP5if5b86+2SX//jZJ7N1+azryZ54uPmaOoZoYFKi//xC1/a+8zTnfVN48PD5FBIXe/IIL6kjLt/f6+eQgIMc0kIA+5CvWhN27hajMSzpbYsKHpPTxf/fPMFZlRqeDWgtDwwBZUcvvtkV7czeah+dISuFUoSnIfIkXSub3AAraWkIbCjrXEcyrHjx1euWIEX5izZ1NJ8/OgxWKOhrv7YieO4paqaSuQBcoSJNI9Eor2tE1QEokyDrCVqByoyMMEwttrgAcNNTZN2JyuH+0ihmMrYbPBcRsbsNO3NGhsb4EZv5ZfOZwKTmHd3d3E+Nw94J6XZnq5cHb7QahkcGAZI5WW48joGbNIMQLksTBH827nOLuNVYBflpPgKMfjGxzH4LihVm+10jJGpT2uNoTNXiaAHwA/TTebOdGrr1u0CkdLRAA8wCQfY1bgbT0oXktKQECPts2drK0BhsTEkwlGkXZr8tGXmyBP5yTbtseRHXMmBdRzEq9omzNzZLpg+c2SCzE5MYqmjF7r9RCRkq68L5wAJjSfBMP75ZxJpB673iXskEgEACS5YMYxQFncACIDGKsSqjLBumI6J6eqy0o76xtLpCfKfUez/vNVVxPYusL8DwBK7EEYKy4uqi0rLQ5gedOV7EoCoNvUk3wvrp5BI76OrOVG4n/NEowuvJM55e84TeARylMdSgbQgkEA0Lggr0OUyqxwBMI0IgA6YBqLXqtoa7L/4EOWxnZzpZ9QclkCxVwrM5+vEpQIIWDZkyWScIQZRYGAuLXSFJsDbUDDEZcG43EsrAoWlZwtzk4p5fQIQAnxeaWqYD09Lsw4ufa4oUxDVRFeQrtzHwPvWWYEAhGgr2hDSE27v4dKSBB0ICnDXBkFmHn/02dPdZ+prGq658pr16zePUopNzIh15VOo37FJg8OCcIulHe5awD2gJBEAJS/2IjaVS65XCYCHy0Ueso+IAQRjr94pJwpPwGIhHVQiXYXyUyFxmnxQmxA6RY/cA7Jn55rqG3nb47+MCSF+GsyYxYnJcSy/NYYYON+wsrqSYfjDjz8yPDly4tRxLNXP/MzP3Hr7rVbRuBOixyN8TeBDcZAifFOofMIYgOo4xWrOTVp6X9q8pc+/V7qwDpdm0FdiSK2dniOHKZkS6Kaqovv4yS988uO1ju+lGJkMF0KajpKKchsXDmJ797wEQzKqcaoUgQzOgEiH9ghqxn0I15EJACJhnOiuqHkwmJRPMPXxE+IYs4epYy+E09938BB3KjuAvv4BcAXg4WsR8xiPnjpxkqjE4HkLgfpWMPrkYevouHlo0lHzIE1UIkEcgQQlJHNPHSGa8BOmS2FqzvIhYKNCPCWBgXVmrirEjoIitS2RH+HtwlGLDb7jWVavXsv+ks+JuAvJ+gi0R1AQOxX5oVGUkoVwZ2c7dAmZQrtct5Rmon2btaYYODolxAN5YIIwNuaU3Wm6VnsjhIStA9Jib+TtCQQshd7M1EuPMlxh+VERqDkWbmLwYheVtuAMEECJ1TA+McZ5mmsU9zmolGkawxHkkp8G7Chtrfd0na6r4Zpepj1iWDkzWCRt+l6t4vMhrQ3t7W0HDhxkDGqtWOL2+oxKEVTmUrA/kZ2hQ35sIDSJNaqfGknsQw8sw+gI7lx3wkfaUIFYJNCTWHMJ9cfztFQzAbAD8BOOSkxwlmp4EB5CMIzYzuI6FE2f5YEiGntzbd3ZMYeyTZKEs/whNUYAWFXYjAJFXyHdiXuGWAUZgkDjxJTveQFl775rASwikaUPf7TpQMfYStQp1RVdDWIYOExjQiUY5k3Rqoy3EFhoRabIwlGTxTspZHQM5IeExwVHFO64JD9jxAPo3CPUg78FehBjjSQEA+utPwjFZZG4fJUvJZzT65iToFhhrZkTgY3S5afaC/n9LKRzIpq4JEPizIuCX2BCznawpATcqNEu/p5vfftg9zFa07fe9a6OFWsHB0bQRMb+oOr4idPHT56mFWTzYEwIARAjG/nMQYRRbXQ7KrJENTP1Uv058epd+/3Fi+++aza8n+9L3y4o6w2hIVFZ+lOLxaZCRBi/qxk0pTZSJZVC5QwfY4vec8rxhFQ6YYu1bDn2ik777OSsM4CqGDEvq5ybmG+pab/5mlu2bdi6ce2mU8dO/8f/5f/3oZ/8mbu/fDfuubKsAiEhSiIn0STUEfbPExRN/5940eazTyDgiQgExgN3um7Txi0iRzJodSigk+LFYpqfJ51gp9/Z0Xb5xRfZdLc01HeIkVpbU1dVvWPLZrIMMSRCIFZRvm7Vanv2LRs2itZSWVrGMaqjpZnpbk15pQD3UxPjrIsIJdjCQ2NKZmElzBl8rSKHn9hCDvb2jAz1X3jeDh4XnR2tYoBsXr+26/SJgb6eSiM8OdrW0jA23H/65NGWpsbZqQmZ161ZOTTQOzM1vmHdagzv2tWdjfXVq1a0MWsoLZ7vaG268bqrJ8eGKS+cxTg2NDivFNA20DvYe2ZsqF+DX3jmydWdHYO93fjNle0tF5+/69ILd5HQnp0c49YnkNcFO3dce+VlwvdvXLvqrW+6s6muemJk2J2yUh6Yaw41cmAAyVL4lJzlEri6s33DmtVrVnSwcGhtrFeX5952tjar/fD+VwwaeIFS6RJQNasj9oRDgzbdLEHsydRrABtrQ+vS0lCrhRrvPjo4qM0CSjtyoJGZRnERe/6V7W2sOHjOXnbRRdpTU1Fx261cJS5x2lrwfvDq9NQVV1724z/+/m3bt8D19iJbt24h8GGP+853/VhHR7s873nPe26//XbTgWbfcMMNcAX8w1+M2M0rtIE3APh0eU4uhO+xoi2NQFzLIlwguJUws4V7AX4tJuCdf8bayygx8fJ5nca2ADIU4q2klCYgUFmcvBLxJmzjsBeVDledK66cK6phHUTCWlSazgCwXMEvVmQaSfielzblKr9njv8JL1SqVzEc6f+QgKVG+AWJ4UPtflBFpB8pI5vJomSjastHikdT7GATLNgijUj2oGlDrbEKUS60Dk9HVMW0qwojkoS60wCHp6lcRh1SDDKgphDhxLUwAZEvFI+Fn0uGwbep4Sg05i2dQ2SCo5SlmRYnNZoUvLSqMgTItZARj4DJhYaBCyixjWWwPzQ8/tZb31FX20ygR4DCYJWYh8S2t3fwyNGjTGJZmpPbGiYki5QQoifKik4H7ohNbpZ5RSOjPX7mjsYPV9RtzlP6n7hFgelKk6PoxbyJ+EVXuZuJK2eHYxTgzIhcEoeuspChYhiaHJrrn7e5aaxvjCanjdnWzdvYWfed6eNH1tbWIuvI4Age/6KdF2NeHOw3MT1xcP9BZODGb99w51vuvPaGa0QIwdKmEGGzCADGUx8tmcXW/Oj/TaxJuCVgGG2ziK1nls2ibRdddulwb//pQ0c4sKGTQpTU1tQIQ4O7X9m54qXnnnXICaSDSDr0samh/sXhIQgD9x0jWVYKSc2QDbMEGui3550enxwaGGTVXh9BmCNqORH2yy++ODw4xPiEoJmImzz6dE/3pRdfwKxq06YNNg1YY0fm3nHnnXSP9JMtTXWtHe3m3yvIiAKTqIfp/Jfv/jJ5/e7du7mG8bGCsz796b8XUPr3fu/3aqorfuEjH5EZ6cI+/+bxI+B2uqL0yquvooCBwsAzOxZbhAgAd+2VPJN///d/H5QqhMeW6Ah/+7d/+6CA0jU1VsctN13PAnLDulUacOvNN5ydHn/ggQd+4zd+40Mf+tBNN9108803C5r/pS996Wc+9LMGgb+YOPt81iDNHJgTvywDWf8LL7wAn37729/mRP3ud73jO4898ZMf/Ol/+4sfHerv14Cv3v3liamJf/VzH0IXteraq67WjE9+4u+MAG3t/fffv2blKp+//PLel1564V3ves+DDnQ7O3fppRd/4QtffMMbbrWn+Yu/+C9vuuP28tLlxERiiJI5/f4f/B+CcTS3Nom4JZgrNe/6jeveeMcd//W//T8/9s63//Gf/OGb73rT/gOvWJv4fWjdPCJFBkeC1zHGX2NIeDABniAPRtukGBYYY/eNN+kgs+C0iEJSpATImDs/eM0oZSFhIS7CciIESXYWiCJkiElMEDsDOArxC0fM0lKCZ0dsQSelhLlheSjiz1zVsuLqsiq+tJBArHjemz6gfkM3oIh48P+ly7ikoUnIWpcTZszeYcAxLt0PBJ1kOJByuP7OEzgQp9qOGQ42UXpKSgHZBcVYEOosdNKn/viVMXsECrCzK5wiEko0AVgqhab9ROhgx7nHErLYXC/uAAC35aG43M7C4KVvY8ayiN9P2M8lcU5OKDIThKAzcS3sJ9LP4KRx6uLQ2iCyU1DeC8+/8sjTT4q2cttNd7Y0d1SWMR6nuovgP2w8jp88cdJB4U0NPHFtDMO+M3zogsWAFBiD2u0YtlxT3l2l/RTY0bKAsUikO+yvYZBoDHv+YMk9PQxsH3++TNx+6prhfvUv0YMiIggUMAZ3OmRfWGYlGTr0jN2iAT/T34ewaaTNCjUgOSkrOt6erB56u3vRZ6iQE+D48Oi2jVxXN5YRCjc011ZW3/uNe//NR/7Nr/3Kf3jysScoQoi0zSNwZ/2V5CqvtmRJ21+bLGR77avv+cQEBX8QAi3q1liESOvpnjPrNm296oYbpkVho9iYX0Zio9+se5gPz0xNMHHBYdA32ppjPtyJ411Go1EY1KIiOzzDSLwjalt7O0uflQYlYDJOxQFr00aGTynULFzT7htuvOWWm1es7Dx88AB/pLe86c4De1++YOdOrrkH9u89efzIpvXrwBfD0+2bN+HcWxsbtm7csGXjBgx1dUXJpnVr7TDam5su2nXezq2icwyiOgNneq6/+ioUaEWb7HUHX9n7R3/4B7WVFfqKlp9/3nlDAwNXXXHFhz74wVtvvvnDH/qQaMaGT+N/9Vd+5Zd/6Zc8tNSOHj783DPPgHXiGjKZJ554nDFM3nW+8kocO3zxxRfBjL/+67+GYAgFQTxCSu4MGXL/ttZWIhC2OocOHwCsFMx7Xn7ZWcdbNm8+euwwK53Lr7iUVuOKSy+57tqr+3sj8ujadaufefpJMZkdkqzYCy8634C3tbeIOwSKamqq1S7E/9o1qw4fOrBzx5aLLjx/Znrc8TWceR1l097W1N7WIvbV2992F0PCC84/z67BLJBrCVAUC2c6DiCC2WmbtZM6AaY+fuIouvK3f/ffSMbe8953GX/IAe9PlmWJqRGWl421DzKAhiGlCDbYRAzQyLe99cdQCFZJwENdjsORzeVnrKdzrvB+DwQR0Ja4stiEx6oTDC4cpPIrsmV/AWxW88w05KM6Yujw5OT1yzrOKR1c+WxbMS6x5AMVQKIwHulwwHK+orzFS+MKD6VduudCqWKlBcuW6k/5pT3J2TzICffFwl7/39fNH70S1EjImoSG4P1ATkkqBD7UAutbMEYGP2kMHWESmu354kn2n7SmbCMJc+bmGmrZXDvtdvyss41EBkrm4YGPQtyXSlyoJZwMrFgbeb4hoYrEQhpCZMTyC60aDwOOS0UR9H1yBnZ0miW7Bfoo8owIRySqKqRLqp+wQrjKJvrhjsJ4XSdibERkQuFDJ0EMEolQYxejOfZg3IZADCwtuHUcEF4qVNPZ0koHFpRW1dX3D47d/8Djr+w/tLph47VX3rJ57c7SiJONqpSYd96kB48d7h44I8Dr+NnxaYJA20pTYYBiH8Ori7gzy3SC/Q49RMj+4k9ALwBBv8GDBbiwJ/BK33ltEmHYHNmI+cQIxF9MZxGRB4gBAYhvKFJEQy6JE1Fyl4MU28xE90PHTofBLg3ARUhXisO5OIOBmc/E8MQy0qBlfMEmyI5dmCDUu6axdvLs5MzcZOeqdq5jw6PDmmsdLj87N94/srp95SXnXURBV1VSvW7lutrKun/43Bd/9Zf//X/8zd/a98pBEa1FJQsuLPmt8UsLJsmGJ/k4mM7AYxEKEejHBMRCylNm7rTl9a4M/6+9c04GLVwBeE4xL5+bLapvaOsZGFm1aeul1+9+7PmXlsP09bVn+nqIWadHhw/s208rBAIHh4d4D5h9c80qZpgStbFpiKlPdS2KrTSm+kBx76FDxr+eRxLBLfLCW6emVsg3HKUgEKRKX/jc369a2SlG24r2tkEndgpF0NJU4/CppsYJGiEncK1dMynuMdVo0XLxD/rO9Dif2cmLYyPDaM/WzZtPHDmCGo8NDU3QJg8N777hescs337brReev2t4aKDr1Im+3p7rruFLeElHaxvcx0LTQhwbGdv/yn6bNlbI11x1zYljJ0aGRvzsbO/sPt3NS7OhroGvJM6T2b19aP/QkNNX7J+PHj8p3dreuf/QIfEvG1ta7v7aN1jOb9txXm19I48thnt0eETeJuqlPa/QdfcNDHFvEBuVRqiiqkYkVEWtWLn6gYcfYuvxwAP3MR+ggOV7WFtfw9DW8JKEBlc3L1Z2nHVzsqe7pqFx4uz0I488RD9hm0gybtlQ+Tp0jHOGJ+4086I2EYa4U1HIkw2p6Vf4weEt+FGDEO7tLU2tDtIYHhxZt2Z99+keioOhAZG9a2FF2J84DrOPiUEDEGwoHvEwZbZNbHNRek9QKXQLED779HOEM02cD4aGA7Ons960wfJxIKgjtRPHOAtGGb7DaVZN4A5w69xcrlvllY7RGCOBqCi1TjF81ZXlNRXsPaYr2AfhPKxuYTSXzZaXLGPtLz701OSwUqxAkeHg2GAxGQ4Fj2zFp2spvl6afu3SCFywiNwzGVj65LX5f9AnGucv0zffJqn1q0rLqDGb/1jJyTgo9AHpSZDQWOrRwcBKiWwkYVFSAGBb/ZA3JGahSwipBDKDwqhOaVamFZtOg4EzBeUP9pizUSLOUS9kOB28f1CexRHQwowjCt3MP5feg26FICSG2oeZjkYJocqHisP51htkAF7SRrgLLiBN7u8f2LvnwOmunhXNa6++6sb1a7YODozpNUqG1bXhdSqAoksqy8amJ0KbE52Pv+jQuVc8gZ3z4yAKeuQKLUfshiSDN9AqkJYAMPURSYgnrmAZYjMVeeIeXYl5ISSzwVjcZkRagS4LQEMjg8sKyA53whMRQpqvhKD5JFo8liI3MSuT2lDLrQCRD6prazXDohLlkZXbYG9fVWnlFRdfvqJjJQK1qnPNpg2bkc/Pfvqz//rnf+G3/9PvHHjlQF1NPUsMMmEqmyBQiBpIWpwgIjWbjfRQ7PiwGTVSeVIi0/d3GQBGRyQ/zA3sZJB/jkI0qCJeDAyP777llh0XXnjs1GmBHwyOCSK+OHzkEHEcDSEAwwzG5kzUyag/4i8ZxoGRIdyAQ13IsEw66jmquJnZsupY+1pqqtjjk+niLvXijjtuH2Dl1Q951eJGbQVvvOEm40/I8573vK+hoYl4AQO+YtVq5KCpsTm8Uud4gA+ff+FFIAeS+vmf/wiP1t27b2qob2IqvGrVGjEhHn30MdtN7ruCdH7ik59+6slnIOLzz78w+lpVhe8KYrxcyNhKgecIZ973vh/3ZM+eV+A+tg6m+7HHnhiAuMsrOZFxSdu6bUd75wqew2vWrXfOj7gjd9z55r/9+CeeevrZy664klUmJ+QjxwSIbjcRHStXiAlx6OgRcSkYsO3adcGGzZuMMP3zwYOHWYW6Hz910vYoxzQ0elgH3+opMIBeHQLTuXLFydNdzD2NH+s48UuwNO99//sef/IJo+RQF6u7Y0Xn177xdcR4x3k7bbKJVTdudkxYt7S54NRNi0Y/XFFe2dLcCvwUnoa9gtpcHHXKXl70WUQmYJHNAcDRd4DEOcBugPeA/Zx5F9TIT/sGA85RQB4JAHDwwIFBATQolAcG9MLOGEwiA2ZWUVCBC05QYEYazFX8yRawiiw5M49uOkUzlZ+Ag/BD8HdMMbyUtCkLHB5EGSxd2uZjTCNGQgiGCUlCKAD1BRsqLGRa56+C/zk/8wsPtTKnNS6nC088f92vXi30B0xFaUma7LsCe6a6aEF6HunF9sDa0AwcFS9d6IGhArBmhaBL/kDWYXKOo4z3aXBzLxIJWOiXTwwhj1ZW1nTzRp8bmq9hSNoG0xFvRbSZDdMxqAS+XNot7ZE5YZsYKxUpMFoZsxuBSwO/Ll75Q6/kwZUTQZl+DUZgVOtMLq8wXM89+wJGZnXr2ssuuaKzcwV+1pLTuLGJSaYGXHXwoUBWIVGO7n9XixJliwF7LTEIARRFi/GK7aOvQqwB08cAcuCKYuJFDJcm+oPpo5SgiKkXMjrXSCvDTzv3JurXCJ139xB1i/c+8h/S4bcH4iwZOzQrTFxZd4QIUq8NcmiY00LSF6KrPPyTI+zjpysqKs0jsMc4t7a0YKxEtzYT1ehGefnIxPDHP/6JL3/1K7t333CzkGY332bHx6YIXTOq4sagKzYHCoSqnKNknIUp1gpre2JijLSh0IHvJ2FdxrfBM4YNKw2tjXQwHQLejY/feecbP/Ynf2Tvv2XTukFnv9TWlEyVIjVY+MBfLa0gdWQMwavxibHiBmVvyUAeokfqCLQgQciosaGprqpm3MkxSThGRNbT3YuE6AjrHVETCOI14Bvf+AazdzIQ2B+2IiOCVsgs4Qht4xIoKiA6RCzOPt23JRWVQpt95/GnmU56DpHBSsRNdJVf+ce7d+/effhYSN7niko4YviDsEC7UxUFfvjHr38DPnH6FSuj0bHhQ4ePd3S2Md/0xIrxhOTEtLL/0Qzo+Jmnnt239+Dp0ycvvPDiZ59+Bsvyv/6v//GJJ57kIoB4PP/8s3bttD6UCmpBtJzua1WKminU3X333ad5nrub7k996lMf/vCH//AP/5CO4Wd/9mcPHThsB4wZP6q5p0+S/R45dLSsrPuxxx6fnX0ML29mv/mNe5GH48ePEjNqVUvboW9+64GOFWsMwsDQ2H0PPGKujZBxQzwI5QnZ0DhamyPHj6kXEKpaBroW9E/0DquYXkEsJunbbrsNFDnjwYQCcsoVIKHxSvvmN79pXvw0mMBbNv5oAAMXpCWI1v5X9klrkgZ468INqMgnnsNYCvQzVnRs4uEr0VOCSFg+fvLdJVFNq8zJzSw+Z2F/x7trXuxx85UWsvIDIcSShSBxbBFo2TpSBdmDFR2mknDW2rU7C3Dv80J6YfUuQXP5iQwS2lf4+dqvciE5QxZjnVOsn/mrQiG52MimUQuY00jkVDC1UDIUxXmBSIHnj59CbcHPRk1bwptSV12WImVgaXEvALG5g355CycPodLlrLtCHq3xuf04Yj/tvIgsAksF4ZmVJtwxMeHHZFvA2CPJ8XOb0/oPNzqTlCmNEnyIfchdCDqQBi3TGGkk3YIMg5zFK+dMjZh3sgHDJJjdS/sL7AbpOUu4px5/mnC5pa7t+utvXLtqXV/vAOrU2t5BaADOWPoTGMCzOEqNDGtRpp/ffWmJK+qEgxN1ChwfcBT3fHkZLTfOIcQLm9HMkuAdUvtjfAAKzoFldXZN9Ek2wM0oPhestHMm2ueGKAY2jY8MfgLTmopKKk1i04a6OtVZkDRX3lDWBRU0WeYoEXH01rZgaHQA+2YrzR2J2rOmQdiDye889XhXXzdvgIqaylmCtDnGTuFThue65KJL3vCGN9xxxx0dne1D9MgjQ6YSufFKIRVV1SpljmlHkoDI0OQ958KA/A//AXe2FzCyEhQYBvhxssocmJyitpk7+1u/8e/nJiavu/oqwsGpaTbrnPJGjIbpNst651geKAbm1RIH8sTeKC17b2V2uEXIxAK6Q0NIsujDsfFxiJjaIE3HnKOSYRD9sv0yONhkJWgM+YMMjqXEYObtgnBAalSF5yzisbGeQ6kGPEMF+MFoe8LoU2mMNUEX6sKEFBxqT0tTM1TIE+3UqRNai4OkcXHg85Ejx/gzM98aGmIO35TGOXhYxeJIEYbYMFOczU6vXLG6f6AXe8CKv7NjJWeu485Pr3HeQSNLf2dF5KlxR9u0HBhIazDpk5a7Y7TJ3I0P20qbkgceeECZMB6/Aafx4FXCYmfqrCfEs1atHZ4dvmVBHyCoHLA7ceLUli2b0H/VMT9FGPRixQqWVDMsiQBvsiAIJyEOUgZHR/AW8INKrV9NAt5GRiS+mALLobTU+GRnMU/yw/yVaaLeQHENNeV5zOn8vBn3xFnWsVkWIKu+Lpae6cP2MR7LFh/aAZclbOOtWlw4f9RO7RavDwI+YTDiHtzo9JQmNlVXN4oKZsk40kqIxgie7+vA9e55425SyHzI1UPczRLZEdbiqind7EeJi+h4aVqXCs+Xpl+bJz/5Ud0DLlNZEnqQq86FwwuwFfQQr1CKoG6xoz4H9RgpzGtsmgJ55WIC56UBid+B9BDEuKIc79i4E2MkjJzoJO8TY21aguwk9UZaookcmYak2CyvyAxvlJD42ygrmvyqwCr9jC6YZos5V2hFp4yJ1OGVxd2L+DGhXBHauqK0fLBveP/+g8d6Tm5bs/38XRfT2DkgBZ0iGxkcHj3VdXqQ9Ja2xxX0KXUtD9lCuQsoPsYvPcnYP5Jp4PJDwBcIOY9GwJS9iC/Ohplj4ta1WwrETc1MwXcNQo5GB+RxaEMa9WAXzFaQFc9zsSpJeWSKVRQ6l2TWZTnBUAxj6p1DKQxYY6PAiuqcrK0RhMA1UjtkkQsKBrozQjT6LDxxP6idpcH7hps3LF9ZXnXe9p2nv93NHZrBuW1ARbVAQ2gN27ryJx9//KknnvjLv/zLa669+m1vu+vKKy+HIu3cdRamJhxQOAxubrUzMQQxMN//Bf8ZJSMX51Uvn5+cGhcsiSkaDtfBlw98616o2Zyw2mppIhOfYobAl5Ww2JiNDQ6pFG61LDkCV5RFBEpN8S2bd9vycn5SdC1yjo1pEgwSwUQDjYYjCNfu4A5LShj1GzFUn/SFwoDRt7fMveuamqEbR5zUBueuWMF45jo6OnP3eaiIylpbD+GXG3+czdDgILGTMtEMhxMIDiHPlu07bCM0jEw71JvDYeZfVwcPtzA1sZ1COPm1+Zlwt5Otmo4ePb569UokCqkAwhAcO93h4SERrNrbV544epwT1+merrff9bZnn32udHlpe2MbgVxHaztHLoiMYsOkNDbWoyIE8aiRWSbdQs+Y9pPUd3U7J7IBIbOIXnrupbamNuXru91qZWnlwOjgstmIDkldx7QbQWcFOjDQX11XI+4pAK5wcOOy4lPdPcRZdkW0jCtWr+nr7e8dGBQqzwh7zktgcGBo1Zq1/RyAa2oArdFLnm59sWEtr8C8G40QmXIcmJyC/U1uAJUd0NhYRFetCKZeRyhaGHHRgUErQllYMDXVNVym2YMJkxtIhSKrSvvNW/CW0WZ7K8o57E9w/TYCISJUlAIt+wjlaD7CtiPOysVFWXNVzsgqLma1W8eh3EJiABlG8PxG05IL4hJ2d5AkShCcooIjtE5myIIRxpACLHzBjqXQr+f5J/Sy9DnALfyUzpcnEoXn5/zMr87BzoX8uaLCz8K3Cw1IjI+36QoUb2yEQ0PiQubFFyztDiIqiDaE6nQB6wV+x0UWLx9zENXo0BRXo7ISOwDZ7AAUbkQCdUbDfRfY2Q7A3dRmcRvewRUVESBwWE+YLe9KfBefpZg3lEUmDGZHtSNOsrnP5aisgAs9TTBhNjJ3tlhCtEdj2HBxZopT94ocnxQulSQeB/YdfOnQ3s2dWzA7q1eti/Amk5w2q2mwaX33HTkUkuLly8l/3Mk49MgqymxLqvBVApBrCQSdXiyV10QfmWATO7KBmnOGcAT9txcxRrGdZFAAfpPW2tGMIqgw1dDZ0uIyI4N8Ak70wcAlDjpXG/VqUv4BH+tg9JGgo8JJAE3kDM0Qk512WH7GSJLP4KAxfVbX1OQE4SkHMQjUKyMWx62D0GXhrERoC4/bjA84x37MOQFVSODDjz609/ieypKKppYG654ACQmhFzFx6hUCz9K46KIL3v72t954026Hx2InxUpzpyvG2akixBfB7gUUfZ8XNO3DUNiogmSJ/Xh1NbfE2cmpe7/+tX/88pewwe3NzeK1ieMGLyOVe155eWXnKmQMzWPyJMhwHPnCpoA+eXLKXUdZcGE2xB20+YPmoGyyPrIU0hz27lwdU+ORy3oTB3eA82iDEFjL5kTBNLxGiRyDYeJIOmjQYOpR32BEKTDa3gIStiiiAJkIzKxxpkWwESEq4UvsIbwPEYFqwook9y8S3QGIarD2aIxpUru9gtI0MhpAVplcedVlWIy/2o2t5zL7qQrG7xI+lF/zjImfCBikyc7HkibG8YkGgwT1wryqEB6VMQ8OWseVbE4lUKCpsYjuALtVV1fxRkYqOGchBryRmTxAEhZWa2vbyZMnpHWZmhTNZrBknfIiFhHbxLW2t7sfPX5ccCpb28H+fioWgnVjopEu7Tca6Jb2M9miv6VKQd6cGElkpO9os20KMAOxJEiy6ZTqvAqgn5/nGaA7Bl85OqUjiK6Jq62uD7CxA7PQRD8pD8cRKyvDvD7ScgdrTtoTyy0YdCRi+YzjEefLl4Urs+XpIddoQ86Hg0iNiwOYIB0iSBJiCUIg/1QKihG0w08OochAWM8Ux4CgUgYuxff9LgKgVkXnS4Mk8n3pk4XX6ZW3hSt/6+fSDNI/NAFQVEYTWXVZIABQBn8T94R+EhtLDRDqDqg8BGd4TnshJ213Dw8wKyGuiajI5xKAhWbigRfIADoSNjwL7Yfk1G5aMHeoNK7JB4t9VA8mEr0QciJ8qhEAtadQEpx2LfmQWbk8lHZJg3j3TFQ9X7gYhgvKJLCfWDgVVdMT08SaPV294g3csvsWMA3pKQx+ItYET1xAuwd7ZdW2iOiSVMcIT4ahKD/Xuyjw8SqRSG/OvSwqKNXdeqMVAoiKJWErjrMMWfvEAIomKE4F+YOYcvbIeBfcd2kcJw252yaEThV0FRCo2qNfqQ1A3EWzYemKCYN7siSaGhoBKzLjkjFAnBwDpkyh0g2UWiytqkQDLAYrwSsliCzWN9CvkctKi/n/sNdiAcJy/ujxo68ceEXoiPpGIoLwL62uq00STmIrKzqCnmItIZSf/VcfppfbtGWroTOSFipxgdBsyi+0/9wxer3fcK5v7WW0bXRouLGuHiAe2X/ghWeeffTBBzpaW/CT/T2YzWKt/emf/smv3/ONx558Yue2nRZnzL5QaA0N9z/4YEdrhyEExhFbtKqGDkAknFAvpyBuvIegFf680AGsdNGll6C4X/v61zU+ostVVFA2Aone/n7mv7CzwwaIHSSgIYMK6fhQCRs3bNZaalUfovGQrAjALCwhX+0HNvwG7r77a6bGlsXI4zvFVvmX//Jf+lZoUoPjtE4+aBSe8BdoUZoqSMadlmVeNEN0uQsvvFDVtKAmlLBIHnOnPXQM999/PwU4ymTM1QgMvva1r/mJ3vicEG94bPgNt9/62GOPaTNSwUryhhtu+OM//mPfIiGmjL8CNwXD8vDDDxuQ4YFRnAkvp61bN9uIsCBYv37j008/qeV2D/ZSoJTA54ILdgl8fcWVV37yM5/BMB0+eOjd733PJ/7u4zfsvlF3/tf/7be2bNos/JyiEOY1q1aLcYTOURcbBMMCOLkgdJ06RZ1jtDXb+Ohm9+mTpoY5lhEzAvC++EJIY6YHCKcGQ/qGAo00JggzqFYgCIT35WeOZCgkfKIW82JUVWFFTFJfcLNOjoR5+bjD7FzVSueLRQWpZRhglxASjmB3QBMuSwlh3RemHIF5ZpKcxy+SJUZq+DTYA/4j/KGrsq5xDCiDM9VliHJeD8hffaZErcy/l6Y98dPd23zln69++cOmzqmlUAx9d1QIvQQDGrIt9UYDBE0LI35Wi34sZNcx1CB8AHIjE0ryNj5JTwrFohbByuLw0WTWQYKQpF0S7GR46M051FK8xignM3YlowelzBqNosakiDchalF1DHUMRm5ITkR68dKBfHmgwIU7aRVNrs3psuK+M/2HDx6tqW64/pob6mqtN43VGsbmYg2ODQwMsvqvZi4plgg3qziJRdSBAFY4wpLLnQo2PKcSPdA/2V57GUYf6o5FDlkgfhWOanH5Sr+8sCcNVXYI8kEbh6PiZeV2B07FTf/rZ/SCyKhA7UJ0lEbCnY7XosX7W+fYKkrw6fGJkXlOvKHs8h2gVxFkQcpmMciMPRQnQHvmGhq81TwIRUNE9gp+tmj58VOnMVqtzc3HTpyY4qJUXrFm1RrZ9h/ab7E5ztgJYpQGgl0HJmqsa23Fpvk1Qfz6cx/+VxdfetFtt91+9bXXQEnwC00AGbGKXjs4/8QT7WGLEf0L86tyHqdHDx364uc+OzIweOGu8xjcjY4MX3fddc7FdWDI8ZOnWLNQ/zJqgjShUfxvS1vb+eefH+xKEnPjDVeuXIUT1xKTCHc4NgurDv1ZovKADjgFKwc7vOktb84cvTEkHDBd9Bww8pfv/urNN93IVYrlO5oLHj73+c9feP75F1xwoQO/tu/cIb+S4f2dW7f/97FROhJcLcxF0uKoL+Nz6uRxhJht4sXrLhDjaGVH+/YtmyE+hvMmZcXKNmMCO4uv+fzzz+++6bqLLt4FFVK3rN+wWr/uuPO2666/yjb35Mk4Gsy0KhyiP9N7+qd+6idpei+99K2UpZjo3/6d39JsfDRt84MPPfTj732fI4vkR0v+6q/+iqIVofr5n/95VXN9V6knuqzlKNCKzlXCh1BL0AoohFYDnqVlXbNmBXytF+DKgWtoAPU+51xL8rabb4Z8v/GNbzjU5qO/8AtseN5y551kHxqgivvuu+8zn/mMPMZWuOa2ttZ77vmmlmPX7D+uvfpqDaM4MXfG9uKLL+5oa9FrZv7QNBqgBCdAgFgXOM8qFrCqbd4qE1iq3ScIgylGD8JzeWg4PiwrMyAITKY3JhpO9qfLuCJLy+KfEVEKmBDMMQARwa2kuDK5u85NTZdWCyYaWNxdXttHK33Gbp4IEa6fpxYL7A/pWzgYf4sW8gnjBWoZpDgfikUcouIM7l7nROHnArr67ufyL73kAVsKzA9fW4IFk69c2uIvuDKuQhUS+ZXmhhhn8ZJHyebV3bC6ctp7nYQh6dBjp5O+1hKXV7kxsECqJOQbkT/FZUt1pvypktQGm4aQVisQUo9NUxxBo9vkUGFub7RMsJKNYsxMUpbGXiG8BUIVg09FLII2JVyo9kylVJrb785EkTIOWrRxQDbATWJkAs3pUnmJg6THn33mBWaFt+y+tbWpQ8yZBWv8ZQ6aGDp27DjbMaIA4BJlJmVp7pEBgTgKA3tOIkYjaOerkxtUMTA85GJjQdE6xs0H74Fbp48FHgYZdPokT2tyrJurLi91kFx50exAzyladmEcE+Q58pDxmTGKUI2zU3z6udRXNtc3rGhp62xuXdPeuXXdhq3rNrbUNgx2977w9LPkzsDFdNq2aoP51B3tx9S3tDULFclgxrFiLGG020OkTmPMNLxm/eh+1+keXSZxJhvJ4oLztu9Ys2K1rQmnaBJkcfRsMo4ePrLnpZcTUREdJYJFP/PMc7/7u7/7L3/6g7/0S7/02c9+NuQenZ1wpfIzXGXQMiOFRAakpXfkMETA1TVnTp8S5+CJ73znj//g/2yuqz1vyxbhCqjHGfPQyTEb56CnnBeef4kzF/dsFkGhgp6jAGywMtet39DV3WPXeejwEbGUsfAE8eBt3doNtiYkgdamhikBpx82BAk15NO79u7dxywSbnJ27uOPPUp0yNXLtlicA1xMX083zHDVZZfCH6J5vvTiC1j9jtZW04ngjw71i/Swce3a1sZG7gJWyOnjR7/1ja9FxOriou6uE3akjXW1tNeXXnRhZ1vzt751T11DXWNz46o1YjWs7Orpeu/739va3mrvdd0N1x0+evj8C8/fwCZ36+bOlZ1XXn3lmjWrtm/fumrVis2bNzLV37FjG76WhuCVV/bY2u3cuZ3N0sGD+x9//Dtf+9rdwj0R9Th6LNw4RieobbnC2cwLaEpR8szTz61ft5GhqnPNvH35pb1WNF6E/e3zLz7H04Kb7sBQf1NL48TUOKmg/e+qNSs5h4+T/lWUihDV29s1e3YyjpXjW8PosdgpqvOHDr7iMOr+vm6wz/B79Sqmoa0vPP90dVVZ14njpEnM0kj2e7q6U3Vx6CxK77C/htq6DCck+6/s2dvR1n7owEESGKaZQhc6JozcH/vIN43ozE8+pO7eyiMzjIFrRF3WrEF9VrW0NG/fvo3DGs0G+As5vhXBNgF7he0iBCguVi+EY/rFxsAimVwCBncmdPh7CARkwlLQ18QM93Mmw8spFmiDBC+F9P35OTw5NSJq1fS0PPb6YQIUu4Fgj/39D3YAFuc/cQVyWaQf/0S2H/pVAW1lGhUMcUJkiW0PPhcaoyWHQjQjWQ+lh/JYYXBMRnrQ30Iqvi80RhoPW/hZSMTegu7FviB6FwoBQv3cTZMBAjLvFtSHRMe2K+pOhJbIPJqxQNsU6I0rJ1Iz894NtQ7lAUydmHOokDR5wpFeRCzXXHltVXkttm96imJLeOdlOET8CAQRpI7sNwyeUrGhCrJYopaFKnTOKKRehTQmdSm35tVZWhwK/CYJOEUR2LBC6uuqxI4NeVcyRyP/gjEddAt1qg+yOHH4lWYHWJUXT+M752cHhwbGJuY621cQfmLqXWqjHdc1yJGKTAftqYE7EbkxHKP1W14kEDxuCDfnefokNrDR/iKWFdMG3E+yb3wTQQT/nbaWFuwPvtLOmG2JjTN6EErU2XnRXTB61gj3MYKptavWOgzBmZRRnCMzK6oEAKBrOHT0UE1dDUWiXZ49OPmJejGkjz/+eFNLm5AAt91yC5sWHDcMi2XLUyMtkcbv3BsKRO15pqdr3do137rnnm994+vnb9sGdQ4L/uXw5ACwEB+bNcy+ciBxzX7mqaeZuEAQq9asJvfHt1JuKtoc4Q17z5zZsXPn88++gHnUSLsTw+Bbc6U6YGiyyA3sGw7uP8Da3YVzXL927csvPi9MELde+w7nO0cgH2cTMR8aHeHl++ILz50+fkyUno1r1zjPkZ6so6Wx/0xPeJD1927fuvkXfuEXJEz00SOHaBcMu5K3b92yb+/LuOlbbrll/6EDtNxd3adOnjqB/T985KDjKkPrOT5y4OC+N7/lTmaRzz3PY6Ckr//Mmd7udevXYClgtz17XjaxugPBAVLn65rcSy652FSKHmpJeW7nycj3E5/+1K//+q8T/pgRsnKssardDaCfuumTa6+9FiHXNizzio42uEuNzS2N6IeAie6i95w8dbyuvkbbWtuateTQ4cH3vu/daGQwNEXLTp44hkw6jo2PW1NjPapzdkaszGUH9r8yMT4qZBN/za98+YuHDh2gYvSVKQNHWmUTA1ubL/sPXZAAJObIXNCjAGxXAHlNDftaMGOmopErrItaezg/AYCOAHtLyV6NgazPjbl+ySOhsxigXJRKQ7Kd7rEUSDtYoRdHDPxgjANlpDUeQmiCHdAWPH6Yt0AG4qsTNzElTGoA6MEpT9K2ArYWBNT0wAn7x+bAB3AkAAz+6we6jIKr8EkhnR4v3Apvf4iEzhe+CmSVrJkKT1SQ1NzoGK04s9ng94PdTnhQ0hDFk3T5ajH56r/5YS4wPkxCcsNqOPKfoZTgIEYfBrvDSQYP5YR0knQE2Pgs5HAmJ7YNYUxFVTlLup0E4lF2zOHihUTBoVh+s6Z5oERa14IjiIi78OPyA/sPnx7sXrd243k7L6yuri+ac7YLO78yYgpwBlZAAxm3kn3iyuAigdXl3iFiXUx+mpfc1ZSrcFv4Knxh86XRM1O2AaMjrEtFY5+aGB3kMGgXisMKET1Gg0i6qBQ3zS+grbFu28Z1o33dc+Mjq9oaJ8cHfVXXyAlzkKwDqhJ/CbreuH6Do1M3EQqsXr1h3Xr+/TY3BOXDA4PaSV22cd36C3adPzIyfPjwIQdt04XS2Q6PDp04cQwvT7tLZC/+Dx7FuZIHDx86fvqUkUWN6XhTvNeIb4G06CPMaEVZqxak9qI68KatuqVEngbJPvDAA3AWu/I/+IM/wO//xV/8BXNyAmVyht/8zd/86Ec/ev311xvYj33sY7/2a7/miSPUlQxnuWfweN07Wyg7GGz+y8+9QOjPVdTBALZRPG/rqXCHBs90nz5y6DDxhdAO5E/0OvS9jue195+emGptbh0fGduyaUt9Tb0jfLtOdmGvJ0YnyDQ3rN3gj3VsDccrlkZhRQ57hEuEq7GhmUTpm9/8ptNoV61YSSLxzNPP7t5985mu049959F+skGIlQRgZmbd2tXd3HmPHyUldujYnhdfePqJx0lyvvPwQyInoccHD+wDwceOHv69//w7IiUMDfZzOm3m1FtfC6s4WOqySy654/bbUV88Lx+CCy88/+TJsPPRE5Rr166dvFBQTUa6TrBhn4O+svACOUePHu4dONM/1Dc0arda2drRIkTh40899p73v3v/oX2jEyN2GT193Rs2r5chdEmEEjMzdjO8wPwlo0xi/WnRzt0ZF11yyWXsTZkhsTS9995vw8LtKzoxB3v377v/oQdXrV3j7okzlo+eOE794xUGoqW9DUJw8oExpAGqr6/1x8QorZ6zdM7JpLXcjkSz4XNIhVZCLwAzuMrEGzhBzUY+LyigBfvbvu/Ytv3ee+8FddQkIaY7e9akZJ7GpANIIES8Rtjlc5CJ28gJAiIOYt7mTSr1Dy5zoJdPsiNb5uKYGjKGZJuMiSn8ySbeJ1ZH1QkgYRCWQMscmi207BTjA9+mv7AHCzM+jvpc70vOhi1M+gsD0CKQmMKCxkbB8g59AayHe+UHoIeKzvfXAn3GY/m5dCHD0rSHMNQ5eXKGRY5zgVH9Xp+/+pySI7XH51CkYgPj4urcwkE3OLwghi6tXj4Xu6Rg2J3DEkx7PLREAXhJUZ+dGGlAGLknDwBmU6ZzsUEKUGkuxx2OXvi5JAFFOlyZREpGOzJbewxCaJmpHKKohc1CSOAiGBkeN+TlBDSFkiXyuOhEZhnQfE1Qgq6xgnEQx/FjJwlq17Svv/HamxvqmsuKiESnqyprABywFgxZRA9ergBAvArKimiQS9Exg4Hc/cpoKzqn5FR+6ijCGBDsk0Tj4iO0X7+AHUwjnCQ+zB4E5G3euEk3SpcLpTfruJbi8gpiMUfd11Qsa6mvuOS8TV/63KdgkPaVa0Znls+W1ZbWtff1DlbMCtBdYimRz6ABlihbF6MUoiHzEjqE8AbQBkuFJZ8TPwaHnWbzNMMeYl+DwJrQ0pWZ/QkrDJy+FUj7hiQY8K2bNuOwoMK+gQHRsC1vS3RweAAbNTrOvl4MgFLmSOQM5t3nevrAQw+Onx1trG5AM8imP/rL/7a+sZaKm5yJm6jP6ZPxaA2NTYcOH6LGwfmSaxORQxVC7hBhm2fjo0mvvSALe/aWhsb/8od/yDltbWfnSF+/WG8kr6CIGhCrwJrzVHcXvaLhhiOseVFuVq5a1dPVQ8CFRmqAXQslJD0Bjt6JV+Cno63TPs8sYww1Bn4Rpt8UQJG8VYm/+WphSHUTupHYs2fvtm1bv/61rxCzwNS7Lrzg4x//ONEz47HT3V12DLqDhDv82QASlJN33377bZ/9+78n93/rXW//6j/efeuttwI8gdjMEc40yE0S/V144UUM1Z964kkeqNUNNUeOHTWtps/OBmk38oaFjjcE65WVJOOk26YMt2ts6WnNtblDnr0lpjcCLm3AGgs/R6aPx7/nnnsADLVWSVmY/UD9VLjAnuAIehK7Xyw8HgZ0NuZUKDckRx7k5447bn/qmaeNGBc5ULdh00ZymPrGhtUrV9GQUe2++PJL/MvA0mWXXGoQaiqrGurrza/22IRh6mPdlZeDPR5nPMsw7y6vYOeu7jPVVfVsM3XWzgzLpbOEPzprcike7njjG2zHQa9PTIE5YiOEu6cWtgy5s6GX8IBadNz4GwoKkptuukmNlMZQL5JGn7xh7bo8StzKDKahswvUMJe58CTQHR1YGAXPLz8702Yq/Ts5RYKsItiWkxO9LqSPLw2JCLBIV5KH+0nuH89FKiSajeAlU2F8HGwnDJAKl4gvfmgC4PtcxOsmcmsiQ+CcuDzJiXw/52fhVUi3obD0+xwC4GceF/jEeyXDfgGzaa+EAODYgzcPpQerwKJ+wWJ12yAWl8eohV1PGDjmqpfelabwKDMRmJTwPgyEmNsSbRTNpQMpmV5zFUnolb+IbElNG/MB4MJgiHySk+fiZERjop1x0RlCNIQAQScQqhTE2PocHR577rkXRwZG33T7W7Zv3tXb019Z6pQRaubSCPR26hhkN1d0ljPx3DxuckpwkugKpI8MkBeig+nK3Ykp1pfvJgDRzqAZEfbCFa32YH6G5aWIAmJQ1rFNq3HMbEldfRO7REdlcKBLiiPfzVbMT1YWTb7p1ut6Tx/91r33dPUNtq/fMV/dMDCxvK6+ZX7iLE8Bl1osSJgCp8+SOrQdJSVsTkIPnPwkYQcomHDfuiLOggXgBUEOxGPhRQrhUvIIdoYrM5yWt9ULNbDpZoHHVJG8XzAW4GElIx7yO0QFT9rQ0mBXQFEJt5oe/kWW074Dr9hn2EmMjg3efNutP/fzH962c4fQ+WYm2LrSEraWFnlqc9iD2qST2EDfcJkh0osAmNe7SMzINQ7t2Xf/N+9Z2dR85uTJ0F8XFVFxQ0+8akcnJyqcTElkt2zODqO1pU1HHD2IpLFuMvo2BOyviIYNBRmaPRAZsTOqQAvigSc1mJAgWINAkVA95ftGFA7vKzARS2qhsJh0agKpD4sPByjqGpTqWx65yoFHDBSVLJWyoUY+aTWhM+IAYgkyqs6VK+knYUZiFgkOiMbc4BCPEMGLJGrfxiqJfQkvEBkMTsZNqgBsWGCjBKRhdvgO1VSO8tkdwaTUpDIYTJ/EokvCE0QI8wv+vYJADRu3YTtgJRP08bGiTWNvZiNNpOPuCd7Ine8xmy6OY+HwNTPDrwICFUwQnGubzSWuQlrEiM62duejrV6x0tI409WN9JovtasL8tU8bQ7K2t6uGaY4oC7ZUGC2PKGHo6xpaGhkOOAVcZYp0F9f2fbJieFAnukAtB9wumu8ifBK16K6ZMmjfJ8jFQbH5/pL+JOLsoaNiXH2EEH1rZUpTdNgvXilKA0O5OaCs4QLY3rb0ITHZRKnkaIV6N3A+DjJQwQvC5wna5iH+ifYe4t9Lh8CI5oixVwEQ/MUsoKNcIuB7QoY7wclABrn42jb4pXT0eilvHMhHdnjWvrJa3+mLMHPAhcrzxh4Aim78g4g4tilfYAMehE/IssciQCdScRmC9nNAgHA9bPmGZigOppyPCaVYcqbyEq6+brQhoV0auc5BCDY5fA8YywV8Swp4h33jc932V/rMgFFDCxEnHhdSLOipgEBiEZGLyJPxtA+ByIi+ppmQiETCXqICF5+cS/v80t3Xn7FZVdXl9YyMOFaxOkJ3LButD+dcAbw1MjgKJPWScXSfccBv7hpbTM0/oxCGq6o0f+JfYh09Mh8eyaWQxhrxtzF/oUp8Jzg8y88+wz061Dy87Zt27F1y3cefbilY+XETOlccQXPWsItrHsE7pkenhvrvfmai3dsXkt39/ATTw6cLSpp6Jgqq62r7yiami13IC5/sYD9WE5cvVw4I4hY+HsE2g5Ap3nT4NYtQqhZAAPo6fGnniQfEsExBHrQSuhQjFf4DOP0gTL8zgfB8sMLWzPkIb5CLSwY9n+9TPD6+3SRTR2kRmNsTRoQq50O8JlnnqYMW7l6xejEaGt7MyHPJZdfwvaZ3AmbjNhY81bs8GCIYuECK1lTYTpdsDK1QafOuSxIOxuh5L95991dR4/Sz4oN1FJXNzo4RIkKG0YQtMEBCLKMAxecMTc7NDCkFsiIw5FFTkZRV10nwKxIkJMOC5pbzr2rorQMaSdW0ni9JlgDAPAFttq+UndIM/wbws90NGadEUmITCPRAOQB6UVI4B1toMhnLAD1YDnF+bHv1AseBrALa1r6GbDnpC3dtytSOMpnPBlQgk8gk+XUIE1p+gJmtVwJ6lJ7AN7srDw+MRceKge3i8Yo1vPe3v6M9dRrnI2qqTewRlV3lAM23DMuVgsXdz3N2COwG83A1JRWmRF1wY8SYENOP5HMmrpYGtqQLQJ8YtJdwEMbDLU2yKkKhdAc8AXRVH1UhecarCiNUYjCvfLTQ5eKNJXTo1dtzS3yCFkqDzCWx0hpp/WovzS6xkpHgsAL25eommx5TDRAXT70VrGahOQoWVM9t57c1eUuv70FTYjuYG3lUZFXGaPrQhj4T0zR+rY1Nms0exO2f+Cc8CfizoYzV9h3WuYWTXxMXj0T1iioQjIbCBE510dUE8ZKhCEwUqyxBfyQSIEfP+iljMInqcT4ec7Dc54U8v9zEjhSf+YmCol5DIoXQ/bdV7xIlxFZTMa/hVyvbaoikJikEljoS+qXTvkq9h5eWc9gyHNkOknR4uiCTKWCHIVtqgwBna5chUrTvMSsg4DcGDPtYmzg+Om+nr6VLau3b9/JDt8ihPksdbZaaDhmH5Rbhy77TZ7r/tjANTaIBVkDmyBGRIRRfiJccV+8Eki//s3mAp+BGbd3JOFpbqzbtGGN6LjVVeWTY6MRCiiEZrGniYJNNC347Gx/16mZ0eHtG9fdcM1VTt5wUIkBI7539iFBJHeU6oY6h6tC856cGejfZ2fOqeHUye6+3r5h3s2Dp3t7/DRbrC5wi4SkpMnwEYbRaNgnIJpYFahQbAPcKCsOU0xdDiEeP3nsdPcpFBFTb5mgKYwjG5q5wVdDK+xt7An0yiJ0ApRBRoquuOIK42a52uzjxf7Tf/pPYnLBm2S7eYIgCGyafXqeLAnNgLZgDXNQAJVzEnAZdOM+zEdpcqqzowPbwd6GqoMWmtqEjJ4QjPAKYGK9muobCMTWrl5jvkS/gf2RLZpBfqgiy7KJsveyM5DHUUYKhDhqq+v0D6RldhK6AxLgx/xy3K2vb8Dznjx2HD5qbW8rKS3jKUgTxLiIAezy4rKa+oajROrHT+NYDh85xrGs1jGEAmtPzNTWNzOnOtM35NQ85F3oaq6gL+/ZT1wnGl1b5wrn0JCX1je3kAIOjIzyVq6paw7+Z17wk0r7CgkncxctL/dTYnqKXU3lqZNnnFFRVVk/PDTR0toxwftmvqihsaW7p0+ihgHY0OjY+FRpnPjYcrrrjI1mUXHZ8Ag2m28XQzirI0xgkHWuGRy7JAgOpevq6ru7eyAr2ZwO1tLSyhm2rJwtAH+VZX39oyOj04KvEvMMDI6vXrPJc85hyzVshv8K8WCNI/3Ka+omZ+fHZ2ZL7DbYUzmkqKhken752PTZitr6M4PDngsaXN3QNDQ85mA1ixpqRqJMvbnGDRh8lAlhMClQtp2NaQI/aAAQytACC4EKT3xi4uSRlgiC0cEIqzVW0/LlNjT4KlwLvlWagMnGETwn5B8iDTgkFLq8qMM5LInBCYTyhdEsWk7Q79AC3is8dWgChNPi9xoaYE5espNQ0AEkVBZ7gdgYRFl44xAWJe2m7qQrMNsPLALyZWFJaF8h7Xn+Ga1evLyFH3MezwqZJc75mV9FgxPvnGuBVP3MEv+Q/uefaRwh3AgqCWNzYiotdhgCGVlximoZJaCEJctHJsZHqAqhZWpDcpHMjy+2IjegcM/dyj8XcXpkVRt0bxQZYNlmMrGAd0m9owtx4mSI8pWduVdzMF9i25442DyluWMxDsJSTwdyKWFYVqVAoPPyC3uH+iZuvP6mdWs31VbVjjkubmq+qaEFzFne4cyBhBez+NbXcEpILEwpPIIVAmd+h/WqK92jSQliUi9CXOZJCgW1sKOyDwjpUYruMzJ4Rkycwa4Tu7Zuu+HaKwH8vn17D53qrWxZM8nePw6UC5cTcsfl08MlM8Ormytvuupi6mLh3F46cuKBZ1460D/cvnojI3VBuUNkIZalIG7LRccMtSfhjw4icoaL/xdKxv3dJHqivZhuaLd/sB8TKhurPmg6If2zLCYtJAQQibKoGEIQwTH8Mahtbc797rRW9N1lgFmh7Du4n07PEKnCksN3y+CVWpQzEO44Z9asW1VWpWGTd73tre98z7shaitclBh57BJkNmJALmiv0NwpQpEiFqfuu/5l+ItSPfvYk888+vB5GzZ2HzteXVRMFTwxOgYSsNh0JxQUKGKYBuskLTpiH8fzRqw0ZWFXQLK6fIJbJHwnaUHJTnd14RahDOuUTSYBsCWVZ5bnB4IcMkayl/CcoAiZrGJn0ter2W3tnbYIXqFE6qquqwc/qiavF3uS4Gj/voM0ugYH+IEBg28OIDi2Usgn+bUxyhWxyESb5SRUGRkc0mzDTlKHv/ZQXdIS+Hrt11TI2rewm3JQUBFmsP+Og0fAYLKwg+xo7z7d5YwDYq69+8JWkjksC11MANmgAoXFNAhELkHf5uaJdFDBlWtWA1X+a0I+CJBn/9TU2iI29Z59r2DFSitCLKNh5hf3TfqE98dP6BcaHFYZU2cZm1q1Nn9CSFVWh5uVSwYQpfGEUe7ab7i4dxHKA10DgjaLI0i+pGT9Wr9hrfkK5VBtQ6xHfLqYH6NjFEgYBTMSqm+BocaE+qg2/oHrV6xAOsg6ofTYa6e4b0o2++DTeIJ2AeLltz8QFCsfOOhQi4zcNE8eyMTwBp61x5qY4eJLla18c0QPOTQ+yg8b12UHELTCGreJsVoDExVDMr6Lirj3WL/8zGM3EBLapCQ15AlzLmLm/4EnsM/ypfqc8L1E4efSdH7oXkjkT5bmKaRznkKGpQljsfRtJiGmKsB/8dKdwL3zy0w5wwx4GX1gvxLGUTEOIe9gV+iAeJS/qKzSnlBcFEATNDZkYQuX8nIqJ17vrri41I6wagRhDoMeIB6hNdBydAX1TRtJrzkoIbnC0+CeDLI580rMA7ZYFm1/zxm79Qp2QMtLnnvm+cPHj1+69erzd11igUFJIe4qKgHcPnHHRsKlFKcOMjWjpraitpoB74mTp6prqqw3NhggDDABLy0Ex4QkzG+Ah0i/uRxwgCFdPu0Q6vE4K66m/PRI99Fj++emh6f6ugVeecM1V29av5o3QPdw31fue6Ru4/nTy6qXTULV9A527var4yXzE7NDp992y7Xrm2qFxXr54P6x5XN7z3Tf/cjjHevOL8GCVdRgzYAZU3fqY8ZLiBfG1tfA1dZVp5vq66sq7KhrUTOdQrpC4AlAWV1PTNBVtnW26wtpOENPoRFMlp2ACLf4I4IveVBeTD2Mhv9igsLmT/OolDkDswdnDYAlgIyssZbGZqb0yJJvT5w8PDDYc/Mt1w0N94sPce11N3zkX/+iiKOBadE4C2Q+jqmxSi1Ra9iUQQdpzsONPifcM+STczGKPbr/4N2f+/ymFSvPDg/rgJPpmWAy5OBwT+fE4DrWZ2IbzagPgxK4IhAJuI1VK9ib/b2JZgKP76GsQ+3jZxBr8jpAB1CJQ3m6xIdIt8ZAEJ5Y8UTzpOR+YY3tfjjdhfJ8RMznC6+57voXXnqe2IGpohA0zNLPdHeTyPX1xHm/x06e2nX++fjTP//zP4fK7Yd+6qd+Sq8hOD69gIqrl2iXX/rqVxiAebJ122ZD+tKLe7SNJQwC7JWBou00QYT4b3vb2/70z/4MAMNoP/MzPyPIMyn8BeftOnjk8PYtWymuibZ233LzpRdd/Pef/9yPvfVtH/noL1xz+VU33XrL3/zVX2ONKW+cmbVm1do//tM/+aVf/OhnPvv3d77xjl0XnP+ZT336G9+8Z9WK1SEkbG39X37zN1968cW29vY/+fM/MR70yZw57v3GPe95z3sQcZY2/L9+67d+y7bzLz725//X//mHVHRGmtzvjjfdiZAw1EGZ3vGOd7AHQ6t++7d/e+9LL9sRbt262bFiLMEQoRtvvJGRmOM2f+7nfo7mlsvY29/2DroWe8f1azegFvobxh647IUL6giVYooDEGjERAMXMw5/2f1lEYXnoDR/QVis8aYVcxZL3bckPyF6CC7TCCPPQIWQw9nTAQ/8V8am2usc91sDDGzLcPqMeSjH6HVhf4LuKN3OYAEns5ZbkIeAEzCDH3IIkTKjeeAuXQFZi/Bc6Ew8+lFdaRy+SyL0/Ze8OFbnfqHMkKpkRj1e4rpDHBQRVGMbkIwwk4Q75fIyoiaZrUw/0odWe4zUP3EtKf/V9qfhCpW6FQj/Wo2Iqns4U+CyY0dijxYECAtjarUrDEPTRKSZxXLj3yMGrMmCys00oYSAzg1lDVs2bmuqbyELxsarXUn8XPxV1QQP6A8vEFBCULm8ZGZ8+vDhI5YrwqDbCoQKvRAKC2Ni6PDaghO0NrUyJSRt8BZKhRkdQOEsLVLgOER1aMjhM75yoOvmdas2rmidFFmzdNmqtqba6tKBvm7HJBXDNo4ZKiKIxzBwAGZdU9bVPVBb00jnuJredXp0bVPF+998S3/XkcmRvmVzE0KOU0rRLPMsYJrqe7wqMbcde7DDMzO4VPJ3TGscn0tZ49gDpmmTjDidAVDGdA9TxgXM+GDDrTcYGV62IYgtRfK0tP4sSBYgtHAhvS4NbzUPITJ6Znl8OzIygIvSx3i1nJxttqm2qaqs4vmnn2EK+WNvu+vhhx74pY/+G1E1TKeRNmiGCLHEfZsU1AUSNEHfC0iICHrO9G7YuGnztq0vv7KXNIq5sGADVheFdizUmYgLbV9mhWMkFWV5uxI6SMs0gUyY9SVUEUCUYFVH9FfNgDas2gBScBghbwQAAV7gPaV9EiVaAUXzQ/0DJt1oqNezFatWcoPCQQu+xk6KAX7PmW4G+C8+/1x31+nJiXFOXnDTK3tfXrmiAzfj4DA28hRJ9l28AVjEOy3r7q9++fZbbvZwemqCSehtt97ktMimxjqJx594dPvWTR/4iffxFXCS4nk7tmBDO9pbnajl+EftYbQjEuo73/ljTfV1H/zgT1171ZXSDimzRX/LnXcQ0X/8v/63O+98I/vUSy65iBbn/e97jw9tQNtamlmavvnOO5CE0eEhiJIfiTXHSx6VGhsdxXQLSOUE4Nqq8prKspkIQz03NNirF7fecqOH1RWll1x8flsLOR9Qd67cCQLwjvbmNSvanT+8XZWrV0ivW9U5cKZr1cr2G6696pWXX7IiLzp/12D/meGB/ksuvkBLGojtGuqIWwnnHv3Ow4qz0QRO+YIEIKFFPBRYO0LBQOgxX0kPW7gHbk5PM/4Po/Jw7fZJ+iqmNVggT8DFIqcRpeQrCRhgluBZrfaE//wbeMXZXkXkjSUVy20ViwnRWIhbDDatFJZKC/Al9Ektxm0AwYDCeJWL9joxr0DxewH6D/08hmfxWppefPbD/5tLS516tQqI1RXjkxA0xL9AJ2JLuTDWhU88+X6qzxXJWfgwf+VnmoCoMifiSV7Uhje9NbUyR5sS1fUzKpVdnLUk6kMkfItBG54eZnzW3EY4yJ6QLW9sUFxKYg5vL4yzE4mT4CloODetmemuvjMnThwfo4kaGXEkAI5PHjZ/0iwLKQPxFazpxYdg9YHxsUHGUPeTCDj5b2yUL3FX16mBvjNsvYf7z/CNXL92VXVNZYqiZS9V7FTuicGB5U4W1S0Bxi2OSEBItt01e/Yf6hkcKK2taWCKvmpVe6NDzWtvv/G68mWzx/fvPTsx2FBdfnbCWV59tZVlTh9EKOlxrXx0yGyIwzY2Ndk3JOpiP7E+gX6c6CvQ3SyNx0xtbRURTf+AWGYDc2fHBWrzF24uAJnxRYg37Bqmku15PwbWqFLLkdmgcVQkjO7DlbW4WI/JygZHhuww0BiezVW1deWVTFxmvvqVrz304CN33XUXCoo3nJoeg7BU6pM8WQiqXRQsnHdUrwsq9ichtpqZvuTSyytravtHhooqy539OML1AFNOdkYI4wRwtgJ8mG3+wounWIKpAoVNIu4RASlfabp1xWZ2GQu/cBMPXP9dV2CLBEX57p3EAropKgrkGHr1EZITJ0zRTzqa8cH77mMJo3AUUWcZ9oRIwQjOz4n5YFNov8UIFXFtamm2ZChR/vbjf3fTLTeTFXC/WLl6FXDy6vIrryDDefa5FzZt2eyhsDmm8tJLL+sfHGpoaqLKjviss3OIIptXkAbQkE+GWPsPHexctVL4brNw4SUXf+v++zDGQP2Jp596cc/Ln//iPzDk54m9ftNG0TQYXzqehanrN791r0r3HdjPCFVTNUyZWASxQMjHnNDL3Ij0hoYhdn/0JQ7kmp9ncIWt2Lp9x55X9oL/9//4T/zuf/49SpG16zdce8119Gop2/L2jhVcsh2109zS5ogx2pErr76GL/n+AwfLKipbWtsampqPHj32Y+9413MvvCTzI48+5hQEckJsCukmVi/+kpWJJZH/EucX/HR+W8AShvrVyQpRcZBveAGWp4FL0tVEHGKXwtMrSuDPFYhLybInuYKvMISs/pGcCOATHkuB95QMeAASYAkawPJQkHxG1LEHPwt9yJNxEZQSRS4iqAxVwUx8119u9Y/6ruJ8/agKzp0plCmRS/bcAMXULOD2GD7vYrBQ5bQ9kzl/bgi+V3sKBeZE4WfO76dLmcqJPVpyQ8tlFgrMeXIV4XF1Npyz7ELMupyykeGTxpg8CLC3p48h/ZYt27wi3LBOkAeo1qJi2SJmymHM2/Fj0oOjIzB47+BA79AADxY6UvselnBHjh8h9yT7JADFVlsn2XTSyUeHjhy0iix7FtyyuR92DODJo6e6TxG5hv6Wl3xX1/k7tjUJrz823NQgCrGYpKO7tm1tqaka6j7FvsD5jeOzk3RKVEkUESUV1V39A8/vOyQK+/DUBMOPVS2tE2fObF7RduWF2zatahntOdV36khl0WxdRdHM+HBZEQMtHbIXytEcbUKqkBEgPTwxcmawt1+oPtvTZXOTsywvRsjiq2oZWgiJMTgw2GuwKuziZ7lYjUJe2H04F+YyvJAaSTRxtokgzRc4oampmXogHOiWh/LWViDfcwIdcF5gW2snLejLe/c/9PCjl11x+Zn+Mx/5yM/ToUCgZBckGMgAAkAUYFQxfYVpPSchm3hnQ4496Wi/9sYbKurqEEXWeKT4joln5EMUAwkSedvgO9MrvHjIDG1lYl+X/nQHecjcSdK02wlEvI0EKp7nK9e7yLIlpJ93tLB/YmxsFPyxEQVmTAMMUWxlpqbIrPVISDUmZwf277/uuuscQfXUM89wjbav4nZglIHcGXJ/Ks01a3zFKBa1OHn6NCB84aWXQhrW0sJE3WgAV6PBTRfihv0d3XWqq4sQnM7mwYcfgvdtv3Azzz3/vEkhiaLPID8hqUNTJRSoMTfddBNvA+wOk3nitcsvv5zwRy1AF+sTOH1mhlOCnCTvZEoG2brQPLXrl7SdGbc+Gtz5omJT39zcShhF3Q2o+Ij5yqFjTc2tMCZjfEZtxvDo8ROOQ2htiyhGnqsO8lTX5s1blUBYyjAX+Tp1uluoiWPHmScsg+6/8KUvN7W0Ulr/7M9/xOrbs2+/BgcPgnwGOoUEUALlxf4LGaBZzQv/nHuexCDnaRMQd9g9b/USiYfHEQErhNjaHxQfWN5yyW660f+okoiQiyltfSC0YOZhf4wCeCmyUWeRSEmWsD/x/zy1QxQa6G+hOfFFCmCTGYsCOBVgLNjVH8mlxEI5S8ei8PCfmSiUqRzpV0tb0gNjhIqmV+E/Efg6/l5t2KtfvV7qu4ot1JKJ/mL+3AyzA77dC5/khLshNuiJTEQGUxEjk05uw1dS/8hDgokxEfVFrPb8ob0BTplpIy922P/QkcOCrpxxnGtfLzbqRPfJ071dZwZ6hT4PI6jiIqZgrCFRi+lgnx0qUEz3pTLcULcDR5CN4SE2fPg4xGNobHR4fGRofHh8alRgWYz59Phoecnc+Tu2OjKUj0hdPaX0XGND7daNa8/ftGH0zOn52Qny/7Hp0WXlceQAfkro0ar6pv0nTu4/eWp8VnC6yY76pku2bh3tPrGmqebKXVt3buysWj450H146MzJ5WdHp0YHsNclRbRcIQpClYlPTYe9K66HLTOEDl3a6LhTmukRlVoz4VJZkehEY6ODLGtse6g+Zi2FiHgVVyyYdHLnkaPHqU9DOi4KblF5TXXoIfyEMuziIVrbC+PD/mFsYqqsonpi8uzw6GRza9v+gwcff+zJ97733Www3v/j72YrCTFlQ71MA6BvDV6c8HP/ZaJDuyCP7dXWXbsuuvwKezcSnxIqbh68FWXYEbsK8hOa4bAfJMNhOuPIEX+xXBeY94CNMOoIJOCPLDfEuTbpAa2AYgHCUyKYwtT7JG4IE4egAZkMQJoNDfVKGBkeuuG6awVJZp7E1+zb934LP+7zL33pSzA4Wvjkk0+dOH4SRsYpG3AjxzzT8RL3fvvbL+15Wbg698989rM/9cGf/vTf/708F11yiYDJhMgHDh/avvM8kWgdCnbpZZfX1NViL8orq06e6qKdfnnPHuc+DgqV09h8IMWaRqfpge0e7v32t9asW8uya/XaNXS/jz72Hea/n/jUJ201CAMx+16B8NBejI7UNzXSIb9yYH9FdU2XIyIG+pkCG6MJp7gMDuw7eODYyRPk8hA9Mgomcf3SAigJ6//Us89dv/umbz/w4P4Dhy66+NKbb7ntvvsfxOZj9kkhYfPN27azOXLCEoJh3waqjp44ee999ze1tqnrVFf3/kOHH3vyKfaYkOrHP/npR7/z+Gf+/nNPP/PclD0RHM8E1rY+dPJUMpZD/CEY4DlmC8eZ/gKd48QTYaaVDcVskr0s3M2wYyCYpKS/vKMQfdIOYMGSJ/YJgZmVGalw5VpWVlFFwqtgNVn7agRg4CEDjHsGKobYjuhmCCNfLiFvOKQz5ESZCyVnOhRyJ9uFH5kSOJeumnMunIUnS98utCO15pzMkTNB/tL81ojnQNnDbOsayyp9nrGtrVBWAiPTBmrBHhbmF4dgcmosnIFLaOSYQIH+UM6kactVL61o6ZPC81DyRHXRBVIeNw4AyGnWBjNAohNOViSxsTKpUA8ihOpQGNve+vMJkY74TWPO5i6rOHbk2AtPv0jSu/u6mzeu3zo95bMQFoeJeu8ZUhrb3qHRYeMGqlQdnIDgcXyQOZuMjxeVlJI1Q5iQlDKj8IiTXk44jsyIpYW0OMgAHqQOCtiaP8sUmnqUVQ1Po+k5B1T1jQye3rSy+c03XtnAiJ6agc6ptGjdlk2j08v2Hjzz15/64rL6prLG9r7Rs7U1TULHUgWUz03VlM8P9h7bvKblrttumOg71SLoW0vjC8eO9znad3gEbzY8Pv3cy/tPdg3Ut3QIYcKlptjBHRRbzjwvK8eL4ECNW75MaBgxMZ4T9cK5dkQkUFvEPR0f6O/F+LMjgrmYLRLjiFGkj9zxrGf7bvw1oQcxFA7UZ5giJePcT3YdmVqmLQPNTR2CKfHjxhaKF2EeuFUMDPWOTw3f+ZY7v/Wtb3Iuu+a6azki0Gd+9Jd+CUOqVQiAYW9payVqgOLBQ2wuFy8Npn3FRZLkGMnJ8bEWfsXY2COHn3vqyUGR7tkFllXMkIs46p1jwvKwkY+lS8schCpdixt5JWt4lAmROMU61mOS9GJcsBeZ2UysizyJjwmFcBShSZTAKR2fExoki3JWtrfcdiv7kvsffIBChSwLB22jdnDf/myFNTwwBMDWbFhPGIge6K+tFWWJRoIuewKjbQQ0A7ttBNwNDq7FrnF4eMSAyIBnp02112Sj7FtVBJQtL7aNsH9yuK5s0kyJgKUS5GeMpEx14dOBJVrL7kjJX//61w07yxyQTIMVepQkTRrsH9IjC54rHE0/VqaxvgH9YE2Eh7DCfaLelsYmOhvFggSVGxgGydiytWtXY/DVaJtFGCXKljw6qHYJHVe1KCKHDx5pbG5orG/CJ7W3tmGVTD1eJOv/Nb66KtQ5YfIkrFNVrQJ1MxPdJIZJcIf7dnpgIskyBDUPHBX3mCifhHRnAaelyRLojQJngWB4Z40rNhL6q3jzSQcc5pxhyTM3Od7ZWAf/KxuxpFiTn6kFShl2YoGL0gVeVEfzxm6VzY9vk9JxgQkGP8I+8usJQAqQC4gMyInr9W3d8rsf+l4o/Ycu4bUf5jKj4emSQf8lY3ihkrBtQpERRniGXsUqWU5EQC1obILvijCfsX5eW3J+ohAFShcSheeFJws5ghrD70GNF6+U1/cx8WHFhYADYuAY3wa5Dr8B0K85DM1Jw9eKqtW+gj+OZahV5PsDw4Pd/N2tTHYhFoOuFUcEYKiNCbnyQLeuYZfY8MEnsTc0o+xpnGM8NYvbjZOMHMgnyv/8vM34mCA/JAzLii1Rc473YMrsDKaZiZGqovlt61ZxGqmsjNg2Smlu62xrbSobmd64quSSndse3X+Aw2hFdd20UGtlFfPjZ+FzLmnjy4qO9PSe6OtvFHpzeKR4Zmp9R+vainKC1ANHjnc0tnRcf8XL+w/vPXhUBLNpVG6uRjhj+9XAaXEsnUkKeh5rBL6fYxTBEBN3r0fU+KKlRphoq26KrF1kFrKfiJXkpdNQ9QtGtgjs82KIKDbshihvjTehaESinxk7cWaQabzwkKIZ6ffQyFClc6xI5+M827OtrR0333wrtPhX/89fynPlNVc9+OAj//k//+c/+ZM/iXEWnaGmhigDjlBpBoBz7kTtXEUFrqYhJPQXwOWiq64cn57c9+KL/V1dZo3vG1lfokrAAAkutfxiBMDAchu12OOT59IAG4PoPmsobS1l91FskgyEGpPJT5h/+zb2kIFyoPwAQMwH7AhOPTkbr5dDfAYB2AjewA+ZZL/r5KnGugipfeq4A4HX05nD8/TSsLNDz4N5KSqBN7UWsq4vsnVxOlsRYBsZ7TE4g0Mjq9ess7eYmumChmDPlavWwOkBdvPLh0fGVEuh5FuxgeyxIkw/Ure8WEQ5ZxdX1TqtoZK45vDR42o8evwkmkH9pAoEhm+a588898KadRvUeMhh62yBhoeq5+lxqw4ePgpxVwoVx/yxohIw2xnweEbVod+qmtogXXFoxQTFl4aZWTJ6LBEnQJ0SDvbEydMIFdyNDIxMTAIgonyyrNhmnp2TsDNwxtGadetAmKB9w2xV25aXlocbF791IwwSjKrnyukbGBR5iSZNgXB1Mvyz7uXSnGJRbUkdCQKS5X1MjQcWG+sNYxv0ILH0AN2cLmBcCCF+BnsXf+hBgrBAF8wWEhqDRHwe+quIM4aywWHi7VoGcV4h142w61kSx1P5sqshSzuicVoS7IVm2FMGwKQMgStBTG5JfrJAQs6B8n/Oz1zuP6eE7//bGMs0juYkB7pjE+TPUAZyRAMC6etxbM7SMLz+qs41Lm350nR+G8OqjEQklJZLDUYsbcrkUX6a8pDURdqUmBf0IJ6btogFDduxPxG42HkgDbWNSASuBMHg24vxd9Yj0LQVmGKCx+EbtYfgbdVD2VmuX9O0QXTCEWAsrMxRdRm0KrfQjl4aXhDOVvuVYxjAbBK2jLNPneJlNTlaXjTf0dywsqW5RvTRymLSnep6st1We9c2MW6qy8/bun52WmyGwapKvkLjkJdeM1Ec5JRYXXO2pOJbDz7KjJLIZWhgmOaxtbZy85qVa9qaa0uX15Yu27Cq5drLLyiZ41p6ZnSoZ3ZqZH5uam5mbG5GJBPCyzhKgTIOYGPqOfsYuXHImBKD1EZo7RlaBvEOmuB0SMpqtM6NknPeaf4kbLgIjnTWpgcPiH8MgnhWVCgC+QZLCivKxdpQGKLEg4eOndyAG9Hp7r6//Iu/+ui//aVPfOITW7Zu/tI//AOPOoIFseGgSxXhWOEs+fOQvvYum7dYS2PCII9I+lRPz7bzL7j5jW8sr63tY30EB5SVs3oi1JEtuAFkOA6bDdUvrBH2XB5iZksDg2TJr7lOKuIQGWl54QqckgU+gVzSLtN4pQS4go/I83gFEqRxJ8Yac4QNTzSHlJUEivcECy8Nu0FnmAYoVTd1weDnWqA24MTGRkIeAw7VoILS1Gv6i9MnTYI6oe/oQjpHyOcGH4wpSgY/sdhmxMyZI/nVGyXM8dOu9Vw50hpGFq8iA6sWnyjWHDGf94T9Asm+4QK9IRcaGspeHSwa0KG2jo7A/sVF2iYDDsBDRZluJu/S4NxuQ8ARGfzke6KDMsisaqQ9PudIMSVKdhXUH3xRcTF1ApkpbQGhFl4EnxKi9WWlzAoQM1tqFIUQM3Y6wWylYPpKT1Ur3JV+xU2GfMmmO+pdCj+Qg7/8MPOOhTxmP3+oEKsDfo8DvYjpUFFLYtLChRLCEQj/E1gF2Jg1iEJ8/9kZhnSTc2cnOelgM2NLERewyQm1SLxalxakK7ctdgSFKz/KPw2ZROFj7TN8JjuamK78KhctnTsgAcQ99FMaWLh/P1dua+G+9JPcnvxEOteem5d+hqEIEomJRuPDIotHXPg+RBAM8AqSctsUnosq3JW5NJ1/Lr17q4D8YS7Ek0D6mUQvTnCh2YUqwmIvSILcsS8xFeYVIw80me4w02RZHLKa0rA316cQX5w8SV1IEzAyPmKhAnT2fFxtnZpk58vCh+UMIDb+5hMSATTACD0wTwAU+wEgQGlsyUu4wIxzgZTZlLFpI3YfGRsmXrdgCS92bFzXWFUmvr8TZGvrq5rbG0muguFcNme3vXpV6623XD+Na+w/XVk2Pzo8YFAVHuFRiyuGp2Z7Bkb2HTxWXF7Dt7P79GmRmVsbG3Zu2bims3V6fKCtoaq+quStd9yyYUXr+DB178nZyeHlPMjm4y/s+sW5JhEC59y7CMpKRUFhRA+i55G/4eFx/HFzcxsa4ImOT0xPQIpcgjjLWgRBEcscpDVeU1dHyirsGnQD6rg1VVfUCLc5PTkL0aIxHHIdLN870Ju0DmcpA2jdmbT/h1//jauvuf4//db/9slPfpJ+kivQt7/97ccee8x0YaVxvuA2g5knhcvoxAAtXvEc8+FYZvasM1OV9Q1vvOuuHRde2DM0yDGuvKZqjNIa/0EWF/tP7CnLvTJ/BJGllVX2CPuPHeHTf9sdb7RRU6PAy+AkVwJTAJsMZtAGwxHwQ8IJ49vTeRs8fFGYkoJPhvDWXIokNINaOxLBt/5CrJbKgUkon4jCORgZqAg70djAtYokAahgsaFOywSYikvBxslz8nfSeffurjOBCnt6gjDYbSRhg57DlZ0rVhEuoG98tTAuWkkrC0tA3JAyXG9efAX1Wzsegl61e6LN0JOH4DOUEfPiJPa46y8aQ8pHb2V0kRBRkIYGh21QrCymXwbHK1s9bJHTIMCklaJG5M22f8RqGR0RuAIfFYx/FBJLEJkx/ALPEY1C8EoNaU3CEhhEUn7bGtp6/If8gYExzMuL7DmQBGeOEboGHwnFWagAQAI/h7NLYhYWSgGi4Y0dBAX5wB2mSQwBbl6kHobsxUSG8EDlBiCcdfXCqjIIJpckmZXbxKg4KYNjI8Nwe21F1Yq29vrK6hpnoZZV8QUQ8k/UW6MhagBAAkLjZ2dHcVNOzqAXFCaLrV0ED0SANHaBkzCqnqDKBj/3wmAa/4XLU5cfGYulpsdt8X08z2nZtNvPnEcFrkL+wufnPC9k+JEnCrUn2hw62RjfxKTrp2kNBjnGIURgcaUu/qDNKNTiw0LfF7cd37WZyiWb4fyX9gHZJldzlsH+EEJvd2/xstK21o7aqjoW/8ly/azFQyxLC5omLYrBumq+qgsUVFwEsxAbm7xlXNw4yhw9XJhs0xF1xRWQFmkuAhNjYWNTVlnKXPDszMQ68STYdbM7ZGNGAYB1rCrHkCInoBE27uhs3rVjs8g//aePVpYg7eMsFAAQ/7ZljuMsr55eVnqse+DkmYHiClBad+rESSEwWpubKsqLL7/4AorfFS21ZycHrrrsvDfuvrq+YtnJI69MDvdUiU/OdcvOxvYF0FK4JTmGybGYwrCNS9Qcpd/smGgSM/OVVbXt7R0YOkvMBYixHlpoEBJAorHgPGCdh50MKIqjxzhVkEjgvgO5JK9aVrVQJJwjJ68RRiNf/9o9n/7EJzpWreaY+i/+xb8g/3FQjMnNzC95hW/TIL7mZtjzH/yaWK1A7rG8qXdLm9s7tl9wgUPV0SK+mkSxopsK9yqmB0LH9QGDhiSIsUTwRwx/+1vv+tlf+IXzL724srYaw2dh03zktaYxhYRNQP4J6QfeD9QfoIzPCkoQiuEQPuRXXqRsSRyRi0iZC6VBWEQuTG7e/va36y+W+f3vfz98/Za3vIWFjJPC8Ci4chmoWOBWb2X7xV/8RWSSHY7TIrEUXl133XVhmN/Q8KEPfUhRZod9LWZf2L7/8B/+w5133ulbsT8/8IEPKE02hkMixBlQKncNoIPB7P/Yj/2YhnHlVfJP/MRPiN6BWnA3Q5Ulrr32Wud8aaFVECeXbdtGNHfVVVcZKA3evXu38HYKfN/73sdVTZm6YFgUK+4/aqE03mokWu9973vVwmVM1VrI0ReZsT5i2XDLi8UTEx2JQPEBlfE7rfcY+iXsc37+uq/i28Uricqi0FyyleXP6ialoGcOVjWYtaB/AZMCecycZckrfolGWI6iaTUwSALHNMCJ1BAVyBs0Bz8ZyuflBAvMOUgYZwSuwAIumxUVbyKkAsECLlyyZ+wHMeZE6tQijoguf5cOIPch2p2u3Fv99yun3Q1lThcepiGKW+Gr/OqcDwsl/PMTyle4cqJGN93Mx/4C+zg6PliJwBZJOOOeds95axSf/EANkN8ST/K8kCNZjH4pRSKXgx2w/JaWGTlefWC0I6YCnpTZDl/zmspqR4RzKSQhh/ksyH6RcoYHQQOxRniY6UyI/GJnQ7vlp40+fhb1XVpLTkd3MH8RISdoc74yNU/9dnRhCbv72Xm8YcnAyCA/3g0rOlvquJlBH7ZopeL9VtbWsUKHoUKiVjJX31S7oWz5lRftPHro6HD3ibKyJvWzR4CT4JnismpBFI+d7tvreMadm4vmuMiPM1ndumOrWIzOEOZx0yPIqBB2c+NrVza2tFz3/Iv7n3l+z3Bf9+o1G80WMzZyq9ga2bHNOdQ+kF2QOhv26WLK1fGxKQ2JI+PLqx1sDpVEv4oq9ZFwHB+aAwbGYQxmN6lAS4qHimr5IVc21jdjY9FaF60YoikywDy/grmzBhMuU0jfmTMf+/OPWWm33H7L4OgY5jSbHpqCLB7JHNNrR9uTmP+48j0QMZRhfvuHhpn9rFy7jkax96TjSY6dYKh0/Dimqbq6lseeUKbiPuEWa5qbmlvab7/pndUNtdwEhqYmWzjrOrEkySgy2xa0PgAvcFN03cyEFiEwSryI2jMQopipOfYinqUfxifEoihTqBMIm+IkkLjS99WVNbfdfJue/v2n/v6i8y/aummrrd973vke7N237vnWNVdeMzwwDH2rtLKsktWmPdNjjz1x4403OWLX6odqP/e5L2CuN2+q2LxxixgPK1Y4/mXP6hWrr7zsiqOHDqMKDkBurGvUWQQAFj647+C73/Fu+yq2tuMj4xA92RTfXQRDguMxYiAyM37/Xe96D6fcn/zJnyQm4tzyK7/87772ta+RI33mM5+B5b/97fvledNb7vQTrUIbqI5pkt/05jsRRrSB5/PqlSvU4sQe9sQf/vCHv/nNbx4/euKnf/qnLan3v/e9gk888p1H0bCHH33061+/J4YwRhJ61t3FFRvjGE9ffZLTaQQXGK3Ini+YwQwtcPrwfkwQJaDRZwdtXRqymJ9I5MsqCym+2gJhJnQUC3zZcuKKIiFtSqroT+ys7XbhCF/HEWEQBU5DqB+RiAljg82N0ET83AJfeJfarDjbvljEwZ2k6Y4X0VAEA7WI5wtPIq+fYGyRWMS/+VG+B8CkC6zkJ7kDUdriJc9iMlWTXuXMeXiWZijk/JEklJyv3MjA8knYqk9GhnWaJ1BzDIQ+v9pklb/a5u+rJRBVunKPclotCpeOehcf+VeTzLe/mNG0HCORshhee3Myl2YOJ5RUkyHOo8qHrdghsJwLNMJUJ4SQ0TOE3B2nY1J9i2HAy3uyUF2qK/ItXhZwnpro7uIcoUxCC5C6IANBY2am2lqaaspLiGlJ4knk4URWfaU1lWK+hJMzbQQLl5J5Ef0v2Lzx9huunejvqvAmItFOQiB2uSJwF5VUDoyfPdjVf3xw5GwRj+XKoZEJ7gZ2/QhVeyun0eoN6zobqkpmx/urimeuumTn2+/YvXVN++kje0d6T0yN9hfPTVaUzPKV4jxsxfDbNI+6BjtTx5lKXFH4CU9MkevoDmyOWQJkuokGpO2R3cCMtCXAYZWDM7ckOSsrahtqGqsrRLcWdnvOOWSzcyLNMGMhyIpy4CA469SJ7j/4/f/rG3d/Q43QPfREQIG3lXbXkcI4n5PIE2pgCzClUu2qFnFsamaIsbnzIFev2nnJxRdefdWOiy6qX9Fh23XI4SEjI51r19x0+x3vfN9PvOP9728V7qa8bBTJqalZv3Xz8Bj95QTTmlRaoewF4NGG2H+nXUHOECQhXXlbEG8ZQy1uETzUzrTjjWw+yZkBC85a75wns3XrVueW5GH/1re+JQPuOGu/P/e5z+Gj4WijITPECpOinZQljIuMpu2gcqSvvfoaymFQCu97eMUVVxpJlrWewNGOQCE7IuI3pFqItdcALgXXX389rIJsGHyO6+7oLj2Bt5rhp2lSNdENLw0bMo30VpqYlLQEI69tqmNQtH7DOtUpH2Xq7e7RI6dReoWo+4R2JEJynJ1lMoTrtxFxVo9ji5rozAP7JQQMSSz8G0/UFf8suTTJL/c88ov3+Ilx0S/3PMKy+RxMZzacJJBYiJLfCez5LzQJZF/Li2Nt57UcKBgTMd9YVSu0YSNrXN79paIbazjt/kQYTog8VlJqjyyNfohwItYIERwbBIZ9nkAZhFTBMGolKEhKu0B9ngQCDCoV2D9fCRYCyVjODFIhl9w395zIndGrnD8/z530ysN8z8/zT2mJwhNp47I0W371z7nnVhVKyNV5CBET0EkkuTkZMQIAWxI0l6e+m7foZzQGKl1oY6GY7yuR6lpcQulfFNWXis3fRwaVhRJ/cV0uLTgRICgDUMJZdsR0UDOC5ThqeG4WmApZRf4ugrES0nREO2MBJ2NTYER7y1yYG5FaPQ+RA1qe2YdFSoBf8DY1VWHRW+OigawS0QCY4XRfX2Nl+fo1qwV6JnQvmp2oqih3QEpFTTWenOoV3SJBjviCZ523XrKipf76Sy44vPfA0Z7hZRXF05wYK2pBnMaVl9aeLZk6MTT27MHjV21fX7W8pL65/ejJ47UCJTfUiHHR3FhbNzvbUFd14vSZ01190NGWdR1Oimlrrtu7/9jMhOU/WlpRVSxCW0lZ5mHptSExSEs/OM9qf2x25+Ygmjg7cHqCpado0mYZ7Q0CEC44hiNwHaRAQM38f3Kcw7Jg8s2Dlf0sX8amxujzzH8ENlpWIvAipioGeWauubEZxhU0pqy68s673sJ5it8cZtNbKnrws3QCvyu9IHwzpjHnRjwzeQA+GfksG2V/mjz+Vm3Z2rCi07ekQQK72PnVVNbrIB0ot2Fng9t7lVWXC/7SvKKzpqERFpkem8ROFqrTmAB786gusn9kwIPY8cXMRuUGIAxR5Il9iN/2IgZOHqCVgSEgH2LAXMTmcp4gBTtMB+NcLA5i9oVnunuccvXk40/QHnsuQplhd5zyTTfuhr5FLaW72LBuoxCEF194ERdiQn9YBzSCZ6FJHSTAZnTblm2Ksvvhkkb3wHCTzv7Avv3vfue7HNLyxGOPi8PDGOmG667nX2a+nD7keEtiJcL6CIjbsZJ35LrVa2zLDPDqFauEy37gvvtsDsi8sUqnjp9Cse6dvdfmoLOj/TuPPnLwwP721paRoUHGnF0nTwj0sNmhXUMDomuSGrGuYkyMa3HUV3/fGfEkODo21tVt2LAewXjkkUdicIxbuiId0xg/F9jy9AoQxuBGxvjXSLsvXMzSPAl9TOyLYxKMepj7BLfpj9hRaXkKEpDELzPJKRDgghyoOUB4Jth/QWShfgoepsNBuk0wsEistyDp5i5jcPLDcc6GPGtwhJgyREJ7Y/+huToQ9epFcGnpSrgxWNWM/bXNi6g83VSiraGNyblzx6SjtKTUza2PbAYhvn31ynnyb6/y25xNWqJAFV/95keUKtSlvKg4XaoL/jRk53FJ6FsslejsQvtzB6JvP9QVU6sIfTM+xjt+xKX+AiTlJ94Y08ibNwSgyxeizPf1+5caB4+DyYXW+4b7Gf9oMDUvDMLkU8vBkrufLlOnTDyXTxiRYC9SqTFDYCSqTg2QkFnah6kNJhf9jndWHZhiF2RL0dLU3tHaUj0xJjhB6fIysVZccfIXOFw+j+ugVppaNi2uUl15qQCc9eXFd966+2Mf/8LkTPgfhChMsSGCcWR97eD00N4TXU2VZZft2CQAblVtPYegqpoKDYvYFzPj4h9sWN2xurPjdHd/V3dfY1XpG268urO99cipnqPHTw/19vPfcnyCIxSoFpyoFlrAPG0JngNtpd4ZOv3C5fGgpecl80760VhBYSATc+HBvG2A+PmVVfX0K3XVtYNDpYNDU+GEKz6usaX6Wx6B7+tq6qYmpgzLmlUd3f3dv/u7vyd49bvf/W78ZgxyaZzDgyEtrIs0noVbMsnUqliUCZQSepWkCjRENu7h6FCKngrCLhBS2NoL/2dhM+M9w6zl7IzIGJX19c4NE2V7YGx42cRUY2MTD9vJ7t7ZZQICxlWoL01xzHJg+bjy+8V7+h2AbsUlMEMh5LTm42fiFqS9LYDKpZdcwjcQp4zzEBvunnvuede73iXhoK6/+Zu/+fznP48FsRUw4A44ZMjvyLDM3UPct9xyi/y5NKdinbd9xz1f+7qQD5xvcfePPvooSoBgE3xht3k7Kso9t9VuwGbCCJP1QcH2Ewb8+NFj3JWpeqmLPQzEnUyDtNYmgJURGRGnYtOB2VemQyv3vPSSMFNqMZX79uy1Pzh+/KhxOX3qFOikZnjppRfgfaJ/RfWcduKmgNKnlWMpdXd1iUn3+KPf6e+lFg7MDoYMayzV+LVw5Qa7B8ZPl3QwGotoLaFcxCC+CpK8OF+aLe0eKy+txJRcLDeQvj1vrNuQU8NXdAIz4oWwq4pTRiIwRKydwMyJQCgtYj5zEoHSfTUpWLqTqzFopPzRiMBCgX18F1tCXfEi0EJcfjj8HT8Xj2ItgYTUsmiln/G/++rV2+OfxT4U0rBSyh6ZXDmDe74KTyRyNve8ZoCOBLiXU9p9aeZCOj/3M1+Fn6/OQ+FVYWZwQEtKy58wDEffTA7Yyqq/0NKlqVJATLBmxBTHuLonMr9QdKHShd/pn/yw8CoiTOqjWwCACY9Qo1hsJgBYHqS7nG5Uf229wirDsIYNOBIQeJL/E94jDQWu8IEHHiSOvurSa1a3r5+bKZ4YOXvqTHf/dP/Y2TF5fMX+R3N1BLJL8fFD6UebwZ+XbWINc7eg/PrmUFydzhQ9aJ7VApXHxOpwTC1DuuD7iCGnxwZFY+se7WevvGPd6s0dTRuqKlfXVULUbSsaq1Y3zVWVTfoIpporwVaML58W2LJibLZkam5s2DmixZ+99+Gn9x4b4MJVUrfsbClKy5hlZm5iZHakfG5ibencbVdfSqLU0dHErrqxsXLlquaR4QEBMXUE42obU1JcIQp7b9/Qad6b7SuPnurad0jI+u4eTm9Y7dLqkooa24ugm6HCSaJvwBsdMbM4oRkGUVAGAuDgb+jAMATbFdtd0dzCYRIjVCZOa2nlipUbqmoqz/QeO3pq38EjL5dXW6H22EUTkw6+b5oan8O0grEz3V3NTXVtK9u6hrprG+u4Ajg5i+bQODPTshWAXzQgDad/C5fQ+JnExuFDYCIyJOAgurJINdImTwtNUNJAmFVnLU+XzBZVl1eVl1Yg6GOChwpOxiuimBCoqHxuvqmo5O5PferEi3sbnc2iieg857+A66grg6KtkrRV5lK1Vy5LGhDEPYinC+EF5tlaPFSGqosMnqD/KW7ipVdcTpACuVPkAjN7nZDa79xpAwRLEp9jsWlZSf+hY6DFH4PkBE53t73WBoJ44jLxyK0IabWSFyEnYbcw4ywXNDCUVVFjOnQFcofE1WU/YXihbFIjP2loDx87SljkQhuge10zXDaC6jWSarHbCDnP+vUIiWIrbJjCRLVny5ZNitVgTa2rDecAp/6SC23esFEGq0nlXimHR549DSsjMVCfe+4F7sdHDh+jJg3G3XiaA/dg2FwLKF7KmMfMpSvMrhZZf0K2PB2RGwjKBriWXJ4zOcslxB0mWHJB2bPLQugC3VPCsVQpnp5xNJp5FwaFQV8AfCAqgxpc7BTmjz1b2u0ycWQpEPGmCHxCZWBWY7EnKp/+hZx0BTikK6kKwmEwE4C8h0gAFc2OS16wsmZNaNKl8meFhD7nJ+fc45t0eR6FLF6ai8/yRAIqFKNFBQUrdc8L5eT00ie5qJzhnyYA2uTD/K27kQ74np2BlTVYW1IzQqRID6DPOWfG+j8cASgNZBozA0hg/xgW5jvw8myoVRGACMaUCABKbjwgrARU4Q+Cz+YJnAmAmAyPf+eJjpYVF11wSVlR9ex00cTozJmBvtG5MQQAcJtwp0MEC+pourFwXVEXUR/u1spx8AjWCaBTJwM9K92VhAEkNijADLVbGMgEwY2hznghgGl6lBz86MljG9et5LTVuGzuqu2bquYmm5urm1c0VbQ3TJY6VHq5A1aKzxazT5gpmyPIGT1xurW2icXinn1H56ubP/bxz71ytG9ueVXJfLUjR/j+EKxOlcxVLJusHu5ZWVf25jtuFblhYry/s7OR9H9qSpAGClh4ijbbQJAK8NVcziu7u6eX143N7OmewRf2Hth74Ej/iFNFKumWHaPlABJR3vl5GXMy7bQHCufhUJUPDcCw1nlNVYVuBcfkz+yEg18AXiyFORZWqzs62sanBk90H3x5zzPLy4gEJ019XUOjE4ybGlpZlRIN11VXHT12uLquurGzWYxo488kFI5TryhpBNmBxAO+oPhYz4uXmqKagIYY/TzU0uFFxVsV+Ok4jg4TCvgd8G7KzEsK0pKFV4KS2z+VTvPWxMPNnp0cGV5d1/DUfQ+89NgTjeXl48NDxLls2Hyetn8Z4MPi09JQEwYPkje/6tIvEkJtNsbxM6Q8ngU9CIMRCzDuoWkJy5CIFjILabL7hJqBGRmOLvtsoH9If403NkUeNABSBlYgEFbxEzRC8T6BnrPpiqnxxF6BqT4pvwSATLNWhCoE5mUBVVrqW9y62VE+Ft4wQv0qdVe4qr3SFxsyuih3I0pAhG1i0SuiiTUHZWPYxZsjU5LTRlSxzupCSIy5YjMZoBBuao54rqpTu9gqfIBrmLTGiYhnfaJ5OCfTQX1humPqiMViAs1kkIE0p6GBiAeJAOijRmYCkB9a+JExXZkAmFyZQ+jq8nwB42NjcD/u8QxDtoDWiopJbwyT3Xac9jk1LZZ4U2V1a3091wM7AJnNkvma1mjKAzsEccspyrR7GlSwmVWZnUmJYc8VGvN8+akZIUFCRUwcqwF640QAFCVPMARQROKJA1MFHzu3sANIPYqbfIX090pEV5cgdOvQZSZMp97FpCpDAzQm1BHfVWy0LF24iZwo1KJqS0rvLO/Cw0IexXpY+NzzhTzJJ0K1ZsuV2+9t4IXU1aVFFdI58Wohiy+WPslpFF6lJivQgUoNXOIIDDSuv0AArB5TiOAz7S0RBywAOw6siCZTklZW7dt3YO9Le7du2bFl8w4WmCzcDx86ZqZnS+YEeEBJUPgwEVweUZQFb7CiQL+TJJxsDxUyAQ4gnpmLOXYw+hwbFwH7kzE1BnN5SXVxVRwFBAZsGFndz02Pz4xRFAlBTWR76sD+N91wffXZ6VWNtVtXr5w9O7px56by+sriuqoZp9zrGSw9R8QUmBVJXc6XlftCbCOKhyZmhidm//i//M3w2LKBkbPVDe1zRdUjU3NlNbXLJoc6y8cGTuy77OJdF11wnogpy+en6mpKt2xa7yjBvqE4SMRcctOpqHJS0qTGc0Nj7kZfypWZYfnJrr4X9h7cf+TUyZ7+CTZpJdVOtCIagh2RAaOHfbawqUmwxso0YCvb28ocgMWFwvEPiapz9Y5oKobc5mRZ+XoHc5cX9Q72vPjic6f7TnKDEHlUgElIB2pg+glh4Qr7B3q3bd/+3MsvrFjVaYphpT/90z8NmVjiY6wW1TmBhvphOALA1bPTBSZ5lSZ4eRUXaCfAWyAU30UwFhYUtADXhJbfEoOrk/SKZI+pn3t1UcnRA/u/8cWvtNfWFI+M0GozFuQiIMoQSmmRUotU2/6AP0sZJk+YxZpGW4Ktt2LyFZ6PoYREKbSHPTvuL7iC2CIgBZHNCClh4QoJQqYly5CEGMu8tQwiEkRFNxdZvMAgfsZugwgmcR3e52pVokBp2U00DGec5c8rSMKrWEQJveRy0gDGLepJC18vLP80SjFW8Ly6PHEHNjltUqwC+fPl85jzuPR2gfP1Kso1RCEG813UK0fhnjMoyqx5rmGunJAnrdlCsR7H5XnhWvpE2upWQayTkLiFVXDkD84rbR9hMzwhnKFRzJYZ9ZQWw+TwQm0KaUTd1FxV3dbYMCuMYJwhQ0VE8xvEilR2etnygTEGeL41hpaptsdwYUrUIhG+BemSjO6kE6vwCp4Bg5hQZCDMu2M3pleRJdEk5URxEYbun3GlWhe+12Y/4SzVx4CmXSoyln8iBvItPEzQF5OdCEYGnQQ9C/P0vVoUI/s6l4ev8zwTntfJ/kM/SpCUvo7e6WlcAWzR68I46vtiDbGMghr7PTs3OTaOxqdgcLo+T6ZhPVpKcQH0KMnhUVxR8DhBxjyJmXOlI65iIpNoKwNTEvUEhQsUrXIxBPj4BNyR+dk+Wo1hjCZAlBAKXd3Hztu6sfTsZEtl+crGevzE6nWrHQMvWgqzBHtt0gEtNFlseKZHx+EV2/CSCu4mThIoKi+jA579F+++q3T5eF2NfepE/0C3AD50GCXlVWeGJuo7Vj+1Z//Lh44WlVeLuswil5s+Bo1mD3cG22rMyOiQU3uq6jCDbOJnIbO6ytLVHU1XXnzeu996+7/+0PvfdNv1uzatLD47yvlgfKCndNnZmsqi2qoSx/3ipgWfwZ+WVlXocuLvgsszjmkigv2PnZfVhXeemXROjkFtbGiuqal3YKF4LcgtlQYTjDSe4TZFTETCYJx//dd/nSWiePoExP/mX/+iTYdjZ0jvRSLiMUBtw6m43bmv42PKjEmJqc5/i/Mc/8ImsXmPv8C+r/5hNcPnJ135ne1N+HPNz+EeCAEcnQV82XwzB7LB94yAz8S6cgUZvyszaH8s4mRrEFgeuY3m5FdRQ4BlgsxoT7RKyUiB52mRaD/kEai5ULhMUVssIUhQSZExZIeKIZROAS/zz4WHQcNih+EjKxfX4i9wNKOLKsYNVVyiGLkHEytHsKQLf37COIU/GfIf0RZr3+KIXuWIzIW7J6ZL+dB09Iv3Me+5ijiVNxAuuR82J/3F4oPooV/CQ63VhYiooeUicEDGNvD0beGL58+WOXbNKWF3DuG6Et8YNyvXPYbtB7n0Mo91goGYCyOaCohxjUGL0Y1pyepacIuGqSwc23F+xXG6ZpgLhZVmEO+w85lbPj43Pza7bHSGmb9mk82GHJMmIHUkio8pDHYikX9zEbIo90jIYwRi5MOqwuqIBcIH0F0VsQRcwRgEXL6OaXlq/fd7i3akxuTijKBCpdWULzjFQADcuCcJWqa3KgBJwX6kAvwM9P76KD4ao9j45/WuKCFdOVH4+Xp5f5TPrKtYLwuXyUibmySJyi+MgAExzKAZKjTxGEwPAQa0qJ3SM0mab0yksaglpXFmtwlSqgVA9CFdKh4U7iD8ZkFSGrFUaS5BMoY0S8DAF0jicpVAPbZTNJFnz25at7ZobJTRp/Hmh1jTWJuticEFghVxHuwqk/4y2CagxnDNEUihW+a1W1rWSPVafteb7/jk578KmVImcymobcRKD9VVNQ7Ojp0trnlu70Ea2k2r24aH+lh/NlQuX7Wyg7mneadnZh9pgetga3Nb9lSJxba8eJxHL3fkoZF1K9o0Rd+PnxarZWSkmzs0h4HKEgHWKqsaa8uZKE1RmaMFUxWNtTUR7cJeKFpvbSCEQQstEOzSwEAfEQ/35qamxq6+U2QygMelRhbYZAKgzvrHgYkmdOPu6//NwL/+wuc+T8ImFKsooV/+8ldn5yiQ+yMQUWU5L1+XtvEj1X7GuGnsf/hbwhHxuQEXFQoyAEfMsWrr60e7Tjc4csreDpAEOxVGGtEl/8cCSnwHlBhfL8B8Wlk65KEuAi3ZIkO6exJP/VQHOAQ6gArY5BXjjRQqEiIl5S+uo/SFGgJ3+Srl1paoMVZsupD/eG5yE+qUDhE1c4YSVgA+SmshKnQFnorpVkeqIj1caL9ycoGp8IWH0iyk48vgjpj92s1EdX6CkJx/oZEKTZdupWGJl7mW4KDS0sjV5YeeyG42DX7+MP/M6fy2cJf4Pq9C4Tm/buT9iOdK1jKDDjP6aWYraAzDRZ953rLqinpUTb9QH3l0Eg1ACkj2APg0yIY7C4MWEJBodKomiHTQbO8ziY+5RycCzwKbBVAIpA96eHcnyYw8absT94g89AMTAP1Z6OQiuPiZ+5mHUt35iYo9t/fIkBMrVcaE9fFrIThKQ7MIYalUXQEluYLX3PMk5XvhpSqk3QuJwqsfScI45hWfKH1uW+B62Cs4jAznse+LlIboPmDNY2QEEtxHhHoCUBbYBDshx3OiRchDsXpab0Zj8yyzGDksVYCmheQN1A/jeA7oc7GZ3sRXi4Of07ii2CPn0QUEoQkKOsMibGywf9PqNRZNFVuUijKylK07N4S019syx1aWIRgCb+HbiokMKWz5ogSHUkb5zBA5uDBcNe3wsmVbNq+9+YZr/vGbD81MDqxsX9nT24NZXlZR3dc/2dG4sm/w5JPPvNTWWC0SzfRYX9eJE021lXUVZRzbR8T0F5JfTI7pmZ4zA2xtIH1W5KxHHEJbXlUtkrDQBG31la0X7ezbMHL0xOljJ04LOkbAgXOfODtqW0SOVllR3NhY6wyZ46dPtTe2EowE3nKYmpvpiKFkLV3kI6dK2W1wCKrvqe/p6cI/6ogxdBnVEJxAVXGi4fCBA/s+/OEPXnfN1b//+7+vSeTDd975hi9+8YvLi6uGRsbIheBg+sZG7sFLwi59n6C1sC4DQAOKYk0ufmniUHUn4pBWeyj8mcim3UcOFNfXY3BxDRjaMABE3kIyaLvoEXhzBagEIxtrGclTYkCelwkKYZgAk7TcAiRjvaRKF5J2h9GKDNSLrVF4ypXz51Z6ksGskMjA5q4B2hHNWHLlt9GkAM7F/2XQriLe2DSaceUyc2b9CxBK12Iz86/Ux0Xkrq781leWkhz5p3sMx+JPiVx4LuK7KkqP5M+fuFtl+cP0bOGWS/Ajv0ofRZn5Sf55zj1qSZMauTLNTHQOIgsJTJjm+mfW7jzKWcZ8lk0ydfl0+fKiukoRQyoBJ+KJicPgn7XoZoXfDf4cYYwPAonG/3EpLJqWdxW5WvPvUd6YRlO1JZ0mnOAiZbdVJG8P/IBcJNqgCBkVSjX0AxOApf1P1UUPPQQNhkkfPDQrLgsstgOivqTLCowLfYsNYsQ+DXjVoiQxym1KBWZwXVpPpJWUr6UvIn+araUPf+TpRAMWYD2WtO6mNgL1IMGL4JKaF+1EwVnM6BoK6Kf2wOMCsDQ2twtoMzHFDES4N45dEX3BJY+7sYnRSMvbI+wU3QBshTPNVCQXZRrTR7IEcKRFGBs8W+qoe2Hdy0JYPEOaPDs5trZjG6RId2qxNDQ2tK3omC2aKamtmPHU5l2QxapSkpJS4oeiIgcvkbYPDfY7E1wZ7GH49zbUNUYgmOGJyy85T9SKhx5/fqT/aF1VnfhTvaOTFfXtPWP9DdXN/WM9D37nqTffeHnE1ZqePHbk0Pbt21ormvqHh0W/GR4bHhDydHjq+ImuE8eO6vKalauuu/YG1iboIsacpJLJ/ODQ8KmVLQdaa17hMtDVPTw1NcoUCfZfXq8JExOjROD14ujZUrMcZQ7hO5jIbxtfEzPnFJFiEqe+vrI2R6G3tJw4cayyuhLJoR4kPQixgmDus/NCf9pPeHtt2ZWXX3nZ//F//t5v/+//+3333Ufc/8u/8ku//Tu/09bewkKmsSXOWkEwhHtBgsjMfggACyBYpAF54ZpumnfMGuGelyzImtpaQwogzJltl3ua3ITyg6uj1DJigQhxGwEzgRzMV8BjIv1e0fqZd0CkskQGAmT8L6cqFpJLWg/WYuEueRKZ44pHGTJ9F4grPwgpTpTsCYGMkU8GiWqM3Ux5pRMKlwN1H+bLR7k4m4QAzfQzFZVBWC6LBQxGtwrPJbxQoHsC7/iZBsa/sViWlpMz5E9yCUvSUWN8E1gxLY6MlNKWpVBjbmHh26XlF/IU3v7Tiago1WV7nQZpIbsWhzZDcUz+LW3yzJmztY5jq68XvMT4Ag0XJixOk/bHr4U22OQmoY1Schck8mTJb04ARLyKAQk5X7wNJVE4Fhf7J12ZXYBwAb8HsRkwZGnOfWBT9s8iAKp0KVfXrBB35EhP4BTz55IOb+aUB38pQK/Vl+qPM75jfEErva9mBuoLEE1Fvs4tMqerkChk0oCczonCz0KGH11ioSJoRnszTCu80CQJVx4QnYpFnppNhqDX0Jw7FmZiPGT9XmH6Q5An1BoW/Cwzx9jeOp7J0Fld2Wri/8/cfwB6elz1wf/tvd+927Sr3i3JvcvdcqHYVOMAxg441DeFEBJICIGQvIQ3BAgdTIxJaKa5YNxt2ZKL5CKrWM2qq9X23bu39/L/fGd+97dXK2FsAvwZXT07v3nmmXLmzDlnzpw5w5pNog8VGO1OFAONZkjPXneZP7BBg0JQIg5LRORWWlaX946ND/Op29sTr+XtLedecN788kJ7T/v0zNTBY4fcmsQce2l2cY7vq5MO0cxz3D66Y9SFgnv2uqR9N6sbilkeQ6He6HCf6f2Klzyf0Pq+D30se1SdI5ywxRluW5ce9nUO3H/g0fdd/4mXXft0xm7HTh7s6Bvcs3cXY1hC9O133HmKt9Pltj17z/3ar3+NUzwc//JsSsXiQjPdpHjq3FzfOdy3c/SCS87d/dTLL7Az/Mnb77ntvgdnFqe8Yz+zhpOutXaO7XC0kvlViB7xp9gH6z1Ri3aTKpn+2MnnXXt2jI2NgGr1pAQtwRDkiSDA62YQg0DtQ045fuLIueed8xu/8atuSHdU9Z3vfMfEromf+A//MfNnLZc5Y8bukLJNUuC/nWYahC8XjDIiLVTxHxJXFU6agfLZN+cbg6nfOm+Xu3qKUY05CQHa7f2oB6qF0hvoNamh/soqyGO4IT75TibYCENAwH/WpgAhHwnLtxpQZ45nUDY8A9akSc1Q8pRcZSptfZH3Ba0a+KbNJcW/ZNZoKatCRtVQPYaJBDve67O/539LJk3TBC3C2pdK4wnApWnZpEyNne11BeDT0CzlKE2kvaM3nYhAU8TE0gnpNBm+EsQFmQU/9askN8hRjZdseVsLkacSpYoGNU+zs0qT0iynmV4KyWyt+Z/wmaYE9ilAZYUjB3LYgM4rtxQe9hDt7BKrjZaR3NqdqQ0VPVHs0H3u17NXRfVf9q9z+D/KJE9FQZgyEqoiagcJvIIcBKNUHSxBKFYtHIvWsHyYrubCdMIBrI+HHFYqrXG6Llh8/G0YQBMWpVeBrohQ0j3SrJri6TgMkGiGyQc5ugpGZj2yta5BrbQ6fYIa6FcI3BOHFP24YVBFs7oaeeKP//apFeHSqoykp0EuzfXT6PprhEz0MiR8sjKVjMFcVkVGBQMQQUcweW4qUBMQMQOir1dKG1f1MfQaGBowroxBbRWwx8MAuDhmIg3FddMeGWfJwbACXZM+dH4LawO9zLogRplLYMytw+rF550/6Np0M7V9Y5wPivGR2aUZyvX3Xf9BVzMSup3Fv/jiC8cHXaRtidDBp3FXL+9wPTaQqMk77VeWaUnyc2Zn3949Lhd+3rOu6evp/OCHPkI77+Csu8ZGBvsXp+aXdbp/7NYvHeobHHn+s64ZGZk4Ms27z/S+/Xu7+zb3nLP/vIt6duw6LwiJES4tUG/pjJWQq3IXc0lZZ88WQnYO9PTu30OEP//iiyZu+NTnv3jnkdOziu3fNX7o+NTRw4f27onCyrUAoGerK6QRMK1A2SE5Nhz30fOIe29fDyP0I8cOm/k0nqFRxoNf/twdFtPAU7zery3jE3YOyP6/89a3/Osf/uGPf+zG3/qt32Co/uqv/TqSjUkDga0DMBUi21eFSpX6P/4T+ACwWhUnH+3tjLwn9u4e37Fj8dDBbm69izwUnAt1i6LWvM0GM6VXJYtQjW0aqpAZofOJiBZKUJJMK8TXbwQ3BCn/ywEtK3pkgVG4SVC6fppInYfmIyJSkJmE5ld9hoKFbsMtKzaNt6/j02QNmQ/x5FoJqmGWzvRCJynZbmlvPf/8ERnFpWhFOlRa5Wa4CCyFhYB0VhXFzhTyV7SvoFNvCY6rkKHTMP8by8L6slaoiVuZ67+eWSR7pWXbw/bMzaw18mVenZWzkb/ARLy0IXPTCNmPwLuCjAVW7WVHQMZsg3BZaD72dHP5wHA82siy9KeZY/rFybtdXIAMZ8fUTfFCKj2FOiD+qVy/ksrGMJXWEFdMLbUkc/QskS1CfpW6FOnKlRqEcziMqtgRhNJ/GwZwFiBKz8uQAPQWqMFRuiGMdVRBpDPwKg1Hd2KXgRzSe1F5QwJA01oI8kThqx2YJyrj/zKt0HcbphmIDNFWk4x4hgrcoXWUsaBfJlV9+oXQiLN3QOV1tmwqJhuhKXKandrcjc63LVk7ev9sFci2sugcfPQPZaPMjqdPwh+DFgidka1G6mXuwxu/EcEsCqLmMIWZmuwcGuh3SdnqknO/+/ef09VHL8994LLdTp7YzIoYjZmDpJLcMdOJKFOpE7SyAUBeyCou+MT+mrpydXl2sK9noa/9OU+7cs/O4bf+4bs4He7vGFqeme3r7VxdXGnvHjznkqs//NkvHptZfPlLn784d+rE3PL43vOcHN61d582TM3MA5WmhwwUowvKK1cZRZakoI8oSRWWn735r2+gpe2bv+a6q590xZ+957233/MQQ6LOdWSkm88456qcstNtpWHDgML9G6HGHVcDvZ2sNh042nf+uTQ5J04dt3PQRgxywVj2urMUAFi1GAugxngADcAxaZ5BuQ+790v3//zP/39Pf+Yz9+zZa5baQZEN9TGO/zch7B6WFDprdpif0Zm0spRdtc0wODZy7MDDjo3xCw67IuZBtbLZt0UNCy0OygTfspGjNWWuVXEEVkK1YGbBTxgT6o32pDiJUdeEL6SARkDCaZx9HvwO5jaCPMa9oHRNgXQJQULiSDnspvFlvNpgLG0bi9t9+/egLDSHtk8kIjMkTXCWv5Jgg96sXTlg64kxsycyOXi/KVOEh2dXRMzxOnfihPN5XJQeE4+9wEwOEETpGdbSIF+IfJ1itXnN8jUWsfGzVl0+rJ1qTt7Spf+Lh8an0jolU47hLSmlTOkVpJ7lb6N9fb2/p3t4YJDXjXzoc8y1jW2oyRYbHvAJFTWTG8U0wA5nlJa0EgoeiSFEzbRI+izQLb7hua07NaIAZrDlYzmiHlnLrSQ1qJ6IGghWeGUwiqTZTCkVPcGj9vlMtqw7glMpofDbOhhJqegTFGws1oxB06kVdyK9gzmRQR3E1Npim64gQrGkEmrDPIVaqYpqvVJqBNaIKFaGiot1mGvOUsxX9KjlezZLrvEtfA2UQ2LRmkK59C14eAa3ULUgpXPtiIgYzQYEJdEM9Pc7yeV7AubM9Iyru0DcH5fHCufYhmMCpsEsTrR/dm7WKxRxaipO1aMYKVf3qb05OniIGYVuM2/31q0qPgQOT95yyo0yCwP9nQ8/dOz5T35Sb1d8yYM5zwd9Q1QZs56WJLHOjO4kncqJEdS//GrrZpOgtHiiBgHT0s1qlHlupXBfkum0tDI/PAx5XH+794d/4Lt+5w/+amltatkHq5zad9mIODq71rvrwi8enp2/4banPenizqHBm+64//y9OybGRyZnZu1zuT23ICgdTrggb12mMwNUjYnDC1c/0oDpLaRCaFpbeKRwU/HON73xi/c9fMPNn//CXQ/CskU3JfATt9kfGWnNSQBdtCUQ2UjLgQLp4fDAhgcCFOOr2cJb1leQp/mZ+ZMnj3N8hojyIG9Zhutxxrk4P1/mRsev/Mr//OZveR3JHzP43d99m8Nr+ETfgPsF5xlFaefjg4F4gsSC/+jvWSEUuWAsqd4QWwu6xsuthC952ct+/7ZbGU0hA04GUhj7MNcm5EoJk5/uKizBlAc3hMNkwiXyxiiGmshd33nfqFXDYJsDE5WQ+BXPewVvgVfJglUCDQ7DyFJd1iUAGPONnDkXDEUMyV0bUKm3DR5jx46W6wVSBdJvI8d18xMTO5QBWyA2fgnhKRiBVGFKlli1mkbET8zDSJEFyBoIT0/PMOk/1p49vazL4D5K6MBIlGHrG8ePH+Mg7tSp04cPnbzn7ntvv/2LHDwoVnfSPr5M1la0RyOXl1fiLr/s9usIwquuAKF2uUSknBUkn5Xi5/bE7XE11p8ioQjhtfHElfVGYWZoN1HGeZ2oB+SJ5r0QxxUnk7t3jo+BkGFlaOBjfu+YHhfzzVbGP3wgrpuLsTLJQllFisiCIgr2jGkwIFWlLpM+FLX0ESul5WlZnGHCwX6NGTeAIxQ4DV1PQFFMP5WTTyBYRMayB1AKKigl4bHdLglf3UNpZ0JWQ1mmZSGj5IKcWXmWUPagtKIVU7IlQjrm1sApU4ithGatW1CoH+XpVc3glUh9Uel+fVU/aZbw1UZqFfWrWtEWephEqR3kIkNGy5d2ZoQyxep8ItFk2jQ/z1RaX4PrUrA3r8rbgkOmtavTUZpoQlBaMOD2snHxjmYYJ1BTWL6xlocEpntA6YtULkoSUrJ0bdJxc5XIvrIwHyUj8h8xcW1keKSv3+3ELuclUEbEph8uRCODktVMFAX5n2bG3SC6U6alDVXyss2MqCld06jDEb87c+hvo7dj11jfD73xmz788ZtvvuWOdQYdQzs1wl2u/UOjXQNjDx07eXTys5edv/uay88fGF6jwcoZYiZSCbmtAfmB4JnGmx0j47vQwSC3jcTQmnWn21hIrC/MspdAf/eMDndfccXePfta29534xdu7e4ZoU5zkNaNwu6piYV5EKlzthyomZ2fZXXkRLhFwNiOUXY1yI0uqBiNIJmiQSyFVM1/AFmVoROXc94iW+IOMfzzf/7P/92/+3dWUjfeeOOLX/KyQ4eOnFo45d5MB/OU81WFDM3jgrqkGdXsgYaCIyHmZMvOffuOPvTQvt17MEUwpj2x1UGOAKOCanEQ2EntG+ssGhPzxVmPlJ4Cy1wwrGr0VHhN3HqbsS74m/w1IAdADndRCpDJIY4i12TcKYviRbIF20Oa+/p6uja7SOMY5wtfeO2LXvJSGkUeOl1Dj57AOpINnFGO+knsyDHgo/6IPmhDbCXjyqQ9VSvfKmF65jS1iCOUvb3OCc6574Sk39IKV91ZRtyfc10X1Zzn/nP3mA1cuS1cuf4N3/ANSuNMlPehL9xyKwdELoeZmBjXTm1WF7+wyscGLKxFKqjrU9UNsDQAkH+ar7alPXHi9gxPGM9Yl+Eo5MEkKzMUXm+s59xod+cI6clZPJBy6CeqMO56Mo9JPIQnJvw+MCKZ46WpeZblRVJKyXkhGrEsrDaK5GLYRhbobtkccKNqV+74DHOFPIXWe8JqzxpAQO3u/DPggY7ftdDtkGom1ldfyTOfbKG1OPSFgCEf0ssbiC5NQ2Ujlqa6LFD57NXSPh2cm5+3QFCXhtYG1KeidLam1wbX8qULW/2qBK0hKde+fCXN3p5n+1c1nrWx9mYcHxNSaUmotZdWRZ23vQTvNc/iDvUxJLgguEuhnQkkDHYBPDQ1Ne2by1ZdwZQpF/uf2mvl1P5Sd0dsL2wnPVfGNpwgnZWtuFV4MD89s2tsEA9wVRRY7tq1o3+oFz5ai9MRhQGEJ/s8MmQYgzrQfzeeuz/g1KQGkMX6BnNVbPhCO7Mm17UvsVBrIwFDUKuNzs3u4Z4dQ+0jr3reRefu/OTn7nAf/HrHQPvAuOP3rlQdGB5fXZz6zG13s7SZfPrVz37KlRecMw4vcnsSYh+9fc7rWxOp4PN3PRCe1tHJocLEjl3cFahmxkxeWBrN/vCao7AtAx07du669fxzP/uFL7hgcnH+9LwpNQxK7Xzj6gtyox/gdnr2NNAh9DzJ7Nw9IYIYdfdZDbUjQPCe3t9eywAHSwP9x45Pcow6sWPczTmheu25l+qbvvkb+J3/5E2f/dM//dNnP+d5hm8hJhpZpvztwraBSgGVsWdmCJouEIY32i675pqH7r/PiTCnEFrmo+7AJinqEAfsEtzMGQOd/IYuRgFRMMNOREaxKU3IAsMMsjpar+sP8878WYsDynAFi4CMYZmtZToGj3wHgCBQ1WLwnno2fLq1FSa4FxLcXvnK677ldd+KEC8uQmmXLa+5zYJMQMRUo23FpaV5y9Dde3ZiUd0b2WXp42UkcoyxnneRsg1Is2Dy9BRGAtlygK+txdk9I6l/jA44cnZPp9IokHh4VWaMevt8RRzp2jExYcGmu1dccdnTn/5Ux8s5qf7sZz6HT1vVkXyt9rw1+obMjWSpeis056ae1ngzRZavJL5V0vZ/C40vQliEsYSQO6c7IhEiXKYrKXgNlescwujioZqYjyYsu18pWl8UsoWrwFhUZVTw5AQfF2FRSka2QX9qPBKbHTC+PJEAuwfLS50trW7JYe4x0cOtStSbOg4xCpHINivZKIUyJUb911YWlpbn5ubN6AYDkCqUihuVb+/iVx6v5Xiq2FelyjyDhekFQgMvI8eSeg1S+kn8dUsWnSyXjbA2UqCsZ8ZDaX4qsOB0Y+Qkwq2aqHwZpKS6ktnPv0Wo5Wx/Pr6QqJt1p8XeJ+mdU6BQY4mp2iq7NDI/aiiGQNoJ40fHdpDYQJyHA7OxlGzgHQHMxpdNSwu57AS4S7ZeTcWB8ED8hoZSCxEtTPu4eQhkC0CIvVnQqb0wFMjEQYTc/jjx2nH+HhSvo5Vv564JDKC/d2XDFYCcJ6/SMsZazIeh5SFGQn5Bv80Wvr0OHnzEjDrw6AEboXz27j1nN8lOiLIg/vdzeMdwoEDsbnaNd7/wOddQBdz42S9++tZ7T5061Ds8PtxnwbHhMruh/n3L86ff+8HrHbj9mpe94BlXXrjM+wEfR+0dfIje86UHbv3i3SdPTZ6cmnaalNU/HRrVAR/0T3va0y7cu2uYA7W0rH1+dm7RUbiN1h0jQxSoU44HL3Bh19XD50zXUGhZ8EipnXwa5Jj9RrnP9tAMSRIkc+9kVsE5mWE4LLMG+zgRWz558ISLevgx5p3OYSw7jPKjTdzR/MAP/MADDzzkqsh77r77ssuv5NKOaoKTvgL+r+hxltT2hN8UyOeNQcYWL7zssr3nnX96cmrn0LDOwbTl3PgYNm1ooyhmOFZ2brjGpq+zgVaLDX6UoYQvBqnMkwxr6J8ZlWjEriwdy+TKz0JWQrTCZrIIsMmBpsNYsCKKqbG3v+8kiWBy8rnPe84/e/P3XnHl5bNzc3CAfMA8jG9iT7YddlCUBocD5M1NboIoMK0DXASG7qNHfmo29Fa4COpsOmgC7b9mGXE/q2WgzJqBCel12eJpmZgY4UwUWs7MzD3yyMODg8PEfOVYJcj7nOc8Cyd40Ytf+MEPfpDL0lMnJ2moWlqcFc81cEI6/LiQ3pfQjHwlPx9XTEYNeiLVRgho/TToHlZ0pkaGBIdDFjaz90vPYc7CcCfbtZ/yy/oaUQbxJdeC+RwLQRyDzMasltfQiKfkreq97m7vZEFLuoxOtbVNycNYn90FtNRMiEI4h3cQJRSKDoZqFTs34yg8ufwyhXP8n5YKgFL0VuFngWOrxq/i30r6a5lKCwJuNTy71+ZokLABfu+91BOyLUTi8HLaCcOQVjkaz+TZCgqvUeATFyzza+PEm5/UTn0Vjd6q7qxPSoFp/VbJiShc0xLJX+NVZddywtqKczLUoKkoDrRG/d3+6MbzsLj0OwzD5e9l7yda1zoo9hJy7tGZkaq52xqadDyePRo15nwkxCq0QRZFQUHrQcKyq7ZwJi4GaVhhmGt+B0cH+CxdI7/mYOAGYSBswzBAMn1Ia7QHFY2A4JpfuOQOpnvvv+/66z/y7vf8pSs4XNpHOuNbMYZ4myEQBFZIZm/PvKWuufTCXXQC5517zi133Hvg8Mmjxw67+QY1mV5c6B/oHt+55+DRU7/x1t//1q9/xXOf+bSd+8696557P/CRj3z2c7dMziy4G35wePThh46QWfaOj84tr1//iZseevTwtU9/2tMu2L+u1p6+6Zm5jpwpWd+9a9wt8/q1sL4wvzhrI6S70wVKXe5Ocoye5gSFkp9smK5ubEQLNDGmwWgKxMcMDKB0xk6TU5OcRPzCL/zyT/+nn7zooksXF2ZJkb3dnSYJevT85z//RS960V+974MOrF108aUETx4jzmDzWbjy1/wMD3iioAEVPbzMPC2IzYxpx/DI1U9/xvvf8a7hPn5PO3NoyHh1dy1FhUL7g2JqGrLJQQB1XGY3ekM4KuVkGWB5ELEqIkPhAsa8avjUF4qf6VWxyGBn3YQGWR/YKnK/YHZio8ZBoBVIx3TgkQO79u5yu9ZrX/v1CDJhXJXZYGzFR2nel8nmsMlVvsRzH+8YH6WTQdA1u/oTVa0NJ3hK1YYxKF/hEExcTybGx48dP4K4T04elSgzz5j2zCA/Nq0Qqzeqfz5UUP/eHnfOjxhGpB+iAojTGVlQb25effWTnvzkq/mUfuc7382FtfuB9aU5GQOcrXlU4wHGtnDWT28en7It+2OiSg5YMwn9G2IVsgAVMdas2Fh68/7mhCVnhzlQQvoJ1+t0CXO5hYnXT5e/ZDum0v5MxizeIvqFlAvKDL2oXbCCLxR+I77klvvZbQ8OjnBwSNCjPV/heUEB8AIhUksGGJmYZeGwsjpngeb0Oc6BAOR6akdICwOo+Nfsc6OmWvlX86wfKq0WpfegELCARVhRqL8apYhbg7JrCwqjRLa52o19//TydK1QUbUQT6G2UOL2IL22X6KvPKXUz/92z/r5WU9VaDjZl06UNX28kJT55kFM8rJQ/zLeReN2Vhu03KjDRaIlaciR1roQ01xEn9W/+aYKZLTMq7RfCWaxK2J8JQ+nHulm1uLQqYCyEnKkIYqD4A0ikC6jAA7Pri6OcnjJNwu+37kxsWucuV60ATYANrhNo/mhGcqIJBA7C/2PXyg2Ay0o7C5yJXcMxP83f+/3felL9xCsOAReX9/rzhCYU3rJ2tgWcZQ5jhPDSF6EJkb6r7v2KZeft/fu+x++/+FHHzjw6KFTJ0iKa0sbJ2bnoLPtrz97z4dWNtvP2T91yxduvfuBQ2PnXPicl1157vnno9rmPI3NLV/4PJLd39vzyOFj//vePzr8jKc9+ZKLn/G0p1EzIHir69ZSI13dbQv84gFOK0d1s2zqdNaaGLWkMYcL3MbMLc0iamgND5FUPRgA0gnUCJC5pt/z86kRx3zHn7/T7SiUG9//fW8+77wLTh0/BuYsoHCRb/3Wb30P66Pbb3/N13+DlXYvidvpiq8mVOSvXzQAvvV5RdeCLaEamTXrnEWvnn/ppQMjI3NLy5YhhCWSuGbDExvdbnZr2+jIoRGrRZb1zlkSKksIymQuOwjaSvajIwbwMrBb9ZV/YUvQaGuaMNIL2/ehUXWTNvSgyWGvvLRk/xZBv+aaq77zjd/FV7aTHF5ZR5rUPGRoMHRltMPok1IBeJ27rmoisxgDgBtWAGi6xvupNJBHzUlCeqo0P13jZWuX60/bwDvGd/FOasXgVX/fkE8sO4bHhv1UlzWZSOdgpxnkp+oE5UBA5qbd3X3Mq7XZBTI/9VM/ye3zr/3ar1m67d61x5LDhNF1XfZhhUWz+81IzeBZ8/x16fXz5rNRXPN3MwLwpm1oBlljlaEflXw/R9lt7TaHfWV9SSa344LFGg7jSXYpo2VeakIj1PLyI9SlhAiP4S42wCgHnK7fMTjkhleiGTZjQGiEsjYnAKrclh6sZVu10Yr0O8u56Cf0oFGMx6SUma0ecGyU3qgiNW4Hwfa3X0k8DS46Crii6LABFDzSv6HIYNSALGqkyxC0JKJr3FwWhlSwM43Y1gyd0k4p9akEKYqVIi4iNMrdGsXmz68wsr2EZrzWop5SgTmWfyXWSkuk0SRNh5Tept1Jc7I2OAq66IkkDACVHxrEAyNoI7xYMbF0YLjXCQ2XAZgzipVZsRwyIE8iNEQU8MGlsrIDTE3RaXJPYFqC1mQOp9bQLg5Fd563G03sz3K6dWL3rlosQRJhU2bE/wCtge5pi5EqtMotjGifzWpSMDtdTjQvu+yKfeeeT4GjTRpcvF5n51ZlWkJVPbe84IyCayAdM5mdPX7BeM+TL7n23vsenllef+To5C133XvXA5btgxz7YHHufnnH+6439Lv27n3la77leS96wY6JXUobHBnmKIKqw62ZN930yQ+8768OPOSrcz5z620zk6f5gbjs4otUubyyTJm5/7z9J+59mLLTGZPphbn2tqmunsG2jh5ba92t2QYMVIqmhEnJ1NQpzEyiyYYf2FS86MILrQMc+Dpn37nPvOoqN8DcffddhMcv3PK5H/7hf/WC5z+bDGucEZRnPetZNGC33XaboaHEMFiZWl9laAzSNklIAcpvFGMsyYxGgwKlrQXYx0ZHrnrqU+/+7Of116Cq18j6wFQqC3rWOo6P2geODbmGKb+yGZkK+ThDRFTh2zJFGnTFsEusWOqZeElBSSELalDFEeK5uO5/7w99nw2AoFFr/8zcrA1H2VBzWzVQkvjvD2KrZ2p26qZPf/rc/fufdOXVdmjdOvA7v/M7P/MzPwP4Rp/4/6V773cmQ/m4gvN8dtonT0197rOfdXmLywmghGJZfFouPOc5z6F8M2TDw21HjhxzFxiH/q59v+eeu/ef68bHWLdD2qgxGdqvr/PbSms0PDK4vITrHLvoogv+63/9GRdbvuUt/8slEA04l17XLlewbE9/wrjEZv5mhrMigFuBmelUoO0fo2AmutUXZUORWdz0uunXIag6YYm6XMh3tC8vzXMFRmQphlxFUZKhQzFyXjd/PjevlRgcqf8WSZoKuqN9sLtvdKBv1OJIPUgHxR0tdPK7LYCTMdqFDb4E5lytammZewVaCS/rjr/YdYjaKvQ0BEtIVwtjKZ0IokW7od48vorQwLWtL6CmlEyArE2R7BBHyKpYEaqo3JAGTBwhWdas0nBwEZHW5Kv4Mc+nNQBikNuisAAjVKwECdoPWWsvfFZobsMJz9bXX8W/tZztH0jRpqIoB9vI/OLa4hlSGvJZmlsYQ22yNpSWUkR7u8biniKbrbfVlxSMsHRNFqt5K+4B10fZAIbK+mT41adHjjlZKWXcMWs8ozAAMx+5t4fC0hc4OKUOZ6D1pY/P6XCC30rLygI/PP0umO4iM7aNDA2sxSPseldfj2M33JoZ7cLzfZo9F5KnsoKFm63uCKYjJG6PjIwi8pNTU1pFHr/6SU+iWoXNpr3VhOlqlNjs6U5f76B9BfO2p6NzfBgbWHfx74X7x2fmV87bv+fpT7v6/oOH737gwF33P3jP/ffTax8+esRK/inPfu5Lv/ZrJnbu5GiTU4SZeXqbLhTW9uyLXvJi4ZM3fvyv3v0uTOXOhx9p/fRN+88/b8dgv00Q/qovPvfcm+98mOSQrcVFXqZnx4bdHtyb+0BXcwkX2q3ZGaJy0jJt6+/Gfb3CVl/1qlfROVjWYIdvfvP3vORlL/3AB9534w0f+5M/+eNb3/jGf/Ev/5/v/Z43kzQFpohuSH/r237v+ImjDJAytQ39Vx8e/40hLljTwBwIBq1MEMdBmcVccfU1d99yG7MQI+Qq8/n52Q7qjmwYAXvkDy4kN3ppYFqYzZskSsu0ajAAQxk5ZXszVeMne19yg4h3cmQqqpeAkrdwzz4xhSRzQTdUbz79Wc/80R/9URF4SzZH95n5G59K0Cl/is+oiB2UUl3k+rV1drfu5Ryxgz86+pM/+ZNWANgqBvZzP/dzrKo++tGPSrfIe/nLX+5mSjL+b/zGbxw/6rLk91th3HrrrT/0Qz/0oQ9+BEs7fOioWxu/93u/93ff+nOvfvWrf+PXf4s2ySB++CMf/JEf+VfOllsQmGJ2jIhcjI/F6YssKTB4zMZPO1Lf/M3faLj/4Pf/OP09A42ApQJfpMZr5PHPbV89/uXZKTAjgmxNLu53XFkRi26Tipmvw3GomxHMJWDId8gUAkjSyqoum4VG25TKAOUPdmSprrhGoaJJo33NMK+zjBgb8DdEFohZBcEI8+7unofTOVTsCkATkXJpnYWJZR2UIGJnN7qcFAlDUQzzO9onrIZaQ30hLJSoWRc4sVxIhIxpREPEEIGRWMX2sPWr5CvCvrelgvxjjm5BJdPHkhbtCOGJ+0l71+2r0WyEwkUX6eKOvoF5l/vFoquTLTDVZxaJfb3xIB+LRmAIomYIi1VlqLGCwbWMa302+YGfzVDnQHMFktGtTdajMhsDftFt5fjWVSYKjwYK4fZF2cWgZtV0vYhIFg0KIGlA/oBUA5dW5noGe62gewYGDzxwoHugn0ry0KGj8ZYe/rxsMajw1bUFWhpKFXeat2ysxPAXCe7rm59b2jm22y5RKy+7XZ3FxjHba0ABapEN2lbnFqc6N9eY6iCR9u/cT0adDTtWVmf7N+fPGekbHzQzVlFkJw7dP8+Q0IzhnJW5JteeKuIWs6e338mA6bmFYyeO3vulewz/1AwXHe38NOzmBHl05Lx9+4Z7O08cOQyTIapFptZ2xX9hDESMi4kHU3gVVCxQLLjal1Pynk76RobIq+vz5KCnXDB21QXjM8+57Pjs0ts/eMPk3Awdxcc/9bGrn3H1+N7x9fZ0CgyXNhawOXL93PI8OD/lGc986tOf+Z9+4qemF9dPrqzd8aUvXXvFFbQ8aPcQsaGjZdkVqXY7evrmp6eXhme621yw5QE6LFE7FlcX3C2MDTiVytaIwMWdJ2IUULe0vOY1X/er//OXVlvWxsaH5pamnv+i5778uhf/wA9978//9//+W7/9Ox/9yMd+/Md/3DWHvOW96mu+9s/+9M/vv/eeiy+4MPZaWzOiiVdfPgJJQDWociaUmZaUYGAlTWHiVnTF+OfYiZO79+x91gtecOP7P7hrcMiOtuOy1nM2MExs89NsWWMz7Pic09qbnTENMmZYAo/iiCIlg1MEq7x6m2t++IPUtQmFM2T+pA1q9B7WQm/nG+YWc+OKayA/c8vnn/XcZ/27//jjWCCbA6Gnl5g/37nOSJ83JBdud2YnYsXuTC/sYWQsFwL9gue/8It33MHhqz3bC8678OjhY5+9+XPk/bGRce7Kn3LNU1/84hdT7DAexaFnpmYvuuBiwvyxY63nnrfP9Qx0GBzK9vSMvPYbvl7cFOGTleEQa9ETXziGbY+Nv25wcGh4aJTAAv0MdH//gAINqxlsmYIZzS8s4lU+sTv9PW9+owXf//k/f3D++RdqnlvM9u7d54iZAB0aBMFAFHGoUJQYc4NVxib0IQQiEU//B7VCZ4Qw4WgDGjcfSAmYkquQkFaomDNAKLmNvN7iYrGbLXKMfyyheqyxMXUf9ff2+nZ5dRn3R/fNJbM7p7myxGcBwAB6jWdyRJDpRb9zu2vlDpn+/nOG3DPa0rW0oJUREju5jG4zI06vri8Vl/DAYwUPN1ARjWZrHizQ7iALUhUCxGI3K4B0aCtAE3MPHlTE3UrOvwHU9t9fWTx02ofbagF3/QQnD5wH/eT9NsZSGupgLGYQUosgaHugqnehserealTpydl86CtrzledCwXxjaHWYLoqpD/d0fT22DsXRYwe1j0PPSuMj+RZDsLQy5j8FvX8bi4sL4X3OiGCKRK6A2Mr+BXjgAebTHqvbGIUFg5c+J+N8cJcdDysMRnK0Jn/NvDZEECHXIeYkN0mIx2zotXF4YHukX7XvXRRFO475xyNoe+mvenudTP5UFtn38Ky5VbH1ML8zTd8lBeKz9/6mQOPPFgMlIDe6ZuNYXY2Orqy8rxnP/0bvubV556za31pGY0aGxldWOTJIo7VjIK1gpaWBuShs4FJ2eEWhWuWfNbplPco10R/i8uBP/+Zm9c6cuTt6PFj/+/P/bf/+rP/lQIAkwuSZmciMLQdFM6anrX+63/747/0C//j4x99/z6X1F95uW3Ktbn5p1x5Zc9Hr18EyU6Hk9f6Ojrn56ZGh1wxTw4NzihAMeY50mDmQ2bTlRQ559jX0hIrT7rm173uW37vD39/dW0Rpkm0Zyjxt9/yFnqMn/3Zn33Td3832d+d5jbAr7zySusG40JDaUalq19NqKT3b/oieAVmnV2dC7kcdP7yq6956Ev3P3zX3SMXXNDdP4CWWwS4FQabiOEAKtHe6sDwUk7tBe4w1LQKfhoQiNptSWi15wyKCRY/M8EyXzW8YGbFbC8qiIY3ckGdo38+3HRN4xVXXfHt3/WddjvgN7f1u3buBEPCe1XHqwvNpei3FcvQCivGJ+CYs7/zc3M8LKnCNiwB31WOP/zDP/yxj33MT8K4zykSn/vc537kIx8B1ToiyDT7guuvv95bSOXVb//2b9t1Z9z5ile8Qgp/fPfddx9mbBfKKuGyyy7RU6sQDaAMpDWSBzqpFEsy3KOj2X4wWJQCThLgJYePPPrZz3yB0q+7q4eyiM5Ma33SJErbiBMNSvxxCQUR86g/Q80fG+orWyCSK5UL+IqAkN1cF3GUMrY+yuQV6O9WbZ4Vi09jphBUAI+2D5OcpkFIiJBRDR1GBMTt0oOXhI31nvaWwc72wZwbWnVxE/Nx5s9oy+LS8jRFf1f3MpG/xX0yoaYUK3pgJoVmllBLNcHqz0J4vWz8ZfVRMbG0tvGFfyqMUsgWROr3f+MzXSkf16efSHqKsSAq6i5IqsjEo4swA6JJ11ljaEQLA4ia72+s6P8+Q1q4NbubbdYAcYIT45yc0Y4IlaoyHA2uD2kiEMiUoUpnYlG3ZI3ck/0uWOinSVJ7EfJU2uonrOruZTqddU4t0+EovWZQ4ZOyJA825P/yUAOUqY4hJVm5B2KlNI+aYLd/fM9ea2QYf2plrg1CIARdPU6M2AU2p6dPTT108Mhtt99zz70PICkHDx+aW5ge3zH+lEsuvPSyywYGRwhQJ48dP3740eOPPnrzzZ89cejRN73hn5x/zj6crH+9V5XpgpVXY/eogUlbrci/BQwmRZFOsn1CfZENwEcPH0Xczz3vAvrfm2/+9NLSyV/7pV/+3bf9LxDA9UPHdM/X2or5S9poPeecPS9+yQvvue3TqLk5D9AgqXaN5HmizfZz3H8yFZ9Spgxl8WyJTRiMw0Fni1AQhT584OGnPe0pPgRYWgiQt8H7J+/4c32xFfnogUcoz5AYxT75yU/+wz/8w7/8y7/87//9v99z190MYIZGRzAwQS0Dg8Pbe/p3Gzeac8uLg6MjjnGM9fc/+0XXzkxNPnT40Dk7JjDjVXfTLC2i8LYhOtu6wuNy2WZugdMLRF+XrcKADcQZupbOElQqJdhY4XBo1WKr7D9FAWxlAN1jgOHbnFzFe5bmHfX6zje94elPf/qpUyegKODg9zIDJsykY1GLoZQI2qpIpcV3IdBBObA1QK6MtweAartb2LktBpq+pcyxrnrve99LxQ8/4c///t//m99W3OVbvuVb/uqv/kqKo8W4hSEzCsrBQuiRXvCCF3gySfjjP/7jujFmRwETMuIahtPY59cGWKQWbYMqWm7lob9XXXXV13zN19x80+fFBwdGlMPJiKbahDB2mdrmc6QPodClwKRMOB3bClJ8LqcW6nI+KXnOpDOvTmI+NikxAMHXMgiIqpHNK4Sig87D8mytqCfbNLRkjTpGTlukqKM1dCHYphFT/6J9KOaFxENEExsb7B9QHd4QVw+Wgy6PXN+Yc4bTcjyWRfEDVPYRFNZsRWlK41H7G8rBQ1YhKZGyM1/T/DwaVFsO81hDEsnjbxkqyHys5MoAIqeUAQAdynTphQAERhXKFldGMelWJHV19bes/Cv6rLaw2c7atvplEZbC3L0VB7ZK7YvnpexjG536Ydpa/gwzT8z21JB2M4c+f9ZNW/pWVjZl+RU1OuJlHSZDZmaxh1JCphkFPtEiHKWBQyIZhTKednpAxhA3ZJW0MjagVkxO9BMVd+0YtyGmBMuCodEdJ2dOEjx4G2ZJctsX7/zETZ+77Yt3r613Hjl6/KJLLh8cGxueGL/okvNf8tIXMqmenV/aMbpj8sTxhZkp99O+5x1/9vmbP/1X733v9373dzvFjgIq1jzHsbTHSBkZoeBGRfLKH5MU3RDs33DNXmPpc9fd95yamnn+FVf+ix/6f57//Of29/WcOHJ8ZnKGdZDFfhbPIFxxNnMA+rbOz8289IUvuOWTH5k5/PD84jz+Q7+EDKk6QFhe6evpb3VAbXN5di4XKaOMYIwcgAnA7ti9w2BpBjUFuoCm+BDFERw1sKBh4fPs5z+PRGmPEVmh7EYBEYjXv/71MnzoAx9kT+IKddTHh3weWMWnw39vwR2Qzkh2DfRNzsztPPfc5730pR9897tPLsz1k9Jj0zVgYQgyiF0ujoQD3X0Q0AQxVTKTY1IXVCEE2za2dVTWBLlthMGY7abAjcVFdhPQoXJXcD7OnUVu/kEfLYNe+tKXMsSkUQFGuYy1QReAF9mtow+YoOSVgJpbVMlplaABkOSf/bN/BmL20g0RIf0//sf/iEzLQMsPzmR2iT5/85vffNPNn7LHK+W//Jf/gnlIkRN0cRdjwSmTilStYQb9rW99a5W6jCzqb9FAYaWpFR+I/zKbKJqdPhUJ0kBjZnby8STmRrovm7ciatHajGSRxOtcs9GSlEKptke0VuYa6ttMyVCzCEOhkVuIX9+a2mmDoQrNi91ZCEP2WNZZoUmPeiBbdqmO8t57tE9xYUYKC1XM3owxADdie8YxHkFaaYQcYVlfXMpWeEecCM3MLzAew9BoGtzxh1MVE3HFhwkVxVTtyhM8q8YqK5hwAtAAC9nKM5G/oxAYbAtA0wTldsCpTS5jI4jIJkWGGvk7asvfUEyzYTVfyHChTH5qkrfGW/AzYxqg5Y8QVVj4tsJLQShL1LCFrBdBI0DVO/hB5yALyYtkXTtLARJOstHKk6K9B9HIBNuClOBScIvkYCkZEbskllYY79UVfs12jI9z52nvzlseXlp7BrqHRrlWfvu7/vJX3vKWj3ziUy09vU959nN+5S2/c+3LrusZHTtw7Ojwzp0vvO7ljx49RqdPdtM1Pv2ZAH37d3zHd3znd9334EMPPPzw8OgIURFWmQxmGnTUlqKeM0xFkCxNLT/isUAhQUDIS7Xf3jE9v3D3/ffTZlz3ilcfPnr8W77ldVDt6OHD733Hu3buP6/F9jTaiq9Y2EatQbKJMOsow+5dO3ZNjFsWOiCK8KmECUokMZIOtw0jowhETyuXAzPuWcBHAQSEZcNWPb2VgsSgGiY/gkWlcOONNyIfBMy77rprYTZX/srJ/BTVEPchYoScEf9/6Zd+6d/8m39DbT2/xECJucvfY4Acunbs1GROsg31Ty0vnnv5Zc+/7uUOILQN9HU4wdDbz4zPkThHxrs6eyfGJmh8SogNEZig8kzOO1vbnWaAQhGtYivZCPRALA8Ni90sYDGOwCKg9ZWGGlbUH5/DKeGe81sQGH0Hdvn13CfYpIiVAWYgAqQyqwDowOcbv/EbZZaIj7L58a1XpHJcAS7Q/IC//NRxPlcdzT4iLpvhkAHwfe4TQr2fvsJaVGrsRGRTFObhlYCXyFamY1tNRCi0wSoB/1CRPEqT7ZWvfCUc8FZR2qxeP4VSTKyxa0BqRWST7q2SwVbHBVDylCiPzxUr1HIUWIO3JRKqVaUfMET3UX/TXAr1IaeE8X0oZ7HDSTYqjxxwMfvDweWPmh41sQlAPYJqNKhlFEvkm34GpZ0ObBuOVkYl7PpdI7xMc8DIm7tJmycqE0I+0xGh0b6z/8lMrc6eksP/5mroTQDz2LyxgWnsZf31xT32k8f+ql95Bkbpe5iNPqpOJHH5C4vUZoAH9wrNMs0rWB9b4t/Dr9S41fFau2dpQJpcyHcBg91qg1d0iCWDRD2L4KoXBtBvWAJdJEJrJVgHlL5HUlOJAhjnYt1YODYQThDen5Dq4tKAZ2bFpNyMhW+KHq+o50J3MZUIGM3mpl4syHHy5TFHZUaGCUHTp6c6uns4ae4dHqXnedvv/+8PffyLE7u6XvGa177kpa/as++Cd7/nr97/wQ/Q+fK+8eu/87+vvObK13zd106dPK0ofkvmpidb11d27Bx/1nOfQ8N+xx13XHPVFS72Wl7MaQZtq+JhBVQBzpkhMaBUZq0b1sUYubFu8yH7eme+Bkf33XbnF6+6/IoPfOADEN9ZpyMHD0099DDbiFB83c9Wu2Vg+obdLMzOd1uSjA+3XXQ+2XP2xDFABhZfxjBmc2N4aMBtCwycacadDxruGywLp8omudSelZHTWYQMy+SkUivp3tD9C87dz/rw4cOPoix1QFEiVAMFgX6yRc9wihOCPnKr4UbRmG/HZ+PfZzB7+ex2G5qjPS7LWlxfu+KpTyUwfuHmm1vYO61vDnR1D05MMBubm5k9dOxk3wCPeEUoYW9C11Z0MkhaaAQBFNr4uK4kg7YdlM9lIRr0CiJzoxSlQ1wKzi0t6uzzn/98PcXwEOhK7gFEBCbD6ksuueTDH/6wCJn6k5/85POe9zycABVGl9Fu4rbM2CqpHA9AlAt/yVUkxk6iPFJQc5evWWqAKtFe4Qi9+SIC8nU4jAUwG2VEtpbPWtTGAJUgxgz31IUEQxhLAU21OlGadMipELWbH+UZr3NPetKTfIUAe1UZg8Jl0DBPNNNP08qzENYQKCU3n9I1IzlL8LP5qtJKP8vUV0KTghbZP1S+3Mm+tpFtmIhta2QjJSjJ0150Driw/cseXuZNJnXlA9n4TNxmYcQd82GDTXBPX6ycw5sX59y1t8gyj5+HnKK36aWGwmZ8o/z0Tru2aJrqHh8ityZTCboRkdYaM4JtgzSL1JAW/K2CdqQppUGJFfAlshUKVNPcMMlCWI2TxggiNf63qvmr+Ehdctdn/awZFwld2mqJdmqwdsomLTSrkCRDWD/0NEPgLjI9xRqhILFCfGVjzefizHH82RGCjopSjlKhh7ubGQln9mpLxiaZKy6WYTJZY/5sEaAYGh5zH+VPxVXNuL4yPspVQr8E5pU9/QNdfYOfu/2uX/9fv/eej3/xksvP+dF//5Nv+O7vu+KpTzt04uRbf/8PDx4/uff881/5dV//pKdcdfs993X19S8sxWlX2THu3bFzN9+EqN4/+Y5v56r+kUcfVSzKzo7CISndScOIK8WwQDuBMFAsCrIQH1FbVe1tdh8VQgnGeMfzPe9/3/f90A/29PchBCTWwT5XSC7iXgAU7M2VwQQx3rEITI6803dHZ7F75wRDEXWgIMgNEJlDhFz912PupIi7HJyk1pD4BKBGWRAFTa36YuRGCRdeeCH1wqFDRzCAK6+4gtXK8ODI6VMur1xQLXrZ093HmubY0RPAzyM1LxGPHjoiXjtVq/j7eALe0uLi2PCICELW2duTBWLr5hVPf9p1r/2GS5/2NFYvj06dfvj48Um0r693eGLCSGmxoD3gVOhRVmOUw84f2X7vZoTekTOoDiI5N0QJRIkUq7+CxiCTb/2fFekiEZtsrmpIW8EIXGCFevqJRn/iE5945zvfiRDfe++9jP1RYahO3DYoyDRQ9/Z133PvXVDi9NQptj3QlcGo9jDLGRoe2LV7giqLZ5HRseFDhw+OjUcvh0yr1OdqVzW+izco1mCpUdU4B4ZkTfaMZzxDuibJLPzWb/0Wuv+5z31O23yinRiYQswp/YIAMnuF92Mn2JKFhW/1VTulC+KCiHRzUHoN4lJqBkUJuIjPReC8PHiVoNe+K1JOg52UDdeULCihzGAMgH0erw2WYusMsOJQBZ3GCTZbbEcoTboxo/A0o8tSOjYdlSyb6V5YB9S2Ghf1Wk1QRTrZyz0Vo5J1Gj5+dFrW56zf5YwUSn2Uv8ikGMcZJuB3GhWRu1RFTFNVAwq10YFRISn59O8oFDifgTXYYHealWcmeuKof82mTm2oodI+8b+jhnzVxWiSVTTBiu1kDt0WBIJbmq0szSstjLojIc5W8kcaM64SCEQihP2t74w01hHUFCRSsWYEcdwyIZWvwCKGhK8IFQ4VAuWJsgatU2OGsZENAQ0NXV/j36yXUY1DgCvIbt/03OIHPsyxwp2XXrz7+/7FP3/2tS9yI+XJqdlf/vXfcEv0rv37/+Dtf/Kz/+2//+Zvv6Wvf+DGT9/EqS8h17gQLXEWcwLCTc3OvOwV183OL2BHRDnNkIh8azNyWZp59gNhYpVkn0oLWe7Y/NKe7r7e0YnRg4cOksSpHcaGh9gpXXrJRe6Rt5lrj4tjE9YqG44OxzUWW6UV/kxPHzty9NCBC847l3ewgcF+u9zgj3PQhDmVtra85BikjXG8gJEdKEYzlfMQ3GlsMPoET+10PwyDcQTFz0cffdR2Iu3/M5/5bFpmW44IGRKTqbW+roOEUHHERX7fIgdoXI2f3c+/69897Z2TR0/uHB2n0SHYunKH5EgC3HHO3qc+/3lf+63f8tKv+9q9l146vb760IkTDx8/av5nLbg1PxpSmkkdqtFQo1lUsh6hdARVc65gGn8hjn4TOFocKagyimJ0WffJ6YgvLgtWQEGTg4YCAnr3C7/wC1Tq3/md3ykb3T3titLQXDAEUvu3f/AHf4CtWiX48KMf/WgVt//iL/4CAKGNo2HKkY6eIvrvete7rr/+enlU5ysrBvOF9z2bw0YHgv2H//Af3vKWt7DC+rf/9t9iPA73IuXvec97FGWXnifXj3/84x/60If8ZD709re/nXJPm4MeZT0R2lKWBZYpGICKDJf56OmTZvCJVvkEHET89KpAKdozXwm+qkEGbxXrlV6IVxSo+dUoUhcTNR2hRQ0ME+UMsg9ve1B6ysmVNQcFIuq1dSqqSo8ZEptnsNmYZXYjFTGGIA6SBQ1unIG0d5qgp6dnUX8HaBic0CAzbjOvKYLKVz48E2rJZ34/NpbDJzYT6p+ee6sPaBOFYnSKBRa1k5lWWrOVIrGmP7bAs3/Vr6T6EOyEWoU+A6J4LSSVRq2RFOAGQuD2lK2OYs3ZrDFALqy7RuqzQr/m3B5PQ7f4ebpUQk2RWahF1XjJuzWfCjSkSwSbZiFSoIufkVHNrmxc216LktQkIdQgH4RfkotsjvgqX3vss/lZu8MVpdUceUeXSRTMOywMfaXvdvkJQSJKAy7f4jYZxdAxcgOCEJvR6I54PigHpGGJbQNCnNN/g/19DASll3vMNz91083v+8inuntavv8Hf+hpT3/mqalpfu1v/tznHnzkYO/gkJQ9e/ctrbqPcO+7/vI9P/mTP/XJT3xav7TT6kSTnNjiVxcb4BTs/AsvhPFMP701Oft7BzRKm8ideSb4WVJsjhRcQjhSVG68WkVWtNmUnNgxYgPs9NSJrm6u79vPP3dvjnOu2b5ycfL8MluG5QVnkcyFrrbNHaOD9951296d4+4Hm5+bhRVKdjbKzOnr7Fqam+3PIfvushpoj2l8a0PPq1IDocHICrpGNjQcRkd6RbC3ve1tv/u7v4tOoV/eVhUHEkCQlEctiJHPjRcRFUx0Ty9EnjAYrP/7YIYTD1mzLlN8tXfY3zYTre7RDsKdo6XDe3Y96dnPfO13fvubf/hffuv3vMn2gEMVDGqPnzhhRUVuA0EIEIWwDUIWQJFaMECrAXaErUnMbTgQNhiiI9ochFwNgcMFUWEgMjV53TF2oCEAl0EEIgY8rHQY82gV8d9RahHclCT+sY99TGmYKAINbmCOvmMh7H+QcsoikMTPKBJ96OeP/MiPkOidNAZVWy8gbHRUQTXkUJjxIuDjE5ok4lCYWrh5uOGGG1iCqqWOjsXBTTfdpBkYj2N9xrE4jJtRr2GVxzjqnQATfC5SyY6m6hT6o/aaTYq4FD2SDVikC9L9lFjj0mUTRLySaGKK1Hg+8ElZEIMYkDL4oeYs9HqaMAWwbaqdW3TZgzNcfHSZuTiMdspMYJEfA8lMJ5U7XEO309ZKJrCMck5emVrCcyLqjzTkTmmrW+v1KH+c+bKln5OylSIZ6cZfaVVDtbOd8+FDqYrFEFnNbp4dSCLbNjKtk9uDTtafzYif2+PbMzfjMmzPU2HnbQFjeYhH3ZSqQT2idQm1BN+W9j+xmClPKf7shjVraTajWdpZKX/dT5Uq2VFTI5CGZZokKDlejItWQVwKLII3QR1Clp9rYV3GyVvoC7OhvsEC4nTaWTbTkTBGgoBsNEJJb4DRJ+ryedlzUSlEyMss1krI53hkmGWUfdGYlaW/l47+uQS4o2Wjt6vdSr+r28mvtcNHj/JpzMflG9/4XVdccUVwmzZ2aPjOe+6mZcZ1bAO87nWv/+Zv/uZrn/v8AwcOHj9+4o//5O1ICW+FpiuE0/iyUdiHmEBTamNN0c5GaEqej18HbLjDMsRaa2Umv5iWV11xJY90LqqcnjzGxwWfpa//lm/q6e6Ym5lcW1lEXx0EYL9O7dMOkx1ao+Y8fnx9cf7yCy/gVJvXGasxVJIMZu1M/B/s6eMm2qlnnzi5UKZwdEcMXDCbHFUqLIHaAa9FVtzpyAZRv4wLckMy/aZv+qbf/M3fRIP0zqhhbN6iLHUEkTM/8Qbjm3HZmgJ1OP7OnyYkI6j654BukL4A1iBTB9lLn11btjM8Q5Af6Nt72aVPfcHzX/rqVw6ODQ3vGJtZmDXhBwb6tVbvfErPY2FpMyX4FB8s0fzkmGLmWV4pP8du6BG3xCNMGq30EyZTyes1BgAUAgKNCqOwZH+CNupsP4CkQu5G4snXdkrI5tDGKV9PyI/IMgPFVAQmtqi/FOUj/S996UsBViJ7IWVKVwXeY//Z7oKTAY4Q09Rpq+7IpkmKfeMb30gLZCA0zP68LeWXvexlUBTLMVJCXaj5qnYBEgRpS4hMViaXX3pXu1yfNUN9NlO2UDzAaSZuz9mMbxexjWANMNBsK/Eykny6FI0/pyl9NHLMd9F43XCYm1Jga48BcWjs/aEnbDtN6mIT4QwmdAV5K0IkaRXB62xfs4Poull3ScoK6S2hoxNuSmONptSONJr1uH/aeh24tQ1hDVBWGdhAZQaZtCVs73wz3ozIIr795+OqeIKEJnCbjas8QDlSgMUIiZSCQ9y/TPk1z/Znre/LfLK9Qc0Pay31Z0UgTwG2xTsFClZCzSZ9e/lFi9aAu8ZXnIN8rjkjOCM9NbMn1Ypv00HU2jYAFoCLhP2lm2ogteX6Hpl0eguZSoMBxHsCAkEhckr9UAkyymD/F65wk0AAHHQLZFcXWkZR+8jx05ddevErr3sF8hdq3uUYby+1qRqH+gc72zrv/9L9x48cP/jIo/t272O6+tBDD/uWxpxlQihGuSgMna/a/NpOI1P+avvCqPIXepK/EBamjJwzk2ssUBiky8jAY3Do2uc8e4BvosG+83aND/Xk3vNnPfWq3i6WbZ09mtKx0cHSeX3FCRfHW0n1fW0tp48ebl9dufySC2i3MGPdLxW09nf3OqQ6wBt0uU2IYMv3XbRGdKZZKmWF7kwskIG2ZiM3ngKwmEr2LEWQHl1+6+/87r/6Fz/8rne8m0y1d/c5unD4MM+UI7pw9PiJXGwwNGwhP81YaHSsjMXf4yM8QGX4HGVAedbKdMT6LifcXCfCvJjutKfbzQnt/T3uZmMhOjkzRaqoC0pONcq3ofhQggyDB3AVmZOM+bP7C8MaoYKlzkRMGmpJUSnMR8IqxPwkd6PjvsEG7Md+z/d8D6KPNDvYRSNEA8NGE8y5C73lFthFrj+EAXPof8cdt33rt37zZz97M4TnocG5PwjOixwnQsePH8UzDBCOi/Tro/1nPnyohnAOuiYYa03wghe8gLrpP//n/4zr2L2vSzqKKYsJOPbv//2/v/7662+88UanzKiStKE2Xvu91WA/9a4igJ9Bjm26B2+F2uUa99SSGmT2sxbSfPuYSKFcNSV4vhWAUQmKLapa1L8Vpc4hFAZFNg9sd9MV0+AXDUc+CsGLAwiLfNKPwxv9HW39ne0TI8Ojzi8MWIpbcvfH9x9nPkGAnISnDLV8d+ajqE6y4kkBuWAAqWn8mbzIzla7MhW3/2WDSFtpGQDB8t1/WmYKa32TszWgU/YhtgoKyCp0milfYcRXvs3ndbc5Eoj/Mki1hPShwTxrYrP1f20NSvvr3tVimxlq7TVzTWy+aiZKEYw6xVuJlo0VeLCtkSW9Uam4b8uj3Qy09iJuWIQaD8EYt3fYLEowzvQqTnXrYKFPWLj/Gpoco8Apth3I0pKKuICMHgQO1fzf4IGcMkOC+eRBE8KgIFr2APhdGB60I+eubqZHy/c/+MBob9uTLr8M9nD0SzPANYXbdE+fPIUuuuSdlsfoc/t26fmXrMzPua6ebcnnv3DLk6++BiWfmpkeGexbnp8xl9SPbsTRpD5oQ1k/QtoqopYGayUoVKmHqhn9itRJs4/o0DhblVx58cXPuupJH/j4jfPTi+ft2/HKl7/80vPP21h1C87yIDUL4SMFZndI4OjI52suiuLsET9z6WObKxPWqMhIT+g+vwedVib0qtZIuhZPALB23VIlZvCZ5Cmo7CdbxbOVW969eyeVwvjY2IEDB1xw5o7DsR3jxgZZoUagr/jBH/zBZz77WWapDCRKejDlVBQifxFsEa/S2b+vB7lQo0098zZYFRgmHlZGlheKHsD57eX1eWawx6cm9190AQGfvhgenDxxctf4GOnb9rjvIkYEjwQ3KRguc3vdRSGWUYgEepOaMmxBMEgEr9RgcQb5OWWSDo1RZyI2If3FL35xwYT4pwMNZ7UAiriAdmMJEIkAjoqR2a0GiPMWCj/2Yz+mZKVde+21snkFqq94xSvo2ewfuPIBM0blQbusz2aYFVlqYCeEfaV9//d/vwbgND654YYb5LHZq2TAsL3PRJmiSQrqr8sU/T5Rl1AmiJoblETXQuWKNXalLVL0rj4rBPysKfmsfFgjNbG8/IoeDaCWvNZklumiiKltW15UY02C4tkSiA6gCCh+k7Msbx3LcOlm66bT1b197owPtxgeHHVmzRUC1bZzyVZCAouiKKas8lGQcitIDMBCw/0uA6pS7S+tqM8SfdzDObOibqJxYiOlAAd0TVd3kmysbGdoPtwOslp0Tdmq5nFll4TGV+KaEZgn+KSKIM0SgpuZ/lC8CMiFAXgrxVjkUzj+RAEwZBO89JS7lg8JaqS+kl4jzTKan2hY89VZET9L+ZtouuaV5jcWKET1JESeSJXJuZk7ejI6Gy2mx+ETh+ArMbMWIm9gW/Y2VpfifsAYpoUK3dY2nEOo1DPpiq6TNMSMfOcul+iMiHqFRhTPBD1pG9WjV04QDw8O0D5GEG5pp8a1n3r+vn0kwTBcnoU62pmH9nX1tLoq3pkpd/zSdLvrcXVoYWaOIG6qI5SV6mktokPX5N8K30KZATY0EUdIx6kqFZ6Y3sgO7sklEywN4nNZ7MoLlHl1ZbSv93Vf8+pThx41/7/21a/6xm94jS3c6dlZjlM2VxYjlqY4/QyHo8JxsrOnpXWQRfzJE31EeKBgO9vVivtRjFryml6uVSJHeRXFV0dmPrco0Zgyro1K036d7A3dmre0FqiYQfq6r/u6L9591xduuxUlcl5UO0mU3J9915veSL2Assjjnt5qVYJI7d671wmJrnKLahOL/m4jIBmFIJ3BtgAkgMnNEXZFZrQGLOe73MKSg2F2TqgT9uzJZuzSDBcS83XfPu51g9hGJ0OR4SoMmpWTngJyrUO6kJxRKnTYy/W2Bps9CBZ6BSFRYYhBC4H0U+AAo/lF/PcKPJF1pKpsHmjfioWCMgnjhHQ6JQTdW5p9JBuNJr+j5lipz9FrE0QJyiEqWX/4qtJ9ALfUYJMKFS0L8AAaIcVaT8umGRgPrWYm2uHDliNVPeUV1EqXykRTJhpruPVIIyUimsXeh9gQfK3B261oSND20Ez/aiKFMBQlAZmJoGdq2pzltdAND25hN6lgJO2kExk2e0Eys5ybxfU1F6b2dnSOcIPqkGSxFmWQVywjsoNPqRSFXQl0AYKajKM5pnllreGXwcyIS1Fs0svzCR5FVmtjH5Y/Cj+iBaJmMeE4jd3tQo6bn1UYNSHVjKSCEpo5/8aI9tev6pehgCXUjommZ/rWYF8ZkkaOJ/qnZvb0suY8K7+fj0+pJdVeNPvSjNSi6ochhUW7Vj8hUUiBRvVZI+JCzS9bymlrRXyhoycszNwr3ZQNIQ77hgbVjBLPyEil/T5k3ouOxWxGISbmtr7XnoaO21Eoa1ifmYql2ZVFbaKAVorZZSgWHWMjYy7p3jk+gvi6hggbcNqTiYEznqcnT1qHOuVpoPdN7Dl26AiSOjc7hwpw56t8wbJT+7UBNfVTmWf6WMYE6SgIVp4NFZB+wL+gNS0MvWIQCZNOKbms5pyxkX/5Pd/zb3/w+1957fPWZqbmT58Y6O7YOzE2pNsGkKhzenpx8tTa9Ez7ylLO/ba0EP+5e4P5dPuW9FWnFGqvFgcje7vt8VFu4CLuv7anpp14GAqiGYAPPgIaZLBQsSo/kkbpfxzy+rmf/W/49A033oCOEGNl+z//5//wXsAdjXRFoV8InxIsHcjCyvz7C/DEOi4OnkQKva51gSEabt0TeFLOOFdRzJn0qG948M577z49N2N4XCtIt3X0xHGtbY5UeGpkD38REYxLmAIeYF2BfuQvwReoKkkcAS10s4HPzmpIUR1SS8oGJXGfAw70tiyAGBSGAIsie3qFxCPTSD9QA5qcSLxTwV4ZFz0S8RZT8S3YUlQaLAQaV9AjEr2vEH2MGfAr/HEIhYv7BM9wNtu2jXK0AVNRdd2QUEjVuMqvp7UuDECxcfFd9D9+NrFCCcL2Aa1wq8/t6V9tPHVlapOVIqHqMx90pHPcYKl1Y359lcWxFZglJiGSjGKCYg1D3b3jff0T/X3jzrJRxiytzE6e4mEJxVEg5QEGAD3qH8HfqtydJMoPRwcahn0xS230SKSGL9P4NtO+t4u3yv7hAarjfnHfKMo3QbsyWlK2R5Ja0mvkyz/rt808BddCDZuAbr4SkdmUEzRAhiesd3t+cTlrZvnPevX4n2c1RgYpNWzP3GyblsTxToFtraj5LM0sgtU2XqUo5ZghEJoGxpjB8gjnxVZHsRBx62nCovKPUS/KBnF9bl4129Psl0jaU4JyfO4nyyLpQq0aMnDY4FtYQP4iNI0ND0QUZyI2P1dE65XxYW7T+l04ddmFF+8a27F358STLruc74jzztm3Y3D40ksvV5qpWOc2RgftYohisVlU6rVhtTpoVyo/+xFFF6mHpyoUB/TYp5UDqO63On3o0O6BwXNGRk4++sihB+6zWdm5uXH62NEVd0rNzsyfPj13enJpahon6F7b7HOOjBO91WUXkpNLcE5TXcPUbteKjsPaYqg4SsO3sjnfnlMC8oDM6mYsgir9rwOBWXoljgSA80c/+jGnGSgZGBT+8i/+khU0kxIEhQcbxEU6xYI4sjhlM7/Iqthhc1z+PiIwuMztzTWSGDZeeAAyQl5ddQqMHxhSmo34sk/Am7AzzE+6+qqunh4XTbDy4QqUghmRPTF5AgS00AD5gwx4QNiAP+JoXX0DRJFSC0IFb8n7yC4egD6ClY7DdqUBl7cIK+hV3mA7V4oPUXbsATaCp8zIuq9QZCVLR9yla0mNyy8nbgG8qDkGDNqYisUWzopPCIi+ihTulUSjKb/JhP2I+0Qb7EbUV7RJBH/5VaqdFQvlFNQFT1RXeycPfZRi5dE2TRV/wqC18njlw2aGmtL8+bhIOM1ZQS21PXTC4b3RSsVDj/FlrbHg0CJikE35dvVpqvnC6fr44BA/z654ZMLRsbhIjbu6sERyQueRBfhtxWA7wUFxpL/82TBSe/7sYKmlNruwgYboEyGNUmd7IPsX8V9aB6s7g+o0ggNmg5vdS+5lbGtfcNjHpPU+hKXxsf7ASGv6GLKUtDgsLZWncDSoUOAIH/ndkHmTUwl6iQuW9AgdeR3i4d/8FERLK9WSRS5K184iTk40UqZAs3x91iMMownrZlNTbBGCzsr9ZX42v91eUYRX86Y0VROsBLQDDQZmp+lNp9J2OJWNNmBEzjEMQzU9O2VbBhfL9bm60u62WwqfohPxXAdbTkCYd1NfR7iLpKrNrkdwkr+1Iw7Z0c4AydoxIPQ/CEYhU4iCXheQuk9iZaOVFG/7VH0WB4T7vsIONt3Pdf7eHTffNHfq2NGrr7rSxoRtwPnTU+ddeOk5E+OLswtPveaKC849JwVsrk9PndxcXybyv/m738iWdHTYsaHOpfkZRwrWl3NKK7YKUesbhUiOZcmihahMhkcD01qjVUZJpA5KnuSSciMmqzT8erSvZ/rE4YHhwQ5aJ75ljh2dnjxla7Orw7ZYS7dD0G7AAku8bX5uhZY7SqXNHfQM01P2ibs7u+fWFgnkzqYrjrJssKtrjv2bj7P51eoAbWdP70kjRNgq0lB8y5VG8iTsCJs/6DXACKin90//+I/e8N1v6h/q/74f/L6Xv/Llv/gL//Ptf/onhu/Syy+bPHnq+37g+3/+53+e8/roOpgGFS8FuvkPH8w7AY6YjhZtZId4C2R23No1OLjnossut92+Y2zCEmGot3fPxI5HH35oDeGAq7A3mOPrjBEIISVmb/EU6oY7KSGIUV9aFzrbsTB35NFDV119tSEbGxw/NXUqqha+bIv+hw6HZyTQoBbDHR956OEf//EfR77RdzdBurhRzs9+7nMEhd0TO10n8KkbP/Gu9/zlD37f9xMgsOd3vOMdL7r2BegbnmTov3jb7QcePXjttS/UOAIH+s4PaCXfzEPVysw/Je/Yge9SAdkYIObr+wc//CGbB6ihEwAveNELTxw7bvPG6s3SQRd8iJ5WLoJP8AQOef20sR+qErIQAwFXWai3MdmzeC0QCkJnl8vEL3Qn+FzzgFyyg2aeyV5RP9gfLX8poqTXtyWHF+pMpVq73LJUzPz5be5Y4cSKnZXJEwlpbXNlYXRgaKy3d4jDCaNVNPy+Q9rQerMaAiOK3AfgHFE102GqNfQgxFT5AnLEVK9Up3LtQnPTCq/yT/2RWGlsvoUcG20DLlwl4q2utM3ND66u7u/uvXho5NLBkf1dPaNr6w7qnNPXc9U5u67cM7Gnx73CC4Q4M4SfdGLYskbQ3saTkWPnKGSUHdyQm2A6zDPhktkfU0XkqrQl7Qr1dBwO54KvNh5CFdfi6iiUdn0jtw552825Cy6ngQDN3tEllgFIbX9g3/jL5r4O0cp4lp7maZ8lBhFGviRKqX/5CWLaguaWv0qwCgDzMHj+QmfxaubR/pzhLs726KOXWFyJI5CYNpUrN8L5oyPPDIqiqAw2W0M3E/V2D7iKjcOu3s5+x8Dt7SgAWZubm2LBTqMXxCku+o2Aox42cYeHdvT08LOWqzm00TRNkexemNVAW8I4i2AegIGrpZWTcWaUy8unVzfnNtrcztHW2+vkztDKWm9rRz/ZZ2PhxFMv3XvBvh3HHn1kkAuHmempQ0d2Dw2eOvjIT/zIv7rign1/+HtvueUzn3jw4buOnTxy2ZMu/8Ldd7/ia1/9zKde5Y6JHucQl+c7AX55sRxaWVmcmQZowwR1UXRjAkjMK3NshUqTK2KWDhE4DRkwttLlIFhUR5/59GeWZueHXTxwepJjHwuD/uGuzY3Fwf7udVeJtWzsGBoa7e1bmZ6xUB9w4IDQbgbblmB+bsAspXiiODbZ7q6g9m4+tR1Xjqug1jUqnrHu9tG+7pW2jcW0x45bm6vHR/t7Njju5+cka3/mjD2mEFuhE6emuQPr6ujifs4G8vjw0B233/r7v/82twp/8a47JnZP/Nef+6+/8Ev/Y+fuifsfun9kLOLnz/zMz9x79z3jw+OcGa0vuD6gMr8GGv7f/NNEue0RU4PU07nZ1mkCaXSZ2hGMLCJdrhBl8AqDHhd86p1TXSbW/MLKs5597dT0XGdP/znnntfbP8Bf6bUvfPHwyIipFKmknEO0MuBpOsNTQog+qlSeRdtEIl0Y6OsZ6u97/3v/ChugiKSU4GoU4vnKnz3Mo0eOW6T99E/+J778MNqXvPiFEzvGoMEKJDHB11b/8h3v/L23ve3tf/j2D7zvg//y//mXn/7kTVOnpv7XW9568OGD7gM4euio62JOHT91z1332m36wudvPfBgVhunp6aYGv/ar//6eeeff9PNN6Nb//bf/bs/fvvbDzqv9/a3/8Iv/uLOXbscRL/zrrs+fdNNpOk//4t3zs0v6uatt93x7//Df3S2/O57vnTLF2576+/+HrIjA7aB9GMGof6r7k3sg4THjxx1yC10cXUtRo9ZFRU5OIduC1OkY2uJS20LLuIFeQdxkAdN4yrPvbrRnIXOy16uWLGlF4duK61u2cth1qzpY6QXlxKhWwZobWWpj0tgOp+Vha6BHkbfqH+cq252aj9b7YXZyZbl6XNH+88b7B1x8GVhkZrMqn5mdf3Q8sqB+SUH8df5PG9tX7QBlC0ADlD4+7TX6yJ1M5AUadXIl0UESi7iI5wbrlC3Iqjb0jXnzKmqBLTFWv9YdRMhXEw2Oe0Kgez2DA64VrXd4rmnZcOFG3uGh/aODO92mYMdifb2sa6uc0eGL9m712WzDneuLy+pxQQDPYSyIKpKnD2Bn5GHQ7D8H2KaUAlrnTBpHrCib/EYlqCJ4ApiaFwRshsnhNFTycCOzDxRyEfe+//xOfLRYz8LKpdQ82/PIDklPS5AAEJTQQ/ViBDA4zwjC7GwhzCJBp+o3CJcZyMrgKkpy2FmJkAA5FlyFo/e2I4dFvZwAU85EKAZESAI11koxmI7Upn2VG6XZ9inqrIwgqs89yoLyw0ANWNpeW1+2UFXTqZWNxZyOLebgQhs7O3gN7zl+U9/CiL7yH33tiwv4jMnDh6YPXlssKv1X3zfP/3hH3xzV9vq/XfdftMnP3b3nbd/1xu+403f+U/WlbM4u7Yws+aiLrdPoDIcydu1TheKBJMLhet4mKqGPi2sf+lUabbhBgTuH2ZOT932hVs/c/PN/C0P9fZvrBRf5ezTgLBwityxbHnb1j4+NtLf21dVRlCC4XNZcq0SC9JdrBjgYvQQpFDL0MggEW5iZMhdwPEChE22tK3M04Is4d12PMAn6JQFYq5VsInR1z9IHim8uReIF+cXert7HCz6wAfeT13mNivHhq971XV/9Cdvd9zp4UceoVohmdonoILA4Tlp2LPL5ZoV6x6HK38XCSG0Rb1TI7VIqHnW31ZVwB5zp8EhlwcPHDj4qPnseIfdWEK6gfEVOQAQ4AQ4eIr7BdnyTznXSeYCXpg4ODhw8sSxiR07HnzgvgMPPjRI5VXgA3ry+ryaXbL4pIGhljlx/LjzXCb7z/6X/zp54sSfvf1P6PA5obrm6qdcfOFF//NXfoWfPhu/LM1YBJ2zZ68Twjt3TDiNdfrU5Kc//WnGZoD87Gc/m/FV3Ssm1DvM9drXvpYNqKWGb6sraQol9p3OoNE72YH44Ac/zEMJynP99ddzduLQwLETx1m7veY1r9EwuiCDVRcNIvRIJhTPWj73CTLjWSe+uIhnoT8STSYp5jhED8RqwHsdSomDFjSmLhRAq8ATTOhFQ78qec37IltGWgs9UT6SKFLzgyKPALPzc7LBc1sZXWvrtGB7+wcdvXORRa5jiLPF1jkr8s2WWbae3b0utqcOtlxgmEGHpFIFarag/AgHtXwIui0UYbzQ1UJZt73JUApmRkGGjQ4zh/F1tzlYStRwnUBzyU3uHGBUB2T2KfS/q4sNAOazuD4z7YoiU5w0HxPUzDE0wUeRVCg8Qq8gnB9ZeD4mFOgXflGgXyuNgFty+Sq9Kl0qz6C+UZKovMcUlB+BRSnw7FpqerJsBSCo0Vp+/ar5rbc1fSv7mX/LhwHJtqSinS10ILQ7TK7RbB1WkE9iu7Zn96HDR2sHwVr59uDY29rCQs3lgValvzms6KdlFaIpW/2ZtiEDSGWBhhKSOUomRi9qhbit6+5zW98gwPZ09lMQYjXzMwvTc7O7h4bNWsBHRp/91Kfy/H/i0AH33xIGp4+d7uodoEvuXl991Qufd+kF+9vau/j/IS1ecvFlFuftq0uOFJCSkAtgtadqOzVXf5RGSknD8gw7rHAJaKouLNqGrJklRK25tdtGs8zA5nnPeS5oFLxQQMQp80Ne7YS9dqRtVaBX5XMZM83YlJBTyFk4r2BZp1U5vI7B5D6JFrd/sJ8zNWz/jgwNqdFIYj8OsnV39C44MNXuuHEcR8N5Ej1NMfiT/RmrGKOBoX4iCNX/1Vdfc/Ell2g2iiabfWDqiJ/9L//vc57z3Ouvv54Hgpe85CXuKf/S/fczG5XtH09wXAPe0FnddMMN5+3aTcECCLqG9CNMGY5CL2qDjVfEs8JmCmbV6RMtAssxnEA2JbzzL97xlKc/zV5KMTFoZwKgKOQYkiBhvAe68MulDt/+HW9491+957Xf9I39FDqjo7vP2Ysg/t7/+UMOTd/4xu+yTwtDJqdO/+RP/SeafUqka6+91qHlmz5z88tfcZ0F1gMPPcjo84KLL7IlQHuD0LMZveGGG77ru77LtjDscEOAgeN3SDZmWi960YsYnirc+W3mWA70ffzjH5fzJS96MUbOBxEX6M6a0BcZYvhjHPHvsaEdGNXNN3/GmqACoaBWZpmfBZeDcQBVAsndtPQTZmZWAo3NFdPQ6RuwMyF8ItA44pxQl0yWtXxmQOUbFYp2d802VnYqsTyAt2G1EBX7QOStrZ2yGW7tHKDvRA5MXdeAURO1ts5tbE6trc2i+NDcUS8HfaJSKc1VHSJgIeBffKrSyQblDyXSYKOf9vm28IbkKRnguXh+1rBF0Nq6OVdp2Tg1O+2PW1H2dBjOoiNopkx7a2cX2wob1UjXRvvKeuvS6lhP73hv/4jb9eidHRS0bEnNKqn336bHQhqqnYWa1xRPP03ORmKsXxGCRhA3MPCMCg8dJBLWtyD4lUtcGbASmpGt4s/+t1ZXq2gA5OwsT/C75qyF+1bQ5hqpT99oOxSEfF4hN7oDib0NQApvgJ1kE4XIYFTrKz+NnG+VIGetwrMWG/E/oly0k1IIfSJZ6VkNbG7M8lLMxUJbKwZNRH7gwQdVqmRfoJEM+S/Yt8eJkg6HpBZnO9eWKfVPHTywcOrokQfvnejr7N1Y2j3QdfGeiZ6NxWk+90+dXDh9aml2atnlWXMzSzz9Li5a8Flxwi8DDek1Kw0w5DBzG8ylCF4J8BEPGBgeIsox7OON3X6dPta3tV8g4PQXdTYdsY4RH7LJBHUt0NkzYV8ujLbvmO0vweaA3RTfhGfgUhrBbxrRBHeweiD96Xhff78VKdNWwDSRPX2JkKXqcvguTDXquAS6gmc+7emk0d/73bdRHlehyFYzgoUM/a+3vdXOoaN8/+9/+1mYaVcMoSs9q534R/GEaTOzc1dceRVn3VTqyBzsokmHZiZS489+udka3wEBKlDojikGlAYio9DWZrD4JnGa5Lx9+zG8z3/msyjyMl+TBW9xBXp/JPjjH/84yu4IrpNZ1O5f9/Vff/U11yhQJOewTp66/Mor/tN//mnnda990Qt9u3PPbuPy7/79j7sT+Jbbbn3Gs58NZ+zl8i/iuO+fv/MdPb291dDWSDHysQX99V//9WR5iOQTm8yOauuUCPxxgBHpt+tg+5d0bzi4+eQpiOFpPTms78rx1CTj6yn+q7/6q9RBkFAKH3+h3sXOpU40FYmYpIIMzAoiScHionEmjwQn21H5qCUqcpMSSGo9buMptuAmNkbhr2ytpnRrDZMFlvqjGvZn656b7p72NiJH1+ZSX+v67r7endbIS+tuyxvozr7vYkvb9Gbr6Yj/mwvosDvcN1sWc4845SrMr3tjbfaEN9xms7zmpEb+UAP2RPEj4UkF1egInNcdwW8drMhap2edfY056PSIIWGTRFxibTRnNU2d5CRN9ErpM7GA3Gl3rtuqYK2lr6V1T1//XuKQmbu2ygtXj16WHQDLBcp6K51SGbodobRWXCsTF2k+FR6qpoEqMf1RwO4uZkimsZGDlAEs9hdQCuIV/vkh+OQMO6lJhSrVTm4lnP1vsyVe1MbUHL76MgHN8CdnM0/zW5E6/LUcLWeLZlVrBoK7vhgJg+fD5Cz+ZKTUn7UN4jorZ2gWYh+PoRF1C60JMJMYs5+6ziAH00vlwrmAhrS7umzsmBZ09Bqijjvu/CLeEEUhT0EtBPrFXaMjOwb66X9WZ6bb11Y6VhbmThzuXluaP/pox8Ls6qnj69MnWmcn5w4fmD1y8MSjB6aPH1uYOr00M704Pb0yN0sFZPc4+8BGuYxAOoKlocNlZLSihgqIGjffaoNt35m9ZDG2fXpR8qDhFjC0PM5XEOUp9zvtfxt+3uLcM+xYsANxHc569Vua2viAfAx3wMckgEDRb1KWjfe17BgdwQoo1aCNywvViChwcUETBDg4BcoFquql5PRW4DQJxgE4osDw8MH7H3jSZVfcdfsdf/H2Px0ZGrU2o9+45867lPNt3/ZtP/tzP6flJ04d/+SnPzE6PoIZAPg/nmA0kAdnQVk1XX7lVQceOXh6esaGp94tzs1DxYa+t9wqBXBhogL0IMFmLINdxsv/UXFsbDLtBE0ett/xjj8/cuiwfW/qSp47yTSwGsV3NcIrXvlqI/Wc5z/PuQSeCRaWHc5b+7Xf/A2jsu+8c/kRodAfGeeeYphNwTd+0zeJM1Kiw3vFK1/5e7/3tjf903967gXnHzp8+PInXfn9P/ADCDRQawMqTwWUVcLRo4bs6quvhmaoP9FBdyiFKHYcC3jpS18M+9jKwaHLL7/0kksuOnHy2L/8V//cQFsf4OiWGoqqs880fM973stXEGZm6FlkKKp2Ob3eCnW6SUH3I3SAUywMMlvrxI/4n52tfJAPKapNLhIvglvymJC2bMIYsjLnsK3D6Ua7myYhea3LkfXOzpH+vlEH6Fo2x7radnZ1jEFwt/TkZjCmnLkHdLpl89T66mnXKtDs2STFloj/FhZWDpb6q1HGKs01T11rmz0brV0brd3O9iDO9kwLNzI/wnKiMnVrwYo/ilOt1S8Rf9LrH8qbXjgkAV4QwtlkuIHG8DnFjsR0omtFtCjyVjeWbUpxCdYdxaxraFedJmJtSATju9Y6EzEzJc3lYixOhaVHxi7czx+IbcG58W9VDQFcpmOBKWQMqmYLIXQlTHdrUYY9NIB+Vinbfqpr269EFf74xJonLdvKn7EsoZlSf25/NvNIbBYrYkxKSrgIrCqFWnXZI899EYSahw4+IptXITflsG6z2O1llkIAD/HLWRi+awSUUR7gKW/DDIRSWox9pJdiDabL3ttMraX15fmVpZHNgb6hwUePHHjk0KMXTtB+Qne7zHGNkF13KkinhDrh0ErH2op1wEhv5+bC9IBNrvUlznmGR8ZaN5bb10ndrMyi2NKXVIoAF/2ACfB48tfsCwhsxQPV+q1m05lcdPHFIhO7doZflXV0BYVelE5l+EKvsYNoAzPB5JdYxoXEZopA0ghBzDuzAUIm2tzgINq+1ZwzsYtLPYNxRp+FV2fXycnT5g24Wz6ED5nJjCQ7Ory1X1kHC4khmZIHb/rUza//ztdfdvElf/onf7JnzzkuP2BVQiNB3nc8+Lv/6XezRfmd3/7tk5OnbGtPTU+xlK6N/8fxjKGg7cRTk1OXXXbFpz76UUuWfRPjyCUAWrtnFV58fHErk/0VI1PmCiBXODPRKHPNytW9srFHFGDvowcPvv0P/+if/eD328piQT8xvkMi8kpMUbIVwPFjR6QYICqaj3zkI095yjUuziTJGWslxI5obe1JV131lM7O6667TsoONHjnTp8bJssx2M6toNEREGvDIcUGgIhauJdAxLmCEHfIy2pDusvCCgJsvOENb/DWNHGRpF489OCDVmx2FDTMsiAdKO7VrDNuuOFG+iKcQ+bY45ULbUJ2Iktlzkaw2ZKOIYbA0r4geeR3uh3zQBVBTnZM2EHErjXLeVpgwIwwEvIdalPASOTyO0pwa0xOFswldi7YLaO6kd6eoZ5OR6uH6atau9wDxZbCKTu20tMbG6cJ/i3rM9hviFJxokv345yvKUKCzwZgliSh1ZknDcFawyhq/WlzmopGcWllTJum/IU66ddfh67WhdHvh8Flu9sI2tlAf1ENCxcF2riI7JnVDu5mTS1tdcPdrDuyZ9w6t7o6jwzlVGnXAsdE5q3NvXKxsq+1WHYBdNRRYK5t4lGJpFlifhfuGtjSKJReFBEznxbA6iawlj4oSHg8HUpqIxiwfPVY4p5aSmjComaQ3ny1VcBj/m20v6TpW9pL7qWHKW7YKLGTEo1h2uhB/kJolAkUCWUwFCIleQpLQNKou2tcXwSYbW540rcjnWwhjWzIpRCGXiBDTGOEE1UMFKCZzcrOeom6HpukV0KzXO07e+yRmz9zy/5XvsCmDSfkgEuDn5nD887KMl8RDgQQXigXh9knrK70UwjwEN/TOWhH2KXqVrBlAat5WgwhYuFQlj/aaWNHi0qf02roUQck7fRB6WbixbmVkgCgv3/Amn3P7t101YAf8l03AALIohbzr0+LTh+9ElWJRUxmlKwaQwlbsKJKrGAefNlc371zh7fzs9MmPPvzuclZsuT8wsIjhw9piFt8O5yqc3lZLs5u5YTMQmRpHr9Y4jA7pZfbrMb6Rz/76c9edMnFDz144D//5//8nve9N1uI3Hh0dVJEHDj40Le9/lvf/id/xC7IQBnZ0rl/RA8EyG77wuJCZ38ffcgdPHQODdp7Z+QaDre8aJPOiAJdmGtQJrhU1tXBPAAE8NjjtbaxRpt2zravf2ZhkVb9ho99/LwLL3jRy146MhTrfse7ZDagvrIZS8tknUUV81TuHPr76ehhvl3Z13/7d4CwKl756q9xrNcs8dOiyrfWUk7Dot3GKxhCEdraRv/m8kh5HJNCaWZmTpPlHYdkwOOnM2S8NjHoP3kyN/PYwbFtg8rn9vm+vslTpzSGjpH2aWxk3FaTIYOW05Mp5M7b7/y1X/41vq0uu/QKLaGwKPwDsoXcQbmEoF5jcoEE4R3+IWAM3JXjfzlDGk3fSNHQcJ1YTDqjAuLM2StHokPgy1oqGwRsPcq6uKuvb7C3r8cOVmy/1ziv7WfpT+JuaR/cpDhnubBJ48+GhwA+ubY66Ux8Nnuj3re65xq0uywviq0oW1CNcT9QPLxSUkVQKlPCMYdqkIco4N96JqslAvgLulaH2FPIJ48NUjpG+3O/85oFSzu6kzvic+RnYZ07+DbUolOvF3El5lRtqxYaLXTbyyvL+MYwdwJc3G3MkkCxRzw9bDbnCxuVVYIXwv+4EMG/rDBkhRmlbRFsoZe8fmYYonrKesDcr5TwccUkoXbs8a/09Ky3NWd9VjiIi3jWyOML+UpSfNvMhjItzOWybCiuX0i5u1dFHJdsZitYmLaVqk1KUVmilhUrA1fWFraU0rmtYSsY5qc5DBVxgjKZLcBazXC4mZPi62uDYzv7BoduvfPOr33p89d6OjdWl21pQSREPoq2jZb+nv6IYEvLfRN2RBeBd2bqtLEeHuYqbh7RmKNIKf2B/1YCxYA7zNfKTksrJS7v89AeDM4o1XZKKZ3KK5RXX5w2SPdXciM8K5qM6hlohcrrcSmXp+Ko7B01A0MCjq9SigAl8IaCGJCT5kcJpoMZtWPHmDWp9VaFNgOY8fGJ6bn5EycnQZQcZEVs1epb/xIz9+/dc7wVh57bOT4K7NRqbF3GJsbuu/9+zWagctsX73jXX7zj1V/3tcgfeV/l+oW0GVDtQVPQuDpMpWX//3+YR4A1t+h4M3fWU7pw3+23G1/0VJvpYqYW5tEB5KNq/C3MULnabigEiYyHCMgjH6SV0aHhRaZf0GzN+qn99976u7ReL7nu5RRltm1BgC7IyKL7CgENiwMje8UVT3LskQUq0wS1GxFQ8vSqzi9xxMGH4KmEguQbFhDiiqpnevEYhMgnJk0dUIX43Lfyo+xUiLjOyoqj7/EsK71+ghvxf6h8bxF6TBrPoLD6H//jFz//uS9YHMzMzMED6UpTBaMgjVemJ5SujanthJCRdWBkk3qEGAkhqbG6RPrhth1mf0VNvWn7qm63hq3SgiPxyT6sETgZDbCTjEtxsNq5udq20rKjb8SZ/CV5u3qs9CdXVnl45eh5dmWJBoSCk2Fl+/KK7dUYLyOPjBzc+0zXZo1EkNG0cPFIz9ZuyxZtZPQWWpqyKHZJpIHMAiQhHdyK1HgzpfbazxhyDnX2kPBrVh+ZgRgkDy1Zl/mfkod7Rkpmh3BYWcW+IgawjEXAYozpXvvy6eUlrotmizd8t5TRPsGV0K7SigCQ9B9Cv0XOCMJAry9qi4GqpYeeVcqT5YL2hXgSP7MQya1CSJHmVtaNqiqq6jPxDCU3Gl+ouUx+1sQar/V6CqVFGdMUthVq4tavs/6NiLRFjFNP2hOqRBHJcIXwvdnd1x1av0x5OnhieppeUvksMcxD1ipEe6ftpOgUnIbcus7kx081dXb0KAG4ZEOkuDDQNNK8HYEI+/DGptbyYmjo8LCGJMUV87OT7E4jrrgEuLt3ZXldXZMuUB0dGxzd0Tbb8r7rP/YDb/i2k4dnRgd7cw8ZmYKUn9tF1qbn5mz0afgiZXlxBG8enjzNzVmXbTUtLANlQQj7VBCRPbhUVp1qD1qVIBloMqwylZQ64EXGd91F2JhZp5ue5icljBQ+YzAqibBMaRlGDysDnpFSobNOZIZUWEPcqWOf4Qi4UDhNjKnWVp785KtvvOEm81yzEeu5aJk3d+ze87l77nJiQyLv9z4xLEYMEluzW4EQRdfKDrxOIlXoiOXrOefsf+iRhwvF4YYAAQAASURBVPafdy7y53zTda96pVuXlGAtZlxIvnQOjiAdP3G0rCFoaM+EJuZo2JnUryDW/PCsvF9lMSZwh+HVzYmxsT99z7tqsf198ZINZyAPUEvUHYawGgl1w2VJBXoeyQOVsfRvsdeIuZL9jCa6Raobbu9ncPw/f/GXTsdx06sNMS9SyoEBRpM4AVWwn3LZEaG005o2JlvwkzOrMhNrjd75FnFDuNDRrHbh2GYoDBRTlJ9aJQJPkHUASS1BiogOihKh1Kp9iaZ6fQXq+gkBbRpW62A/EYzhgWHlvP99H2THZVlAIIDHpXJbcUHISv0VDmXBxaQUT1GFaARWNDYwTeVRw+bsO2yEouR6kHFJKrq/a3Rs79i4Qy0EKc575Yioyl953GotaqGD6yYpXyibc8td0C8GpIEy0C3w3dzSxe3D3OaGI9RzressrNeW17vgPUbgLs/WtsGuzoGufhQVZELN0eO4gV3rsKkQtu0MZDuuT+pXJK1TWBMamfsA4i2lTFhgS9A7XavA9FMHhe0pHfYQ/BfWV0Lwgv4quEEFRuuEOuGTKIiTN8ttSy0jREqkDAXc5GCWjWzraoe3LiS2msEXjG+QLHXQieSkV9QHWtAMQO2toCkQV8QQ6yqYe9R9Fd8G3NH8ZClW8jQ6I16LEvkyQW+2v91W+/bkv308WFImkJJ1JEPVEmnFDpgUPyGiPGII9MzivMxpUAFFYLPVPBHZBGNgFigqYlnZ380nJUhM/tTTQnUI1PYUOHZzR7Qzg0x0uh1rDNfcnJ6ZIz71tnccmZy5/UsPXrx/18LSrBtgTN3Bvq6+odFTJ07umNgDCTnbN9asvHL/ZOSOWBpANc8aQFkDvnzQKlMkZ/WMZqNrjS9MKm/NryCdDNHtpVcRV/tt9drEig0A9RXSY9EZlz6pPIMbjNsKyaYhWSvkVQ5jBLmywgA0bM/BKSz59IzDqONuyjg+OWk1BWdQKB/6hJwYabGv21YBR6kIjJ+kRBOFXIkMOWO8c3yHnHFDf+/dxw4f2XvufksHg6h8VOlVr3qV7USkFr+xPbbVtH8U/wa6Qivlia7Mgnanc/1uxF2pLn4bjTRdi2Igk04S0IUbF313GRZLqzaGw5AMB5aZKqPg4IYzU7/3v976pbvu/tZvex1dDakfTPK5uV9QRbEZxWiaQkyZEkFj81pF6ICcEgXQ860U8BRULg7RleYVbJHflEmjiqGERN/iBEahZsYMZLD9a2tH+UpTLGURgwGYK9vIyNgdt97hBjF2nxZA55xzrmNrJAGfPz5UHlPTg8Zlium0pkhs0lAlQ95inuaQ2IrrhMYGBp1m72pZZ2nnvhbESWME/gs5VuxaX3VLSzdCHc4BJGXSIwgFCFZIs9Tk7Z2LbZtzLS0LnDmDAsqJlm60uCRgoDt/3fEPgJq7+2m11xZvlMuK0qyK+9nKoa1BPp1LxfwXNtdyGUiRTeloIlmXUHun5vrzrMR0M+qsIlVF6oskB47OmKnKnylkhqLfQpo/TyBddpqmD6y0CVSKDN5BrsCfFrOBrpAOq5fI7sEHexlJanxfQJBH0QqZnOEh6AdENYmJhsW/lZ0I5afOEspH+IMd9QpKSBb09dIrDW7ke9w/zVelhDOPZvrjvvgKEooGvAyFiWLthBM3sBM+tbR1ubLKOlRB6oPZnjpFMX3k5HHx0oFGLX7K5S8wz+Z3VrvQyOQhT4RYBvAyQK84ji0/TRqzirvwTfcT9g7SS7QwUJl3OVdXnxtL7fK7gcAmDZZzbHr2xltu3bXvVRaQEa1d+b26tqN/wGZWZ29fzqLRC8E088PUzzTtNiIR3lGGDFGhncSCgiWeacq2EDCWpDIG4c2yhlLLma41UBAREcvv4EGGjT4Ckiwy01mjSGznkaGrn69ER6YXFajUCqVaiO80yNaUSOEB5aV3RR2vjJ0DOx556JH5pcWR7h6mQgePHGHNjOElR1lnmEKuiwE91MaO4iAHED3xbsbIHQPARfYODh45xuyk+/Cho8953nOnbr7ZkYVLrrh8enbGUPrcOF5wwXno0dL8AtH4r8e4tPEfPugaUtnT3jNXXOEPOBBB09JC1xHNSYRXBmxlqxObRJW1kKBmNFw94d+Q70xVSJgNOb2TA6YaMokGd3x0zKGKj3zwQ3d/8c5v//Zvf+FLXmxVZKGaQ7ZlrBRoe9AKAA4ZrvmZWdgUml62fOBJpa3zM/O0/6aJlbF4ncLhxHF+FdUQOMMUGSoz8JUxi/+0TT4HgqJR55UjDtZtjteSquWJB5Gsqtd4sPj5P/j5973v/WocHx1X8tQpzogGIkNWvHzs2FhHbk9QReMntb6as86H1eDgscFfD9kfZ3BkfWJoYLSn28F905C1WqanycQT0cqqhQyCh0FZHGh8kLdRqj3VzBH8cIovIIfAkH7k22Tf2Bxo7ehtbRsd6CYTofygSC1ndZ9Tl0yNHGUPMQ4f1RZdMUe9srGA6MPPeZsHeGf8QOM5NrHDvvUl0zE0p9H5jEOdjSW9ZCg03Hpcvo4gQIMUEJ+0Q/uWoz0uCyJ+HQozWCBjri7T/duJzm3f2sRBFZsRyojV9VxdxmuYq5z8rzFZtkAmfQpROBMKVPxUpibJqTX1LcEDN7eewloc+CE9hs7A8dgqBEG3cpbBC20JRXjC4NWZGkvsCbP93yRqOQ2dirgjzqwrl42wdVGm4SehAKl0dEREZm1Nd7YaU9quI1n9CDIUBuCIbCCjBIkigvTaTsnuQtxcNn+7dsatcdvi7PTy/FIs0ph48TG+ttkFkdocE2+/+8DBW++9/xmXXbCwvDA8Nn7q+AknZIbHx2fn5slHiATpX1vgbzYJcr9WxMOIAEGRIJx/1OsnKhxGV+SCpBTYeoqZR4amYlkdjKTLmbFDQdKXoIFg/BxW6OAGw3KD0jEnmNQ4O0eL73qQvhQfIiJfGenyVaoLD4BEKYQGIS0rayyLidHzxu/76A2sNSh/Dt/36OGjx+yPkO5XFnFf4ss6oRjNR1OUiLZ093QO948dXz+qfT3lSs4rL7jgi3fdiSIyM6cUslxgUf7tb/hOwr6Wa+IkH0Sd7XO8k7a3aySSpEn/SALBEDBt1rBtPTo7TZwawPyKBB3gl1BAGmGMmBXiXsbUvwYFicqkwgwi9Bu1yLtmH14eHiCOH6yu2T+4+IILjx479h//w09c85Qnf+vrv+3Kq560e9de+kOhMBm7yBGE4R/OqgoID0QVn4NU1Ep9fUg8CPvEcJgX8ojYnDdTZBBA2Cc1yO9nLccrhRD/PXt7+5VDtpYBGs/Ozt9yy+dvv+2Ot731rdz79DGzZPWw7K7jboIFkmZl8oSDpZYKCs9SecAFzVxF7ZWKGrVT4MDKsus75AgUOzt+cOx6OmQAMS3Il4oQb4bSs+XwVwKLUBil2zkog5OVp0I1Zq61Kzb3q1iAgWvt7+wZ7uzifm3UlSE6mGvA1hniL222zDOYsEJaXCJaxv5Gb9DpUFxsu8VCLHeBObhfqH8MgehPOCxBses8LN2ufRTVjArGCo1m3ztyu1j2f9ad+jXm6TbBzHrQdmNBL6/R+tg3RVzfpO5n00r1GD2elf06SLX2dLi2NA4aaQFXujYWlkgfkVZzVKlM/Fprfda6VRS4F80TPUEgxWzDUqBsOxITWYbbagC1elQAw0FvIr4kZLEZ8gPLQxm+XJBT+HI5vuw7QPE+YAemUkxYUSGCGdvCvDRDTC2edWlJmy8wl0ZQ4LpnXbGWLqTdpVGKy7/FuD16M5iXLtHE5kK5uPfxS9zMUmMmwwYG0G3vyLbeSLYNOk8P9C/Ozjte3N3eV84XtzIK4sOBX6Dp5ZlP3PKFS87dOdbLiX2764SWlxYtRxYXF4C2wxY/P06CkxhtGUSrdHiA4Qe0ViTpb+aGqkMTslW4RZhL98sOzpmkFNVIL18Ujb/eJb0RysqaYnc1G+MkVU9mb2xgh/pGyvJ/y5qijFcT5gVWpNWAnRSVMolI9AyrG1Ozs1PTM2MTEwurq48cPerQWl//EI4KnbJubl138n5okZfb/unTkx3DuQVs17hrQ3oXF+ZHhwdtPz7z2c81Art373no4UdMZjuTjrmSUtEXG4ZZMJjwEXHs5XROUQH1ZYX3jycABvSgFDx14pj9xq6OEX5DaaKjcwAxghR0y8qOs6QwWAMN0wyVMakzSkaTmRgQuJYRxhWi1AZvDgnmZlC1qdm5sdHRCy+4gP3+z/6Xnx3fOcGn/6WXXfaka548OjYGqg4JQ2OeWe1wKtlESPmcthb/AZ6AydDH1gpvExCaRZAn2YhuTXtggszmCMiLkPGximYhlapWnmGFIwM2bP/5U5/61Ec/cv2dd9xxenKapZlFCb07RZCcmmQREOkkkn4wp4THMAMtlOjZjOi9bQ+kD+vjjT8qMfzDFfMtLXZ0d48O7+jvs9dhjvFciH4BuL9gpBlpp52cQVamYzSrsuGe0wI5WlvWXnZECPxO3dqjwhsdCnOclikNRtdtgJbsLbVZKKx05Lq3GXt1dKPOEKysdoVHGyINcjgsvFw3OH4h9WUBZ2md+smYGV89wsbSIsOZAWyEjEeZf36Ddd6YYFRA1hr+JRApKoulyvZRYuYY/ogNybpVjlunVUvoYFrn+Ljs1o/BKsRKA9FGJu8Ii3WAF2XlnlrSoK2WlN9bP2r6tpeNF0pjThXnh3DJYezw4/hNTScKYm0V8Df8GzBsBVnz/d9RUBSshaPKqxEpME9tmjo9PQu/EQt0xNtCdhcL/5CrMS61194KCpHfTPC5DOIEJdNGHBL4CbcUa4yckbMxYyfKMSmnZScGR1bnV09OzXe6Zi94RW+42dfDiFH+wYcOHb7vgQef95SrzKvh4YF5aOZcz+goidvAYdDwxpErKGBFl5G23M1MzJxJQyImNoCW2fxEoFMK7ChdCxIlS3mafimoSAAekSuLLoKFgEqt5kEtAqS9R/sZRWz0aSVAivBtqS6YFwlsq+okxzgiGgN2PtQ13b09nRM777n/gflllleuC7MhT5AK7skGpEgPU5BTx1bpcPCbtd1r9nIfOhUCZHvTzGKhwg5Kk0BJsx19QomIl6pQAshjyCIGV1FbDfnH8i/ZYilEc5PXHad2tHYV9SedVT1tFDllbgfvEI6IKUIZVUDNSNdZmv54nxkXKmKwotNrad23Z+/xUycZlSKFHDpxKnfh+Rdw8PDWt/wOkWLvOfuvevI1T3v6022SD4+OQgYGOaRVKA3yBZiMkHPuXZO0zXjXA+GOF0iRgZce7phwYob8L3zhC/nf9q1sGEMFsW8VaxbU0riQ4z7ok5/85IGHH0Hlyfi4zp4rUf/5nTt3w+q52Xm7IcDS1zuoDUjkEw4VpqJk7xUuIgBLoWW8daKE2RyPC0qXtDAX5mx1aGjCFQhMM+ZmY9YZh3zxyOYzVjqZwngtwOaqLySe2jXUnMUSj33EN9yXRbamYBg22/s6Okd7u12YwOE5wd8OuLnmrAY/EA75YqGIheNXNnRcAr6Sdpn6pJoY4xkk45N1QCIKU6umF3laipmW8T0TdK3+2B6Rp/7soJAKOsDv7Mzny0zp1U0Gdi6dyvK94IwVAek7giDDageGHbXYbBlw8DRsMpwOqYiNN55RNIARGMt+Oglei1RW60tTSvPUIloTNRg2GJJYVJnghSBKSV6igZUSK8b03nA+hoj7vBSWUs8KetgMXjVrl3hWzq/kZ9hlAN0AZf1EC4ueg7+BLmwRXyRp6hdDl0opIv709akaxWHEli6U9kPp0kew0jnK0+CiDwVAkAe6Q3gWAfqHTknXbNVFXZdCNtmE8XsAwXaOjjhuvbj4iGMB3dw6EA/a2kd27FhcmHaqdnOx89bbb9+/Y3Dvzt0WGHT+VmzO2WIAaTweRvrritttCruAC5wzBAIiGzwTU10AmJ9bYGyCQcTbQMewFbVRPsjAVepZ0+qHphrND2tCsNIAl1c53js0MmwlYSaz05FNSOUVRRo/lVaoecySdC9vBTdUTc9S/i+bf+TTY8dP9HbYWu41DraVqebQcawF0UEaQJNQubK6xFcMQ6AdYyNOeyEogGCkQJj5oLsTGPxkn8CFUz39EsPO9c/JGF64iG+2cwYGHa78a3GuNPgf+IF5CzBNA0n3xC+bgXqt0QEj0Q7YEVDDb+zNxQiKgAT38qFocK8iZHpLApDBoIYsSn/k4QMUKwDFXqBvZ9+pKXfPzO7be8742ATsYX/FJ/Of/flfIOhOIVxyycXOiLnBzVkKaynTgeijMbAdtP00EMYadUbir7/++ne+851cvBkC4OWRyW3AynEKzxkuX4G/nL7FmNl6EvlNolMnGM1HO9rf7yqYIY2EHcR94j9bOJtaPpIIQ3RNNt1OPxuh4lhS5FFpDTW/iiL6IKDIa2EKCKJf/V3dYw7x9rt8GY2noY3T9o7g5KbzMzwGrnfG6ilih//56w4P4Jswt31RFzrslUWA20zh9voGvdRQR/sog4xYcUhxkJrCZNOVRjObpH5+QzEM+2SOVvVahRjF1UjSRsXMx0I0TfM1tpBr9UVkj6QlNeJyZPZ0P9OydFPbhOQv9Es8tCxDnfSOBRaWIbVZG6K/GAvm760PongKy0nN4Y3REEVYs8qbJ7hZAfTkeg3VEAKtKkPAIlVGGZWZakMkzu3SiiJUypiQX0HLbD2lNd6VI9TWDTm7uLyciiCvV9n5KWaiJqpzEiF+WKkOhhbEBiprizLAKfMxQbE1lM42XpbqHpPtb/xR6N9ZZeejQpBZpEUjTEVAY2N+9fX26x4VoF1WqGPTymlA27MO16QxZfYVLU84YmCC7/snQxH1USk35NYeVKTYwD1Q9X+qMy6xqpJtcxAxopdbXe6gyR7vPHzs2KHJef5wYC7r7/Mmdt3/wKnOzc6eoaEHDj1625ceOu/CyydnpnO5bk831bmJwZiiuq61asNaDYXRKks3QwfSQYI0uaBXJJAkNNhAWH4JGaYgazrnc8MdFw/5jFa6XxZ9QvdNe5Y+DqbbeT700Bfvf/DBz3z2pqOHTj7pygte8/Vfe/UVl1s0QrLYsylP/wu8C2C0DeJK0irIrwGZefxQL6xsHJ+avXDXRVNHJx9+5DBtm/POXb3dfKdAEh6AnEbSmGyTzOfOS42bmprZs2s3MrR7914QOH5ysqev++Tpk5Ynh48euu666z51801QiqTaP9A7WQxMNVxvuDQwoOgUTl+U57X3f09PsDXE9Vkh0ayozqXGz4DDnb2xul4uhk/O6YeXo63oVEXZkIEQc0YZEXVhErnUVxmjzJhcDJwdNnSNQGDYQ/1Tvq/qhCa7hOhstMTEqLUFJqOoRw8f6cJrZWlr3Tux65zdeylc7vrinTff9GlwtjKNAF4Cbjo8nAMECLrs5But4PPn/gceOH7sGMRQ/mC/TbLIQJjE8aMnHnn4IEoqf5M6GywfCuSl0ZExR7q00FufmBeolI5F0iotD/1i1LZuaxYGpMZt8GxA1eegVMv3BApVBH3BJGDCBEmyykXi2wd6usfdqQ2x+bK1JcDNeOxlAkwWDaakJoCgdbq1uo6UqeowFrgH2FwxsNPPinSVRnt9pK93pKPLTDT9CHmasWol0dl2ZHqaULbS1slMiqjtIm2qWWoeJ2/LGIaOmoZpYchyeJUGhHBkuEoyZAlXyG5E0krQCt3x1LuttPyb1pXQQXefsjGRaE2zYormxzEFtB4/beuWYo2M6yJ1oVN0Ul09NDTo2smlBUecaeW0JyaoNFwM3mlNu9pXllfbOi1nFnPDSepug2b2x40HhOMom6ii3Tk1F7tWu+Z2kTKmQG9PUoH500yaJNuVgNyLAYcNEi1n5hbsHYG1mmw64UfIhLV/6BSgtOZiWKWm3oijag+yA5LBwpv9aPZfWjNeIRJYbguptJBmqYAW5ChqLu0ronkILv/piK8zqD0dwwzFbJjMnDpt/3DIKrS3x4lHd/24ruK+h+5neIOAIbSLS4s9nd0oHtYNgNn8YV3Xib6vLRIIOBBfmndRCbU+balr4of7h4tSbKOtr3N6fu7cyy7Z3dZx6tTkyN4dSy2Ll1xx/rHb7t3sYJq22nL6NPGpdXTs1PxRHuQ3ByduvPPh3RccuOKCCzBnhwCG2DBoRJSHAYltGO52DEaIztqGhaAYZhNKXDbQwDyMB/IVPd/M/AJDNSqqiR27iGZEIKJl7q2ezWXCy2vZFlt0zH11lbR4emqarY41LiG0z3WFw8Ourf3YDZ85dOSkGXHk8w+tdX3kyic/bXF+ZtD0hqaVxeBtoG2Sh0daarf0dJoS5PBVuioK45ae3ocOnVjtHLrjxOnj6+0LK45btO8u9+LOnJwONq64O94ROENEIdZNtHe2a2R4zO/JyannPe/anr5+V3IwnHz44MNju8Zv+MSNv/Kbv/r+j3wAxn7fP3ldpOkO4poVfIIegQmJ1PPM3PKjzrwSOQuLStqXeyj2CV/DYQPREOgiWRmVZp0keNQgXDCoHnnIdmO3s5wnp2aY9mYYY2G1nO1PH0FW6uZM56wMiBRmh1VRoQix9jb5wtejp4ufWtMOKcAB1FpkK4Qjk1Et2kTyM7XYd+gp+q79yaQRlL02ijc3dw6PTAwNSy/VMk9ZOTE1d3j1ENZjYkMDr8ydUHN+BTo7hvqG/Syer8hyocJmRK/jpSMBgSRPiZ4KFArBL+Qsrnm0Ka2qsIERWoVSxSq6JTfb0IASxSEhD/xwqRQTiDQHkPWzmyzcG5fiQw2huVt59acVdbMu1w0ABsgeWlKmLgxY48ITwHTYNAtyZOvMdQvxmGv/NkfA+FBxLgDetg0PTjFt23S+mYfy5c3llZHWrtHuvrHOPkQPHhLtV1o75tvWZ5ZW5xZ44eT0Hz9mWwjiEaxy6LGEAFq7DVTtb+x8EHRNDXLkVU6BRXg3ptHaFo5Rv/UEQwEAm/Htr5w6TumGmb9HaIVGWNcgBwgQYm20AtkoIYJsGINK6Y0porPS4SzeviVLQ4xLvQhKeJJBiriBljFRsBFHc2QSa1tltspIb0qL009NrH9GQSf1rFGEfgdjGrJl4fWq6GAu29EZM8KC3Etz85gBL3KhHRZKYY0xbkEt0u+ixUbkSnWku0wG1TdB8DdGylwLR3pMTsypBKwrHcuCmcYPFkWKotHD2I0H8T9DFfrVRXvA5N56D4RIapl2viIYADdMCwompOvGsSyOCipkfGowT8m0iBErZLdL7xkeWTrcwier23SX1jevvPSigwdPOn2wb2Ln/IkT+8ftcbbc+eC9raZZR9e7P3D9zn+yc2B8tH94xJkf1WSln8YBmAaWSoL8GQshvY46sSyFkf9Ci4lMCDppfffuiQfvf+ihBz8/O7/40OHD8ysrs3jygkO/HSQ+WmBqpd6BwZ7egcufcqlbPsZ27sKeGRrlwOrkzFOf+8Kf/umfmjp9ami059TMPJDleiaSi3ozUsFUoVCATH4tMWqoDViwOsI0LbGPnJh68OChabdxYEF9rkEZsAm3sprju80SMtQFpJ5wDy6hYpgRGPKATWWwY+dE3+DAwaOPxgdhH89amzQY1133ssUcyz8TGmNzJuHvM1ZwtVbQgEbmf+lIY2wCn0yg4EwOPB86euy8nbsuufTyB794B30X6rw8O+MgmIkTwdZkRG9cWsLCIodtQi0RxVKY8VYfugPpyugnHaibSFeiMtWw1e+ijAu2B1+0wgCFc6RR9kvkNQvtQkWn2xuU9h3y0SgkGJ7K/Qyb4eugsYgvQ56khMaEKK30Qf5C94KaTxgidxVRN0wvqxw0bEsVUcorX9WyE8UbQtNyFDbkQiQki2Ijl2anY+lUEZGSbqndyXOWGaFoIIt8qkfYB5knPln02m/cAICdq3FGjNI+rM892Ou92WLrHGnvZvCDnZjXiJeNYs4LF9Y5/mxfZnzfagsBBM38ADXAjQis2+IJDbjUH0lPG7dCMhWu4d9tyVuvv8y/tExWOvYXcjrQsJtgUTZkQZSCgEaXkPzIDX672TKrRcoN/NPKICe8VwpWlVVUp8mK7hqnYjRi2oIeER4jxZgKiH2umOiI6miGj2XSBy0Sp90J3AK9UHAoXEdIxE9VuTzQNO7Jgiu7owyy/KybijmCnAOfKaYOKqgZRMUHBDFHfEyoeR6T9Df98En9ylOTI2lp/9azvMx9VhSd4paltRdOvlA904cenTwOqJmEIaqNaSaikFqzSI17hsPhBWyhSt9l8A3vnnyMuAp8cHy4s6+HXmV4ZIDR98UTe9Zn108dPcVo+fjpE5de+YzR9b5J1y0urDo3yWEOHevOl76Y7DXoft2yQoJTMD/8WeViBfNyAws4B5sDNlgFE6Hm3Pz86M6J7r6hL9519/vf+8Ejh49dfN5FvUND9gB7hgaYXgjjI2P8PzuYYyit0x1KmJ5lPzlz8NAjjx45bCnD09Hs6flHDhywpBsd6F1eWKSUj1BXbIHSjK2gLfVXgJzdqfwKhiRDK3UEpfDs4vxyS6dlxdDIaNUwoHMZi8I+fVLGKB+KW6zQNti6c1snbdTg8MDx40d5PhwYGsQJEE3Oyr7+ta/h+IHzA1sCKTB1nQmVIW1v5Jl3f/exgrFbxdZuG5MyaQCgvkgDaRF2jsclhmu5qCF0H8oRgbM96XVW1GWa5NxvZO8mQdkqu/FvUDfRM51OigkIO8q89C4sOP9k5UinJH8UHVuhts2r5ClBzMuaEm3GVkBoREsW6pSoNutPaXBh61VjgtSPQkfyptolNMrf/o+OV2lVHhDwqpHyGEA2vkg5W+0UqfPLdEsFZWVkDhTrIaO9yRp+frmVw/HY8hecstLyleWCiqxufWLlrkIQd5x62fq6Y3NhfYmFPueDXRtc/7T3uXedBGQP2fJ0lXedNVtP8bpfBR+TrcAjDRPbivv3DDS397YAtpnQ7IuU8mnzzZmIks/82BajkMk3le+gzZYCZhB5KY21VHOew36ElVV2qglP1DzxI0qwBgSDB2pZ929usHiJ6M2kOIoXbMROlII68IhaXVqZgrM88odrouj6Z15pQhYugG+Os0ksKwgZfFJb7ZVNwooCwccyZuFMbvvo59oyYjVvJCzN8N2yJxKyL5uwrbOpos4lidtfiXuzPefj4zV/zdaMw7pCocJaMKqID25TWIjnBltnXb09WQoQjO12Dg2Nj42dnDwJIVUmfwhvUZgXpAvya1ztY20P7CowyClKEAV3Kv4O/eto7xvoNVguxzh9+tSO0dG+NRi1dtk559w1v3Ty5PGBLsvUlf6unssYuT/wyKnTS/t27bnj1tv2jw4//5lPZTMIZ23MGUVNMFzGxZxWe7APkdG4Qmqikg8vj4S2e+/eg0eO/sU734Ptfuc/+c5rnvRkygdHzqAOtEBeXQn70N33Tk6ePnV6cm524aGHHjo9M3vi5EkOiumsbOGEn22279p1DvOl8/bsefTQgaNzi6ODA6z0qXwj4z1RwGIthYFF+6BZDEU3W0+cOn3gkUf6ux2GGxse32mNHmmAUquE7QNZIRmMYl5N8F9YqOoLg2Jodu3ZbfIz+X/Zy17GmshBJzybTzH4ub0Q7arU/4ka+PeYpg2RNAP+oHHosAHJNq5/YEuGzszllcwmB1/wsZ1D+5xQZSvMmRodsus7t0Td5NaREhTkP7NGQFiL4p+VXSGxSWu8kj8QLQ+J+b6mVDhvpdR0T3mKvNWoJUJlo7oGP6o5Ab8U4AH3CRipoFl+s7RaoPQatqc/Pi5PnWgGWjx0ppSJhdXMErd/hcH7WTP7EBpI8YRHyekzJyKLztl8WaBNyqUARoC1jQJNDJpyq53so1lCya0T2C8LzsW46N5cYDnAy8XKukNeQwT/HHaOyw3mkbzcsVpeXGXCz/NGbhfH2lVahjtzMCGEqjb4ieeF7DpYsp55pMuNr84kfvlYdrN9ls3vQlmx9ZUyJq3WJFEd5oRY8caYKydtrFD38CppIQTbWARRCuELKwtZIhlrZYWOaBvBPdSD3Z1dECvOdKb0URZRiA11PWIypq/mdpXewk8TADkWtREWADmL2OznYEi+LWXl22CSdVkkm4xCHy5lzcUVfkQA61B5w5CqPrEoPQKN7YDbHs+7vynIX0NpZGRzi5AIVq3cKuQQo4UoQgMUpH4/2Ue7O0dDgIuFg326FaNe7gNQVWBY0LR0OPDxIVBkHIthKEuCYGcROGqNOExGob3dPTAM704eO9rX0j7S1jW9sDwwuqP1kgvvvPee6enTDz/84NWXXDjaN7DLplkLtWbbRnfPxz/+8YvO2zs2OjQ03BO+n20/pK2oo8ovCOqvoJ5YyB4YRpR0MHB15YYbbjj48IFLLrn8phs//fH33+CiY3bbi8sLKBTiDg1IBjmuaeDKGNM9jY3ubNtxjoHyOcvu03MLo3vOefnXvuquO25dmpns2liZGB0jaixOL/WUnb3Hgj9Tl8hKmiDbxiwdsPg6XG9zCyC1/ujoeHv/CPt8i3A5vVQ7cIFihWezNFB1BMxqxBxm7SPXzJzNiSXe05B7Z/e+/wd/AA/DG/AV/iEs4Hz7/xeiD5HS7Ix/Qvk3cCihLoHMiYLd5Z1NuMMHD+zftXP/vr0Ga2ryFOPC5YV5NJgi0onrzAizsRxcB5dSTr5vFLn1T8WuioFV1oaGWQFmKBs0qMQBug5vAA5ZwizSoEYIm98Kwd0MR+pq0LiC4XUFUNLVEKYmQ/lZimx8njLrt/XZqP1xLa/ZDbEM5oWnuE88U0JBxUaRW/8089Qy67O+NJOdK4w4j4sQiCOhbzpyhZ3qij7TWAUELbmYC6WHehRrwfk2175vLrRsUP0vhlauWwj3u/arrWvYZmVbO+ssB3fdqUaVmmO2Ss6pFoJdJOCtdkYO1OqmAPLVImGF1VZH/+Z/bUiY35H0dAvpLpvNRgvvzhExtkjkRPp1pxVCdRzFJjigr5urhG+uMFo32Z8VRVB21R0QYICA/RYCbguBD7IsIcOQKyoknkFBlkOyNTDoY7SA1IhFJgnB0aAaggIlRKZ2ip9vvK0xTu4iYigE7WWqphSEJksBmtCeWKHUofVURgFGRegab7wt6V/Ro5az1bA0TS80g9qPtBV/2X66XWdpEckjSyrUCt3eI8pImI+VThoEGu6Ix1ZjbVZpfaCSAHHBjvCSjIAmq+UUzudVKsId0MLiFGWJDagz8d09DBrcATl35MTc8WMXXHIJz1K3fuHk4UcPXnPJ+XZhkIPOwVH51gYG773rtve+532vevXLdu66eB6WFspe7Ahj7lYakLTgYgT/rPUzlYIZkZf7evqPOWw1ObdzdNfK/ArfQgx4TszMucGlf2QszC/NZpuECJCLiu6uLZpZNGiGfL6wylfP6Y3Wg1+6j+ey8ZHh9o2VKy+/zE0XPmkpDCDcvtGQ2pxgG/EM9ELcsxLiR371oYOHezjy3Lnz9GJ8XFv1xQAmO4DFijWrhcYQK6WgD31aLjelO7KuIiBTBwHv7Xfe3j8y4NJanICGyjZ+1InB4Ti4bbRg659Gw84UvPXiH+xfZCG0MoSooEpaRJl27u5d7oF8+NGDjNb1HAmMepuUVoKRjIBiiz17AatRuUR1kwkX0d4cKetAWleAMv+y31eAFhGhhILw0ahUqNbU+jOflzK2A7x+VZ/N9CBzCYqvDKBkKHZfWxXVT0qBoo8ZxOarv07CVXb9UMNkVokUlVYik+LSzoQawePlNNaCFJlBCwXryrXoqCCCaKVVAIInt7dQBDmQxd6PYYSCslue69BDMCPAEwTjmZmbhw33R4OhPD0d7aj/UHs3j+ukGMc151dX5lbczJfN5lD/iEqh/tntK7uVmqGFWYSnjrSWiPuEPKDZnWTaCvXzrV+P+fcJ88uRi0Czpkkjojs1IGHJUVBAmExdW5ZZDhWTavZP0ftnwoGZ9qPHTE+YH2TO1Oo9CwArv4zZaFZKxPsUuoVDUK9Ym2SYI2sio2rUDK0JURTzf/0TN2jGSclqEVQKaQvxj4tHKfDdcIp3tXYgVTZzWi29UsCZoOjtSX8dRM58UGJnwXT7V16ptMyXnMACqMQ3GPAsWoUww/eTsM/ukMdEBLC/xwXmYK3HubAUZBjPKDD8vwTj7hMhxRqMBDBL0BbpcjIdo0hz1HO4j/Pudjetz0yevuiyXT3HTrgcuGNl8YKJ8cmdEwszM0eOHB5zT2B3r0sjz9+11zmons212++45Y7bbh8e6R/eMRI2W6a6Xa2QgyBAdvorL2rCQS4UgZ8Phvdj/cMXnXtxb1vvrksnetu7jz56cL+Dl6yImHzlLAgjE9tdPS28iFtJmw8sJJxoa+Uzsa9ndNxC5MG52fe+850vePHzl2dmWD5deO5+J3xc55ut6ScOKi8H3J0z33AOseX45NSdd92ds2TdXStOcnUyvOpAF/ghAExBMboDj5rjD44GwtkuC1K7vobG8Td4Tfz/zq95xau/5mtQfzhmRFigHzt5ogJcOSGx/7CBUFAqLHMy2PKYkFVzRCbBq7ijYTsJy+596MDnP33TAGuzOJFd1xFIaB7heVk1QKfGQG+VFk0f+JRnwBTBqIDORzF/9NYMN03VoKZQyOzCFnAkWudo5AawgpkhB6HjWROrQ4oPPWtEPP5lytBkIhf5pvxkKLOsdJ/IUxtXIyUtic1Q6MFW+x/3by1cZhGhtspPDZBXSvNVsxZ5SC01Z80mLnRuMt9M1004W+NmI/ZJEcRzLzJkbeCAFFAEQOhn1LLtTgyyrJhvWVssB66hY29b+1Bbt9u3Oc5BwdHMpbWVac5+Fc7zflArmg+v0DH8IDJXCYF2AGz5kQ//ul7rUc3vqWvNeBPnz6SU2Pb821+VHfBwM2CKQQAMw3N0ixTKDxMd4srmkmvSNMumGKEVPVJdXaGEapg29gm6W5kj+9B7xF4xekStxH2DewLcbImmVG4bXlfopkb4FpibraljoHpzNxtMZJkymkoTKApksN+QbAxU2RjYSJCn+A9BZYwc3EVWN3s2ObbXYCEtaVbQiDwuobTkMUA8+5PH/E6ra+NLRHuE8KUStF0jtcokrK/Im1K0x+Y1XhqdV1uHo5W6gAHUotWe2batHrWUGRVODADeBJlpGNdXCX0KtAG7ubTMeoVUfnk8OffZHucBq69/8PydE3d96aRTss997vO4DJo9dnJtbn73xDjrwL4ud6B/sq+/62WvfJlJaiADKJUXdDZ3Q2HATZ1FKaRqqJEmlJ+c1o443tzWy6EPJ5zn7djd0eVwcrYSsEASZht8iQAuRX9zWJkrGf3FojcW5+0YaI8LLD/ziU8sLM8/9WlXj3C45lyCmyeANDU/QcjkVZ6Doxub80srxyZn0bvJuZXOofGFhbmhsdxL4R4dNfCBP7twdjGB7Wb2RReX5jHg888/V6v4e8A/XvzSl3zPP3uz40UZC+ZVfbzqx7+0FhvMJ2jKP3hSJfaqrfgsontbK4DYb2wsL/7Zn/4pIWCop2didGRharq/txfdAg29iEoysp2fkjKdKk4CaLALSplsEWPLtLd4SPHho7HjkV1VBR8aOA8LtmhNTdGcmpKfCs0zMBIxBQp/CfSlGB/P/EilzW6VFXlB7/K2kUG85m38U0rwYZLPHt6kCTpbys5D7TWI66+4iAw1Z33CB9yxfiWPDH6SJEKqypZYjPEEhJplTDUxCoEp3BHUihUQb2dkUct5fGJhfY2THxKzvRTTxN0I/dlDNW9a+PZZ2Fibo/pfX1nv6MM8HBgL5KJfrb1qiBrReqfnFfcqlB7T7GYXaqeaP2skhW0B86xX8p+VUn/m+mOooJ91DYj9B4B+xhKEVGcjkrV6ofxZCbX2t3e7MoI8xeqgvZsJOxVQK10YO2s7j64ntY6ipiHvw6vQEYqw3h7uvAFRlcgEiXiBzXup3+oLjS4II4LjVYhDHcBuhNAkjax7M8Qe5qVF2DQYxq+SfqUBnf5bbZjMjv67PJptaLpdTm2ASzASNy5yYhMWFf6eyflEoTYilLKMVP1ZMyoQIUY1rKzFIRD1PUg5KG8H2J9sVA00ZrXXHExKSWc2Ns89Z9/RE8crb8vqwXmF7Kjbzo6uLDMnUgHsabiXsIbo6eLBZtYCU3J0Jqvrg1xfDY892HHwvkMP7d6/b/7Bhwfa2hZOnrzy3PMPP/Kwk1884XSutO0aGV+enT+9sbaTH5zRy7iAu/1ztxrKF73sheMTYyePH8NjuqmSHD4J/y4SX6EyFR3Vl/m1sXn+vv1f2PwcI6e9e/ctnZ5vXVp25nOpdZ6BIRWnM5i5KqOAJoQjlgIBWtYtBb0HRgd393bMHD/pbMTU9JxbMq656koi6wJ3thZwAW8wPr2OJCKqsPhWWlpZcd5tdmG1vX/ISdB3vff9M/PsrlttKjA94qicXO9YpaWH4cguEXZsUynCQaSOdZZrnLAgiHC7teVJV19llp6zf++LX/qiH/uxH1ONrRtvuaVE9A1ikKGILGmMASjjLt5UJiRekK35FNHspD4u/HXpj8u4LSE8FyggQaULWZ85TaGbjKYs0Wdnpvi1NuNu/NiH7/rCLUN93ft3TQSzF5edPrE6DNlTQMS6QmHTugjFeEC2yuEX66BkMkpIUMi+eYRBRMTIkJV3hRj5UIqgfaqWMyeklJ1MUv2ffwSYD2UrGfGzflSeeVRSW0sLXBtQDdvIxyV4699mjfXbZkp9m+nzRKEWWPPU92pMyOGm0NNaLMIljkQUapBmSNGX+lNO1sH9g8M5ULC6wrW14ydrS4tsOh05X9hY7ejZGOhDAnsW5xZmORyk/+DmemVp1j2KqAuNiMX9xnrfZttojvyovXWZ5+eN1Xn7pHhuT48LW8jWwBEqn/EF/JAmamENa/SidCDdD5zZGGXsatALobyvEK4jVfMmuQx8Oite8jYi9ZPHP6uiszHxMusgf5oWVIAaq20bKxtZ/th7NKsR6LS3BEMPXm4WVGjUObZHohTLjTbUiXDEBqdG61hZL5Uxpz8rX2mlV7U1SmyOqYJDaj22gsZ4HzlFxVvJBTKNHGC3lVc5Udv5QtFM7yNtBx4K8Jd95tL4gFlFZ74qscenbGXYqnXr95f/N7vZIWCpGWUHIg2KLGS+uGZBvKWVXy2ck9y8VWmRsX0RXUvi6UMmXr7Vf/3wS4E2kHEYshRGOz+7cHJufmCwb8LNhUcO9YwNDw0NzB2dHBscXjx1+oqLLrn5wbvvuvvu51/9LKx6wgmA3p7pk5M7Jkaeds2TLRcecbT+gYdsFNKbEcNhKt4dEQcEC6gzpKWrVd5EWXbuGKdxUs/CzDSbNqccsvcO5ztpOHM60piXzPnMeWhdQIYtqLU+i9n21oHO1n0dex4+csgKbrC/e+/uXcEEtgZMMso1gfkQ2m8bHNzUVb2HJ6fbe4dmltev/9RnHnjk8KQLNDq6OV3hGF7VGhxYRQoMyzGlQV5R+AG6hu9j0raPZmen3T913nn7Nex1r3vdNddcw5tN9ntBuGCjajMARXGnHKMlp7YJEpUmuFIt3dsKMmxF/07+zUzcCghyY45IYUY8N2t3/5Rd33Mmdj5435fe++53sTLcNTpICcEww4zV+WJhsLrpImgNy39RMiDRAKQLge22UCl3hkbGssGQzEUvIUnExKwgrR82nqVVSksVpcAmEJQeLCgwOauu1BGUbjRge3xbixrR8vYx+R+f56tNqTV61g9r+/0U9LFGNA898TT4OgK8dCA2tWhA+tzvCOHLFUMMOPlgJ0bQa0VPzobFsbN8sOa2o/7NTkYZg+ZETva2LnHwsL48QxWKN5pe9P6FiQFt0a2mOerzVIDhPzPkeaNpmHWDAdRGeiZzAWbjw8fE81kzTzOiv3nxuMCqMNS+gQNep++hmfa+DRdizIYEWwMhINESMnTmeiT8bDQxGcpKirLHp3zx2WILqeLAPtsE4FWRIedLaerTvSKLNZsYsUojSwgE6kqt0dbavcCroG8lLuJCuKfMBi+wM1EL3BRQgAl34/uFGVzZ2gJEldR3jfHfAoSKlbb164n/LXkarxot3cpYvm00XhqQaJq20Xf6CRqhRHWqlNVPNGwtrRTNDE5k8KVOI7nitRmeIWdelQ5VNA0WFE0rAnRq4RSzHluUHDuvTZ5mRja+f999k4cPnTxy8Tnn9q6u7xwaP3L8hAP6e+ZPP/joQXycuYsjr5QsWjM1eVqPd+/gk3FsYnTcLgI+qU6mq8uLcRNto9WKz+hqUrS+oglObK7u2btrx8TYqVMnz9uxh5uS7mw3xqjXkEb6ScZQhHRKKHs8aHP6VTay2Bs4JrnQ1u6M2v0H7r/gonP3n7svI5nhCwo2UT9AyCQJGIhjswsrm0yR27o++/nb3/Phjz9y5ET/wAjS7tRHF0t+e20EqPIFKLEU86AaFwdkoVTRAgLdPd07du0cm4ibmqc98+nWFtkULeeADBNWoQxqK8XB4BS15cTGWQavcJHRiWH+h9O7f/Bw+NDB0cEhiye2ZZ/75I2f/sSNO0ZG2jZ6Rvp64hLcWcgCv5gIuFTLLT0hHJCravk1H0RhU6a2YchSu4RgLAQo6FfmmZhxQNwbOBB2EIRM7oqUJcXAZ5Sjxi7TNq8LyhrKMnBlVpdiZQtKBMcbIXmUVkLJn1hJrGnNn0GMZs4z777KWLOQwGSr3givleuXjshTS407LDPYPCXsOuy6vsFtJ88Nw709Tl8ihnCGrzdHBXkBRf+zMAvvDYAs4TlvG+SfjlebdXp/CtuNmc1VXvrmiiUkrbj5UvhyAehWY1Qd0ToBNTBdMhWqHJyGbbWtZDj7cablJZtizkqpP5uJZ32f2VuTxCqFRaSyi1tcRKDZltisGh1aW87Z5egRzTc+KYEv2JNtkqo73MAEurs6zMeo/jfXOvCC9RUgU6xt2/SPzTJ5jDbZ4rwMuWYh4kJk3DwjR4rIC6DNUH9Gfi7pVJb+arPThi3pRlwDBRUNDQ6a4SlUFSq1bUwvtQ2fkq0EiTXyhM/61rNGmnm2/2zGlWmJnTHILnXMnGotOqvjVgBYoxMUE2PjTklitIBYC5QtwldpUn1K34rYmU3L0Sin/Dm7cuj/wUOHptyx29piEdA50HfepRc9evTIoaOH6TDn5lwI3r24sLBv11404EsPPjA0MdIz0MNs1HlZo3byxAnpe3ftjYvHDGBObGuqi7pskBaJMZAJw9xqA7DykTA4PHjFky5/6MCDo2MjfYN9dl5zmXy7s/Ltng6ecoXKTa4tCk/7vbyJQIYedhWGP2ceuNi1V7g6NjY6udZy9dVPcjYiVZA24u+6MaCNiZDK86q7Z2ByZq5/ZMdd9z/05+953+ET02tq6O7baMtpcIp7xJqZMjYaPGxvZ83pQxE0XUDf/ST7e4LhU55yDWeotgowBmpJxwKsAEL6s1QLE8ksQCMLt2ZLNjvDL+9anMy5YH1lxQExeWqQR1BmDfXn3+FzOxwAh1ZzYW52eGDgoXvu+vM/+qNL9u/rb2/lUXIzV84uri0skFVZATGK0hfN2Gpm+fcMgqMqhbjAN7Qm6rkIIJlZ8uRVAyGbHfF9nWLbC8xEKwE6CU0I1I/rT0+FNF81C6zp9VVNbKZsT2zmf3yes159JT+bVYTyFDagC4JvvapdaJYT7xQu/Io7iFbWj2MDAztHRodYc6NsAJWDv+EPSBBOwCO/vS9uQ1iA9La2D+QoUHjgil2BjdXplUXM2V3YccHR7kBYVqvbA6iag/nbFupMQAj9Fdn8zLs6HKXtZx7bh+ZM1q1Yfbv16+x/GQng5WmUJkCOgh2mQFkdxtKGC6NcDqPLaD83FyCYq4SAIvpEKp3CAwKaCH28Yce1jNtq8IqijlECSLk0xsJc1OXxhHIoI7u6tqCRaOGBsTwPcpaQJm1R50CqNBL4FR1Sas5jLiTHSJ3B+PwMNzI2uQTVvl4tJwxVm5RQmG8tqlmyPNvj9ZMnfDaziSReRq3GPRVbx0QclOgN/E62ElCikJiWzf4e+oheekM/ZauNaXRYB2Uv4lYt1qc1YopiLUiVMbEfcOcD9503sfOK887FFGbtMHd0kaYJJYsxmOkc37F7cW5+/47dF51/ktHP/vP2je/aefrYcTdTDnK2kluI17niGhofHBgaoLzXBiNnJGfm59pY8GhCET/SJ/tUVHi0f22c36499VlPvfOO2+eWZgZHd8YcYNXlHrgrebOogEI/YSxchxfoCXUxD+kGlho+Fz/S1o11dX/4U588b6TnOc99NtmcDySeowxmBKPsFhQE1CCw9Whtm52f7xkYfvjRI3/+7vd9/o57ekd3Mk07cur0QJ/VtrPoMXakeg2UCqjSFz4aC++3auEaAU4j33xFQNhXvvpVrP4feeQAtHeYDrfLIXLMuGiBDR8sgaiMNXxiCQAU0Ayr1hvrXO4Asoz9hw7ky8gS1IjHjxz+s7f/8Uuufd7S7NRAT8/p48dZq26sLCNMmTe5aIfui0bbTVVFMNoi6BWLUDo9EUAWsPMsii4zJyAP4m31zRTNcIUElfyyQPjgc3QX5nry+jjU00+gM/esL5KtoLziEt8KUmtKqilY3cjw2J/NrySnrq1CmhGpW0U+5l8ZHvN7249ajgy1qSJa28y/vZZIIYhb8SJDWrcSdPXeeH//qN2AtVWOgNgZk2Gc6upxuz3PZ0QnvWeVwhE56t/WyfbQDKD0d4RqemVlaoWbf2IvHIuROuAXIVvtkfdCQALg/NiCVaN3gA58ija9dMXbGprdara/pnjbeFUiZ342P/hrIui2ojSkfC9SwKjzpaFxDUSlH4dxVEWuGWlv6XJ3bNFJpUsgiS7ZlF0NwVU1iqZupGEZBtKAb7by2u7AAw3ywuYi/bhmUI1HtZUrR1Jf2FypNd1FK5KUNsmpqNq29KegQkUu44eEcZ3srVc+zHPrX2mw16SVRygzI4dIS5GFW9TOPhYi5fPHJjV+pYr6bW3S43NKqYmpA1nUkioV6aawJVTaVxK3LSwzJAM8QHOQhACgZNO32fFaM1iEVcpsfoF/Ccszc+OD/S5Bv+/IocGR4Z6uVld3Dw8Mjg/2zp8+3cYjblffianJ+ZX1runO8/aeO7M0d+eD9zk+sH9iYuW0S1LnZGYO3zNApAXEWE86mmJ1azR5y+/vCdUD0oKcmfGwE+pqxvTCzDn797z4upfe9dlbR4fcjNq/vFD9UJZVbUMDkKVhzELjEy++phlcOvPgvjLcj22cI5L3nTr9A9/xzTzIz8xPLa0ujo0Mry4S2zMNQktK8AMYtYGz9ZmFpf/9B3/08U98tr1naJbqFbvrcsLGfo+DNa6fW6KriT/ZoFE8ck9OnlxcjEsctrZgBq1scRP2X/LSFz3lKU+hOhoYINjlgIKN3wXX6dDmFjcAYduGpKvLt1IyR42AYdCjQj7KWMCvrVaWyXPmx99RrEx+RVcrQJ4hlbtx8OCB83ft+bmf/k9PuepKplxzSwu2tscG+2ZmpvTcaX1QdjVvnRE+EEkoM6vM6cwR4AWOxotKB2XwX/6KXRD/xKE8jemmHAQ+xWzraVHu5pCKxGiEt1YDJRs8ybzOhyklddW4NAnNnzVSXzWbV/JKS6iZm5/UxL/dszSk9rrO5Zj818Rmgc32wF7HbShZiSPkm57uATyAVohJn44RZ6Nq63IIyp0oqxtOiDmgapOJqUtbWz8hn6TrnnfY3t4y296ySPMd1RjqHyGDDoCqVF2oqw8D9NLV0HgpBa+SVFdpAWOsGEoW7S2vt0DahGSzC40MpsEThWYHz3qJAVRmmKmnaamH/JqohEKw48QNnyNdRN/TS21sPtj+Y2TG77F5Yg1EEsT5Ajpbv3Y/2tq7uzZcmEkEXN2wY2ntw/87IyloatsgfVR+qSJUb+uXxtd9z0z9ggShJiWAmbSoMNNi7cs51lgUl5Hdgk2+gjseYT/R5TmmW01dQSBUrOQ483h8ypl322I121kI6v12sKYC6ohyz6Kq2fNooQ9rF6wUheh/xndk8EtZYQCLMUvIz0JutuImfVip3ktRLGxUplEZ6R/kY4Lzn9se+NLxyVN7RgcvPn/PRfv3YscWFr30Xh3d08un6HMcYbQT0DLc9cGPf2RhYX782muHRoaWZ6ZQfM0i57oMfbnFXSicjTrUN+BSlO4+lszaE3uZkD+k36CDfJFQeDjBTi654pKF06dd7zTgPu7B3hj/I/glQ+1syKUNhy7eHWwBd2z0mE3QjMDAXrjnC5/+wjMu2ve8a59rNuhaAJuDM86UoDQSKki3xnNz88Spyfd86PoP3PAZl7n39PafOD3TwSHR8MgKnmFLrWzYAmxXXHW1xdq6WHNyB6mDZQc4ayzU/6JLLn7jm96EJfD4v3PnDkpzV9MaMB5vswhmzVau3+Erm9pHMw4cOOBcmPLtvp577rnYttKm52b5nU4r/95CpQKPL96ljO9/1zv7XAjX2T57+vSOkeHjjz7qQnTdC+TgHmbIOg5FLgezC7WvUyyFyUAk8gDyVJEpV0Ji3ocqlbRGzcaF8FFeNYhmUgrSZshKEJEWNClko/FlHdPGOJbx3Yo3vyrj3MyePLVkSdvjZ3I00rcnfNXxZuMzmcpRCXUpRbrQrDf4WP5wCTAFYW71ypWra8wlTFL3fJmHiFzgY/99c6OrtWuwtQsP4C0IdBfbNha6W2fW2cXHz3PUEXZ/y6RTC3k/ZCxTSqRAIvDTkCr81OGIYkOMek7balfPitSfzcTal9qds/I/4c+a6Glmqlg5tSkZgJSFDTIkQDndNVvkMvKb+6bIA0uog0U9yhtFEP5P2Uohs54TcvoZ8Z/w5/AwDXi7tE5mFDQz7W3TLIJCGbjVjpfdRrNArNmWLUTRmO2JaVBBEc8KMV+kxQCLTtnMKayn5PKdPIGaISIP+g79jRCezYvQYqOfysvf9lqarXhM3cm4PVcds8KgjVpgltmkZJTdD3GbkH5CMlRJgobAEq+J2WEA7e1V8Z3MLEzoBDdzFIC8geRHkb3Vw/QgoSi8UGH03xrAcn9l/dj8jKotqo7MTh09ffyeB+8f6e8eHxmkAdi9axf4U3gM9g7OTM2tHT862bp0amnt1NTR/jvufOoll3DRubyx6jYx8iVH+eASU57W1oXWeTdMa3Y9QZ1libq1BuB0szRlZGhw8tjJ4d7BF77sJR//0Ec4yOLdSEcrhCujTlwnrZ5NFYMTiQAmFHxx9Kq745Zbb3nDG75jLDfkHGfCBCGyj8bHOHU2RZOs2lT/SB6tHR/+5PX/688/iCkNj00cmpwa7B8C4skTx4YG+jI/nLUuvmo1sEIb533Oc57lQpIv3nnHXXd9EXmkcWOm/Pp/8i0vfdmLOJBAQS2AsAebAadPTW20Ox4XXZzNgC996Usf/ehHP/GJTxxwqrb48rPjglhYELjt5JWvfOVzn/tc3SxTJRho4BrPkIzteOLNWcEsiyT/NwW03IiTEoMHhSNG5tHRAw8/8KV7vnjhBecuMe1lcj4zt2t87PTkKfAGsQgc8UqWCSgYx+i1IpE0Zoq49hIjCp2h2o2gVV9moIPLpTul0sj2gaZHmUoBM0zOU5J9LviuFvFwnvxI3wodkdYIaUc+UUqEGxjuBQ1v2lFC3mcmJf3LhJItnySizsbXX+aLs1/VEkpLa/sjqEncnq+2qsx94G6QdhAwOxwtal9ZBGGeWxAwfQ1UQdjlWGTltbU+K4AcH8sL1GitA9Jvzsws0ZObDAUG0UfYoUIZHcdOXWlNoytakm49pl/Wv42kqI2BDQUpMA7NC9TzrCn1mcla8mhas1+1U/UnPGmm10iG3G0eke5LqKmpLVI4JIz2M0JDYQBYAoGLncSMg04UPpYC8blNFYaFLLnwZm5+aZSrYZDhHLyD2ZytEWdf+wi70Zvae9kxeuDY8YVpN1X1IY2OAoSHRLcJPWwg5zaSumUX9C8BYHQ1oC/DH/wLtBDydLZYLfPSjh2R/HQ2UEOI895dRcuL8D1MOx0PSRHs6qNCQBVWXmdyQYMyHMGJgCnL/YTgPi2B/fyYuq7T6ctQBj9jYsACEgrDtWx0lz3fFr45EQvm+Q4ooWs99NT0yWuuvU2Tp+eme3q7ilcIvgX7ZB7cNTA3b5nY5kojrtBNkvn5mZ6uHl2pSIEwYRux1HKUfGXeNZkcsdptNTHX+B3Ut64uJ6/mWloeOjoVc/ejpzld1mG6ceOL4i7FY3nHyvzC/Bfv6R4cvuaC87hec+mhWwEojtcWFjmkbRseajUC3O1wVdjmPiKYGviABnyKeQ/zGBexzi9wRApsrrR+8jOffvzQsQNHj1x10cVhT9Akok0jIKnGkptw3jetwDASVhNsGOcXj7/xTW8Y2THBDSLZCCLDa3r6/u4eC0eHV3v6BjBoarGBoeGDhw5/5FOf+9U/fMciWgb3FpZ6+3s2uTlYXR3o7VxemnPq1X7K3OxcT996D+dUHe0LizPxR9Gy+TM//VM33PCxH/k3P0xDwmndhfvPe9Ob3jC/MN3V0+7qKDyY6zd+KQxWb0vXsVPH3TL4h3/4h/fdd9+u3buZij75mqe+/ju+3SrBMFgx3PjJT7j36qMf/RjzrW94zTe+6U1v4kPUrSYwQAZLB7syuqnzIp5UVEYNqjhtVLG3TNeCiZC4wKnM4S14VT17fjk/wcNWjywGfWZ2immv1dtgX9fnb7mJcN+be/u61maWB3r6Th0+PDQ8yKdYhDOHABDSQtHtxzjkJLUMYHhDDTl835lzHuhX5kPW+RHyI7lBuJj0EplCxaLWQbcyMS3drTEinhQKldkCK5SsWoMe+afMuxhI2kZqczcDmmHmZQuiyF1RxSoPTqVEJCWlakChR6EthfkUkqg9KdNboWTLBAOxLUeQWfprcvAxQQT8a0ivniiYtJrKU5VmayPsRV7sYtY/U1gxGmgzKsXK0t49737j3vYhm0YzLueYXVkf7O/pSpcwWpnT5bYey1lXk5yc3Ds21kNPGZAgj+uOg80vbJD9ezZhBcASpYIkuV/AmG7En457M0hvwOUWAVTF9GS5kHMdXIfNzGgjtLHcjKwMl9NHU5A4WyGNMGQEFBsx6exndM8odgPHAjzfBzKhVQkNuPnHb8PcYW1L9ok1Rdk41RrAh74qCYgLya20QGv8Z3wV5ksTPoahUcPY6EP73HngcrEQroi6eIsSVle6qBOclLOr3tbar2MxHV2xK9LTQ+KTtxzTgDEgy5w5B6AjSteQVqa8Mz+b6UGRBF/pCeZaVhnQo+RAwlMKbHOyytGPnM8IhgM6fbd6wi6DOEV8yr9yR9bNlj6MVGn0WPLH+0yufw4vyCTwZABlvLPpmWExbVKU+hMrAVWZm54y65AG31QZOYsV1gKKLQZUWJYqZYAQjEWllTPxG0AJJ6BshsqJ8jKEBdNTfVpYJh2Q6qteFAVAllyt3f38smqe3RitWO3M/ISlC0urPS0d/cM7p+enP3bz53q7Op922SWLp47PLzEcdLcwgKzNnJpaml3g0nlobLjAP+il6JSGEGTKuf+aXYMWeIMXtHdac5y7u3986PCRE+YSRQorSQFm+ypMiwZ1w00XrrqIGwyFaGTfcM/g2DDn++uriy6fLPtiegiBoEHL4MAwdX9LRzfb/gcOHf30Tbf82u//yQrHlk6YGBPQzeot0IY4DJYgEiDPLy8MRtmzgiKfc85etvLsoZj9vPprXnnvl978P3/5FyYnT/3yr/wi/HBdskBHpoXFKZCd544PfeBDf/z7f/zIowef8YxnfM/3fA+n0CdPnTIE559/Pv8Qpgai/+znPufbvu3b3v3ud7/vfe9zF+5HPvihN7zpja9//et5nWIXxK2HkTeH7TNbVfjExjUrZMjmbZYsjQDJnphIeV9mavK50VAJwOeQXR896toq0082VCePHuE4lWPvTq6TVlZnllxY34dFuUwWeGGF4S6zO6haKxQLAiUhMn7QB+Byvt54BJdqvd54sfVxKSd7vKEhaN1WkF0gveaOUonhUgo2sEWjgoDaIEW1N/nF0nr6qNhGRrgkBxs0J4FhVAhGCcbRjEu/mz3fqsm/ebuVLq4iz7AENSq2hJoOAbRHYs1Tv/WqBj8hsuxVevNTTk/TWqg/fdj81jgqzPwlN3Lp3mbjtyNXgRG3zFR7obhXDn+trM8uza8uLQ0RQOL+v+AmzRsfD7Iygqc+Kes49i703Vt9TdWhz45VdfbwnuvnytbtZuzRuru7lt2N2kldEITWQr2D8uaOWYnUGQ8fZ4ZaJ2Yo/KZeeMyzDlnVpgKCAckzXQ1A1Z4RQTvCC5Pu5rwlMxPuIjqZRqVi8FJ3BWJ9ygpMwIx8kjggTYDZGUNGBaaotTWWLS4a5LdZ+wnOoi6rI6+Gxtnw7GgfGxmKG7ylZafw472Lxj+aGb0JukUizBBr6FajS6W1oc1BSjPKCq60MD8QIG3wOSqsIYZL4/rI0eHX2eREkMAloLSpHsIbibXgnrIDiHCPYpCTwr0viCY5ZFCppbtpUyI5yaXPMqXrWVIrQkbATVCCyf/ogYdBksbZTwhadyMr7mLv6uKD3iuoRve8NLPErHZmgUcETMd8aV9le2WyoralQDnTqAKNMjsCfXVVvFcaXPEzko79eE5om33Z2Bjo7UGbjIbrlk7Mznzips+4T+/y8/atLcxhyyvs+Onmc6/FKlHX90M7RyO4M97M0EZ4YFqo24ZYTtVm2wttx1sGerr6u113V0jewvr0YtvsaUNQ56QrG+K9rbuLK3To5DJxfva7e9As+hiGrCQyiKyTqD+vHlyHt05OzXT1D3MNc3pu+b0fv+Ftb3+3K9izoRxZpNFZ3dQ7KbqZ6bGxMTQwVAZtc2DAPlybWtzmSIPPcu/N3/e9v/f7b3vNa15z3XXXAQLXpRriUkOd5djuC1/4wq/9yq+tz6888xnP+LF//+NIv44owT4wH0Fot5GypSxR9y0LXvva1zo79pd/8W43K/zkT/7kLbfc8qbv/qf4hJvlNcmqAvB9ZSyQZrsORm3XxE6RMnRnHrqSoTyTINYgi2Iav2/fPrK/BdPw8CARhoz+6MOPTJ+avPLiC5emps0uw2/aDo2On56a5L0YmgTVC3pUlChlp0xtkFITE4dTcH0LnUq2xkOiQKQwUyLaBMHylxBZKLNAiLxePnfPJljV0M7it+z4ZMPTIpsZwWa3Stl7VKoCMqziSlnpagrI2hIKlKVugUXmTsHqWr7MUjz9rBHNKYkNWJVuYX0JNU/zw+Yn8putgnGXWOHgp/ESmt+eqSuCzqLVeevq8vzcjEv4mAlktc2ViEPyKkLMLJVX8pZkRHom4EJjtNJWGWrmOBjZjshjgaWHpfIgsSEP7KzqJnM5HdNSajiEgrcIW6Qaow3EQVoBsqB+qgIioSESKwMI2hQGYEmPAXieRfoRoaRkogaU6fZWCPkvNLOOF2JRI953WHQgQwIYgUgFq6d3Z+BShjyvCpl2iWW27QJQh6qp+yN/t3V1O3EaN//AoUuKw8GW3WxOwRqtFWPwkZ7BWabbrLO74hW5OBtOGxWgQRGiQ73LWmxr1LWhjmttT3OMtUXJOuYEfAh7Gzd+sC/QgyiIMvxxCQMiFjqBacnmkzU3bro7lHIyAVgipITUttL0wUdsCfCy+0NPgsS4VywbCVl1WcgY/AC3UN6Cn4lrYRlcQ5z1pA8B0xPhAAMZzAEpqjNNFQGlQFGjNLK/17XX3cdPLA92h3hVvm3UMxXKrCgpQYhoacsoeKbWUq+4oHqf1hTFlp4VEmOANlfDkjva5hcX7PIODw4/PHn6/R+7secVr7hg785NrohYAi2hhuwbuxytcuuL0ytuynUbJZc/Ua/B7EiL5I1s5Wq/8SGWqCV92NzYe/6+ciW3a8HS7NKSYDMKhZLStDizZoR1nv9b5pUERlISlmmoNJ78Bq0ty6isOrr655dXZ9dafvftb3/Hhz/Z7x7ZzdbldCXYrOoMWcGH2mszBJzJLpz5APL+/fuZypgw9rSnZ04fOX7EgP7Yj/34133d13qLvZ137gUuFl/qXJmbmfuN3/rN275w+2u/7utf/PwXQFRTkcGoNmMDI5ubsqlOXZ56ZI5YMeAHrot5xtOe+ZEPfujGT32SUuhL99/3Iz/yI099+tO9nZ+d43rE9bZmOVBoqm8VWFofYlf4OeJV+pNU/TYvSmzrp2wOWKD+NIc8uwGQG9iH+/seffBhcj5KwAYKxIKjgAZ0MdAIewah/F+CkQIfDfeE5976U2twSiiPRAC/AcxUX1MKNuWnksozsazP9SBfJmN5lUN2yVc+zEwqwfJ5dsHJ6qgoZKu63ApJn6Z15lpELHyiQceVkORmxVs/JZbiz35rOFRlQIN9ZS5Agyb+117IUCNKEK9FeQpy1sRaeK23fi6n3EY9JGVlicZizITpd4OjoYtKq0EKStE+6evsIUzEGZ95X/yS2YWPuAncuAUyGLoS4J8Z5I1NRwrO3b9f7Y71KYQw7Q7PfEIYD+UiD/lyw+3TESlWEMuIShpeGuzZ6ES5Sxgk1b396WBnGG3JJ6toViD+KbKxmMEsdz4FKqVSRAqaolbwm+RiOllXSjFscuhszVeqzyOyrpuli+Is81f97fGITYPPFmgt9x6DVvT+0JR9CLAWbYLv2AS2U0FYIvguFkOcB1UBvPHEM8M1a6hj06x9+88yBKHheoo4Ba2KsI8tZge6LAVMj5xBY7RRD1/YjYfANiNYfcAPmjzczLfBRJW0kk6xoCLs0PSFASTwYQzSYRzS1EEvp1spSK2gCjwqEdFmTdcQkx9GCnXyh6tv2ZyphbQNXZmAAp3qrAyQDCuvVscDurolaoaxKOqqtAo0ZLXyFLKYy7Qps3BrwlRQeFvqzEPv8mUZO29dmGxYCSacVHf02KzqOLmw+P4bPnHdC67dybNMzwDn2S4PWe9h3UzV1Tp9cmq5rxciW+eipJ12JrS4vWOZJytLfOsBDQAyI1tYKmGZDBAVEAd8DeoSaOwYHTdFizt6szETEhUxTsqM0yFyPecTHMsyFGMkut6yzFHKyNDBw8d+9pd/9TNfOtDR03ZkYXWIhegCdyQIcXpkwtT+6qOeogLmBovPwksIG4vo+PFTxx2/2bln59Gjh2Vzxwu+j0OMjow/8sjBiYmd99577z//wX8+PDb6o//6R5mioqPI9+zcHGHf4OD6MJ/lj/LrHgDoaYZhJctjEsuLK6949au+5dte9973vvd3f+9t//pf/+tXvOIV//KHf9hS4IGHHjTotgfUO9DXZ+hzF3Ev83FwM24GJv/WYBT9NVIqNSyYbxpOTU9Wx7EzU1MuzBkbGrr3tttGensXpmaoGOjibK5oJCcZDYAE/wKf8si/gleaUeuq78RDjyptLAS9oG3NUtDMh6UNtVVG04dk2UgAhcQDvtypoHD65lhUgkMVanIAXQ7HuhO80Gj5tUSADLC+tCRSuelUi6p1SldafTYatO2fWpHKReiX9Kt2TX7DBBSC7FvZYFT67mcSI/tmOtdsPqk5awY/Bfm3Etf7u/o2Sd/r66PDQ/t37hgZ6HMdVqxeluNkDL1YdExsc934bqIkzlBurhINgZN+yLEAXqNjY8f4TX8LwJVPakzbwl02TKf+zva77rpnZHR8ikNcrhaijCIDR9SweQaZ0aWh4YHxwcHWTU7utY8M6h9FaDwNGImK8y4MGAy1fPvTdMhVFgjRY0PO6jdTyttGDrXHWgCADBiMF5dSV77ND7SsAEq9haEhlIJOG4uA3eJEq/gn6ML+9BzmMJBtX8FqytXGhVcj+pAXXyWQzpGOe/thUeTagoZpQzBNV8PUArUSUnqJNyPNdCkJsfaJFoz0YdxxlsjqbemFD70yECBE956fnP1pc4qMCxmIGKjniyLbKg19K44NaDu4njdy5r8bzucW5t1pFT14XU5uAaTwZj+CQJkZ6is6yoGBoQpSglLB/IA7sM7w6o89VcvmWMmPDg/jWIa8sIqV3RMTBw8eBFWsAqiQTIyqLv4MthqgA7m+1taoswxfStaRMhOkN4Oz2Qvz0xQyTkdNzc2PDQ0TJO+fPLH2sU8+92nXPOOqJ9nsWpietGdOasx5PcraWZ5r1yhMHJXqHe7pH+zHBjrbbPhjnDoSBpNVSREFLB3NeywC8LLjkgx62L48O2eq+h0mzKdC3UKPBV0kBCNvvcyAp6uLrq5naZUt1Pq99z34P379t75w4IhNAgqUtr7uydkF54jhCKjWDqaWrQBjR0aGHOgltqO8xPbd5+zetWcnICzwfd3bc/GFF8lLfrfDhnCcc87+t/zmb/23//b/YQY/999+4uKLL+Vdx0qPqKVHVe6B+biyYAPA0Gs5ur82FxMAr7RhaWEZv3AhJXXQL//yL//xH/8xTnDkyJE3ffd3X3755fBJdbVAERckK7+MRehdmauehdyU33UWnpmaDi3Pz4yPjy7MzILl/j27F6enb/74DdPHT51zyYW2F3tAuqyTYcvphVnYVWTHUlZ5BEFKcf7JGr0Q/ELQk2rcwohL8NO/yRDRogh2hWKeKatmkMNwmi4Nc+o0PoWXSW1cSv4GfYASJHNvNS/kkjK8KJYr/SVrmeHaYZoQziIu4SShaynDV/7Ns0z5KreWluahItNYxDFdeSo1h/A1v7delZY0impOhBipl1Df+iTFlQKl1BJEpHhqAYX/4tIcQWmHm0b5fQsDySUcCDHtNvqGDNAQoL8E2yU74eUGLYKwe76YCln6uUoCn4hJVgiZQkPgai/VMjE2aiOfQyeuW8l8WkAvKt1tqZ6IpJY7zj0+PLxv9276JLvQmkxd2qACZQ+ACUz2Mi0wQpDPPHVhYHi4dqTZKTRJHD1LepAj6FAiElo4JFi3++zPUC3MzVHswXvBIiQNqmD1NCqFT6KzPi4hd+Ukg/kM/oxebK8ZHzfbW1VYpi0u9hsgmiU2EjHwz1ywCBjq7WVhHZuDIGNpXdpWVpGuKozuzLszTaxSSYEhupMhT26IghQGjQLg7O3T32lm9qLWucznZjJq7OrcrBAN1cV/UykBFSYnKMTQwwhlWlkDf7pTCVz2LpTbRjHErNKqBblbwiAxeLQ5tk+BKAQKDhWQSDHeypdgM9BxJGKjKbo4P6d+hJ+lBEYeFQgm4YqOqKtamU451Krz4iq5+OKLaasJdzEnjSo/mC1/7XXyqLawGfWI57XlCWNIilqnVDS6iDylLR4Z3Ln5FW3q6+4zF2ZX1/tYXrb0PDR9ouuu+9xVd8m5ewe74jBnmQOnnFch/bRyLsChGCnOXgWM7+7rpBRi5JG+1mVTYBbfezkdyfZFGyi1Ihjmxmb77SQKXKGX0kwvjH6RBwn8XblEjqFRF/cTmLXNhrmW9sNTpw6fnPzRn/y5mZaWnbt2PnryVJvttb7BpaVT5oOppHD1qT4/I3dk9Bh0BhNaWuYXZpHpq6+++kv33//Upz/lG7/5G9DoF77whRnx1VXLAku5+ZnZH/3pH/2zP/lzrOKKS/dwrUoRBJwWvXCBRwhUu29wiIxve7y7j1uMPmwgHW7lDiz6nJUVa4X5eL1tzWk+KQbMvrHDZb/5m7/54z/+4z/xEz/x8pe/XHsa2j/LwaXl4gMFhpWGlkmYmSxsJdUXjWfrBoZtm2xudmpiaGh1fvbGj3z4c5/4xKXnnstgdilG1RZjtoFZ0Om+Q/UpSjehiEeoTJA5NDqoXDAH8lQZq5EzqXXeQvXMgzKzQualNppRppxp6DdRHdwzGQrRh9ICgm5RpWTjAsJ+CuJSevsHsYqqTvAEJZzA066w2RZVoFDKD/Eq9QWTzlTdaEIzsXyQKVCFzYoDChQR6tvHf77VkQaJ97E8WqidzVeqEJde34obUued7LJAhpGBXvJkKHIs/ZhvdJBQ3bzq8DnUjZvtwAQr63DHFwXosn0t/Yvyh2YjGt6slIG+AeOMCvXXjrGRk8eOwLXllXmHT9xuROOHgoKVhtQekUVKcLnAksVDFHiBVBmjkNqMZ06AhO5l37T5lAnVLZQp89NPISMconaGDSSxpmIAKs7omSIFy31mhgiWclJ0RGiC7//H238AenZd9aH/zNze+9zpRRpp1LuEi9wgFBtTjIGEVB6BNEICCXl5SYBACI/wAoQSIBB4gGkJvQQM2BZu2NiSLKvX6X1u733u//Pd+96rK1kG8v8n/6PRuee3zz67rL32anvttX0Z/IIOivUX3YIi+hgNcZXB1++oKznCyZacFV6A6zslBmBKpjGZeJ0d642TsaODvcYrpfCnSP6aWQhLmqyfW33w87UvhoiAwwEOwAO7WChwoNjfWDw6MoWdFoJWRPAxci5G90Kug9QVRMGAmEOJL9Z4glVpqvpx/ngZ7Whu72CQzQDEAkKGzTwuw7AB4tq2pOhJ4t0kFJ3TegGVbYR/FQgE+0vRySZaahZfievrggwynmiYtqv84IEDZ06fFpUe9TTxEPPgkIJ97mETZRXi8tPlwfCl/ahv8W0wZBKluPODdPyWowFnFxZb+Z6uXJuYXxjoH2K7PHHl8vSHp8duu/GuG4/1tzvAzonQPinCAhjYJMxtRgyoldXG6R1Li8vtNoq1t3Ngo5JCAK0Nww3vimcQwh9IE1ZEaBAqPLqrFirTMagZaSncwCjNuDV7oK2S5MGZ9R0j05NPnjrz77//xxm5eVFeHJ/Y1dy2aJPvynxcaCiORY3TU6TEvQ4QiBncSNndHai/cxx//Md//Nu/89vPnj9jMeC2W29FyeWZn1u87ujRhz/56L/45//8+edebGlqtYWZQuBOUVxcsKFtbWhoQE5FgR6IYWCaKsUlRaVqBGFdMFlMDYPrlUQmIV9hAP/hP/yHn/rpn/6mb/omzkLYgKUjHEUzrly5VGZjRZDXvlccCs12rWMeMzafHjmw/8Wnn/79X/9NYcgc7EwWY+GKS3kijwlSmcVqLcPnENiMtf9yz6WUyHgmL23ctIyURYYMEnlphIFdXwx35s7mBbD1sZSwWVooRdJ1H6GfnbUFcILKBbaAX4EDXFU3KiNu4uyq1EtOoPPKjg3X9NSscpSm/GqvQUo0g4n6VVfNsz0xvcokyr2jk7CSy5wq0yrfV5SQ6Lm83Lj5CQs1zG9d0DCf+KnlanHJUIpJ0Qrhi9ECUZub+ro7epzflxgbOy3ase0IsUSZWOCBFQt3+AQSrO/2hVFyHETIQsonfb3B4YDrJCL6gsJd4I6tqEYTkCHI9uKzT+49cPDS5ZH+wWirJgdpB0hl5kRXnQl94KeJbKaFOAFbIUnaaWYGcBG+DPur71mnrIw9BDVdLAIBRqEQRfgbCubJnSzSuGEzKrPLl8ABUiqmUEN0ko7B8xPspCdDqo1Okr+YQEEm6GUJsT36P3lUWxnNl3nd2fo1s8vZXHrhmIQQLB2ow4YXGxmyARuBoC64TJZwzcDCGBReB7XUkk9AyrOWuCvHWw9pgtFNh/2LqCOZ7A7gLAyz5j+3Px7IxQOBakBBs86uqCSCLCqmqAjVJXC0akLfgwpAo6lmEjDSDqhgtO/WwYGrY0Sfq/sOHNB17zMEZYJpiq+QTYVTg8yW48ePmyp7h3cXqjHP3s5SwTsFZExe3j8rS4uWH7s7uywFCxliN5TZIqr9LcePX7hwnhPI0PAey7R4QCqKqNF4bW7VqjpCrHxAcHlQoweQ0U050Sb9gJruqFUC7tvRSlxhNM+6e0Nja/PMkt0rQqp1TCwsvO/hT7I1P3DnLYxEBweHF6bmYDSSrtlkQnQf/RZxc3V0an6mobV1rqOtOW0WTUEoBsS9yVpO8BO5iQEo6B4XYDqrWaMNrG/sPzBEUHVo0XJtvb2548rkVHNfN2VzsbHhdz/yRz/187+9q32H03GygTwjuov+Zp+9SISw1lVnLAyEjYyUyK4dFQ54aXMcJf21peXBB9/gpJfv/u7v/nf//rucxeCyODHQN7hvz/73/Ox7vu3ffAdc6+7uMzSmbxq6vDa/ND+8Z2iRrcuJ6gljFYzSFbOXKEMPy3A0NYMw2AY1i9+IukBYTo1JYmMj8IL2t/3rf82aRxWw2vwv/sW/6O3umZ+dg06MfYinAo3RzNw8q19riUuhWGri0gKtcqmzrZPLgYU4Wsf+oaGzp176k0cfO3fqZG9nh/NzWtZ3JshH3E92YS306Dru9gQqzY5zP10FAwOszBCSoEAFJiqdCbEixwSKJshG3orwmT6ZjzCMa188FLw3jjHRFWQ2LykccwuLDGLWMxApeUjHItMBe620lJiKatHYtcPudu3q0wbDhA0szS8Iv2rgZOAgs0GFI5PxKWdTMXMynUtTcvOhn+yuWzjsE8/cNzK52B0KBai1e65XZckyuKTU7rrXkqVIj8WslO9eMxg+D+5KM1k6WztmRkcP73FwRj/x30YZjFI6lklwnJydmebCorkspWowTXY0z1hANQZBwlbHqNMDIu1YEC1VMHgsLy602Bff2HD61Mkv/5K3n3jp+YOH9p89f3HAbhjh5FhciReLC1QHzVhaXY4Yyyl8nXvaIssrMTQgClS0EZDTXb8MZZ5Kan3Ic3jqBnutnAHFDckuhlff1c8xAUgT+0Fx1i+gL80FLBdYA5A7XOPWZqQNHryXYibAQ358S8vUk2CMJQwVExIR9LmFJRM/MIN5qK7oeRxdwTfSh+ZqPnRqIkujINNz8wVTY9MqxgxjgFTAhWgTGlAvhXvYunvYfqmrVCct7CVIlQgqHHvC3rCEonLGNUmjABLV1JbYzMLJriVUfVQouzSKNJRfBVqofwU2HoqzUCnQ7LJejFjPNDVbWeXVWBE3bQ4DSjtVxINTWVAN0ADadJVu6ICOyU/i8gIRskd+eUCGV9TxG26w+7SnuwMSnzt7+k1vepOFytPnzkb9JF+I5mx5s7ObgAzg3T0dU1OTldab5Chd+hLOleGow6ccP1Vq1LBC3dXEShcAQucBZ3R2ynHBNmRcW1n85IsvXLx0/rr9e5/c1fDWz3lj5qn4ryLpU0MIFDud7IhuqsT+MlFBl1f5qdse094muKuVI7I8awiAFU6UUURfTFqGRTijGRg8PqJJRsecccAGSOxq6jh9dfQ33ve+n/utDzT37JpdXm/t6eI1hu7j1AxFHc1t0IyDqM5CReVowYVLF0RzBqLzF84iLrqs0m/91n+GmCI3+4Z3f+d3/FsxLZDv3u4+I/093/O9P/yD/4n1v6BfLM8BF38Olk87DDTJ77/cVfHws+U9f/48DQCP/67v+i6zxj02JVQvtj4eh+tWkEhUpgZiiiCCzOjVEVbK7vYO6OSBUXhxbu5jf/Inzz3z5Nzk9KG9e5jmxi5fmp5fGurrE/FNw4PSmzMCQCLdVUmoaodlpmhhUBGJ22bfh6KwA3mIpBUM2Oh3yATQ7NwpchKgGSFoaYc6roYnOdTk/NnzGCQiiDxRsziJqLEOR3gRFwlnlEYMC/1y8RUrb7NkCjnBmeCMKbIoEHdQBXQnmGAs0UrSrWEtbdh+qwUqR07pYJWSC56HkLzWpbqaHDTdBqJAqQiOynT56dKF+rw9p0T4TteP33IhSeZv0DriIDnVCZwNeEVKzzJsJlLcXN1CSfmYUHb5gEbBkkV7mPJ5DjhGgCVxamzkc9/0hpmxkSsXzx06dACnl43wvU4W5f6fbZuVlCHxoUF+Gr5M3Cq7l5QIWgbr1c/p4UZ6+hpaVPWqSGbelEQzD/LIpgCrF/74oXzi4MbOLyyAHFfgo9M5V5rZJsO3tDC9vGgsjb1gLFRAg2FqW3xVpIHPQK6s9vT0gGnWMxt2LS7FCVpRQhYPDPRn1jdk/61h1wN2akg2MT0jSzABkSbEFzXN4OGZvk07C16CfghKEXW3Eo0JiuxfhUh4gK5QsRB9bfcIIowPflJ4cCCCQPTiRK+PSBmJJyvD2FQeQQMMy2cBGZhpWcoOKAmG6GzWGGTYuaMzgYRbbPQN4fEv0efTQJ8UgIYWmzma7VsiJCu0xpsnxNL4yjQ1jo6OIAQiujijBDMQmk3z+/t6FpbmORHMzUz19fXc/8C9mj46jsDtFCyzFE52Wizky1LEYiWsdYaktQkWneUj6UZKihq1oWAhYARp9bJYn0tpO3d2WywSUWB+pUNw0NVFxo6WvsGxyxf/68//7MG9+48evR4t6+ho46TvQ3NqdWnB0GTDJ7tN04IY/fzYmtobW/sddFx2OqceF3hnjwqvMGGFpmaCCWhDQkLngPgdYpjt2NVMbZmZmf+p9/zSe//sycaOnbMc4RJ0hHx3rdmuYMLr0opNBFqIf3LtVy6s056ZmZ2gx3vnb/+dv4kqsbN98pOfFKfh6NHDNs2S+iOsNInm1nHm5Jnv+s7vfuihD95yy+1sWbA0cIo27jidZTF/dDAja+O+pG1XsCfgKtvU8q6KXQY0Y2qc87peJSdMc9GVMaR3v/vdSOf3fM/3LM7Pf9/3fd/uPXtmZqKsWNERO1Ivyl6KwGluZoYWqKmWKfisiO80cXXksUf+7NQLzxD8u/r6ZsfHrzU27+7v39EV53F+QRBXH3xbKzfomeDl0rMgCUyCvUV8kpz3pYU1z8adbGTmb2SqCIXkXLMRqa2jA2sk5qfknTvHJiZPnTrlLDZT++D+A4WaRwHxLd/iYn1q6Mrejh5YB9NCo3c2jE1M4cR1glgp9dVKXJfCKsCRGm2BGN1UjivmjjQzjd9ocCCcC/YaXwMEqxUuT8wLGcJX9Gbrh/zeAo57TfRJpmH5qr6qVUh0YS2peFtxpaKGXW2U8FCcaioLeYhQ2zBvPWxtzXl8CCr6j/gl9hLvNdJSZMo4GYZfBbChIXQdyXAI81+Yne7rbDt++OCHP/TQ0FAfBJ5bgOzk4eAeYbOI8xtUyxBrZ+1FIUfBOu/yXGT2Vz2DSE3J965CtcoTDuJvPvedNpmIJT2Yodp0kY9OGdecjWA81OqqQPRgRA2tMSDNQWu9a11asrfFPiGZp6YnKbkgqASzrmZzRK2vKiUiYa3NOaS9KW0yARyJubic45DZfcI4pIMssqoVjcxv2SpIWy7nUmlPGZ2XR1t70pHNa6MnFVKFyXmdLpV8eUat1xsyH/yn++AAUAnCTz+IYmAeuZXske3homEuxrWMYN4Vqq9C33hBAlYsgDBpYt14XjBO+OXNppIaJITmulC6+fnenh500OyfneWIElEdS0AmwgVpQm0s3fMUe/bdvcMDz70w5gyDibHRhbmZ++65217Whx99DOQFPFBDKTNSFWGKDcEYgbMSzCvFZpqVtTgZXN4mv1YIQEJqyGJtppqLaJjRx5unpwT+5Par7MWZxWlKXHPz8bvvmejtn7h8+cN/+lEa0tDA0L6DB8TVURGHll2JdZhgiIJsrCwuL+6Ya1lp7HUSQGuOOAYZCk3qCJzCZq1xkSbBxG83TV2yBN0zNLOyfvbKlZ/+5V/+8Kef7enpGFmYF/AZfbbiTJQCr1jnfHPN+m3n3MoSRIJvBQM5RSycOnPqv/33X7bR97rrjhidL/uyL4EtyBbvKdu1wKehpf2jH/rov/2O77p48fI999w7OTFdpoEmQPoQBZRFNvIsplupe5r9yivjXq6tZL+2nj/zQQOMArJohzBmYE34b//tv/0bv/Eb3d09VDjCNcaGPCytxFeVO5ng/nuH90SVXpjv7uicHrv6yMf/7MVnnzm0e8A5CmTONTZoEuV8WkgshYRFmAnGujRPG8pIFphnlLeuQNsEiwaAgBVtoIjcUB7hy7JWGElgnG8zFywqtjTD6khqjY18nFiAzf6jR4/29Q8ymMEoGaGWYkFPN3EFoomhcQEprm+9iErg7DllGix5bLiD8JBnR5s1pEX8gewZrTKtzR4c+96tfVX02A5S7ddwCOxBe9TrWT4Vafv2nFvPlWrVnxvA8SfKbArx4Ftv3T17yLvy4LlmCEkydxLHnjlDBORMZyCKu9rO9Sk8zemQWLDQIqgJ9GD5YAbS9ZjOADbeQiHfqthl/WzZBm720uW5GYv5d975urGL53gF3HPHHdjjqbkzHQ6zbm6ZZVmPvJgOambF0NKLQrjTuDyE5xe7TSFmr3hGsjbels9K37K3KV/4kZcpwaOMMfxU1SI/XaJiFLhUEGiEq5IPw4amuGQokmwUFoM6enWM6DQ8PEwowPKcmQH1lxYXzP/weV1Yb2TZRB/xR7atZQ6ITEHru3gHLa+gR/x8Ig/KYKGcAsU0jHs22DmwHlm7JdEkNkZLq7QnrS+zMQ3eHLONh9C2QGjzZ+l2zV/UpYygK+uUdcj89QW88F/kKQDRJA/kUxl1tmKYN5kZvBXZfwIrv4pnlygIQiBhdC1NGyYrvDROKUEK2o+WAJeTFhdmZ0CslYTf1UX69QUhropChhJ6Uyac3DI9OXHk0EFU3iYmzr9nz53m2H7TrbegbiPjYy+dOONkX3DuLkttoA20w8O7ibrXGtfYPSwz6COKQYesqhjwQiz0Qu18OqkaBWa6Eq3HaFeeSIXTH0e6iI2jh2MLCw8//cxb77tv74H9PR1tPQP909OzkzPTjz39NIghbc7Sqmygp6uLAmtec57s3NEydX5EOFHHUUb0rr4ZBbUSCqmNmujQZiO9zFPU0mtjZ+vo6q4nT5/6mZ9/z7Mnz/KEnZld6u0aGBmf7Ozi9LJAf5kTLcoZTG2tcwKkNHLfFB9pHhVQPnQY6B8wULr2W7/1W//qX/1LhEbkOxg7MKjBuTrbu37yJ37qF37hl9rbOg8fPLw4t7Rn994nn3warIwpSSA2zNWVkbFRQ1/GXHODI67MachSfhpHgC2EbwP9vAo6bU7Mrfz1K2s8bDuGnufPX/ncz7v4jf/4R3/0Ry0GfPf3fM/+gwdmL19qaM7xznMT8z3dLQYLk1gQMMrSutN7pqY+/cjDF0+fPrp3T/P62sL0lK3RFEF4NTkxBmco3xEtGRjNh6wlFuL9WYwn2lhaXkg8rMhVPkbYMh2C53oXY2vwunbLgk1U1StXr1qmYna47rpjGL9y1GuboCLwsMguO9cZc44cOoDeeynd2kUqCEoXKRW7am+F8/iEy8Ah4P5PTqulMFUoZUIgNtAUZ+gY/cICcmmAe0qjzZeJjyL7VmIgT4IjuW+scST/9qtkSAkuzy7lJAOTV7kqodt6WxO3fsrvGQ/g0rOyEivWerwdotrjl7pKfXNiqpBJjPW8sHU4E07TOd+VWDEqg0gK8b9JZspzeaeY2+1yw5FDe3o7X3jm9J3Hb+zpENxpgTNxQ+PirmaH+uCGjmU0FgiSpufbsAGFhl37G+e6ekUH2Ly2nrce6psypKXjG98UBgvxU4j/08yNYgqwMzA6n66W/kMwnQeIMsAb6bUoJN7wWUCbGB1zuizFPPayjg4IYbzNSeONeroweZ8rmRAxavfKemSHMPXVNS7e1hbJFCYkBsAg4KQqXHAl2wQIiat2DGfMq9NxqVjbans2eqShlaQFJ9A1EIB6mZcbA5AuprZ6SS8Oh+kguPoZvdCFt/vcbrTA2/d2X8F85JJBqji2ZihSjtpTCC7CiEFSXRNfob3Nnk8vS5aUmvJCQZAkxl96LnGdmGm7a6OT/OKJuGIaCyxDqAci4jB4Wkp1cosomzfdfPzipQtj4+O68dSTT9x+x23Hrj+K5GEpn37iyZnZSJed3b1jY4uICOCACUMQIPsJ8h4qTDyYZqAtv+ZpTO2EXulsRlw7/du1s7u7CwEyEEahy6atpcVzY2NPPv9857GjfJ46enpmZud3Xrw0v3Z1Yck6zvrDL72gl832V7u6aA4dcZVrbzkyNNwLB/oWueRDbowhRtSWRlubrYVb5TORWju7KDpTs7OXRy//0ace/5Xfe6/Nw/F5EiLMasH04uGhA9bWe1rCWubMgYZr9ostXVucXpgZHNgniIPe6bWgC7Pzs709HInbGFJ1Vn6vZkkhV+d43UyMTfzw9//Q7/7uH1hqHejtN9TWpc6fv8hD//Lly8YROZOfbZl/joEw46EOqLzmlfEtq4gVtn7KVu8b+ZOwcRlQQjHgZ+V/796v//qvNx1+9Mf+s6ga3/Mfvnfvnv0j4yMsUQZdCVndsZK0sMjawx3ryccfO3PyZJdeNTctjE0PlvBBViONcl93D2xRpg0AmVqmX+yZG7QShyjj6b5B9VJ4iDHBhW06z4UApJFIA6KP3MJTmFCQIV6eoGGYLNKQ+oUmpBjt33tA1VW5VJ0gS3DMsB88uB8mg9vk5DgcAxYgpbHJvAEiO4FnpuxvqQSB15Am+1YhHMC0wQOZPFFGIl8jpiwPVJINGG790W4fKryiuq/Skw26tZXrFQ9K8rtkyz2gKl/FJaRcr8pQG1xfbRVkhvjWhy6vWHgJfqHzfpD7mDZwBKqqKG8x3AR6SL2v/EG+EgmDEkyIRPpwi2XuvNP86+6+5aaJKxftu7z9tpsnxYxqaeuzT8hCPS9h0cV3NfIEyCIjckuapaO7h6ViBoVih3ybxzFJhNa98jliQElx16YNelhHNx0z2lkFLI+l0ADSayBNWrjrdlhUoOs/uR70/fQMrcHFkNP09R5ZQQQ11D51MhenNAZeHnUyky/AqdMO6aK79XZ2rcwuiSJpPFCt1pYmu4qMhBhhwkNSP+a4ik5PckqB1DgtgxMvHTWa2xqmEJkrqtWhqvf6Ki2XwSw3ZjmjVDdD2jOhdbDyucqcI/SCJlSIIJypELQI2zVU4bKSwEPTY27Jt+Bd8keLrlZ4jcGbsDUTgL6sCPUANzDKXCYVZiEtPBAZRh/50HumNrW09MvvQ+sHJRh9jqJFIGTGFRiyr+/vfetb3/wHf/jextaBT33qkTe/9S379u3bu++A030twZ2/cNlcauswUeINZWhQNKuOJDKCpCqACKBcGmneesAA5PTAaKJx0vUqaFWa7dfVK5ciyHd389mw/0O0UP25KkLm9IAg/gmJ0dBw5Nj1e48ePX3+4gsnTzmZfdICxczc5PzcNf+ujCgR9nRa0m9rsYaBow909w4M9g32Wx3oPHLwkCnT0ooVNU9dW756/uqjjz3yySef/cATp52v6ryarpb24zfe9sSTjw93D33JF7zzl37pl9qaWkfHRxi4hOC4cPXq0HAPhBNRrnbKwqlInRCDHIFUVo97fYeBu4eH+KWcPn362/71tz328OPXHz1G+APeTCqbKru7r14ZMcKWIC1ip7S11YtXLk9MT1k2iNmv4IuxKBwyXNwVdIIdIAXHCtCS+tkvYNcqQ2zg4LAR+fr/4+twtd/4vd87cv2xr/u6r+vq7WIJxBpTrDV2u7qaW4ibJ59/4dzp023CUbS1To9N7OvuJTNapWBug7CMhOps78iBNjrrS+0prYtlUuMKlZOSva8uhZcmpw8VRUv+8uwNUpU8oEL/i5RtaZqWzuf2xRMnHHtwy637CqLS5Zdip0qlcTQY2LdX7yAt/Yb0YiIovxixTSSNoO+VKzpmCf1RUDFNSXi1+F/2dnaGahZBm/hvhtJHooLn2gDr1lP5MG5vlf74CZP1UVGFKG7k3/5ns+/y5vKqfGIVN1TUVRPrs4q2/8wH5RNvfeU5oJZSGlYkuzj428JqSsWOGa7gZBhUhPCecUgo7nwSlgh/iFU+BauO1pbrDh1E2jGDI/uHO5oaZ0k3DlJl1TQdeYxworfrsyw4GRUUCTFBf7IqquL0w4gXGaXILp/5HMLlqmTPPW1+WaZBl/wG7HSnZPRcE/OVKYzoBafC0VIfZI+Y37BOnDFsLpmILeAC+hDC4BkY+zfdSbgyNDfvhvR//Md/DEUKheFR0EaIZuhZH1x1ahMPMn4EyCi5oAtur6yMTYyFQjU1EmItJHAQoRjGB7dZrAhb5wNNJW8xHtNJG0qDX75tdKkMktStAfMcwAWxCgAhqilHlkb9o/YW6JQNBNHVIGEF73riE9isrftFSTb7UHYaAiWPeQpoCAEtQgBqGO8IEx7ELHmrZatNlhjD80rj9wwNWsK0XIa8ykzM11M74lhL9A6IHGXF/tczuHtp8tozJ078vb/390T2f/b552yjf+6FFw4cOkzHsm/w1ltukvnRRx+zf6qvpxM7sXnk3vvuBrBPPvJJkjVZirEl9E5HE17DPp3MHEAzz8YWFovUYHSLbcM4y2WnQke7MRXBBn0khvDqZL64MnLpyedfvP/WWw4N78dm5ucXO1tabjhw0Ck0L549Fe2HfwGXf0uXBLnYlK7NXNs1v7p2+erI+sWroC6kdZedDendEos8OwZ6PTUzOT41yY1wenlHd3fzxPRCb0fbYO+Qo/X29Awz1Nxw9Ia//3f//uz8zAc+/NDhY4edcvvi6Re+7Cu//NDBI/NT9JtrM1PTjnK8+647RCsShQ1hNVXpi9jn7t1diwuLP/HjP/Xbv/3bqjl+/GbnmlleTVtX16GZ+LUmL8pJ8HS8NeDDZLwT58CPs9N4a/y2PQR5yhV08gwPzO/C8Cuf2JY3j1Qxo0xMNkes7fvp+d/8m2+/NDL+Iz/0I7t3D3/jN/4jEh+nL5PL/Hd6DeeQl5555vmnnuLeaHsCc1CPPZIz00wHsArNi4i5tuGDr93hG5ng2kLUKq1JSonAliGVEtElCgBJtDmEjLxivhso89v3/uOmUvqSGKJctzkxCuuG37zugQcoAfNzM/rCymLqAZRlnb7efs6mqITP+bu7m/hcAhUuA/bAvcszXDJD7SQHZma2lZUgj7h/3L2Y8AvhTkRIOYOHsbNmePxOpG8yE9TxZtNXLbTIj2JQVYcmqZSkqxzrUAH3Z1xeKRw4amPgf71wuVSqU0CxQRUy4DVxa/LWn+5M/Hz+uB9bBFhBD4CsXjn1MMRdYWkSuwA6kbZ4Rj6BixQrimhyY3qYBUfSIwf2HT9yaPT8qQMcS7s7ZqbGOlu7L44JVTXe1jfI6Zn2DjcZh8VCR07WACcDXCRJ7ER1ashVafpr3nXn5XQ/tn2C+Rn+sECtcodXJg44ea5957dZfpQ/qdqLUoKq+a7uXM/gEQfqB6R4Eh0UXyLjrl8TKkDER1uuvCVOdna0Q/HkXGOaaLJw3NXWUkKAzfcN9hI0iBqt19pFIDt06DDHAUcytZbgq6NTs9MEf7pPVdI1urgwbujLZQAwGxTNvHIZWrVINqjs3JBPirsreesYbPbZ39JpqcU9hcqULcE5O4mUzzEVlCtLx5Mpe+HyRfUzb7IFQzyyJYcBNbW0tc/MMasvdfX1N0VKDZMPTwnE3IA6FVkzgulGNGp7vL/XWzrarbgy9XKJ4LutU7YhIRZHD++3fjq5vDK389p1txxfa2v+l9/1XVwJGSuefPbZd375l9tn9Oa3PMiU/Df+6ldeOneaFWdlfclRtbbvfurhPyNUUlCfffbZXoGR+Ro3Ns7NzXIwxUw5bon1iYXfdfcdjzzyyMz8DMmEkxrEpZpkYiSiQEwKoGYeWyawvX1p0Xpjw7mpmUNzK3uvNQ10Dvatz2kwEz6TT/91x05eufDchcURiznrSxg1YcGOa87wKCuxwOqweW2bzPjKtfHlJZLQmRdPgwqY0OaamncQ59fXFhtnlofXdxzuG7rjzrtPnro4NTV20+d/gQMOeewf67/56C03g5hV051/3PD4nz5x79+9f/DwIBvd+TNnLU50tHSgCl/89needL149m1ve9u5C+c//vGP//qv/zo46O+e4YP2HuDgxjcjsmMnlIMk8BblqsQLXQb8S+cvTU0llMKR3v1Xr172LWuY/Wu4oA2D0I+qCD62T8N2mhKdNBOGrEQwQ0EzkTauwNbgF2NRpTIt7W1SxA4x2X74P/7wV/+1r/mub/+uvUPDn/cFbwPkGN/mZvs62s6+9NLlc2d28emyjC+rjf+iQiUuagSXzNvsnmdICxFnjgBfT6iNvPqCSMRIEHHFDPeFFywXO7IH1bhofcgsBgG9i205wo58kf2xZxbbCFh2rfd2R6MVnAqFxqFK9zHO9h6nDreaLREc4jOzwwY5DTHD4pylhZF3IwDBew8FCFG82myu3rEDzvf0DojFZe7YW2Hxau/Q4MilC53tnOjm7LSadXhGMw0v01UXrKAm7mz83q9R0dhbwsviY9dEoyJN0+dsw1ZXKHqZ+6DtKr9K6BeaGotPsQUlPdyu+OMFnBtXiEOlkGUAZahH+PlKRyZmZtub2qYXFht3rvW0N9iphFSo0apwa1OTuKx8H1hvK7MTEwhuZNuRmC0Ov2ok0IPgDiYhlHN9ZvpgX9/tBw8sjY7w3+rvEW5R3IVdEH7vwJBK5/WKc0xX54JgwKzrBkdY+JZdiyuL4pctWIVGoRrFVDN7NpCtwnyjJ5sY+IrEvGOU2FB6glPpbH7WAdr4tvypQMm7mt09I0qgjD9sNmVpFgxwVZoL0EIpRDRQR1H/TDKDAdbwbIHgQxgQB0oM6IX5cAIHYjQ3MvskbgJEJR7w8GtOnNgEp6QRwJ6wHyJ2KLiRLvVrRS7N2Lq8NDMxAN/CsHCgsqlPBmSVhFLQAhfG7jM55d/WVT31vtzTaTVW6pDpzE4qUBrSzfqf5/hrZwNspk9KAnpALHMMWLmNwgkrrptop7gKxzS4jBNBESRN5rzKZIXE8LJhenKKBIUHQBhiU1hpk9XIpfbenr2HD/+N/+P/GD54EGv55m/9F0euO/rCyZdOnj518PDhwd27xZxZWV38tm//V2t21i0Th5etFdsDxXP/p3/6p9785gd1B+VSnZFignc3BaTgQBcuXPjqr/lqZiI/gQ7tA8ZAsqEx0SuJxMjByqp5ZYh1GWsRjfn502fYggwHdWm4q3sQKdi5c3dr680HD1IObto7KJzp4uyyffFdToVsCCcAMmEg7e2YWbD57trStZ1LVnOyRbS7rb1L2xaXfbIiksGRPfve8cY33XPzbX0dXSeef+7gnn0HDh3cvW8vAsM7Ip4BDU379hz8vLd9wZ6BPe/52Z8fuXp1eGjguuuusxaa+bZ27dKly8K6/dZv/s6/+NZ/+fe+4R/8px/84RdfONXZ0evsJus1BZ0rRqOPat64wAToDJNCINLExNSVyyNCOyyKw142zSkZOiG44Gnc5AQxV5AwBkIr7dG2EKW/8JJ5Kw9U/IH/+P17dw9/x7d926cffuzAnr0jl68IBTNy6fL506fHLl/lZivkUqJYLS1mLxo+b1aYVkopV8hg+RcTQR7SO1JmcNoVgS7xazEwjheZoY4dyalNCVrAXIGYYv06ktgxRXr1w3zD/KKRt8ckyxIFPwn4JmVvd6dwBe7clOEHgT3C4Svv6V3pY5kgaUbKLxfhaWlxjX7lbGoziJO7FW91QTAtNCKqkzlwRqIT2TSTioNQEceUtzFm1F/P1G0EpxIimoWxQ2SqdqJSGYDXaMqw9aF0V4V/SdyY7DXlVXcZ6iW9PtBw15xds6vBqi9rl+gyQBp7NRboxM3STpM7FAP1yrbbLClpUgGRIQH9hWvc37s7jh85sDo7u2NpYe/uIQYTGbI2FgETIdkZssMOUVA1sm+anBWSKGzhxvhUFWdhX6Fff7n7tg6Wol+m7n6+xr+sAbi2oFB/uoOuOzYAvtEByhUmHVPXy/hdoJ3hR1yg0672RF8hkPq2sPYMkhRXxO1SpueZmVXq//jUeOw8O3YuQlg2r6I+qbVmU0J9qNUZaVVriUu6GqVLpEn4mUm62aqtByV8tgu4qyCgFJ8TPCxcI9ZhIZkpjnx2yEkT/bSWoDrdQbitCJlya5ZUN5u39aAcF9yOpWlTDDFqug1BzcispBVDKgepYt5EgHc60emB17/O8e4YmwXhe+6712Ej/+XHfvy3f/d3mLk55N12xx0f/siH/sbf+Btf//e+4Rd/5ZdHRseEHmP6eP/73//6173xe7/3e8Uje+ihh55++llGG6OkrsqwwfbSpQug8Y/+0T/6+Z//eT4ql65cGugbkA3cmOxBsoLU3RQ11jZtNjR1XpgaPXvl/NG9w+Qjx5227XDy3Xrzzmttu3ZY9+ez2N/dd2lkZHxqemFqtrtZVKz409Cl1AVOBUOC3iBjFRj5GGxu5Ts7PLznyN59bAe7B4ZE13jv+z4wvHffl37lV+8e3mvnFAsCOmXag4xBueH4jSTLh/7k/R/84Ad1p39ggMWGoyeW9qlPPUYBmOAchU6vrTE0DQ/vlQdYMkrFgFdHbftdBv01+YCorLtMKG3/gb0iPfeKOZoQj0EnecAh5ZiE5n/xjVGOdGEkdG57mWVGbST43BMEqL/9rM8sYPfcd/c//af/9Dv+7b/5vu/73kMHf6inqxPXOX3yBA8fwGkmGWbq58onpQSf15QUu4nYsvmZqzxExC0/3DTVFfEnhL7Qi/JuQ1CBhfJEfUhHqnYERfVUOq/8ijaZ7C3MPVlPqmVK33DtLW2oswFBQsdlCIHZ1tr0QjSEpraxccx1zFCKBt7WbOvGlFkKwbBw0g8auJDIaWRSMkf4ATZjSiOnRTsBeCURpli5Il4CpNFw2ZGu8UTPsMFAeuvKD0auZNoC1gYgDUcprrx7zZtvpde7fgEhJCEFiJ7CitPd2mxjLpDZ7VUIcXiO9uC4AUkc+cMAAJb2TJrSRFoDP6frDh2IJ9v4yJ6BHgtjKyuxCtJwTE9wh2kZbip8qdrzq9oGvK5XJf7v+BlTwGeWq2745JULWtSHUFsLQNHTKnJmpdsrsGMd1r2IlsVPZmkhky0bC3VsFwDFPEeX85NSqzp/4wAdO2H2QC/bDMYUA1tJ2wW3lOmqDfPg88CruIJohp8uxZqfQC5FI91lqC3TeD8/s1+vSkkpECQLL2FXHtm1GhOrLLhoiBRIMFG3+jGpCFOQEgpoZ4GbAkBAsXLW/+Ws2EkygxcYrHbZDdHa2bJYHEMZx+on6J1F0oHBQWdRceu0yIkDub7yq75K10S2+f33/sE73vEOHrcipv3+H/zBP/7Gb6RP/b8/93MYSRY2r179uZ/7uZ/6qZ9yUInlu/e+949OnDiBYRSYhElnPjc1If3f8i3fwi39F37hF3rO9CCdlRTKMDUzxWcH58YqNEnKxOyU0HS6//SLz9563dGB9ubF1SXnXcW5Z8fanH3qwqPubju4e8/I5FSosXNTpmeYqTN19dc8LLILW4Qx49Avbp74owd278bvrWlaxh4YGqbxnb14mcbwRe/8gn0H9jsDgJzIrgykUEgVdj7zUr3h+LGBof6PfPTD73nPe2wuQt+jAcTHfIHFpnKsukeBLVmvveV+w/P4VaNcf1aAwBdgkSI/BvC61z9gTWVwcIBjqETSpJCOQFGRDRahgKJXGQ7smYNp5AYYAVk+y6WWYEK5PMMjzJ6u9pVf9RVT0+P//rv/7Q/9wA9+/3/8vhPPP3v25CmBJnhOrdoHPDfD7t/cGiXMp6m9IHxF5mB/oQXl78aP+iyDCn1Vc1ZyD/0UEjoOFcviJNwuGYKQmRfIXPlENp2VE0wojloeGret6tKPl2+l+/mJAm+S2w0i5VsXry5OPaNjMzZ79/S22fCvNHUxCzQ3dS3PL5mlZaKKysvVoCXmlNilNwrZ6hRtjBOwWR2iuSauF7fyRF1uEkqQachqwOZVP/FL7e5+br7ZStlKeMVDzS8p7d4cMj+pKfpGEJxdpAnwZ2GqcMCmk1xDElB52IHXaBXoAldRakJrDDwyKJBcV2vz7s7OfbsHxi+c7WtrOXBgn93tyCD1enpmorWJ30Ho1bXiB6fBaldabVxtf+4FibZ35xWt/1/3w6zcYAAqq/XVu1SYBxlByLMdIPgAumKEZahUppqSdQB6mUiYW10iBg2e/jrpVSshoJiSiGZz84kjCOcsPbNLMOyBCyUrZj+spJxCrKhqP3lVH1WqNN+6e64Y78EUhdN+VsnFWx/W+6tKqD8hW8nx6pexa2m3urP4FqdJ4TgoY20IV5A4/Ca8rxhd04RSQJaz4oYV3lNFjTz4fzODXH5ooXNZOOv4abpbOxEDdsbK+MrKg29+sxwCR5DGg/HtbaMT45//BV/Q09v73j/4Az/f+qY333HXnZevXnn+hRfe/sXv6Orp+c8/8eNjosW1NH/yU5/81v/rW7/z3/47+wb2HzpIWH7/+x/CGNSosYDDnEXm+v3f/b0f+IEf+Lq/87X/43/8D+uTMlii0MrOxPtvjsN+kxVD2l6TlcC5xZmVhdlzL5578cLpg3fezZLNjBUeltnX2EXeCZvc0dvUcqCzZ/G6leeef0nQEsbT6cVZWvM6Wyl/fyfptbYxSSyws6+vdV/b2d/czuYzMLy3YaDv2dOnPvnop9/+xV920623LdhQtrzW09+v2CLc7Wh2LH13B22LTHj4yKGFhft/+Id/+NLlS/194slkV1FHB7+mnSiBaWPcLQ5BDUK9/m5NpFePrj07DmIt67RKwEGNCDcqifPF39G3ynRVod6DBKaT5R0Ef2edLs1Oi6Qdv/hScibHZ1ZRU2qeUlSRKRK2s9X277d/0Recfun5//Yrv/C6e+/eO9TPrBDdUEXkRzifk4iowDZCoukx1kjcrO7VVUnfuirR91OmFJcrRoO0EG6WCwLXv/oXClysRrV86dmeXpQehUh8Ob3uv7XGFs3BVKjTQ6mhvz50V3BhIuZlsVdc23n50ujU1Fxv76BFBB0fG79qJTHb+1fYhG0DSBfNQWQ2y0YbSkxIytYF9C4Uhp1KsbVFoKLhKEmEtYzOxlXasNF3z5951XZ+ZnpNKWDJzc96Vx1xRsSfzKBVlue2rqbWbMenyhmvgJUzcRkzKU5GoXBBXPOCErkkhMnaQHfnoeHBVUH9Gnbs3zeMvspjm4tojDyq7Y3RKQA3OdVo7N11RtkVt2rDNvtXqdVna/7/gvQNE5D6XlVYJIVybb3SUK1kGAQabyqiFD6RZ4lIG2riQxgVja/gJuufhWK+YRgmn7bGeSBbBsSgTDH9Y636joIagUDhlSamCh3VKfZloJTRAkTp1AB36KIBCpRYL7VL//MvhcuQSqF+UJxcjwFklGOGC6pfc6JVmU8ErYwcfRU532iq70sJYRuZCr6NnKDAJKdDiswvb9GaVpEM21q5xBDke5lEZ6d5OO7bv5+tVr0EWMWb9OcvXrDJ7s1veyuH7A984AO/evXX3/a2t37RF7/DqeVvf/vbv/hLv+TY8Rt/53d+BzWnB3C+GhzY/Q3f8A2E4ne96123336nOEKPPvro008/DSZ6xy7HePJjP/Zj3/md34kCcpf0CUXBYNE5kEJH1e/dvVftZMAvfufb9x3Zb+Pqz/7oj584d+qeG27oT8wPnQALVjELkUDEIWSngyquNbcau8H2Dmrc1Nz85Pz0LOsfc5ol4cYGAoE9cD03dIbut/fwFmBYXW9vfeHKyCc+9fh9r3v98VtvxSo62jsWxydAgAsB51Gw4nHCOzNmxIV5ELzxxht1jf0Kg3dMIn7vQWu7evoMtPwRO5padFPvrD/FbP1aVwaoXBDJWNB7OAKNXR1p27d3cnKqvd3aeiNTuixbiGOaMw1da1ufn12Q2YYylBPibpdAt6pSvmef15RanZyc5tCLpdUlSs4//Id//7FHPvFd3/4d3/JPvvHovn0ri/PLEY1FOxICmnw8D9/A1rf4cS0w5YTOpnD3jas81vlVJ27tGulItiKy8Vzgmlh2KskRVIS9/pgpqygvIEC2iLGbXLPOlyBxuTbTWb03ri2pv/6WS5vSnmLW9xd5m51fvXTxKr139/5hbIhR04bnwaF+cvTivDWnsDlR73xbmHdKMu9cG3Vs9tRP2CjVcNdng2sypZGBcPIrpH619bA9sb768+8+3Lo2c4YkMZXFBcrx7mur04yiLEIM1PauGpQiV8mszRqjOTgTGRosMLbWXev9nR3DPR19na3Tly/fesN1Q30DV65eIsxB2tMXznV0dCnXAPtpl47ame0YnxW32YCUbJgClHJ5/t96RYxSgaa8+l6q1YZafc1QaGVCjGl0+kwxK1KYt0kkR1jFYznl2Sr2JGtwEeukBFaWU8rFjgLRTUK/5JXuvYUvNpeNOVqQsLZnqwG1Ge41RY0uP4FS2bWKrcwe4PfWJ9sffFNBWkuohSDxqoaLTEBGtixIlJlXlGVIoTA2qh3rTQL1YSysN/GxDCLWZuDjii0yV+pVSGaSNjCSqT3d18/NC3BY0nT4huM32EbHZQw5ZgHwXslDu3e7Wyfv7On+J9/yzZ9+9FMXLl2U8vf+wd///d///ZtuWrnz7jtvuuWmg4cP/vf/9qsg+4u//AtjE6P/+B//k8HdQ5bEj15/5I1vepBTvDNv/+QDD81MTuDODz30/rvuuuMf/sN/KBqtPcbOMHn44YdtbldjWQbER52+3jU4NPSFb/+i1paG+fHJ//Rd/+65Uy8+cNOtrAZZ+oLp1hfFDOAPVRZebOCjw3W3tXa3NQ329aysDzrqd2F1UQRW47rnlptJmo4L5QNEa+ADgT1OLC4+9uRT/bv3fNXXfM2VsXFh5VDTTm4xPT1RGrq6IuIVpxWepC1Eh527Lp2/6HQd/wTuhzK0sqZ2puWdklAxYwGyjInaryhiBw+oTTC/4q+SIYk7QQGuGpmRsbGXXnpJuFZOpXgtedQrzA5aZuBiWoH9PlrDb7gM8TrNGQ3VI+AV87IiVOYRxKsYVZ8NOQI7MTUpvJKQq7uHhv7pN33Tv/yWf/axj3x09zvekV3xEQ6YFOJc4Z++FIEkiFQvpUU42byUn2uTPtT8XsqWJldqKkOUh1ybyJ7v07CSWCdLKTm/Y1nP6kjRYqUWhV7JsnmZ4B+vvoLSZDiVeAiGE5mXl8cmp8bGZglDdogqjd3DeTt2MLQ2C5vDG2uuu7/f1j+iIsOgT1VBN47pJG5UkSmNYBGe0gbzOsF2ioAs9owUjQQkERG3gLO9d6W0fLjV2NJXpW8lvPrBm1QHMJujaQgjzbskrWfH+JzYBJxzsHEbl22sjw14YyNePvV91Cl0fJF8akPswd19g13tjatL3H4GB3quLdsLHWw6f+myPTTDu/evzAnrHfKYSgJqdRbIb+uVlqdR/3+5wgC04zMvtL02cfsrKQQLrWfe9eFSjigNcZeu0UbdsHm2eCIPYOm5z+ERGlTljkxaqFZiYVYtgUYQfzTYxLQGmzIcuZTj8hBwxA9to51KqEMrxQMDZq2lJrpXqYE1uRTw591KPaUiNxgZROA6FlFXf/AEIxPrcOxkuULWCXWmBkRMVJz83KogDfBDrs3UzfLzBulhRzZHEw9YSICyEnvf/ffThQTaJYz71KElJFMVUWc0oKOrkzZw6PqjvLUJRAjWXffcQ3gjDsv8t/7W33rjGx584oknfvd3f/f973//iROnHE7y4IMPCtSBWpH0X//613/RF33Rh/7koT/6g/eq+md/9mcB3BGJBOpbbrmFvcjqMTnd8KGA+NBb3vKWe++999SpEzffdOPnvP51wH1+5PK9t94GD6hv7S3NHAzBnKfJyuKKZjfZyNHebTFHN03QHTtbuuLU1RZdipc7bSAHniZYnlmIsxKinzhxaveBA5/3ZV/67Isv2ebWPdjOBLR7aNjaMg9ffivhLS1O3ZozGqYcg1Wxn6XLxp3GQ2Uxvi7YpV6YB2Lq0sG0reimWyOy/QFUfcsuYWkKBORE1q2IPPiG1wP7tb1UPiQGh0B3KBnBuorY+BHG41vlo1+bY7u97Fc8+1DDtpLC0YeGro6OcHcBAedHPvu1X/urv/iL1x04cN2hQ4N9OYuY1xyXG3OHdAy+QZsyB2ohfgWBCnJtFbv1s9ZV6/OZNstoTgIX2lpZwhZf8BXcY5HQfc/BaVhd2EKFZ6GIqd9ViFSIe72KCUiRUjK++SpkktVURbu0fGZ6bnR0bN/BG+n/8wuzBmdxafbQgb2OzJocn2jCGNoSocSYKjmcXKNTe8xBRYhG/6k+tDoOkNHG1BvpuMx9rXVplQZL8Vzv2x+8lVjvW+nbhsLLv/jK53Aubvwxy5iH8bXNjnXxfcK1DEZhVLGJ6T0jKvTDRW0BGOjq3D800NW4vjQ9fsPRw0t02NlZ8pzjioganb19VN7F6YRHrL3QGuOlxjJ8m4DebKNsrjqym2n/6/82zszNwgmkIYSVKLK59quJtWFpn7blX5rjlx0QJH1GXuYgLULagMBVJ6cUg1bD/ememal8i3Vd3b37Dx6x4iX6zdT4CPHTUFoJ4DvI6benrXN2idibzbG+cqmtdteDnwqpKVpY0901ZgNxt5JKM+Vk99AjqObKZNhCmnQjG2Xcfatkb6t4GOU/q/kWIUrfKXY5z0QY5jCAmC/lFnSirJvVISzYku+8YRqyexOrK/DyBqYGWUEPxnjQEpOcVkTDmJyetcnEBrpp56YJIFNUXeZv7EfLauGmMQe3RMdrFKJkBVJakDBG/HPlt/46vG/Pl15/9I6778IG3ve+9/3nn/jPv/k7v/03/+bffN3rXofMgfwDD9x32y03f8VXfMXv/d7vsRr9zM/9rPK/+Iu/+ObbbhXb5/gtNwulaemYoQk2v+FND8aSvrhuuqJZ3p5/9vlTF87fef0xlj0rwBZDTAv9iRIbZzU8wvIHgYhpKFydASuehgGX/QFNu/iDNzSPTk8320KxtPzBxx8+cMNNx1//oGOVhkWX7IRBCTpE2LeeYRRauRuF2F2jxxguz3YFnjt5rruzJ86m13YKTwSAltraHFEmVqh1C1I0SYUN3SnbfbYuLjgEaIu6KVMhhiY4k2P8gkLREopvDx5pWloRGRBKempWZhnkxf4ZZSAgajMxNjXUP4RGj46MC8rU29ez3go5gvaKVZqRQhWU73OJktVYHjZuIe6oe3OjLfSGErH7yq/66icefewDf/LBli/8AtILN9Cenj4WIBfS3doS8TmFwqhShvNFXAUyga1KywIBQOenvkjRvZIeVlFeaHyQlnAkT2oNHiYxOL9JVfIhAc4gFuktPzfnnep8bjT4WIoGiZVLScMEx7WwbNbsEjJ60RbC1vbmkZExWxeJBVb4acZ2EDtomoPM7sE+FTLm8fnYs++Qcnyp2GVecI4g5C6MYduIZ5giJPqX+rNOQfUDWI2z6haqk/nofy2KfSEa9gZxKI3My80U6fVVOqucgHHzkhkcAooSoNe9/qwp3iIYkVo0JIFhQvf549ui1d6hIzFbI/c0AVuWrFFoKvRi1hYfwY7prpbm6w/t727ZtTIzuX+Y10MxsrF9LS9dHrl6+sy5d93/Oh1TuKvUFVMkWdo0IrlE6DRSRYIJlbCJTkyizraVtWzkrE119219rv3a3v6t5+0P8tef2zu7PUNOvlarymC/7mmZb/ysoPKZywx3+Qz9jzkAHCso8erNCylXACQ2aCirO34wPTvjgFNO62fPn9uxfkG/RY/t6uygcfO9m5qAVvFHttyj1DYL5N3F0SISTLSKVFQuTTIJ3V1evfKKZlBbgcKmoeVSu781fy1q40XBnlJSQCPRXYF561eptOohpea4MON2OqJHKK8+epv8wZINKrBZv16k2bmKNbY+bt1VqhBUXsXs5oePHYFTZudWhs/2UCds2HCpMS0pKqQHVJ72cP/99/MZtar58Y9/4r3vfe+TTz75eZ/3eXznuU8gpjYWcAT6yq/+qt//vf8h2gTr0Lve/RUH9u0/fvNNd99995WRq4I+ksEfeOABQOvr6+UMamMFqwvhDvleQCK4TrJlF/kPvdDieHdCi2yKIKxhnKbNTlESzVJA4U7LuC8a5PTyvCWBmWurv//hDx6/4/Zb7rmvpbe/ma2nq4v5nzHJmXG2hoRQBwc2QBGMc8Umt8vs0s06c4C9dtxLwIQepbaQAxm0oM6fOqY1T4pRXDC2jHCZZvL74W6cTp48vff1w5Pj41ELlgQk5E0QM1HaUBzVbXHwzxRlu8ichKxEoIKZKTEo42cZG5V9xoW7c/rk02JFxPIRatLd1//FX/5lP/T/fN8zzz7b39PT22XX9LIdZ6RIOycK4hcq76nM3q3WenjFlVwb5CBIXKanlDxUzC8oKoVcV6ZMXqbBpbGl5eWzcvMur8u3NbX8FDU24SsgPpqonWg4NZ+7aNZROrvtNjh5+rydGSyaPQND3T19c/MJtmG1iyFxeXFu5PKYiNGHDx7JtuxobMDO5BErgSBCDesNC8v867kZGO1UiL5QMewnLtvOI2uDLnYA5FmXKwqDSVA76AO44dI7RFOzS5tr80tPt9EQqZm2Ga9kgzCe60/p9S0OxMKZn5oJhnA5MEwtmucf+g2ZSDpcJP1Q1tLa8o7l9b0DfQcH+1owsaWVvq5ORwNZxJIRn2PLfeqZp6+/8YZQp8LT1Q5/Xt3UbRi0/dVGZ/63/SGB8HJ1YEdWZgDR4AK9i+yp0kp0CqDCBgpEshuiMgCTf+sqG+sjW0lB48JOuG+z+pWzttApZ9+kHnv5rq3ZCLOrv4//hq21dlvM2Fh8bdfSjgb7lHSeHOQGRvWqg0Q4TXvK+G2/i7duwFwmLQR1d/nJMlDhKLPBru2so653Fdp+KlM2+UvvJIcukK0iiZDC7HndsSSgpqVsPagqDpIq0LGc1rbVpDr0UA1aa4dkkLVMR/VC5aJFSEgauFn16OxJmDb+OTcevzn47mTc6NK53NX92a7KBuysJBZlWnC54544H+eWPfv20L4PHz1yy223auS5sxeYlc6dP3/o4EENzLxdWd9/aP8/+eZv+mtjX/P4px5730Pve8PnvI4eYAGguaPln33rt9AMSgSbztGRqyifABVdnb02c124clWs/m6LV0KnWehCPMw6crfVkbJmwyQFWIRbPIPmHqO/GW2feBZ51hrI8i2tf/iB9++/+eajd9/Vc/BAW0efIAnIYpRO4k8M1yAWzasAQO9DqgMEf9Z3lb3NIjoIl9DE/shdNMkZomjoAJbJWYdYUPsSXslAZBA3L29dnw2uzzz5FFBMTk0P741pwkoPj0hWmWrkhM9B3cRK0CcBXZwfIPpX2XmUZqad7mY6pE2bX3GFrCBd6FMVZJEfriADvX1v+Suf/8EP/slTn3rEwQaHD905NzEGhhzksZaV6FXpl6vcgp3KgaLutU9blaQFRSkvGIu6hNX5LqyjdNgfH77WVwWGpaD6duODraI3X1maUgL3FeA2BPz8WJDEdce8p+YWL1++cjlRoXb1DwyzI4jwBTuCltlRY8NjwjF1tHf3dPcXoS72gKlF3t/Ta2tTIay0yHXwieTLuVydleBqDPQhcGAbETssP6GtvHLWV3kG66OZ6/Kg//X+yoZv/Ap0Nq/tHZSO0rm7pFfYyugnJu+B+G5Q+X80XMsO92BPXLrZ7hOjE60IiUzzrrU37exo2XV479De3p6G5TmUbaCXFBtZxOG3lske+fRjh687akO6wovYkLFR+1Z7th5qS7d+eth63uzE//q/8f/NVOV6XURmsEDCtuqOXlZRCSoXBmCu1VboD4htDYZy9MqE0XMUygNB0mZUITCwwdYO+3UNf96yOy/N7bzuyOEgFgYgbW0nozJty+OGJFAGY2uM1cgKXCCYsa+V1oEnsb4KKrXB7K0eVFHv6vXsEzuTPUhVmqJKLzIkZql17WLWjBYqpdhvGBjW22wBKiegrmfbVnbNGP3m1hxGiAOqPZnLHeNCDyFGLbY2LM9QxRFUjU2+lRXqgAlziIa8qvF/4U9d0AY1qh3B8qBrFC9GfF22owrnsy3gyJEjsoGnecN2BH3pHC5y95vf9ta3/JXPvXThIsP0Wt8aC0wmIndEex0WF/p7+oABo+Knz/o5PuWE+tmu3YNk4wTNUB+2RqJE9otlS+26jvTYJ5FJAyXYiBoaFhAAh4k2NH3s05/uP3Dw1vvvv+6OO8UD6BnMYVhCQ2s+yCjPKOm1x01wbah9kshYlZHjFtXS6JOtyQMUoQ2bQ6klgFxHWVGl5JTpEzmrGURdNb90if4X/dgpny2trZNjk70DvexAQY9KNEWDWV7DYuOpWi7Dd21XxNUMfSydWl67sMnDax827/qE3FF3rnVkmRQVV4zIUPbB/dW/9Tet0r/w0okH7rkHXeVCI6o2SzqcVKi25aF0pzZms8h0x8RL40sXK4mrKQWQESPKTzf4X/PnI3QMHgbjNiC9VWQegCV/CjupP2sK4YGBzsk1yDR8yhKF5rY2j09Onzt/gfGHJ1df/xAcizQ3x9UnoevoDLCAQiPYknjqJ168YB2LHgFuWCJywPxHcOEV5FxBbUzN5coSWq5M1Sy1Fa3LlFsUR0ZsodWVURFzaQ9l928Y9qYg72ufuacXm9dWytbDRi3Fv6g+1w99UX8mBBtY5Rw3CoqIb9qoTTkdy1YNQM/o8A+zZ5Cxd32to7N5qKdnwFmua0viL/b3dKODDuLO2UlNzX/2p3+6Z//+nt7+yUk8z6HxG8ZDfTesqA903GzsK/5qsOsVSf97fmxsAFE4WOME4E7pdgGnxApPpL88F5t4NVlstC9icuCV6MSCCMTiBnAG2rwVq9e5AYwm3kp3KcSA6bxD1/zMOm0igy5wu2V1BQwLxUhlKTtj6UOXr6QEdbZdUswlCeweNaeSty4plXDUbKXy3MosLo3R8HLJqQtVlpSQ7oQsEGYpqmH9gvZLJ7noV/9Ar0KmZ4Ssn2on3RP8mhN0E3EhzpCJFaZJGGgEBl9HG8gvI63qprZ2YRfBmQZNsO3vG/ScKbdJPfKxTysOb0flmlK6jwalzUkB6syo0qm1q1evWCNFa1D5yalx5BLosAAPhgav6OruBsfpGd4sy7Yd7Nm3d35hwQ4vVJOW6g7hezt7FyZmL1+8xIj04gsnO7v6lhfmXjp5coD/GsbPYheSqzuFs4ZRinlrP2CMIlqe/WD629Rgg78oM+193e/7o/c3dPV84Re/c8Gcau04su+AZZIQXnyS7O+/dLhgWvhtMMSvlKuHxeWb87fzl0x5AbgBX+PTtU3gBHT5egMJt7rsIeNdWH6gVTDTPZO3kAkZ8tDQYGvKC8+/9MDr7idhCHMNnstOa7IzEZcuzFWNwJg6cG5bw+ZXKM2iOhl3yyABRzJmKXTbVTpSfmOu4GMRQGBq8MGQJ2bndODWu+6973Wve/rRRz756KP33nKLloEpmsHAns6UNVj4DUP0Qkm1wbWKig7uslUKks83yV/Sk6/CqECnflbySy3/SpbyVX259bmHzewpk/tjIkysil9vI0ibI2xnZhdn5icvXLxsAb/NFvbePptnR8am6NWOikb7HQlMAeANZpj4dqEnLY079h7Lbu04U1oyIUFE/PcQMUL/qvcg8FLj0SF/E6SSXZHRJrbGEnYhe8Z27Nm7G4YTIqenJsDENGe7c5cIGqXbr+haQigHIBuvAtmSDc7Wy9va5fpTzAYKrZY47IV4hbFVBR2aWa2h72qz5qxnYXB9tXEH0/9gZ5sVHrGtQ/0bG/gi66nNDo89+aTIxjffdjujq3Ec6h8YuXJVXQZ0gwEUQEsp+PwKsNcm1XvJ9b/rlqPdKggC/Zz9yrob0Rh9BZEQwRCyTfAVHKp9KF9F4PIgA9JDTOY0qwRzJhBcWiKTOutKBlOIFkyuUlDpFVeSJTOZ70fEn7XpHGGNvmRvdEhzbZLCt57R361nD/VZNlzEs5wuUN6aq0CsVWl92Rwgp6t8VxbESo98IlF/XdQKYwwrsvbj1ApnlLEbkQFK7xRSPwcZ2OanNYmFnQsso5QAP5WsEMJC6FFoV6H9L8MtEzW1EOtcxRljama6vbebr0ExDCr+L3UBLDgrB3grW/KsAZbZo8mtrACIPOaDO8HWq47GRj9tNgZDw1S/tfhsjzHVQUes3yB81LWrI2M//gM/Mnolp4JcuTp6/aGDIxPTFy+NdHxO9675BQOTyWqAyKcaW6xkLBaGUNdgvJlBMhIGlvP2zOLypx9/grPU57/zizsHhgZ7GAMZ/3vFHuJpZShM/9rhAiRDs/EziQoC74xWCF9lcmyA9oGJWe+nF9Lr53ko0p+fMAru6ebWW4na5qqZU2S5arp3gGnnxL3331PIypzCjQ8QgR6KZlOQAqUo0OVhdmG2qdWG4UTOSEnE142G1BpefXd0BOFVfB4lN+xssVHZrlYnsdog8OVf/dWXLdv82SdvPHh4X3/3TM6TaTNsKbY0O8WXKVDb715TNifRq+va/tuHhJLg4uaVb4OEcHwzqdQCzn7XKkrNG29TnfVuAesbEmBIUFUHqE3Pzo2M2Tgxw/zb1dsn0BOB0MKGRdMcA5F4wAtjoxMoSXdH9+DAnsHewb7uPo6hgi9xp+DurQ1oK55CGOJHbP7hsIAvwpe7AAFrWXJZ9pO0ESMqy2laHFCEIQga39YKY2GvFAjMh82HlvRlM3AuI1X7oDsu6fWqiQFMueorPz24yxOko244AnFlEULautHU3eUoUquj6wsxZ2XNywy3uM5U2EYramrbucZ/uG3nrn4yXUdO/BZAhZp75uRLgn7edNvtzJKWyhEM05OHwtzUrOogaq09qA7+pX21VVt36Xn1v/lqtEiNVpoG2mTYVAcWkUw3pKfUXzAn2iPctOyPIdTGbaQX7OFNEVW3sA0ZFWIC+VbhmVSRg2MHyaYnDiqza8dvOCaqG/rprQXhHfMLyzNxAcowlJlWn/2sUKj3+raAKzd5xDXc+kpKHX4P3GCU46eJWhP9lE6iSgWZBhv+IZicEthkIiYUgEth/Yt0XQ6faurkxZ6FQQTXVw46bO/v1x4KKbcT5yHawFvRKCj0yjGTv6bUTmmJy7eEX+43dz1wn6mgG9umpLbkekVKaVWYp3aKfZQIJPAax4xXciKTM5FNThhEwvPE5KQqkEtVmxju7Pssub0D/UbEUo2OGGs/L1294hOayNWRERF1uKf+/I/++Mc+9mf2Zujp4O59jU1tEJ7tO8Q5cSCdhwRZTYGyJhbFMEtzjRyX0stYr6m1y+vXZtdWz41effLUia/9B984uPdggxOiegc6ewemp6YcjxYbtUlXFCbNC2aUK71WQnqZBdhKpzTV2V4scU4is2PgwvmLeqcj4OkjX5iWwVlmxELNCTTeGnSllAwpzkMd/c25HyRXgXTsXEwIpgy7zygBdN9Eo4j9ISqmC7hkLnSTT0mcEdgzV1e7S1EZGPW6tCE1vfLSNTIOIoWPlVUisT8S+HdxdWXX4vqxm25+y+d93kO/+9tPPv1Uzz13IylsHjAobQNn4n8xqGplxZnt3fFcwab++lxrznOgkl+lWUH2mjVtzLuNV/6UrDXh5XtNLD1KIph0dQu80eF8ujOnz41PTjW1tPc6bCcHIzZY2EOzoUF7Z5dmW0qZGb9M4B8e2HPs6LH9ew+1NLSKDjg/t9Le3g9pRUjFQee5PC0vuItIOj4+ybYDUXkL6TlyL1ya+/69e+GZbX24uRlcJI4YB/AhXiuIaR1o7aT44gfmu0GHLel1oSG1S7XHUvzUNY2slxKkSK+J7p4RBWfyGPMo8MXYyC8mBETGsgtSeyp4d9ncjKFTkNaXWxqvCfUswrlju+krZoRFuNGxCfFuZ0TYde7j7Cx2dfnKxUN7D6pUA0ISN3ExAC/Nqw2u7ZRYr1cSgq0s/8seGm84ch2Z0WU6A0oEqCIyM8gHjhWLCkuIRe6aoOXGO6aSosaZy7h0sh27/nojYbYQQp0HatVsfmYWZbV/x8I6zbFqfrqNQwYVFpdOn7+wuLwyvHcv0uDIqOlFctJKPH839fpwmiKho5HAsdVpz9rmkoJY55VP5JRUv92ZHbDeViCq1Eyun0MRgyirn2WCM24TbFMI7Ihzo69M3Iie4R+Mdd6AjLufsEGFlvgF0Z2YnAYueamrlqf4WvhawRpLW90QQoJkwRoTUSghZdIS1CC+4KUzZ/hrLu1YTAj1cqXqtGvj2vaYlMAijErceTEXMjE46kgBcx1B8d1BAglTyybZCpREekBQmK1khnlYsgc9AiJ3wOls62SqHhubGB+d+Dt/++tmJmZOnzlpPWH08qWO1i5lnjh95oY9e7J0oRlQnKpEMecN6n/ds4DPWqL/yO7Oxvm19cml5adPnnvD536hjQKt3b0YBzRAo3nCCA9htEw7UKlXbC1lyDN66X95gd14ve5kGwZzp+mKE9dhFkWecCT12gLZVMuNhc4aGpjpa+sKteO15Azj5gWvCpdKtnLZxcwIdY04b+HExfN1bHLMUoq5kFUaq48Jr1ztEPobJEeYhVEmJ3kbUbZOj7hEVNUID8jglvsGP9Ae/dLshDtfu8Z/AMynJiYdjjEzN33Pvfe/8PiTn3riqesOHTl2YJ+dUw1Wggtealv05hJADZKzvhc4pe2pOjArcCsWdMBKfUlPC7CPgEXDjBBoVx0z7/yvOZtAkdNzxqOwdUJvCi6vDav/du5q7+q/dGX00pXLOd21rXXPvoPstJw52bKQbyt4BpKBjvWfD/fC/Mxgd88N1x89sO+gwECjY5P8Ahp3EJ7WFpanmCInZ6eEgBSfnE1/dmkO5W9uFIwkvhukdgbJgd6evn5nkrYxOmWDgKZrLjGj9E3jrEe0tbU39EaKAh8h0LFkDETweU7TMpukrvSwrHls58s+AVp1BZ34IESV3cRC2fODcKWMwgwa11mqRcSG8IJ4d2IDsXWSDNIquzqyMdT5l01tnSWwDVGMcRj+OFzv8YefuP7m444ERwbhkIk2Onr1njvutPOcoQOBSxOzhpZJDd4Zuwh1xidI5p6hVf7LA/WXffLJtuH9i7+KxWu4ry+0uzhHIxB12piueS5qNeMAeFXAaWusJAFXSgd9RBAo77r9Dp3y7KqTDVmks3Pifve7vhJpkvPM2bOC3YvqhXufvnzZiXzUpzNXLrfNzlm1PNq131IJvzFiKTKpHM4llnsMiYViMnjoeLEbqBtqBlGvrVtuyswsGqIBllpecEkPVOUp8v4GTDK2wvmEbQXPFZKNjuKwQ4yl+Y4Wu3FaoF2GwrdcFIq7kK+yOwXRzdwrk6lg0mBvz+joOK1YmDA14/P9Dp7logNlQ2fqVPNNuAo9CBIjPhzDcZHDw3te/PRjEw++sXXPMKpAAlI+aZSdjP4pQ6iIEgJjDczfNFvBK4RfERmkOHh6wzZtiuA+mShlUNLUcmkJJC/GFV2IUAzXwiV87EwYCwazC6bY0oIAme1nT55lxd/dv7unubevvXvuwDSD5ovPPOVkI4IZQPP8oZw76kNAgfhxgVQONGoi1jV1dMzOLTXao9vad/rFEy+dv9jSsWdlveMF4enGFmxJc06kyAvNNjI0OdEs66KaQmthwHW6pNAUxcsro5W2kaJirjCnwkqxLFuFneL7hgffdPzmWxwIY5rRuhARkIlQJwJdIuwltHVoWkx5UbmRcjgc3bSnBzopLjKm4gthRytM6Om5aWd1PfShh47fcryjtePKxSs8MhmbqEFrS6uz07MH96BldPaY3ayjX1t2qtji6MiIKHoCpUchyE40Hk8rYig7IQ/CkhE4VwMpWo+JQOb4QEYs2Lm6uNTuOKWh3czYqDOZ9R1f+uXv+amf/OinPr33wCGG9vXFuf7ehAudnZ4XQpVVSxWJyxzs0+5QhmB5VISYtwmtACXZ+3DjEHEDEw0p5vXMAm8DTICFNWaTvFFvylRKMUQux9XVDWjiG9vrHrefBF2fX1y9enmKQbSpqau7j8wbtFwU14LqyyGKvNzqgNcG9GFscoJoNdjXf+ftdxlcahvqvKQz01PeEj6onnML2ZsSKEBJLLu4XSxOUwo7+oc5xPYogbauD6QEOTO9y0WwSv8K1jptiMQN0wuXXGvlDdfettzYsH/P8Dl+DZcudff17tmz1yfaGcOGA+/m50s8EwrxHHzo7+32bdBlk8BqUQovdJinU1ZrtY1johiVa46BcRACYdBEtil0zWaftngA7HJ6MGlg8MiRwf4BehJzke3UU4uLL7zwQmNrG/8uHrSdTD1kxxh/2oyjtaCdi7ZBLHd09GYddHVFjERCcENrOyNbqJqNlDgLj6Om5tmF+d3D2Ak4G/IMn6uMcB3K2uZKZDYy1LcbWUvm+pV7LAWvdVm7XoaUq82R/WVYZb+FL2WFOmd9cOmGgjOzMTXQA+L/mkXS2iApqB7GINsLZ58n5miBeWLiIWFyKvPDf/JhmatqZu6IQnz02PXg5YCnyyP44jgvlJXZmWdfeA7e7Bve29XaefnyVYdNKqS1uEjDJNST+lELV74HTQ2ZLqBJh0Nm3TcAkeZtwOflTgOACRM66FUZfFaIwDxf2q+yZGiQEyeSx/hfghtTwaswsTUAEUlSpE/0dJcui0IJD0zyHBsSJpEJicnHOAxOdIt4OpImN0N8JyCBkCjLzrY4f/LkbYcOXXZcTFnFQnMUXTv4co2pbuPCA1DhsDVXvW+++mx/S9bS3CJTbGUzB4wOXoJDEEttrWL462ztXHJC88IKB20HNBK2nQQJ3dsbLQHMoNcdzTsP7N1tU9b4yGUREkxa50nxSYr3Cmxpajpz4XJ3z+72qeWrE9MPfehjSAa1XKjqN7/5wS995zvOXji7vLDk7EhVa8DQkEWIWdK3DXFWRDIuGYrSM1TMLC8pXFDQanWZvYcPHz596uzCvNOnc5odKJFSUFe2Y+K/L6xDmmkwBMsxHOgI2cV8VmxFmwIBPxWduxLgqk9QKKeDqWJ6chrZ8FIjbW7STtS/Th+rLjJnSXSBOGsRKzy1DHpEa+FR+3v72FMX52YNIrwN14YClYGXitGaoM76OpjjbOdPnuYT+1e+6B3v/b3f/dinPv3A3bctTs0Rj0w3Mhkq7dBVc3d2hXdNTu5TV6h5BVMpMLOviJKwzVp8gurif8SIZQdbBVujewYFTWm4iHxHaCC/ZkdTJGvrtV6uoTg01HpqE3k6crVVrsXVfXuPwmFA0BGO3KoL7V/JOZEexkZGZWPXxb9vuOHYsetvbGmyrWH13MVL4+OjSP/srG2wtP0IPSh7k4MPrsWU6sxJNKGjvW344F54xgYNYtoYZ9twuah02unBveiIedb+EBxSYTgFZQmGCNwvav81UBsa6JeIqFxYuyYsinH3SW25u9H306V8F6tScKDUUueIkSx5QuKsNpPxLW2Rj7P22+jwLvHsHAIIcvERNQSUg4GublyR3UQP2wedjtH60EMPCf95w749ComtIOvFGZ5yFZ2zdKdsM9aS9AjSlmMA4CfpJPiRxM0hRm427AMbhfx5f/Rusy9/Xrbt715eWd1K3QBQWeOCbUGPMiSgA76ywaiap6ZLhA1mpgwwQ6Kh1RTPRhqJhIcmcFUg8Jljg4MYgPkcEl8G3vCscjoUpmp9Z38P8a7PaphpMDk+lmG2Q4xvxtws4IcgaFPBDNVlghF8KrAKTYfQBr2e1bbVo/pQgZvl2cjmSVNgQF0YgL5puTnP5STO7HlLpDaBsxcxwkBouYqJS+XbogFBMjYx8nt7Z+LfoQylVYW0wJIMJgIbDFAIvPKRB93RZfmfe+6529/6VjOch+hKQwwL+iublpRKUtH267VTt+d4jefQvtrm7S8hqAHCTPldAANv0cuXL8bZIxs1swqK3xq+Zqf6NlkEXGp2sNme1jWBQi+Pkgu67ANva2fLbunoxFEX13YK1jMrGOTlyzfdeX//7PzE7OKhPfsISnSamenZn/zJ/8qA+La3vWVsMieMK18fxQNnPbB/DA+I9ABKLzcR2MAvc4daBqMQRETEnrWXXjxp5zNBEPJAkrK9ugkDAHk4BqlsGJYuPzHWhTa5ewvy9a7M7c8ag1Q5aeDwgcPAwnOBmGLotBON004VVQlGCo9IBFCn0DUjaHrKoDRlckgT5bWzq91zALgcB9zyKnJ2rug3G9RbBqY5/rBI5H0PPPDEpx97/Mknhwd7bzm6d2nePvEpanQWI9dWMRXYUmZHpmIxvfqbYSVkOCULEZPBPNV9MkQWWHPwerOAm7Jhz+6xeuTvjqaWjsj/sYlaWLlmHQu9Vsu0AznnZqcmHZGzAM49fb1Dg/vE55t2JGeJjwJbfJIqyrkD1g5nAuYZELOAhIVzQzB9Ll68TNyfGBtnnKlsXjshvlnJawE9Rj+dWmRJwLjEvifiU2ZmNGyFu+rQqCsQKyO1IXN5UZSbRfEkVhMTcIdQBGXvJ2Aac+vAO3b0GErG57m2tr4Gswqq7sQ767yTG4enHSLwZdJvTIuo6KEISWPMUCnzDi3bQqAJkhh2Ze9fOK2FgZyTmEgHuJa1B7oMJCHAafBHP/6xYzfeaBK1dti2kutVcnepZQP3vFWgS2IGplz+bJH7dLfgVX312e7y1GI/W4Y/Pz2M1BC6K8gDgOZIQ0S8iPB6JQXYqnSPv4RqFDcMebx19x4g6mATBwyhCZNySiGUA6qND7XSasi5ixe4AMtDY3J4lb3+nOq8gp1mFG3dmVJ79uxToHZXbHBXkRkoRSMV67dPtNnqTNESCx8IW04GQMv/lca/Vu99u/Gy/HGDgU12/JojxedvUdQ3tiFbGJ39KzJsuQr7Cazrt7AooGhutIeWqGTScXiFtIkRF9FLdsiUxavCtmLE1GBOZZb2AEePaDxXr1y5eO784KEDCHBUSFM5Tc9to5rXav//VFogH5R+9WWsBXhAZYAX7oMqbwo9Um9GJ5J7K1MlMmqj+tz0BGFyanoSOe/sGeCxm0Pkl9c6W9ucWa+1zmFk4bg8ypsrR+hBgFjJd4odfs0KHUn5+Q/8yX/8f76fKfmv//Wvvjp2Ve09vd0+tIoO6WiMKn11E8tvecANWfeJZ3IDHvDMs09pJ5RAkZDoVp6HuchiS/y30GVyYog+lChYXUt+FUi9ki7Rg+5bk8cAPPjQ6EAsKC2DeiPElNqltHXYJjZrsRv3Wuvt1TaZay2IM/OmzF3xTENfQ1YyooWzbWfeRleiLt94400f+sD7gfEd7/ySX/mlX/7Yn32yp/Vzhvq7rPSEuDe3NloXW99JzSoagEYltp6ljwgWKXgXa7o26olJTNE2lyCfLUsWWMk67Gcc0+hS7vriYXLCF05kwpQRfCZAh+tlrRkftXFpeO+Brp5unSLUk93PX7xqB5yWmHKQM3wDppaLDCcbHIYhlk/AHO8fuTpmwyc2GQOyPd5oJcDlBEXehlOoN+rvE/tDLbnbLAoMTiGGKAoF+QpJQHP5WUfNfTv+mmXypTnMayYdNTDrDHw4EiOWc4foflyVZqemSW45HwI158kJVkXwikXZUAIke2BMqoFKrVG6BxNW1VgCU4HMYTFhXxjpMsFfZeXTWA3AuRSSLsLPD3/4w7p21113nTl7yjbMQ/v3Ka12QYGu2oZ0rcTDAD2whB1pT6FZlR1VbEmvy1VL+Mx7Stssf/vzZ+b881NiTmM9Bm3/lKhYf5kR+UiXh+iQWcGlSUItdJVQR3FJi9NEYKr/BLM1fpzF9CrGTeGc/GG+x/bLTOvu7Wlt9ZZw5JyHVnY6nHVhboEJyOABioocmIWCcPUzz6340QXgGcuDqQLEeiJMjwvIPNcBU7bWFYILHgmvmjeePku/NSZDoQdywKxMmFwbxeJG5AuHwC0sGGxXsZCqteQp2Yo8n9pRChFQNYxqTDpiOIw2t5EnQgWM0Y6UnGMgV3jrKJDIBRvonl2tHevTU48+/Mi7b7wBxmTLZUL15rRu9W1H+jQ1s/f/u6v0tH66AZT8gYYscs4fKM3jr82uuZPPA/Y8t4unWgBDhGTiv4hNMd04utb5sT0dTc4xYfnd1bQwz6g739/Wzj7N+Xtxh4BFE3fcfmf/4O6mzv6Rsdmrk5M8BcUIe+qpp3p7Bqcm53/mp38Oa3/TW9+IWl+8cBEPIAPaoUYYfC0GAAaRCoHLcjcyq6lafvymG5559ujZc+cSaZJDftnqXMwfsQ3iAeR3w0cSJMZCLSVIr13f/BvUDRAKLsmgPZy1Fx6IGuGCyDBevdIRF5eB84n0+haGxWVxebmjtFxOdoGhgUHR5WS+/ZZbo0sV79io0CExdQCi1EAd1SNZPHD3DAoY3P/0M8+99S1veuNb3vrH/+O3H3388be+4XNaBNJwwAY75K4GoZN4kgiYqAGuQreCVbAik6nVWSWwLuu3pgFgqQ/TaOvtDxGfX2R/J5KzwYcpMq5bo0+/dzJ3tba0d/UODVjeEGaqtYNQj4YypJOClIMxQ3JmIGQSyaT0YOruLs3wwPsGyfMT4TdtTQdgb2kQcGnN/PeNVQCefuqKEW/92mBf72BdYzeu1xyEMwsoEeJMxE1yXwsPsDYhlrZuPutyZCq/gTB6QETDeAU0N/f19IbxrK8Lw9Da1Hpq5oyD17sTZDDGJYJqOYeV/KUhQFgWUYxFYJF1EVykSMKZeatsTqvifu+wztXKFVSScWfvZXiKWTvapFkvwlNgcS1BGx9+5BFqgii8qJnqYB3GX6S5wKuMWxm72s2yNQSerDtTO3Q8J2VVKpR+a1AhrT4zCptdD0hedSlRSoXO9udXZfvzf4ZzVnqqobU4MM2sywkV4cN+utDEEhBvo76tXnmQ2awzBrUR7oQgdziB6KHpPodYhAITRlyC8dExm4SRH6vk/kFNS16ACMt9ABVlY5BVO2IB0PQPuFVTjNX22ahkuxJjI8woFj5vtALTzwq3zOIqPhXYlcwBkUqVgOgnVi0ivboy43iDtVWxEuQB6vy/7UrHhfYkn9qn1NwQvTsFsxQVmU/YECK2BddwozTJlQlUtHWLP3APQBiCn33yqSuXLisYAIMNOC2kxDl8sK26+qibn5n4Gbn+Ugl10GXVPGOx1hJVD/yJclqSkUpojThFP/nscxfOnjt86ADV9/LY+UeffKa3s+PIoQMDfb1ccWYWZ8DLgc+jU5NXRsaO3nLnxPjkSkPLnv37Vnc1dfX2MgefunD2lmO3OLHY5PnZ//c98Oytb3uzCGiYikqFdUOs4czLk35bDzQJJLyFqKaWNzY533ffPWfOnZ6amhQAzgKTIw0a1zUeHW+xgIEqUcnRu4QbKrvT4QOEeBVEN34WSVyX8WBr0TZRs+qqlOwqg3SA8rWqMymMbaakdzm/gYwMP2NnD5NtINg6m/7ChYsH9x3QYKgKSTTYF6m9oKTHjCtLQnPcQ8cnJm6+/Q470Z5/4aU77rz30oVzT3ziQzp43ZGjDWKmwJ5G8S9W2trbmhF3zARGiitRmqLwLPw3cZFi8V/OUdzxYF+yYZaL/cXLl9RjjT60L/7CyXytoXlwby+k1OBc13b6ZCrRWJDHlGrclaCjukwHtK6z0/oL5leAEJwuspZOxW+YYXZ5GZx1RGEA5bJskpnhSuxMYiN1UOyP1t0Dg2BSpX7p9JVsUl9btsIqrwIzRuXyU9fQU4nbLy/9FFe6njrFQo+zM3gBCC2MDKGdtBnTSjMdXDo7OzcxPu68UPErsixOyw+yhZEz72hiRsKwsTNmWRO7K/p6qklvBYARo4rmZJ3Hbzom41Hsa6ZtK7/mbHsCZ3z3yaeegsAPPvggMgVhajvV4tLg+tPDVooH1VHp7H+T7lknCo74latO85q/YE1Nfu27bNur+Avzv6qUDRMQPNWTUrfSImJHfHVRI8Mfi8pZ3JWqCTyvNqUno+WCBOlJsSFs9LCwFimAIiX4VQR5jBrCVccP6jzXIFZXhEAiC9KO1kZjKb8JKR2e9fb3mc+VJKUmAhG1LFTV+W0wNVQzYNayOt3StIBFd0JM3bc6vfEkX33SPVk2rhSuoFD0JnSc8m1thwARfaM4j/hGlogfUZLiJaUmDVNZWhRLegHihg4SGU2GlE55rHazYi5QiOFfmJthAXMcypOPfZqfDBEusI1ShYsU5QQqlKZttLX+2Wjs/9SfwKVckTOix6WF5kuZDJxbTNrV9a72LshtedNQaWEYrfAdO4QtstertXtg+KmnnhgbHRkeHNq1suvTz5+mot1x/Ih5aiOM7QkLK6KGtVEWBU/D/gj+MOqJJ57BFYb7D9CUJsavDg31CZf00z/5M5NjE3/rb/9NepiFB3GWertFDBT1sIxZGqrBIJkOwwqeqx5IA4AJx1gPhLN+7oXnn332GRhVASvdQGREmnaYh+iyO9pElfRtsKGQMCW4tuRN6QT9OmiK4r8hTCFc963FZB8q1tutDJBZWbWQWFGmpx33KltszKlmV29XL0vaiRdPXn/99cUuzJUk0CaUV5RD0oMVoY0WgVpnpmb279l77Pjxpx5/3N7wO++978yJ5z/x2JPzqzuYVjRD99lF3QVrwX08ROgtl1YxB03NidUUdM9VxAZDQNEmnmfUWYpCwGBh/soy5jzuykiMsjWAXJmYsLr0KyhR2Ba4rFjfwA6Lhal4Xmg7illyQngc0IQFE1AiPsdrtVxM7ogp9AEBg4UWCyfn8Es1EfXYbaA986+i+eKrXI24VKBUKKNmKBDiSdl+eesnAJaj+njmREEJ8S5r44omu0jSJM3s7elSHARAvRB9TJNMRV9HxQHPGm/IWikQZDz5h7y5KU9+ym6soJECYrbiu0b6SFDAKIvZTUl00x1GNFFCroyOJK47vNqZII/Or0bTship6CSmOxqvX7U79Xkj0eBhQUH2ct/WYYkKKYi1LfW1HrcX/lrv/7y0kF2XjrlrU5Bgs7l5Lh2od8XoEtqQWH1lnVD+SrhlqFRbng0kqMTFHtS5FbPRzKwjypsbA8AtlEAAAMrDhw75ynRSOP8QcrcLzzABgBgboJmyBbEz+ko2Ta3kSZkBYukdzS7K3SaJTINfjT8lX7mV7oQ01xGpfywpEndBwiH1Bht+KEGBqJhpEJqvAxCFbFKGCrgEVDCq9F4imM9NAnaeAsEy2CZKrghQaC4JljBmqMJPEy6h0RHBXAntFH3x+RcE7p+ynqYLouwISV98Sbe683LT/2efUJrPAgfth6L+mUhLuxosqVrEE/Eh+ntBAAhhnAUwQMGF6/j4o48Zjj2Hj4kvLYScBc/Lo1emPvn4m2874rx4BG1mYVnoN0eDWU6JJ+2uhr179l++PAF4w7v3WSax8yeevddWRKr4jV//PWuKn/9Fn29YRY1nkDY1A25XYeObHQXOmOCNeCXl5icYOsX3da/7nOeffw4+VNFPHiEKYKMH4hhugRw4icVbiT7fLHDjr0JSVdFx690w2REmHQJr6K6ujakXRC2zt04TUjObMzIoSAYbTvw7w7dDN9FrSsDFC5fPnDl38MDR1hbIog7lkLk3JI5SvdTwGC1s5+GzMH/9sWOf/vSnnzvx4m033fRlX/U1P/SD3//S2fdpdl2O1p6ot2Vu5k/xR0eTNJhLyq7WdrSbtLxBaHZGokZVON8UQl+XeTkM59IXvIHIHEm2SE36rjtaRbkpEyFkiE6jcOzfSRiCD5b0THkQcM9c27UL5P3cuohlCpHe0WlZ1/TNZXb3dHUoqU7k9DdbOpponOZyJdzeBsJFtCrAqc142SgksaKwhkEQA5yelJYw6Gx9ghkjCFiPVYGisDUsNWYVSMOCnqZetqCz7FnPiO+DtYDMZ2gQGdLEi1VYEsM3u39Ls8DIWUoxIdGCsI3V2Lj87Ozs0y/EQI0jE5Mjo2Nf9hXvYvrrbusd3L1bd6yKwbqthmXIXkVRCzpJ3Gi9DroYUqOOmAK1u5kNad5nubyq4/JZ3v9lk3kpZAEgcm8jzMnZF4qGfNZ+3KOCQrnmViQADzfexCdDjcETaUBVwCN+EBRJ421QmCypZnApiG/g11YZxWZm5+NZk6XktoWxCdsIVaciLg6+6hZOpGfGTzgBxFLYLhcXyQXBI/jmeJBzszPcDKytwS0sAQtpyPYm2lb2uRhKrSrtEsYvzvv0WItFBXyBcoWjzDpIEJAAdlvUH5yTVGRe/YpGkCAxxiJ4wQZqaaKTQpg9sVkvUwARhhMixGUpMjc7m50amhPQGBphTqlFiHwjnAVVU6e1hGOLcrozsSsUjsx5kELOkEffg9Ws/0Xz9azvW2O4HQv+wlF/RQYoFTzbyXPDlUVolsfi4Mjvs1XgAXtx4miMgOzybKqwAKjXXBKzkf1UI7kT2sklgNeOhta9B46u7nS4cevA/kMN7V3PP/7JTz39/H23H6ckXJ2YOnDdsedfOnn357xhfmntnvvu+93f+8MrV0ac90JHWphfGWJ96OnjfGhpTqiJX/+13+Fp8lc+/612hVqAQIaAnEhlXPD+IMPCQn/vICEOx9ds0JYhUl6h8lbbnnji04888ghaLzynbI7GhBtmremnszT0zrVO9m+fYB4cekCmDGtEvUq5lOnZfDaZ5ZdZw264/gbZlGAIFnZFWwUQfOXq5St1UAiI84vcTNp8BRV7+nJMzdLs0r7hfeMj4+aREHLPPvvc7bfe1tXbsdqwMj03qUCuTKUjjD/Z9sGTEX3vsZXv2nr/4NAtt97+oQ996NDBI7taOt/5lX/9537u59r5F+5qnQ39aWRqMCLBU4SHKYdFx1El5RKoKEaptRgkNVWPchV6isab3Vl2gwHlMpJEHOIuLTMicDRUsyMZkBskQOPzXJZbLByTew2EqnVcAaYn4cy08JMVVwoZX3BTvcNR3O37sfsBXfbsSgPpEeILrK91dSamFtJfWheM1mp5CNXJttnCOlX9NHuUX9MjqkQviWKsj74KE0oJNqiQn2lFCb9jNqmPixE4q0qNo2NXFxfm9u/bMzM9mTUARHZ11ZbymalJWXMYQ7pc2ADUxxnXhQbJDET97XQRwJIPKDaeuRmmNdvfP2g5yprf+OQksKD1nNoj9Q8OMGIbHHKOPfZWMcFKO50BoSOOcoJjppIRD1kpawAQTN0k6IWixepqUYTKHhb+L5XXmrxYdmEDoLEFnC1weahXhVWeS+aN1L/En5Cplz8ueFPRKLgeJSlhmHTMBZP8K6MacSBjWJoM78BbObAv+QxeaGe9uI2QBiPa4a6+8oy+0/uEDeF4py7R6g8ePKgNfAFxC2tVIAVvKj+AYVoiG0XYVKcKHDhwABytDRMr5IybDS6u3LJzDcrarGEDnspKGyqt38CktOmzAEgVpcUakisiVwlNHv87CiQeGUNoFsJTYdkb7BPraAzNumMlg1xkmFFa9RZ1Uu40Qcejp8CkGNJwIYDA3lDVKIYQWEcUBTaQOECusaI+W0NLK/+yN6bqhXn2cyWLqJxRM9kb7BZOkHqtGOzvH706xv3/9MkzP/szP/em171RyYQkBi69hnzliE+g2WmfF8xu7+5bcxJIoNvQ2bf7ptvuvvjcw594/Ok777l/6NDh9p7+M08913f+/MEjNzz2+OOj42P9Q4PNTW0XT5zh8LVv30E+P9wImWluv+3e5194+of+048a5a/8a19BEJ+dm+YdznABIKi5Bnd2do2NjC/NBDgxIzu3N3EaBGaxEzghBZyuJYyPGEciXSNMqL8MNmrpghE0WKaoLptp3pppW0ArSBoSk84WyV2KnFL4Al1/9Ho6hL1gEE+BITdlZ7WmylNkF4f37kzEmh1rglvw+5RBwwjFGtjd7aCLyatXR0+2nb773rvsMGTCCp2xtrQWa4sqWUjUiOVoABmiuaFl7/59+/YffOnU6Vtuvnnvoevuuv/1YoWu7Wq+MjXrU3zRfav92x7SZuOlJwbWHbXYeKuKgmsxTRaABK3DypHyOikS2SJXYJDPLB6w5PocK7ZCrN/kPTZY0GDX0nJ1ueAEULAE6nIoeIIbreLZvd3d7OTWEWJRgfuh8CEdoSIJhB5SiNxoBREtqOj1Vms3Gr3xR54qB+dh8/LsR+1eyWAiRcSSpPlsMpk+rOmxKe3kj0uO7+nq1kfHEfuHdKiU4C/kLYneJ0hZhF/RJnTDuTSGdqf9jnbANNilZZtGgsNoKdUhFC6asRV7PWK+Nl7XHbv+rIUWKhemYfWp7IIqtI8GFZiW9m5oTlpFtDLTIRXpWn0G1Bljm53b+BtCue0qw7Lt9ysfva1VSN7+/Mpcf8GvYJUJZngyJNpdFD1dZXgxf1TA/KXhOkDWQN0shRuHUDFDWYYXSfQL5DHqoFSIZCH5EUQAIoRVv/yQnQymLMUSglDZudmZM+fi82PjBtjhAcRD61f4J5QidBPKfI7025g4MTZmlcpAZqG/udl8A1CzuN3ZE/zl+BysBqChruLRC1CvJVlO3UB/f10FxAZIct6Ue30ov8otcEiaHmp9jjPUc8ZQwxYaHgKOJJE6lxbnghYkJPJCLCZYQpnbWgFEykj8nEgrcCsqEaOVvgfUijFzXRismkxj2KmQLD+v2HPvT21QaUkeM4//569KZSITFVJo7qWomO6asa5LF0duuuX4H//eH/3Lf/F/Yqqf/9bPC85BYDRCowl9Qi2lyY7GXB0Y3N3e0Ym5cjvRM2dBte871LA6ffbE87Ora8duvf19D31oPzbQ3X3+8pVnnn2e+sjhe3pmwcCz8jsnA0/p6R0UYmJmam6of++Va5d+6zd/Fzt/11d8ye69u+NeiS8KNz9rz6Zj33sxrcmFKSNr2phgZfIEY7XH8y233vS2z33Le97zHgvOesR/NdDM8l76aLB84hmS4Cg2A/sKnPP5FkzL2rsMwOGt/HR5mesntRZ3lxTyfthPYxOnNOQcYtPYcJ2h4UGNMbgyYBv2fE6vT1uQPXP6gt2O/cPdTjfOtOJ0yyLhymJ1ZBp6YX56tevavgMHbrz5po9+9KM2x6G5d913/4kzZ89dOL/C/YZBkGdnowMXtP0VFwHDtj1Jxspbd0OrtVIqEGp/gaMmepOQOxlfj8G8ZIvxY72jo1NLwB8QitTVKouUc+fORjohkZY9WtBp355hli4pIOyVVXKfmKFsL3yf4nq/acRTbKEFoRYAGB6cxTujwOwTHmAc/KxN3XqoPfTzFV39LD98qyAzkuqeUIxmCZc89ijwiGFj3TzNkWSrK/29PQZI9VahDKLGR6DNkhtzkG1wEuLuqTtt1N1GyxZNttdrp0tTzKDd2WC8c3RsDJPfc+BAR6FairCgobVWkBGAQhWjX+pcSDx1ohqBC+IZDoyKu7K64ACXY/hqEOp4varDVe/5LP3eSE7bNgHlWer2Qra//WzlZNkWP0dMQQfqu4hLqDMSnP/LeWE6k6KBswgsIVERimNFDj0kIelnbNt0y+ya8Czd6KYP2pclnVBe1D+nvzY18c+bnJ5CgMCO67RZhz3S3PFSO/6R/hrbUkuq6kQGAU1gpQfIrKlc/ez7oO4ZPyI5xuOf+OJs2TgsQcBYJLEApXZe+zdh9RrQyPgXWa9mIqPoYBx7EnktDhiUgHQvKmcIvYHkeaa6xZm5pbn5jubW7vZOHrVMZvwmGNZxAstnecDsM0GzDyBXXI1DXZEDv1jJeF7rOCwOPNEaGi2LVmnjNkr1Gm3+yySZbrARW4EN9h1l0YErewtDbfvlC5dvOn78F3/ml77+675BzI5jR248e/a8vACHnMaXrRz2qZHhF9nt0ZcFxli9rejsmplbQNyHDxyhBzEEXR6bmltZ6xveO7u49MlHHsYniEtTM7OsQMx3u4f2QCtnhszOLA4O7BUihZXvpuO3Nja24gE/9ZP/L3JprCwdW/tnJOQjtLS4IiqDrU04jrYgvvgB+gZjNcYGNQ9ve9vbnGNMbDe1SOtSKsmrGOsrtEn7q/zlbnB9K102eaRUGEqEXe7w/8UXX0StYJp54a1sNSdsRGlDDLOZ1kNWdsdGx7VZBlUDb9RGfK/RHtcuOR/71JN8L02dcLV5wc5yyCUcqjPTXQMYrsHcRLjxxhuR0RdPnpiem6Xm3nPfvWw4nIMRTSflWXoylV71D0aiIy62ChcLn34FzQuib90lpZvqs1iFlcadEbHMxWLLDCKNRgj/FAWMwKZhJt2VyyPhhRjycnaHEc6OHj6M+tNgfAvDhTg+evjI7sEhdh4mO5MCZU0M/bIyUu/g71sNq/0FqzQmzuRhMB4VlZRybT17qM++2npl1pg79af0wkMwYkiZkATWpA2iEVcdeoJ6AZglCVWjLfw567YEU1KFyDCAifFgoqL+2U+AMbFuIVIZxZjGQr0cOxqUyeYSOG9Vyczcf+hgz8CgbQhCPpiqmSDlwAm1a7Nn5J+30lY7pZTexBNE5ppuUVB+z6qoPa3p9dnET//SiL/g2oJPzRewbPto+/NrFtRYFVs11cnjAzxPQw28bmtNpNESEbdresoD07vEoFSwx4hk9LQSGkXrKc/eetZ4A6zAQISkYPWGrYO/UAO+Yqm1wZkSdri0tnfCtguXEs7eduJnnnuWBGF6c2U2onUTeVd3hwhcUZ7K/L96+RJJ2WwZEgOZ9dzRc7ZiiWQgX3eXMsvYh125AoICkfyMnPTqa3tKJbhYVrqXvmVHA7koJjkyX2HjKYb8srwi+n5PezecsPFkfn2GecLmFuhYxzvV5IjrWCkxROTdsznjLXyAB9DG8gXtamjvHhNYnXSsbIuze7Zgxv/v1F8TABwnSv2mf2y7MBZbZMhp2DO8///81n/1W7/+W4cPH0WbLF0e2L/fEBP2yio1a7XzXW3UcjGC54wHJDOOF0VmlJM1b8q8bm47ceFyc+/JL3nXu//kgx+8OjY+hXN39tljRLCAS4ODu1tbWmen5lv4+F5bxQOcfEukmhidbW/p7uiY//jHPinnu9/9rnseuAfJtQrLchW6v6OJCghFOzo70B2aIkobnGxuWbMLWYjQnh5nIH/bd3ynbJU91GGDeC4EEUWDGNBPIUgDgIRc1l3uJQ9KoUCPHpzJpbWPP/44jkXClbOnswfcvHWHVIpie8yUwc9zDNxOO6koASBj1GIFmpoJtMT1dFYUFnv18skXT9zQcKy3u3NZkBU8AzIEfSIpar8+WAMjecHzwd0Dd99958c+8rGL587efPPNd91x+0c//tELFy/qhfoxiWBUubZ0QSJnIShpnjfu9cGzmVnRvsiXbrH0wP9dOwiexl+nIIOLqkRPNkYDzuasUx7kLWoIC6G/4CCKPwM2vYRYhnkAJm2G88LM1LQA98bATLSOJzFajmakJWShWDm1InUE7DmruWj/WWK0fB2DQPLmkkfLt+5JKd0pL1++pagIfGHLWz2VKNXo6KCBIDJaLbEtyWByMVAXgt/f1yOCUxH8ufYnHl+BobK4fccjA29IgWuxHbH8JBJhFppX2W/TOHXu2skyMTA4tPfgfg7rFjvtm5tjNCNghWSWxQn8GD8pLEF7gAiovNJxY11mFk+bmFsQFA2TbsklzS9A2+pnpf4+hHgG8jWvtHbr223PNfNnvn3NQiQ2OjlWUyLUF+kpo8sWweyzFD2F5FuftZXwbmVd7NYt/PN9ramWnuaWFF2qrZeiPOUo3PRzN6mkkKTNADACFANmylQ+hMrcfvvtJ06+SPqAcEx4llO8MpD28ylTIaaZtrH8UlOGdw+J4Mb5pLtNbMVZW/TnpmfIp8IzCU4YONYWkhFCg8G6tvQ17lpVMmS0Zcs0NpGhMD5CJHZqXfTBaDamMAEeI+SZZz2wu7OLqMx5SUhC3S7yfkxPhAe5IV+4JCyKFagWioICCTQuAmBL86Ejh8Ef6Sc1d1BgOIzGbroxN16jrf8zSXDXCOodCVSZ9vuQgKk2p0+f/cH/+IMf+pMP2v5qZ9flS1d6u3tZfq3NswgiT3rrmpmdDWSurff09xfIG8EY1l3QxqaNkanLDR1du1qnG1s7Jufmz1267CgxKw4ixI2PXe1o7WTcltlSc1mbXRscGH7hhefoaYzGS8tWmmf56VFK/uC9f3Tq1Kmv+mtf9ea3PGg2YS4mM/TgbgT3IAAiY/SJ7Fb8wAYA65CJuvU1X/M1P/3TP20DOfyhk1bwqNSwGUso59kiMHzz4GJqMxLaDyCryzHi+cRdgfpI9kfT9+we9pNbp3QNUA7shXLM+GwmNGQWQQoN/WR6Op5prc0iz6BLNr6wpVgjnN7LYNbRwSVUtLuuG4/xsuUGCWcUFaywZ63Mlyw1Zb/kUldnD/fWsydPXGECPWKbRdfr7rv7v/3GS07RXloRNfPlNYAq2pS7I9pfZgxKdulLzVDhoI+6F1GmvFma58oSooPmWXugYSDNQKEvgcbSKtdn3fRMDxCnCHsA+eGhWPyr9R/7Ig6j/oRuh6mdP3eOJ6u9C8bLiiu3hzQgBDx/YLlnM1EVIK/eaLolQpZnsC2kYoOWqbS2OZ9WslhSanpNSU9KYlGjTWuIQB9Zp9VKV2B9qzrLczAfZ21pbDdbQZgRUQpRFYIxYaD35qnBj8EiLckP27ty0CuFv+BP5n/49bqTyEQj7+kfEAy+vaubVDW/vCLux9zMBMVdm3yrJewf6ANE1QUzetdSkEpR7pA55RZm4B6AYAeVQJVOvYo6RfxPTz87zdokthVotePbc0vZANoWWD/jgQZQV6vTYW3S0MT6EANPCC2KWnxDyaQ5JcaDOTI42CM9Tds2WlJMDyXUxK3BKx2Od7a39Q5LqNIsiV5RbMELYUX+iMDESWfHm8/0X3mIhDRNiOUBuRdoMHhJ7TK0Ig2QyBYWHF2ilO4ucr8drM0imViR11CnR1Ey4hcR6T+XJmd4wbjOkM8AxEZCmSwV5lVZAJcsg1e/EYS/WkNMmKb4ciwupy+iNkKrmVCzOVZghN5/mI/6ArfA62W1oDTGsBr9a4mGvX/foaNHZubn2FsECgUW2QEwjd4czO3z+bM1/LOlgzxUVCy4sUuY1efOnH3uuee/57v/79Ero0ePXs+gMT0187mf+1f6u3suX75QywkarC43rjRbm4WxmoIK6BfTPEGbbFiJKQ/OyyNn55Zm2FzHZ2d/9hd/UUWIioNlVARotDp0f2FuiQmtrbnNYNjY3ds7SBacmZnr7gY3avX4+o7l644cO3Hi5C/90i/NzE6Jkr1//15A0EKcw4YDWIEAAXj8p0qwCuhkSZnFQkve/va3cweiwZjYpDMjbKi1RC9CHspqsM+RgCpz8DXAFfS0vNrYvBKczCTIUjxfINt6ZV4biFhg6lYuQhZpbOdF0jUxM2E2KFwzCCtKVj4rCsrY3Dxfh1hr0dbF2XkAF5nu0OEDDC8ryzl0D/lFChiDnO7mW4X4hLLFS/K+u+76049++PyZk4ePHr3/7js/+KEPOCeFBifW/KvwocphtI3I2YWm+1Onnlc6UpsBibxlhCzY39DelDA1kCF2H6cQWw/NyhQPN3HRs6oq6JnoTPLAlrb2lsHB/lh3nPXOwdeOMzCcj7ZNOqUQ7HbK1ciII+SmJ6eo7/v27LaODK5BXv/nzwYZg9cxN4ncF0Eq/2uq6V+j58pYEU/i1nNN2X7PW4pL6ZFnxJbKFompYWdXuw2nCTPniCNdT00NO4iD/pDElRnTVtmaMD8zzRDHUTANMD2hCwFxp+hJsdZGuCumFzAMRTdRi+sR8j68Zw/ij4xgA6YEYzkj5+T4VWimOhXpq+c4QpYBBUNV1IHQAFwQnPOTibd4Wnquvatddte1CoitFH3dDoHPfM5XhaZtL2or5VVvP/PznAimuZBF41w+0CwXUYXMEBcYx/jEa7jY2sqBGFulqGb7VT/3tiZ6UBoGa/J4pRbp7tLrTxZDBB0yKT9wL3Tu1ImTh687tG/P3vHmFnq9EhARX42PjAIo8OANlQcox7eWEOdmp+WxRIlz0ClYZGYW5s17OqZmQ6i0A76lZdh9/uIGRT0oDDgGn2tGTfrWVT8kxyOeMrHA0oWvMeEwdjXs4iWmGZ0d4ZFwjvmMDZcJIIsDRemTXsaN0xRnYgajEgG8TNQMsnatJ8K7rfkH9+0f2r37wuUrKKwI69ToYqiRhxaQnP53FVW0PpaC6+Nf4m6iJxd/XfL6rqYzp+Lt81//68/sHti9f89B8W4P7NsjhK8sE6NjAAtpATmDjSQQWxaXTADAQx9ZBUbGrpLc9d0yjDl/8fIFOyMcELhv356nn3kGS0Y9mVVR7bXlXYcOHm1v6zZPSMdaMDc/Ze1hcmxEBqcEWgyzbCYEmQAEghE8+MbPue7Y12Chly5feOQTnxw7epS9z7J+DzWwuxsDMJ+vXr1MmtYP1BMKkUi0EG44o/xrv/Zr//k//+fOG8g8jsFZHhuGWOnJZxHuyPKTOybpnM71qWIByNS5YwQ1O1LtQs6xQODPnDtzxx13cPLLVs+1WEfxM4NgX/R6506hvtYmxgU6iuOvI0JZMsupalbNHHxzdX1U9UbTQWAE6gF+VqNjp06dZsLq7um0qQieBx+vOdmq5VpO46brZLOCKNkIxi2333Lu/KmHH33s+huvZ3OHHk88/ZRDWn2ScawXUuJXQYRYnSUWbJYn2F6QBtIX5A51cJUVuhB6bNi9GLp3ab+o/CYRFwFGfOTYKz2yvpd+Odi2oeHkqRcj0+4Mm8T2TRMWf9r5oYMHzSINHhgYHOkTLUS4kIsTo+PHj10XmqlFiqjERJOy5Ot8aE76zfadY6y2g4RONpIwN0he7dnWXZs9b/W6/pRiVqebCcrIdBOTC8y08kBz1fi4aeO74niJLLBjJyTdO7i7q60N5xa0g5sIZ43xqwu4heMKQiBShcZRCOI2EETh8BN3DqYd7UO4djBbA+uR64/NQO+evqHhIaMOLVhEdBFYIGHQnmbME0YzEvLFPg8G3ZVYxYoHTQC6liXwUANxu7N50FKQWpWdGb850zNetdflbeD42gDagtRrPQREm1xh+/Nn5rX8nfVvqAENqh3GT1oP/z8IYf6jHzApZ9kuifsvJHZUPIW6tj/4qlbpvvUgg7VOfTc2wCEdOGIaY2BNEJAY12lnHf1tlG6nQMzNz1gqOHPq9IG9++RkUtQOQofJ07J3r2lG61Qan3EQCx7ztkfTbcpgglk839vTLxp4d0+fnYaTIgKS13YIFSKwa+YwOwSc4ebO8m6sE1DWYhWaDd0TbC4LHpDGFe2yrNCWPY2sBAsRDRrShUYx48l6szOo6YqT8AykATMd15YtKA30dwuDPDIxaoGaMZGwlH2TKVMLzDKRTZvjrJR1yOaZ2enp5ZXXPfjG0ckpDWazampup7MIOmKe6LfCM7OhKcmuQju9hhEBKbSz2l6pnbHgpGUISBdpUtnvLo96kCy2eBvpKN6//qu/+ZM//l/Pnjp7w+HjrNv79x7QTls1zU4YPDS898XnHl9d4iUC5mtUGWYcwJ+bne/o6rPqhYcMDO8+cfIlQl9WHJsbBvb2CYdg1Zu0a3efhRmA4gCzd/eBg3uPCKkXfhuo4p6Cts2MT42IIM/5QYwGwdbAZ2ry4kB/65e+60uPHT3iUJ319f4bjh3xSeE9sSlff+MRDMAZZdihOP2SSKoyMFTorwuetLU03Xjsum/6xn/4/f/xB9sOHSJP8KWZmpnU8d6+bv6aCBWCyyi/q0+UC2F11qxrXttheTa7MZpbnXDiZKt5EUZNnKn5ab0+ee70saPXZ18Cv8C2jtGRMWYMJo3m1jYH5zBi8K0tk2DdUtCF82eHBvsZl6mABgxJspSNAgt9MDE+PTS459yZi/Dh9W98vangEK3+jj7yPhphCllji99t7KLxOrHq9cAb3nj+yuiTzzz7lje/7U1vedsTzzyrwcgMFuUEFiNuqhpl6x88KYLCW5c5v/kL/fIMUl664wfQHBatLmYG1Qvt8xYwCadZ1oq2k6tO7Tyt7rRMYf2GAcopAILk4FXclA4eOhTl2kda3dx++MiNe/YevnJJaMPzn3DE8d13GDKSJWOdSRrPS1FjRUnUjojUu1b1lM5Y7KsUgmBI5rLG5wIEd7hd0z1XTuYB9WTH58gU5HfmQPEOlk4CcJQH4kCCCk5k+jhzMubl3f39wshYWWvaka3XVqV6Re4UtoDnaEsz3s8iZDcGyjM3MdHZP4j6Y4OQta3Ttvb1yenJ3Xv2dXcZvfbFqZ37Dh/Mfo71VeILciTEhYmTlelyHAjDnm/xfrNBgD8oZ4iFy+PPJhvQzc9Od7Y6nSnKH2RiscwoWR3kVUHIyuLzDmyWtOFCbXQtnX4lNa8DpJcZoM0r+cqFtOUjP4FvkwcA6GbGJHveehVhSVnEKBfcAlkpLjmkG670sPArMPDgGGb3VPDKuzlT6s1tE72Sx4RVjtKke1AFvKx51MImJ48Wpe5Ul/lMgsO6SRlGVIhBmiZDcHgAgDHqlcscMM00SexB/DZkcWVlfGqSTN2WM8gsag1yFBWY1mCwZ6hfIpM8Wd7s0cIlIYx3hmhKVzIvNy3ZflUYaSpY6HdpcxhJGRjeoRkAHB2Bz12vjOGOHQJkLU+AYrS8CkZutgbAuSeINuqjRrKDTrB6PXD3PfqLpYALMSzC5rIgkuhgpoT5lXWEzxAB9Eh9jGmcF4BdUZrK+9ADGwJA0ooIH47OUDPDDx+cRx9+9Ae//z+97w8/MNA7cPcd9zrBZs/uPWYpe47ugw+G5BOjqtkaXMZrx9TENH92iHDw8BHpf/aJT5w7f5YPEbuONUliUn9/LzGY0cbhKchIh9OxGxodmz67PnN64WwDcZONOcMGHSObsfyI6sSgbxzGR0eMzz333vmWt7yR+Y67Y0db/Av0CEr2dAntEtfePXuGjR3JqgzihgZp9JUKdB4MJWjTMmkJ7373u//g9/6HUDpYlHnIiOFBNxfnFqlohjoMn0pLOciVeYEfqzTQZurhb0kQbOYG3n767Jlj199A1rNKL9gNZDPhh4b3+Ay+4QqkJdBOKSWKOHpXDmhTmAufJlnEYwrziK2gd+D8+YtPPPHk3fdQLHY6IgV9QwO0wJEDPjBqhIIdtgqIC9vSdu8D9z/88MM8gm677bbh4T3c8LMtKY7I1uRE8g/lEoyOqKrdG0piMJE8qQe5NMs9wkLM7rmHIciciVguPyFY4Q25Z8VWRnhu9FMqJDQzQzQpdEvcsnv2De+30EJ0UA5czVqwzRCr662ZQG1Du/dYCxbE+oknPmUFhfoCqrpljIouG82HWmkA6LbQ2oD6ZzoozaVN9aGORX12T9vKKw86Z0OvjiC0BDg5Ab/2ZsIxxdFTs+5athNGOSiy5nI0X3PYRkjuQNitY+6Jg/yvyHetbSmVQukoPbJnoRFAp0wlY1dcVOzawJV7rCcLOc7JlZkkQDYQDYQkWFHaleEeGB4Q6MwugeHhvc899SSGHeQvTsDQo85TxfqWlgHGOlJgXvqeUQLvzfEr/S8df0VKSc6twqT+3P4M2vWnVtXLT9cWnF/1SSOyg+yiYf7DlHY6tsQll3pBraiOqY9fZSp1oNWrNy/UEnW0PtS7uuuDZa/6bGDKuk2EkTpsoG0rIfSSwed+aqVjdKDOxMQk5Dlw4BAsxAaQaIdKm+RgykGwvz/bx40ikVNK1BOlo0n2Y87Ot7XPx+sr24bsS+x08B6CuLDo2AoSzDVDSmvQQ31BOmLgM10JH3TRTAPdNyyFuov2kzkQ8lC6ULofAZ4bIkNJEn3o7vKJ/irKsXZjk9ylOLpE496CRqhzu5NJopoBweT4xNTspM0khw8dvHR1xM4q4hp5obd/kPZ65epVklOmY4ViuddZpNc4dVOck0TpmTfebLl6yjKL5BWfmQnOUWBp2kofG5v9vh//vve85xfnZuYtsA/2WcQZIvvbZoUfgprONe1qhv3gEX+GHY1zBJUZUeBnp6ZEohQuZpWr7gsvnbQJgKsiVYm4NDW1yKVjZn2S/Y2JuCVbYZqtxZFrTbSmziYsfGV5RuRTEBA8lAN9QsK0NiqBIw1Pm1tvO/6ud32JaJgO0lpZdeK2jUjz4Y4dbZjK1NSExmMVk5PjKB5zAXKJTcqmy1W09NeeMrHkwISV6vCho1/yJV/yyY//2cjIFePOmqQ7dmnJrIQytnQjI2I1FeFLJCnDb2YaJrin/cXCF34NLMJCeNW7r5eJ38DTWY2grejesv7L7zC4waF+vfMWiKxtsCnZ92B4JSpTkzQMb7MBqKmpfWJy8dlnn9+/f9/AUD/0SKWsc9Atu94DJeRYxSSAgb5+zIxRBaCAizHq/e9/v/dKg30gwEm9/tQMfcm3266KJ2iYNOipeR6Cu6Vh6tjKW9G8/NTmSn/Bx0OIgLtXqoTqYT2JUG2nK5QL2+hs7fLW1LDX2P4bUpLGUKHo0/fcf9/TTzyJsNzAbCJiRJHxFWjOEosUUgHOvVfhwF5flRrrbEu9hiDlG6c0vE6DdEMJMBaekJ/cvc3MVfLKkqLYVcDDlnpf2n5nxrEWMs4owrRVTvJw7L62ZglfM6KXqMv2/nURIHJySSQbTM3J9Ct8uFu4ZnX29ei1Hc7Ts0FCiktpBZ4t7kVQ1BLIbbfcYmcS6o/hoSVc1WEL/HRqBnXeZwmxJapEOe5TjV5pvAdlub/mla7l7WbfX5mpvNpI2v4sKZ9tSZ8li467tgrwdus5do/6TU0q3+a1B2NQL8/BgzIYtd0ybJVYHwhE9cEdZLeeoYXnwvegVb4KHhQZ0ysuCJ6Vb7b7yvDQ2jBVKSYATnDrrbcKk1IQPcfYInBQyvRG7Mj49D4YOmfxdzaksJGQubQy6zA9YSanGnsdddnbQwQzMzkyK5Zo4PgzXC0CV4gBwo30X4trU2mzemv7NVIKZpq9HD7Ia0bCoKNXTRCH8FXIvjeBRiZi4OYtWxmlDkplwTK0htzAzWlOBFmX9pvY4EmQJyb846/7uvvf+Ma3vu3zhvfvp8DOLljHnrOexCyQ0lK08uN+5LFcCUZo2hXNJpIv4JCFjQs+R9zo7W3N8a1N3UjzH773/f/P9/0AmYPH83WH99xw3Q3CFbACO9de25SmOy5dIBmnSfNLznG1R8BEOHfm/OlzV8bHpniLYIzDpsLuIZxvbGIUqHu6RVucuXDhvOVtUyLzKsSZRaWN2DTQP9i2r2fHuuWjGHPK2XlTC4tsXlmfoWKgqtpv2fCmm4/bZ3p15BJ00wyU0dIuZOgf6Aa38YmrWkWEd8igDlZslE5cQGiMoHr91H1Q9SCPkLy/9t9/VQvNTOmAo4PuZPmawb1euq9G3pyyFSFDQPyNxWEVcUM6fe70DddfT4kc6N195uRpXDeDa4ExUfaboJNsxBTTQjrMpOrb9izRT4UnM5VnibLiOMB59kmLJQ8//Mib3/ogIWZuMbsH4Ie+2JLkqittPtE8vb7zzjtFqEZH3vCGN3z4wx/m2xyMLTHvin4YfDD21hk8fOYlp8TKDLa/BY2kl6umBwNKIo4FIyrdhxT1LWLKIEk94Wk9PX2madd5E4oxLQpWrKFdXGsUpv2MgHPrAi20zs9P33fffRbSxUblxMHMK0Nki0JSzLio+8WpKd0usKpN2mqP/PW5pvtwMyVyKsj6aaxdXgXIy1nFIV0Fes46bUv4ANOkuWlXC2UtAt/G3MxMKVJVvi1mN0SAdRgziZmLMBrLNMN1SiYhIDJd/b2NM9NZ5It0mHJqpUpQi0odDao9cFt9bA5nz50hTjUNDLByc66sSJi2JmDGEsqoHO2sENgqcDudV1rA4l2pbgsUf5mHCih3tbjqz+3lbD3XB7M78V4z9ARz/zwU6OdLjurOvkbDQDmeWxktGCnrVjW1TX7WmabQ7Ze3RfvaMGFXKGSRhUIRydtZS+aG9VXuzEE4cmtv3/7nX3oReplIz794gtB6/Q3HnZwVFaGljRiiAVMzthxlOxITkONr7c7s6cl6C13b3gJkFKZReijOV0dH4UGfzcMDJOtuy8o0DCWbbFpB6WBtINBFMClYpSP1AjsEHgCl0xhC3P2Mzy+9d6WzndhS3RFC931Sex1kWlrUr4LhPJ2ZFFKenxgbN6cQER6ZAsi4ersI2AcGOk8++fSjH//EXffe866/9te629vOXb1qa6uDmVS5AV4r0eEBmZ6hfbCKOtW4S0hFhTsfEfe1LoLkUYo0WBDGj3zk4z/1Ez/5oQ99SFSyuelZ++buvO3OY0ePMYCzMVluWV60Zd8YRx+zvrNzOfzVEuj6zqZLVydPIX5nHRC2PjC4R0z/jvbOwd3DzkxnUYnNxGlZ9gtOz+AbhGuSDYFJsT3dfbt372kUOrepw3lSYuiSC03elTgWiiY1baLaBuzwcI72L75w4nu+53u/9Evf+ea3vPGWW24dGxsVbcXAZVIVHZGTCu/zMLMsU8UcpGvGhcYDkbQVzE2kFC3sfbmwASLzXffc/bGPf0wQWRcxwt0kNA6+pQiEghQHUL2HCMy4oDc9N8UovzYdnYk+RcKA8eivz5nLoCu/JzpCHWVfGVB3EPO5wSeDOhxBE1pbjUyGoFxpnk+oL0trctIPnH58+bnnXrj99lvV7nOLbfCTJML3Fkbh5uzIFCxBlakXZA/2hDvvvOP66697+ulnND7rT5wO1pynFJshmCAcG1gC1UKdXuPShq3UjHmEko2P0qOiQpQ8WyXJLlt+tre1B8iL/JUyfYk9OqqzFkJYHW3Z6+8pMdsF+8oEiXOEmG8j4xPD+/Y3Nl45ceqk0NZgUszA2ICZmfoUFcF41XQIw6uX9LQnkzF2Vw9SXIUg1SeT1XaZOCHVt+CM/oMDORsLpRazaCvYIQG8ESxmUiiRXemGDGnXFwStDl9RHcRaCixik7et2pJAVztTkGPptYAwYsGfqqF56FsoYfGm84kemfYq8m3ER/Po2tqVS2MJb7OyfOOxG1468YI8yEWYSmyYOR2eboH76btmaIMubfWxPoTibPZWSk0sPX/1bSvbq15sQbI+1GzutaitArce0ggN89tVH+o3WrmVuJVBZoSsVrlVdP0pT31w9+HmM3u29A3DoxnoClhKXR4yKmHFYekVKOaz0EDu0s1M1n+RdYV/IN5Kkd/kDGTX1iwPjF6+dPy6Q11OIu/rgwQSndJN4KOyWgxIt3my58zSFR4dNm60tnfsL+56JL5QjJUFZuHahjSj0AhfaaSf+Z8cz8YZq3iaqFijKzrCisOoC5WqJpoKCl0GR1/xEMWZqKMOW4wSUGR5hBv1JIsgMaBDFbDjpI09jZtab8/c0tILTz31kz/yI1/21V994603nThzpr07cM7ZTzE6VvnAc9gNQHkVqbbYJTjvC2KM/tq8QyB9+qnn/st/+S/vf/9DnPxQ/7vuumd2ataWtaH+IT7vugtcdXTq+OZeeJgpQCU7c+GK81vOnD5vLf26648PDg7jtGoEfzZbe93Y2yccBZvjw5aRPxOeYIoNGCxQdc58p0P+SlwE23EE01V8xKvmNu5DlOwbbjx29uxpU4G3z8jVK7/yK78m6M2Xffk73/klX2Q3Or9SjJ6rD3sIau4Sb5nRQgPMC7TS0LC3qIuZSGLNUyZjpGZ1Aew73/lOr9jQsRmYEypZcBKKGox6GXQP2qnVIOnYRQ7EitUdqwp2fRp61qfHHvvU61//BvYo3MhQaBsN0moGSUUJFsBVZ85CD9hERsYASi0RFZkRPAOpBiP9dNfW9oQ+FCfOVzfcdL0GkPvlNElMQmSFhM9nfVKQuJ4ejdFfLrD431vf+tbnn38BeNtL1Hu9Uztairjw3yBTf+al2PSaSW/zSsrO2ILrq7wteTQDjhWyU6hPaG+uZIiCQupaZf0xUwEK/Jn+gBRJzYmbV69QfbAlmp+NDtxG28vqJbclSt7gcNaZTrx0wikLyDhZSwnQV70hF6VtHpS5VWNtlQzbUzZ74G9moVcyEM/xdUDO+K6vERSsD5t6YMiOE58DBLrFSQDBE8S9QKxYMniBkOTKkQ/FAyQKIv5hEJWMuSAUwl5ZknHQDW0HPvCMFyBUpfLU1qb9mZm7OKlpgAVnp2Cy/IhNcODgIWPHFrrSuUKZVq8rECsGKBRDdcqRqECXckqPtvVy87HWsvnrL/u3lil3fdj6ufX99pSyRKP+ctUc9bW6pbnXn561WIaA+5WXVxJ0yb0UEwJaH6TEuJztqCmnphOTjUdFxMKrm6MSFEDA9dGxCR5XJC9AFB2aIZux9eDBw5RNShas0gAtqXKiAwHtFNs/zOQdSZMFEJ2luXAta1hZt7Oxw3LZ6oqZKSBB6yzH887BqK52izfwFsNm4ueXxc/MZxIMEkv/C7kNoumFZeNYc4jteoRbCJZKTIYQXkR6Lpha78mggJ2Wp+KgplNgwkTNYqn76tJ9tWhh+n7NMdbzfna3tZ145tnBfftuuf66x555+pff87Nf+tVfdctdd49PTQkRUyCtUQYzS18axn+Z3Uxd5B56jC5rJbpFYv3Tj3zsv//3X//Enz2sW33dAw7netOb3mQj0vTotPPAKexZ7CGT7OIDM2clUXs0TGOUoAbGCmcEfvrTzxCSOHXsP3CIKCccNBJmYxc8XV8Xp0H42yuLCzMk0NaWuGPS3Jh/EADzGZwvX7zc3bW6e4hxL0S/lf2N46N8K9wKZ1iDOP+IDs21HE+6/77PuXjp/HPPPnf+/E89/viTX/VV77r/gXucEHDy5KlYfbpjMkNY0/sQL3dUPpHdkEKzT4M94PsMFABS10J4FlHbv+IrvoJ8QHzmO2AVFyUF8FpOBsvHsUaCx66FMoJK4NtQh4k+ZanaAjIyJdjcwYOH9g/vR0R0Ap0Q4NFQ0hOUCSHLeQDoUQ4IC4Fu71SLYXVXmkvD3LnMWE1ptsDb3Mo96cUXX+Jf39kjLIddqbySLAlkGOA2IgnUqA8Vy9AIIqnwt771rZYBnnrmKQ0zGGEsKdmEUs+rBf+qB2xY/ysd36IyUHbzCkgrmY1eBPXhc5228KI+xEAqMevPJYQcfOYLDcsdAIdiYj9IMEfW5aml6bldUy1TxO09A0MMU2KjW6mbmpwEpbvuuffJJx8nOEKSxF7AQqj8YXwMA6Ghateo/CxXqi+YudnSjb8lW9HFMzcDVYtG2VgnfgPFaWcDczuPrsxBawC0cERgPV7aylaDfS2FDoXxzK3OmaHWtPgTOfTIcp2fZldzFw7WRvbSeEs04zNTxH+H7GibMVWjAQIEnMaARtvYsdMCGHeVky+9RF88dOggsBBKzP7MVW5/ISkJL2+gMtGMcdlaqyg/t3oNF7eNTPqrRjcPepd/oUvbLm+2sXa5X35X3dxLikJKORuwfTlPyNtGeZGDgDuNKyNRv6mfZRzKK19KgXke2Au2F7T1LGfNVkvQw1KIiAkbE1hFyLSKagYPUoC18sPgVgnAS/axFZPgIBv0Ii/zEHWXk+zvK/PfoEb2IVcWLaFOPOUQ0zhxz+6c41Jpa5i7pXfkC+5FVFiLGLsyO+ewCBoDCqOo6RJRDsMIvS4tS591s2AY9y5CBBjhUKrTBpqwhmot7hI0ZDMLKQkM3V0WkKRYh1rdkSOwzZ6KrACCMJEIkA9Fya93zsoYv3z5xiNHHIo2PTJy/LrrRudnP/bBDxJN9x48pBFl2GFzIShF2VcO5udbjReMqL9/4KWXTn7ogx/5uZ/5OUzOia9o0O2333nXnXfv33+Q3YgDjE0OfRxku3ot3RoVrgsrTcsmt/meuA7F3GmjrJWJc+cvcRsdGNp73eHrONQSsEjfOkW8Ms9tCgNA+L28hDbtoMEg/cPDQ3okD1HRoSO4vAyNwlvu5SXNODvv+J5shojBunVXK7K4Nje7YoMxZjw7g5l13X/fg2PjV973Rx/+1KOPve1z3yww3PEbbx0ZvTQ6Ms5xnu4MVqQL/bVEAUmToUypAAEAAElEQVRCuEIssNqsPZQIEMEKr1AeY6QBBOd/8A/+ge3Bjz312K3Hb4MtRWLIh1sYq82eaQnyT87YIrCoYJhmcM1zOSkJzho7efLEoQMHOSwVpMiElsFb6Mag6NnUdgcra/iuGFWLpFzrkqKFiD7s9S152QLA5MS0BeEbbrh+cHgw22CcrtwVsWB5bmbh2oKJBqRIpx75HANm17r//vuZFyC+wsXqkg4srkghr6ANG/3Lqw06kpTNjlNNNhihRBAoZcBGYkpIQU0okkzwWQ5dI77VIVak/NKVRj7zDFyaTUsGYasaXEUnx8bZfLDH8alpRltgn5yZvu46u/xelL+9MT6E2ps5Uqg/KhD76mYLawvc4bnEeqUlm5d0LUizE7ueICHAA9/c5i57LMhe1obZdM2v6FSuOImBJOqelbmYc0ljbEJL4vhatuWcvbS2UNT0qIMULA4SRBsh6pmqNMz3FB4DoUJFBTGyHygnA+sGQKBoj3zyk2biseuvJ7VcPH+eJKnjZBeCL7iFVBfepgdgWZ2XpKQH27BxK89mR/N3e4bt6dtfvSoP4NScFWjuNcNWtu3AlJPs1qaVRDwvYJW7EpB9f3xTTJxBAr/oOVATqmxvSsmfG+hspW8lesiq+rVYY2RAZPFqIDDF6L1EazQF1Z6byUKWTdj4qsGLTry0zLYIyUwYoMSm0cqR+RGJGC/1imxpxhobZ/NcuHhu/959LJLj8+PW3GfXV7u7WO6KxXYxJavdqNgLJcrZwvzs8sLs1MS4EGyu3UOUjCXKLN0i/hGwIPvFQ+t9qM24PdtApAPhGDPt4y/iFcsSvzx9gQb4fGyIpY9sLM6Sd9Q1D4SYy4pbcyHZUUURmZpNCXQjOyzDEmamY15otMdisbtVlJuFh/7oD/7W131De2fXxStXuvv6Naygi4oaLN9qrub19/ZD3N/41V/7/u//QXEdcCLuj+/4wnf29Az0W/QYGL56ZZRRZeTK6O7B3Uw3YgC0NrfCYOZ78ySiaVlsXF0Ml+VYcuS662b+xx/uP3j90O59HV09i0uQP5v4qBrI68Tk2JUrl6ZnWCc6Wnpw4h3TM5P9/cMMdJ/8sz/bM7yPCnJl7CqljdnBau/F1bOcuJwAYrv00hrjdRdKNTUzz2efkba3ZyjzkDCx3rS8tN7bs3vo3mGF/9qv/raVw2/5Z9/kVEee0/Nzi+YaLmKMIGHMaw22EcSAYDnZHSmGtIUgh0N7lojX71rZuf/gvr/21//qr/7qrz77/NMHDxxk4oe96I6iALOQ4wQgmeO6VY4z8nYxS9Aq0vE1hvihweHV5pVnnnnK6WAYLX7JARwASbKyye9OfHc8lHqxt+kpZxIwKgjxkJO20B2EHnWuKgjZ0SSiWKADdsa98PwJgwLyfEntYreCurg6b0d79j5YXViNa5wwZDoFDc2Xr/u6r/vjP/7jIN7MtFVHqGhojAt81Fw/dconqq6Xt+Xb4DDQ+VAGF0EYfS8SiA8iiKD+UujN8myjSH7AetQkRo9aVMmgqsx0orF7xOmyFkbM8hPVIEedPnvWYX57du/Whnm4anmqpfnuu++mxNCm9h88ODJ61ZZafV+entJ+zUsLs8pWBOEijKHUaqqXZumaS0OkaJYsiAQJpMuu7mxxLBHo4s8Wh4v0XN40HvVxamyEd45BnAVXLFg1ElZUG4dy5VA0tVMDCEZMqd27+2Ytv6EyWclTlS9Rf6FfGh0y7Kh33TFtESKf/+lHPjw/Oc3iby4bRNELTBb1s40RQI1Ob3+XQQck8EUrFmJs2EVg7WjubHR8XhF5Z6YdvFHl4I3lEI0BcwJO8LktxymDre67b11bI/Kq9ECy7E6tvFkJaIWKtvJ76xNgrB/GIiFJfX4DRCoul37XTNI9+77mgQvS69t6r/m9le653msi8KletlqlV/Wtu3SXYfDKXf5UAfBhrIk84ULT5TSWYM26VycwFYHDlgXV4ME10seCcigNe/aY1e1oQX9Pt3A0pF04wN5tx0nMtjyOswG1FSGvR7sJ2q5Yk9mFgZvkfIQo9cwjpn1oYuEBdsBzI4BqehH9d9MUZnrTMcn4lqQ4xjKJVNCpCuoTKp1lrwTlGBLf6qOf7EmvABqGh/bjTVFXUxqh318JTzzyyOvf9Kb+zm6zlJcyoY8N3dYz/xWrS+vTTz/5Qz/wg3/0R3+E5nKnefsXffHRo8cO7T/sqK6rV8bOnb1gAMvem9idrIqk+DIQmdPC8wquJ+a+wzFQ2ZVVu1R/7Rd/6cCh644cOc6WYvJnOW2XbSmroyMjly5dDKtu5ph7oKOrdWramTyzwaqmRg5wn3r4UwwknENMbpbuYmzx+Sq5Hsx4bOGTln9hGb8MaxUyFFgxhxI84bU+J14pjnn/fW985tlP/+t/9R3/9/f+u337hq9cvSCCsm9dKK9JXNcDSM1ZzEMRConUQQWWMmGRCRfjONQ3n60HfOQjH3n66aeNVwxKJYwBxk+tJPeAG94P94wCjGzdkbngUhRZ28lluIPxeunki4OTkxwJDCsbHrNkJYIggIXAn/hL5KyVSHwGGqgV4kMo7ZmjZOT0JGbiBG2v2cbV98zTzyHON998HKxAgYo2uzBbHJAzF5SAtqqitoed4e///b//Hd/5HYP92jKlC1UGT/H+B+g6uIW6A4i0Sgvq5/UnGBLtpLhALwAk0GXu8/CoybmX8vwG7oivCLOU+snWPfk+46IZ4SnsRBblueuphFnGcpV659dWH3jggedfeLZ1ZKR/wO7oUYcImlZ1OVf5LsDRpM8o9eUEGdhqYl+JNTNGG+Te9ITeHA+MfOTWyJmi1nKjK9YTMy5nOGFOG6e6wxC9wgIgCryKEFGOEsHSqlgQgJQFZFaglGe0duywgGfzMwPs7NS0XQ5nT5956oknD9Af+wbRJQGRHBkG69RCRoBsYlIwlhjAmELR/kI/Y00oBgOdVabCPdQu15SXu1re+qkxerqVXjP7WRFjK33rwZT0LFs+LEaLigzby6/PtWoHemdTrh/Aj/abCT6GOoHAZuNYwgPuiAomdpl4hU8oWmaXKnXeg0+2mpJ0KawnxlX+1FG6rX0Fyfw0SIX1pAT5U3tiudjEn90iLTZStDZxocVyB/t6HfGDakNHNjuQZclxrsPM5EhXZytNjtzX2dzOGUU2MMOxc0a20F07dtgd1bwu9BLKl/B+ZFAZQJA2kO3tC3NIoRnVzYe/rZWhAet2ggTaLYQLcGgVgBDl8aBOB2Ot04hnezo6IRJIYTDmejhW6Xo3mXdupr+327oonT2i+J49LCeozyZvLQZoQ6vDQFT4WFlMDp2w3hrquLbzEx/60NDAwPFb7phamMcmyBfANTU714+gdnf+yI/8yE/8xI9p5333PfAlX/yl99xzj4iezly8fP7q4tyC3V5M0nbwPvX8M7QUxhk46HO4ruw4dxWGJEU4VpZQC9G/+bu/x7fqrrvvw+yy6ms9gAFtynuqToKdMaoI3dPaYb/YwugYqXuVhZ+z1rHrbxSKyfIynWygr3t6cg486FTAYVkUfwTqljaONJJbKOjIkhEpmBVBlNQRQoMl7dzJan/DDU4HOvzkU5/64J98+PVveKATs5kaN9YmIewj6vlEs12cqIKQNH5Tq5gvSrFAlCPANBjM6VxaKJ3MdeLFl9jtDQcanW3nHYK6d9vfQNuL+gaTNxc5pRhuQwOl6UzrKzt5IgiZFU10fbWlod3mMEgLpDil4BAw10TDbj3PzOQ4o0oytEHf0WGtVRrwy2kqaI/MJcL4+ksvnPT+xuMOEG5dnLePuslGQPQswxSg5Nu6J5Y16PM///P+4A/+wJq5+ErQliuXKnA67a8ilMyqdveHGlGfwcelAQwa1JHSithcYngplcjuJViqETqWpnqfYiCpROQyd1c5waLM1K2Z7iGfuQr+iyuK//F9XKW7+3BnT7fpQ5BlWwd8q8GASQwixtG5RflYWbYKo5vpaSlI/aiFYoMnhYSkKaU9aQ3aH79OJCmLyjkZmO0sK2G+YfEMeY3lNJJFspV2BvkS+SGKfc0Zv/YQa1UQQu2CgQCN1msVVy4fegVuMEFnwFNIjz/76J/a2XDw8HWPPfooFBIHqTNmz8hsJMcotk1N5iZTqmbotZkNAmqMwm1HNWtEMbsqPATWn9I8d3UF3OUqvS4A9aS/pevlsdw23zBIvJy4+RR1U6T1jS0jWXZWEcjAhO21bGbP38aLFy4I56qHEQ+1o2zKZfSKKaYMSBCqoFJgzA+s8ENfKtElzeUB3Gq5JXnjFcGCW6ReuHyYPxmnQLYUqYaNcuqDmsDL4Q4EGjyAaxnuyvXMVAQ+wePI1aQ/EiXgCsEm785rLG9tdIII6UT0NUbYpuGBfs47U7MomGjRSzDdTKT9Ec+VrKlVHieYuFAHzmtcQBLWtse+Ab4McQ3UQgzfswbrYbwLimERBdJ+TaIjkCNQNcNsnMAJuLs726+MjNAnhEqfnphUDilDL5SWq2JkUdhrlyNlbQyqgNOxzHMwxBVX5uY/+v4P7B3eJ7qZTXiQBM01hRrW1v/Nv/52p6AcPnLwb/yNv/WmN73ptltuTS+EsSkLpOHEO5pQf6yEwGvBm9yty9rmCvwLLRCLR4FcKKxqPvfCc499+qnP//zP7+rpy2ZqfJOrX2m5Rlq6sIPBUJo1Nv2OTY5cHRsVgQAMLaEzc1ELzp29bMLRG4ixPOttu+P0SdGemcX/HXgw0N01ID/bRqGVAJGhj0QR7PdDyprDI2lg42NZOXz6mSff/o4vsODqWdWaHXrb1KoQz77V2fJtnouXAdwxPmtWd6Tor3GMSr66ijt6/viffuwTn/iE8qkFhoN+UJEwtgcUEIogjVmrC3KqArn3gCLbqQVKnIWw25guw0ZRq1QhD8hnWMsEc4dLmlkaFqQtU4cBISk1UUram7Ol1y2DW1o4depMV1fnvv17VA2N7WpUTjqVnKlF76XAIm6+3/qt3/rN3/zN2lJVe4mYkJIJ3Wa+xdXQxyKWueu7D5WjwYqCxPoVT8RwoCrGhTO5pFhM8baAVvc3EjXB52EUpTUh9hu4WoBWPvStl7UQzy6Hvzp1lH22YW4BNLQEUaFPwijbAoAI3z127BjMMemgQJqyWZTPy69CuMtzTSn1p3J009xHXsvoxO/DxGSWIWmCK+lfpkLZYy+txCZtcmVUo+8oClBIAx7CpMs2QPfUi8Lh/zHUbJAm4wvI5FRz2drG3MzsJz7+cWTltptvgQeYHEsDNFAsaaNvsF9/Uw0piywbQSuX3+6Ksj1AQ/00IvBYF1Tkp/sGpGtTyz2JpRnb0l5+3BjTlxPyhAEATl1TyU89rQLBNoJTSk3vauGNs9NTe/bs9pllSzSXVZ1IZDJ71oXMzUwsvszg7jk7mGsRJIxaRL2rKU3YHL86iu6iZRgVSJxslAHbgaO/OB0pYpu5Vv9J9CALpKXLqVx7KFXkaGZ9ZwGPj42w1tl/pIVG3VSPMW6xLEvs2iWmDQ5BC2tr6ZyZmqU5WOjvF+amo3NyDteYNYw54NgpIqsRtOWsNTY1tdWmmq4T42MLdpn1WHpUlR38fEfn4uQbt4ZW4gM2PidkYysbeJclUW4H6YWBTHSA0A6Ak3//3r1C5Wrn0aNHT50944AR4d3NWBlevorqAyaUHYginY4V64VNPsX+cmTPnpdOn3n84YfvuP/+ZoHmF+fbumj9sz/+n37sl3/xv9147KZv/uZ/es+9dxEML52/oJwShJxo1UBrsajIUYZ5WqesdFSkrHpx7AXFyhQ+0djU2z/wqU8/8YGHPvjWz/u81vYuS7xzswIdJSKweUtGtkLDrorHWeKTyg9rfmFWCXGOto7NH7a1/dh1N1y+ME4P4PnGro0W9XS3Xx6JKdtBkssrC0zngNzZ0WefVMQ2CFBX3CllsejCHHNSiPmOC5dOjk+Msvkg9paXT595iebxMtAK1qavZWUvvS6XwuWBTWYXQZ7sb1KRxLt6u7yn2dkHctAZftcd+djHPoYH0PSUwIFFAB8KAehDzZDL0BDrULkIzSyKtk1Ix4SomByWUK6jh7q8MprSMYjCJcNLyuBn97ViCi4wL8wrZ31HN3pbcExb8lfZ2mnPMKuaTQZM0s8+/bx1HSu9pqBeFK/XsAF4riNZeBAtfD2hqO668/Z3f8WX/+R/+a+ITghT1ufn63FWbKTNHKARF9ZxxmWcg/VVszapT/Y95yosM/QGG3jZoUPj5NSRcD1TsVgCNBa9yqv0wUAVs0p6FZaZIjZoNJTynyEQ4pDMiyI3ky5cuCYDvcV/1jMD4SfS//zzz3Heu/HGY5RL8dzUqxz93QBQAVYtuYDLY7iCu3xh1TH1WNDLZ+EHod26GWKljWlWeF6sV1pshaUUW8i/TOk4F37WyFZDz49IvbKRCXqZ6ZHv6PU+j9GcdkllwyWkT01OAMqZUycx6TtuubW3p/vpJ58ymcDZXQAyWLc+NIg3UD7k4S7MMAVe4iUFqCFz2cDI/qwv3Ejc69DkXhqdfm670o0NjEnfXVvQqD9f4475aXO8nvKJz+u9lJTb9p/1OQ6qxFWfZQKU5f6ge5FrlOKbymoKlPMzU7dQkJRXSlSQC72oKTWx3hUQUbps8gygA8x4AcODOt7bP6kp6oA9Wa+FnvGQiMBufWbUcpIjHcqKheaFwSK+sftdE/QNUtiR2NDWLAYT6dWJsdCKfG51FglDE524wdrLIuQcH5KvElSdUSnTQ13ChgRh7SkVp2XtWpdQCYwtnV3z8xGGZ5amLTYx75gc8Fs2H6YFiJGNjmXTr3ayUqDIxbe1iUsI0JmoOsurlXahxjowwfeC8VhurGBR86EDd9HEDk0uqLu0PNTb88SnHuWVfNM991qsHpma+oHv/+Hf/u+/dfTI9d/2b7799jtu5aBiu5DAI9Tqvt6+EYtrV68W0biJin1q7IyqO48eJTWb7GrU5Fpv9G2MZ3Xn6NToU08/u3vvXrFbHAcmchnHOBYVW8zoDdRMI4ZVXFuMXQLWZkRMiUIOWGQi+zQ2cpTkCkEXwlyd9wM4ff19exuH7PmyK1vcPrYg6whLi47zHOYKZCZgKppTRIu0S3kiF7104vmZ2XFBI4STOHr08MLiTGLLbFtbSqsL9a+9MGr18jOkqqAEjb0Oa8VbANd90GB8cPSFpcg//MM/fOLxx6XrIRrqWyCPmRIyo3CFUHjrcx8ybcERqoxId2CLcg0N7Ons6PEWWNAFdE1/CbMwCigk+mkOuqTUdmIqhVJBltTmCpVPTLsYjkSbtUJlGR/lPXz9oV0tkjOVgLqI7BEe/dQpNhOsi4frxQuX1QujJFrmIamcv3RR7AoZ1F58V1bXFkICVaSbcmkwHSvlUIbL5dnfevfgQ21OgQ2hfbpgAkl3XlbESrgjuww+iZi9gcm1BB96yIBm98MqJC7yb6OtGqa/6RArNonSglBbO8dZegCpyPEPNjwSsmq97rWntUl+uhRaH+qd9zRiGaIfQl8fPIm5iw5kodUQEDBifikMwVfJqdk0hqIYVYTxlg3HYJkgRllvfZiH5uwYTwMKOzS+ajEQFqxPvnRCQGJe/7fcdNP6ytqpF18iJJH2sgNpadniActPxQoIowSFRfptjfKnfDWqWoY0qWgA9UEiDQQy+BkELJdKlZBZVvSG6KYFDu712sq2mbDxF2XObN2xHrGmrLNCQr2oyFmKLCVvG/pGERJC4zUue20AM/I+0lsgiGJHZFS83rgTS2rLPNdGbDUFAnmlxclQrtKoSDHqrNmKlFCSaw83c/ortcxBHDUDAf5hw1RXnuZcX1qbHQS8vDgP6VnwYVWUyng09swtzjhEUe1drW22FQIaMxzJgmzlmdEfi27rb2OYYOWZdMQYbRpbMedAvbjqx69rhbNik9ml14qaNatLaB0isCFn5AFQRflEFAWgWFtZdHSczPAm1D8aAL/6ktLKbD1h/wiTop1EHL1ZSE6fOaNXqbFsZUITfZs+s/MW0Bi5jUvPS4QvDqoD/QMXJiY+/dhjgtDuve7Ib/7WbwmXf/zITf/kH38z3xurUqRjNvoLZ8+JmUGwRRRUAdvYaECOSAJcBGF16W0GLOo29Agb0HzC6kc+8hEYc//nvOHhhx8VRI8ZwZYlx6o5SE8eGgR6ku8aGq0IWBR1LaxiiQs2WeiDQogNBxJZqHtmOl7wtkD40Lwa2tOP8u9qALR1W3wTSDmotH6tpx+rYHBgeocWm3ojEwf3Gy1avnDx6qHDe9744Ovt8I7mMWs5QQ9ylQcEPb/VktIKvuVOcs80yU4fsfZMe/0CDa9wWMDHqwDEWIgXRE/65Cc/aUylK0o5pWmao4QoAQFPY0rQ0q6dXcrGDBECcusLgy/cessddUorE2vHRTAYFUEGmOkrkkAtFuii7HK0ZbkrMylVFSq6OJ8zUNnK2BhsfKNXvfjiCbai/j3drV2E+Xjlwc+SP/ZVXoswU7EWrq0GWwk4fOAg0xbaVekUc8SFy5deeumlx598wl0zoISATZqnF0Yqoq0eVrTbJChJKcJBQIhIB2CGLPq+0U0bHN2URY4AKj9lj7msEOBAKwMhxauCttHjFWJxDBWWajg0ICu0djsvLVjKMgo9Pd02e9ocMLRnWAfzcblSUrn8AuGUXC4/A9BwpGwiUGXUZZ+VvtRv4UJEqDjxxeUBggR0PnfCqf3qel9W8hj0yTSZtqUK5tFoio4fLxxvq3Yf8tnwj6iIGug5P4IHX/8Gdn9xS6gJjKdULt7eQEHkypYj4T9X4phkMTJAB/ZNc6XKiaoRf5cF8gpUg5alU2lkhKH0RErtr7t0Yy+bC2XcSt/KAxm2ErceKhnxAcx3gVjtUS1w617zK8rbRhTN0qdBJ1RDO7hLqfeuorjq4b2fQOYzdMQqc6aazhAooIuma2mcnMqh1UQp0gFKH0UqQ+RbEgMhwt1/5PRC7fHq6hWD/SKjqDmIiPKxzganbpCwSlAb6q4xxom5jZu/yUbkAV8Yb2epEd/RJsCCRQtxj23hudYV10M28HjENzc18/7NWRZFLxseapODU7uJ6vAVykjQqiX9VRqfBcoHKYCgwT4wcvWywT588BA6C6dGLl9ybDrTyFCfyJ7dMxPjySjWF5kjGgBgYhHLVHWeCfRfnecKBlERmkTOmREyk+QUYiSKswmhw6SZAGpj3DempnIggF1Q8Gh4YODyxMSzTz7x3ImXfurHfmLf7uG/+lXvvuOO28REDDkAymvXeCIwHSi2oArg2aHjaFxnlM8ataIzhbeav2RL1C0oRdZNW3a+8MJLNx6/yVa7K5dHB4ca9GugMxFxOUMRj/BuzoTrDXbcCKME/FOzC4mZ7OSwtk4m8p2OErPGw1Yz2N/77HMn+SNxrkUeuAntP7i3RINovHz5qvkgEII2j169RDRFtihXLc3tyIeWpz07r50/fzb2g2sL1pn/7t/92uO3HMfFWVEcHlnQIGJJZkVZqzJeuu9u9NxjQwO80ieyglwzRIRrO1BY2Ms2CDiNnbHSEJMh+bu+/N1cPD/4wQ9mvDJJoLLB4bSRtToPcNhBb9Csv3+wpaOZ140S2tp2Tk5PPP7kp/ftPUDkVy3NAIHD7VBbbYOl+mIFhfuPNge1SigRiS4phqsQpQw0qm2h3lwzInh3DqtqbPn0p564/f6b+nf0Nfa0mEgl9LU9iqHEjBV0WRW5PGjAidOnDu0/UH1OmtH4psYbrnOIwPVvfN3rR8ZHf/M3f8t57ucuXIDJUVJR40K1TejCgTbITaDnXWltAW+AzFoIeuScTFuBpNg447DFtlHIvYJSWKZ2pLZgr1EoNAzdTBTCrMVxfsFEzHlrb8tcfucX9u4eGpucIJ/BRuTihmPHzp8527d7sEwAJQQsFVAeADPlFrLonX+IOmUE7Qwiqy/mldRdehCag86CeCnEsEfeJttZwwvF5V+IKq6Q2WlGOY/x+I03GN/R8bGUkPBCiVkQalZrDF6FsjmjybkXZvab3/gg1iK4jA3wQ7uHIZK3tnFAZgsBFsPAYWJ6isgF3qL6XhkZY0dGC0wTvIEeJpoQLFKU5qguzQ5tLGAslVZWqAH1MhAuUziaculpTa/PitrM+PLfEJOEuov7WVHh494K09wrYBW4VXh9IMBeO3niJUSTOyCcs0xhCkAyRt6aW31Yb9pa+JI5o4wCnkgBnusgBNzlubCDyhRebhmpM4JVNfiW5zPnLgCwIK4GspQP+Cm1RjrUaCI54uIByDAJ+wgXZqcvXjjTsOugRU38Z89Ad2sbgLZSXvRwZXGOdG7BjeevfRy84IWO27VrTiBv+zv0RR7d4Fiy7ASX1l07+rsl2ulKUDIVhxw7HChl6byprbWrA3nKdD1z9tTlkUv79u3Zd2B/3+DAhQvnroxNMAD39w9hU7qUfSm8GNeWiDzcvLAWbdZ64IqecW0ZVzm4d8/Tzz6jQOjCYNU6MGSl1RDC0gxkWCTmoD5A4PMfYrG0tuhMXpyI3en8ydOPCK84tXDjbcfe/IbXLS3aYiPaRCMJXVUQFTcQH3d6kgYQvDdiM0IiLawO7e5B1Vrb4j+TF8Zo4xLSo+dTjz3Z3uJsP7zw0p7d+3v7Bjrae1fngpHWV3bRAZxYtWtlnqK8MnN5/AJFC51hRiPmdzR3AVZnS6epbXHEYScifWJ1/NytQNjOffnizN4Dw3uHu2yucuIYz2hzCfO4Onqmb6B3fmm6v29ItDgNpmY5MmVxhU9I++zoxNvf+YVf9M4vuDJyRVBMkyozO5CB2qgOWOeXi16oK+SNdKho0Joti8FwiAT1i7KzHAdd1uJGC5IMWlpO+eCgaymPr9Gdd/JM/+O2Tl4kzP3YTPZwZj2xqdmx7PMzbBfNwqKiKSahcm04wk15JT3y2Cfe8IY3YF0k96GhAUqAJSgCKRTne7Y071iYLjuU0EtYaWdykdNjYiWtG5rCjI1xPCYToXbHNeKjuWAFxRGbTz767LHj17cd66I76nIIbKQUfNvQOpY1Aa47ujpuOH7sI7Q3JzY7rHRxITplQ7NDxZavrXS1t+8euOHmf/kv7WB44smnn33u6Reef2l8arSRgNfWCjmowsYO2Kemp/huFQpaDOiZ6SGgGzgCvDHcLBPKqGZrS2t4DKVHT2mG8JbB2dRFNYvUF5WBNGfdPgJR/ONW0nCbZnfusA63e2Dw6sQYdw1zhy9fX1cXMWuscVQROnXlytX+/r65tQV9RLwA3Kz3NbN7/HmMa+AQBorhwYpQOGJUVoAxKf8i8BPsIAtS3CYWVXt7zi8xD7PQ6sCW0G5L7sO7B5lM+wf6DMrI1eVzZ8d7+gZ8TOxTnZraO9pp8J4721vEjub1ILzn+NUr+4f3LM7NAg6Rb3xmYmR8xJoNbWZ6YYa3oCAzY9PjbR2d+nvpyhmFJwhaQwu1lpSAIYqEhT6qKMt0OSI3+1iVpqeEWVHO0FWDUhhXOpc+F0HeQ8HqSmVzDxg++6UE0ODtEkmwWB3IyrIrZvuHnuvEajxyhIS728TAMUBWg0In0ErUp9Tky+0MwKrsVu1p2+al4q0Ktj/gXptZ8nfrld66al3uuA6XNg/Ct+l/WS1x/kwEJaHhBU9e76ZMLnQN9LaoX5S+XkdNza458DNEvzErwrkighUz9bWjiZ/1tDW64d17yWnK1DXSoDNTWhvWE6CCUwvVvmFnX6fgPAypLBuLuS8twzJrB8BnEA8c2EPEu3j+3MTYKAcSo85o5lT6nBo42N/Ua+eOI9TXqxY1Oz/LRQ8oDDAiai0I4bIabJvPgX37LbAKpeDkMgVSpCCW1jIUG5qoagwN5cGs95VOSjejhZ5sc6KpMNdNzffccZcl6AI08U8gU2iT3ESOVJkVSzB1oi8+ZJPLuvNpoXKx+agh1F+5ddTcmUEJQ1KizAo01taZlT70/xo31Ew4QpPTaMWwNCWyVmGiQSo4TrprckC8mLq2R9jMtdrT21nsHjGY4k0E/Nn5lcmJuZ6udnpAc8M4v2+q9PzcSktX0/T8VHPT6tylhYMHrgOZU0+/pI3m29j4pdvvuvXvfv3fGRkbsVT4zDPPcEDSHS1EAF6+5ymI6g6AOlUvP3UvYMyV1qMRyRqT17rdDgZ0cGC3SKjTbVNgyDuWNvlrv/kru3f3FylehL4+/HtmlvGtPwfdZAxKAQVuCkXriHXPP/8M6nz33feWXe4RLAlMvTUmTAn5Aua5NLrIeluQT1mxt4TIbrvSvJLoFabQcuL509MTMzfddHzP3kGFzy8tlO5nbVnz8CpUWPGsKAxB991yl/lp9OeLyh/ZAzNZuUYmveH6G+0JN02cl/nhD38YPEcmR6GbAwYIPdKtGylQUUYtptpybaGHX3qfU5kSabkl6tTKEjJq7hRvWkoPWw8azMDTzP6C8lLLWqxiGSwYTTwKe0bGipALP5QmhuvSSstOu/9YHBqHB4dHRdsuS7KmrcsYuTxUIgh3DXFiyMXED/5wNfY1bzfl/aCAE3+4nmIEdlTpPraBYWodjsR2NzIybvO9Idu75/rdwwMJen9tpWmX2dnQ3xd7Jz1szlHJMdEsT08skoZZ5Exz8zq7hRbmLB1ZWVSpLwVLByuHCPknHB+RyMJib5tDqFqeff559MHhGdp//vy5dJa5xPZ4SjEtQ6tyhc3oTnnO7VU/t9Lrw/acUl7181WZ/5yfn+3DRgYEQ2vCZOBBrix/ubNS1G88VwZQq4eRybntqj8biqP6tuSNtuJDNfFVLTDMUuoEdoeCW5f8XllPh2GsB3ZpXVm8QjrDyqKmZz/tYr9zInt6E8UgCJoZmAg9Gxb1GKzgt4C6FjZPnDghSqVuGiozZ252orN4E6oiDikCVhbjoFqEi1AyVCDJchDwvzibiuq2HNzOsj917syp5fk5VOnIoYMLbDoTY5fmpvYMDbZ2Mjo5ET6HNLFZ65p1L+UrLVOhgUuifa3OJXek4ogDlSyNYrfmTcV1/Q2QgTk0K/w+EDONCHfsb2JxEZqmZoS1efDBB81wxVYDCGuGjJ4LBOxCWqSPsEhin2a4eaI9RlLhIOzSJM8uXykHMaLPmpj2s0J6Jlo7mXatFQqyS4R3xpBl2wnITS7zWQnBiyyrc39tsqqQKVEGyzYlgFJjdMemVhh16eolW+V6uWE5Cae4NtIbJqZHLQVX1gJiDbvO073wLht8R8cu79s//H/9X/8nA7G22ROwb99+UX8yRq916YvLm9qd+jO/Ef40qXazzrTczUlJTEFwQDgz1769+8UIYaV46E/e54BisjyAk+ZEwYNsOpj+FqsAuq+eWp275j355BP6e/+9D+zZu/vs2XNAZGuo7quXMFMABVQsC6GtFfK1E7Wdr+qQxNoL6ciiEq5cHgHJqanDBw7sI8xKASKzBBqAJ09Zdd133wMc3sbHJ7oFFep02GRZloqxXst39vUOIu6LCyttrZ1f+AXveMubP/fjH//4H7//fR/+xJ9ixgaOSqFSbcPIS8s3gFm7qSXemht9nb0ka+RPsDM2EBWhrSNXrzrCPtSdBONI75iYKDdKDWqhI7F1ldHJeoI+7cjMYqUyHchDEiEtYsNgcnl0FHaZFDJkT1IiZbHvrWiNBkBV/7OvIviZVNlmQOCLH4ErmkbhEOrixK9AlqU4D5KqCgOw1qR/xmvQ0UW9BHqMLJFrEaWIemURSBHmi3jy7ial9cDx8VEivKXdF59/oa+75/ZbbqVMENgyx1VKIouZmIEr3j7qQhDcfW4W0KuuXh3JxNbQIsinoWXGbQG2Qruma159qxmvugLBTT7hQbatn6/K+aqfZkz9tz29yvs1JaVtvouN2O8MoassVfupiVpW6yvt22hlfeVbxUUe9NcIlWekOaX6aDNlM08xc0OVMjXrW8/VLp9mxbKYcOFKiOmweCwYaUZ/671ER86UZO3HHnmYNn318kXOnbzxHD5nkLKly/4OmjMS295hx7nWarlLZEBE0OqoZXohvU6fOblv/8Fra9VxJX64UJCkLLQAHm38pJhCLD+93V0sJdAxR8IiiriOa32tl1Pg8ur05ATxYVC4+s72PYN9yKOlgpmpseGhoRw3mgWuPqVxndEvSAArYxGEkbtyQrpo1XzzzSsiJ7yUIWAP0d9E9wxMonPDcWaiRsEb1ndcvjqKn91+9038WKC33mkRQBkOvIC5Qvtk0CMLOgZTsX66Z7pmhmSMQsqyKrNRkXnPr9xAW3dlat9z4MDs3KTPjVJUELLa2tKCPRJzdlLMWyGKu4pDTYvOEVpfvBW1XTNor5gTCdJPzbN+qWvaptcAWKTXbCbo6erdeXHH5YlLze0xf5uLqDz0s34wOzs1tLv/n/yTf3Td9Ye5uuqIb3mUBv+r2XATX7f+goDnQK/MrnpXqbbpogdXcI6QAauK7QuszGpGpySGuTr8r/lzPuf1ynnooYdsnw5Adu6amppWpHIqnN0LREqBFu3XVvoHepl9HnnkYc5pDzzwOgq0xeHhwSGCpO5MTzN3RduwHwWjxmNr7Vstrw9pXmn/1s/0A5AFJ+jqscA2NpqwSy4OUSIuG3ZTCxk0phQ9VdiZd9tttz/16FPzc8SS8ZQWh6UWXJ8N6urVceTMyoXAWKMjk1Je/7o33XX3vUO/8p7/9mu/IrOFfYXrJlcWXwH4FiTrQxq2M3vogKV9mB1vihNwBOH/D21/GuT5kd6JfVXVVV333XX0jQYaaNzAADOYGcwM5uLMkEPuUssld8kltbJEaRW70lpWyOvwG4f9xi8U4fA6Qg6vpJVtWSHL0q683CCXS3I4JwdzYAYzuG+gu9F3d933Xe3PN/Nf/y40gCFnSScKv85//vKX+eSTTz755JNPPlm2FlEFhumqAMRFkWUiKLvRB7NS1DRtwbDMm1nyZDk2NTtzdHySWGmxD/l25g7wjtfa5nDPtRs3kq2wwuCK3asb3zDQjIII+iK4KeZeJxiJScI56gpDdewMO7IyRm9ZCuRWNbJ/djcNNAg5fvwobsFBC7yZG7QacrqZPPCL5SR/MVfddnsReaslDmWvXb7iQ5M6nu6+Yy1C4SZOiGIziduwhoAxfbHIsQqZbC2WYNS3YOCCUDY32XlatRggtXUKqYitI1dc0GoTdn1VU2S+LTQ/bKa/P6W+MszDUX9m8G3zvXioXBCDVXNsaUImg7qcDk9/b9AfEqxmtEZMF4uno4k7HrmQJ/NP8xl6yIiUI7JZM07kxOa8rU+K++zp7MSromAQQ6u6YNm532OTp29cudjTecC67K4776BSv3jpXTNE+vumawCWL6fD4m5TZ48cOoTV2iT2xN2csfzYxx5nF/Hu+bNcMB4/dtg4wiEip5TATMgGn4qic0Oc2aRp5dK4r2tI29wtUy3GkIXxaVJxid/y4uzBA0PLm6u2Ctn4z89OX7a72NZKFyxDF3sazuyKRw7CE3GDqI6luReQYoG8wxYFzM4hL99kbzqousi5bVmRMHsCFGTR+3CkxqB+aX6Ro0H4ufvMGfnWrVXDdiNfGEiqW17igb1XRBPcWuFzO5mklb7eAQipKhE8MJgu80oWGmV1Mj5+6MTJY9emZ/r7hvjT9Ge3YGedMzvqZmpeYvHc0vI8dXYZzOlwg7DLf4RN3VloBpctvMA6L/MMqAp4OeppNWWcYJegtYg0AqlfnXYjA04vznS6P+sgbtV/+fKFw0fG/v7f/w+++stfef2NlyEHizDEybnYaCEl+Lg9aJqKmqmAqQFOoiwvgSYkcwltCMWxa4XNALkzNr5/cX+cWdyk/vhHnjjY3kmlbksQX7CzHSJIl0T1oIrs9eR/c2mru0ZmZq4jJJdlPv39p115eerkaR1k35U5LGKbm5sheTtBYalkj4khKVgawGVQvSc0yi/tqHELFUcx8I6hgVFXA7315lmM9wQfNMeP2EEwayIhqwTehOAWhU9OHJ2+HiEargBPaFldtwWziB/x6Y356ggMy8Yskxw8+t/5nX8bH//2t7+tpyDEEPMhDvAesPZ+VIZiF7R95AD9J2NhZhE4Y3dHtxPX0HOgR5FdFoSkHDJcrkSngzGu8QCKjxzUTFnKMTwz5HjgYduwuUGElk+/kM+uXLvmaJvmAykTQAvV4gHGKSEk/0N6QVsZmYW8pGTnrdH9xEf0GcGf+Td536mDLmvQHtzM+pPnhtbYH7g3J8trFj+YBrYQy7ZiIsGTt3ozH3R3+4QwhPvPTE9Tc0Gvo6Bgw/2tk/wd5F7Y2eOMgoMUfLiIOQD9kx3hkJKNjZYPTRXQDkDaQc2vvS+CaI1v1clcCTgRBtZMsG7RcjBWiaH5YU0JMvax7+T7oFB77dZzL8/+b5vxGLdBRCAr8HmxP56+zMJgb7DhIuUIFXqRXqmmPlNIqcnTq6pQLAqCKBdTbHnbjKenS6jg4b1wYT44NDziLhQ2l9Z7GXE7W0vzc3eeOEriXphhFLg4fePaKVfUxniOz58lw9iN5ydORGow2vWuDRBjQ9l44ujYIegWIcXoGFu4pgpKhtGhYT2kRmAAwPqONK72wjfsxlD+wgP+0I4ojh+egAE5TU42F+vkdO6dsxOTY1sHO+bXl9Hr/ffeg+eWqWILkSnZMjGyT8Gez8GD3A3s9Rs3zG3AIX8ZS1HZN9BrpZuhg65NAsZBBk9b+/TsvNu2ba5yqYizQJsdLXmUjLnNzc4bWgQ9nsg0X1tUPT+/mJmvFyMLU4b7Ml+bNuwZZAUt3fKDRbap8Wvf/JYTOpQYBFg7fuydlLO+tbSy6p61ueXVRdIowTObV22dboaRDXwq0jK4VfrmxppdZnGJtshQKVpw9urdd+chhJslXoJNeOQjo+VY10l3ihG28CyylEJtG/727/zml778hfkFo24YAx0fO7K4OM0ruwkZCSj2A4OqBW0R9E7+udk6PX09djw1uI80m89ZT7gHzdgRxz1oBmzhCmQI2t7sDU4cfeqpL3z/Bz9wDM3WLiuyNC8qBqhGITl4qKqIRRJbWfMedJOlyfeZZ36IUiiCpqavkxbroh8VgQWe4YR6rZJ6swnqbcZrRIreLHGfVFIJYdp1Voj77l5Zen11g2sjy9lBXvmMNVf1Lq+uDvUP48vrK5vuoLdFhl7VSHFJU+SAMTLTisuXroqwGz55klOmFocj/91/99915cOly5fo7mHGW1hS0W1Q1Z/kHn3HX8DW2jqXi9agnAkaUGBgSbewOMvsHnG6nh0FEFMi3kfZHaKrVKqcsP6cTGauAYstru3jFMq2o1HmRLqgQLSBJ2u2z4AEgSLhAWUaAF3wqQPCN8JjYleYl1B3k/0FvnyzzQ7EATb7blVy0JdumOyCbdtPthbVc0WVFFMcBGK0qkUrbNIqnP8Yww4l6Efc3xJ/fGycqY9ZAd+AVROJKswo4TC5CIgV3IG1hYVyY4wbw5ZsCGtIdq1cJT8/r+QQZJlZQ2pVkkgvZwLwU+sEghnmq1F4wG34r5/UxJp/f8ptmf/cn/u/3R9vN3Oq2coX1fIUr6CooSMuNkRROMYPYT9AlBPwdUIG/f5aWeI0f9ZXjWeZ2mrWWnHjs8x5KUk2wb4K2RDHNJ3KAC8oyfyPeWD6dD2n77yzo61lqN+JjLf64s+/jUYIDQCMdKkUk7AOIPiUlLbp2VlFTU9d39yIHhq7AZ7rVd9680268tlWXnkH0QKQMA/kaofZ/C9QFEZrmQkgAe0mT3qyrYfL2dEhP3HIBx8441pzdo2jI0N9Q/1Wo8iJwajLYlyW9LYTgz3dfGSqhYw5N7+IkgzLKmhQZDkL4xAtkKAdQWSdi4FmH6BsmbS6IJeztm7PK9euG6WjkxwljOuSZD5AZAuH0xCkZgKgd8Lo9A8wDSFsF0pVbYVl6IkbjNCNL6N+jTLTkWR62rpP333Hlal7z5+7lDFk9bbewsOMcT2/NL2yusD6MwMyI5k1hUU5PVufYUNpoCIEUoBxnuwmK3Usyfi2+uF6TxW86Bgkqy6jWVp1EK+2FBJtrPd09o8Ot5lktja2rMp//W/+2m/8+r+1sbnicC78mJsoWLjqUXjpHXYyHxC8ytuyeA0w4dfGULZG4wmshrK6twIQ5qaxyO2pNR5Sl9adU41e6KZljpFrtqVT1PVPfPQJ26pvvv3m+ER2XyNaZm5O7eFnLM9arIw2xiYO2Ryi9LaEchXwT59/9qGHHuZ53DmJ7LrH3200YILmLC4uVCBBWMppcH9v/ayJNb1WRC150L4iD6g2G9vbnEonW9uEf/GnLy0vLN1z3xk2tHiWnt3durmxujFyaIwZKuccZ8+evXD5EqHVrAYVJj2l4+yIQaLNSd1hFWRXk8O/z3/2s/yk4otajfsgEZmBcVsA5NKCE7wDVH6xeJlfsJd21HQ3NubYB9rDK/WvG8JIx0YfLT3dTkY2tKV9RUfjB0v8jk5+oaGUiY4aswig0jG77uxwXXVj5gZUqM5TAL8Ts54RVwyL7DZlajRMFK+4KB3INoWwY1lVXDORTZG3gHLgHP8PU82d5261JOHFIyGewNyTYNdzIO6/WF4BgA5UbzDQMAEgD0eUQWiQ0jBzUWwlamW/Mh/gmUtQCptTLMIiJJbbmdguQbLW2nTEAa5evQaANL6ETFt7XZ8G7snZaWeaXFkrIs9PX9WnSDNUtDR/irw/pfkW37rtb69n9xNeKqq/Y0oBXGzCIIG1jKLSEwX4xjcq9CrflEmhpr4fUBmaic2IcvJheYo04yivDoxGyY3BnD0Wy2oWLU7z6nLs2BXlDt3Z/D88MXbHscNf/9qfrK4sH54cR3kxpcH1YkCehbZZQ/maI5iKjaIirCza7tHZQLIhbA5wBNEuAoI+NDxstMRbji39IrxBXgJUAFgnll1N61bEHTcS9vXd9t7VRcvkuXUsx6+c9pqbntIclGcXndzd3Xts/VDc69MMSD98mG+Iw4Yi2rKWtOZ9/Y1XbX/BCpOGuVXNpJJKR5A3/Q9OtG1l09XdR+6zArDM5gq0p7uX36p6g16odpMzu9xC5Y/9D3amE0GsBAsLvMMqWMlaU4YJ+cf8Rgeb/oUyjEzHgPqRRx76ybPPnRoZtnzS+5Tky2vzi0uzTKZpU5RQ9nqjw6HUNo78uT4SAOYa014xyY3ywT730gLTPcavsbtH2FZZhjE8E6+ctllv5Q03Ix+V2Y6lDuLsU8rv/u7vAhIZZI5ctA/RpbNMyhqYoipigpz3BKD6ylNqWlS4BlCtipANALwCekomAu7snDh6Ym5unoDK0YvJCaLYBXnr8g8+oUeGOxEPUffuu8/09ve99dabaEIHFcaYwjU2V4xYrEdFeJNVPpmXusDiyWEue8LHjx5HC4CBJgxayYLJsljCJK6Q9zSg/NifXuIRCExUdhBYLtBbzM2yTOXNYggnu/Dupdn5+XvO3O3ghXYr3CfmiRMnnEtAyN2O19q0Kn8bWnH23AV4uPfee5lUGQ4a6CeviJjgr/7qr/7whz98++zbcK7VnjEcLKECqeQaCZ2bS4zEXCO6YW5m3sgv5qFRXseHJ8bHnY9lmcqy1rXb/FYZsTtkDrNA9KwpRQ8QKBEesYLb8eH+sVwSsukSx42DLcyHtkgqrCpVrptUKoIYIp5bXGD5UrKDpRuVltv+ZCjZUnbeEl3oTg3OrQ033tnjRYXtB+P6zUINfeL7cNLTM0ixpCQjy0dGLsUsKwNsQ+dQCJDwzEiT44eMKGRPlMTW1csnsVkTHuANCGEFLNRLkEiB89obr5v4IRnnNeplQHsFl9khqwHAaQIbuQK/cmqGGqmofv8zLX5f+MDE9+X60AQlQl8tV1FxelVoLlIb3a+zaj7NuCJVeV8gMPWR0CEUAYHbz/f/yeAvkmz5u5WhsJ9M5Ht/lor+jHhwSBSvr3CXBhslWjJDZ0ublQfTN7b8nBlw0Xzw4Qfv+/STn7xx/SrZY3iwH4sHKvjDP3a4Wec/NHoPjTLX24JUNuXPyRMnGPY5jMGc51/+3u9bsZ45cwYHZEGBcRk6SsCdjQSs0zaXaYAmGAzKjx+0UPAOE2++QpGaP/5HnTm1DBkfHTl9pxvMTg2PDKJquj+fEB75MCCK2r7WCtsP7rWfmprB/XFD5D4wNGQ6tXiknTYfWPwip/TCzq6BgVVbCSFHkVV7vBarG1uHjzJZ6ReFIqAW/fUBEdRmInTneAZM8f9lpkGp6iIJkW31JjL1rVUx3pSeLaSIi7Ht8BFQjx477IJGYOs/Fkr8uLEOqpwu3V2ssSnczGSq0EBU4XzNwvzsnXedMtPIifuws6B3ollShS7QIpOcpoGZrit9FHEpt3fZ1WA37c6ZB+594MTR43/0r/8Yx49stb4OXT6nljGh07WJ13FSn7cRdfOVdCBhH2rxiaCNSbCMdPv03vq1Fi4z2GBJW2Ja0nKAD6IRZ63HDx87esJZttHhQ/eduY+ywsyKnJC9kgUdpxYU5Vtol0JDYY6EQ9vg75x7Z3p2yit0hRxzEIE4XG40wmtU6kP9AmY9tb8hyhRqikhGhINXjk+boXf5q+g52N69tb7D1SvNttMJLz73wqsvveoKG8NUmRp9Y/paZ3fHk5/+xCc/9fExZo4H27p7O4eG+h977JEvfvFzTzzx+CkOjPqddkRWzD1j/+h8+1/75V8xAI33SjZVC1yGUdAoIjeoAOxVMaImBsWPhz2J8+feVbW31tBOVN1/zz0njx87enhydZONgxsWtsv5J6sUZwDM9mwgTdVm5/iqJAFgfqQVDJtOCDZUpWuMPpoboxjOcfyw+b2gQw06qtdaqT0qf/qYqA9XSIT5kLxF7oku11EMphb6wq6ADDbqvIVb5QTDkYpabZsZPoYGBGZF1bJ7ZHIcMDFmic9gF5W7vIXYyWa/bPYuLmIUcG4gKFlRnmjAJIH133///eL6Vx4N8dZPT/VqnUohWag/Kxg+NzqC53KGvD7llAeEnpitQmoX1KK8FWqK5wcG0NYS5CR8hJNkQ48HHFqV/BU9ZtTLOcNEK3BbKT6uxJjIHl3KU+PF7uq2L/7qf+6vFxhlvt8dHhi4cvkiC8THP/oIL502gY2QsfHJtXI1NgFHIy3iMD5uGIgkkKsnDFERRRiEUGNieOqpp9wWa2fywQcfnJuesWVPkmHmpadRoUmCiFjtQHWD2SlCd9SO0eAbMOiYDG16DBWaDLyPuGmb96CKDHgWO4tzK8VgoHt4eISKVh6fmwZYE9uGxK6Jw2ETxVlxIaaie9qjD93mgAKVpRXN3MK8b3W/T7RLiwCjOXibKaJMA9RBVFLbzNurQ1AFCuaVgsZdXNjn6DuL/PRfOKNXLETiiPHmNhftvAGed9Bhbu6Tn3ry2vVLPqfMlceII+9biDiOa9FsIeScHJan+a4lscIwqSAq4idhW0tfe/WsrxB6IbMsGQ0wmFEg61hHt3C3hcVlWg7is9mW1k673j377ptvnB0Z7af6YMdtRA0Pj+H/DlVkhOQigZ83vHfbIIwvZGQ81qGV4mJclPEJJGNCDxevHG0Aw3PhmVbn1VdfMXWZRwuzWKDyzl5f2WzynSOT5o/wynIzgZJ//OMf3Xdm5cEHHy7T5y7gzY5zC3OwIahTdSIIyVP+P6dV0B9RDZzJqEbE2NrZTZi9cuUqeuZI547jxzoOdgxkLWKBybN31/ETdmpJ58Nma3yt0F4E3jDJbSovFgQ315a5lmuhhDx96jQ1N37v/LYmA0nfFWqJjIAO8QuaFqTg+1B5YUma7ETLuxcuTE5MZCLc3DKdWKmTs1HCmxcur67kRtyunj6G12hYjfyoV4boaYViB4Oiwu74gXKvL5ohvLBBFrTUT7KIW7dUavow5PwjXrRUUQunJ9N52Wj2TzkoC1m7vMWYckzrgBcZYpazu82OVhtz30dv78zstAZyVEUhrJnaWw7OpHCfQKEmsBWNT4nCdKTYAAAPMiZHcgZVFwGGuZ8++cEzPzx1+pSiYMb0Axs+RPD1cx82u1h8/89m+gdGGpkLB85XRQv9gTnfnwhU8Ogj3de+Hc6jmfo1ZUYjhhYyJwsefpmes8KqEDeeJUUpAnRjHjWkiNIkyP45/vToX/hPRZG2rdMK1QfMzEcGzy6ddRaFbS3dPV08oA0PD5kmHUtx44R9fzuHiIamxei6ce36+KExoKYBrNnXefOgNFpjW2LEIrIvfelLQ4Mjzz/3Ijqgpfmz78QfjpkDcURcpdAk4boTa4jt8FBwUk5XZ4yx68duLTc3cs6TAEl3BquelDm0AYxDKBBPHD9MH0I15LCYqchu8JFjJ46dOPnyq69awtuQgD2nMYccfXTG1h0dRUTVdt1GLMrtlbqvrW1pZY3+x/EGZD5yaLQyVopXMMiMCsGjc8XJMkhQUUXcXiLam+EsutEi/uUPLyhOOLAAWwU3e/t6mBuqjk4Mif/CL/yC5s8sztCMKYrdtyoKb2RY65CDFctILgd3FL8QjRrpiI4cHT80Oggb9nJ1kwsOcQ/LoOZRQRWZcQ08RnJQDWA1Es3Msu7jzBUCndy72pm//qMf/JgqxhlG7JQEbMwTon3erE6NP3cI5ez9mQNa8VwHRNBEWEwtPBSSkMN0mU2Lj3ELRI0dGRo9c/cZawJjBKjmelxI50M4BoGKlKBMz9i/hIHk9o+z599+/c1XdnY3HPg1R+JdqpPZax/qI0+N+pntAmodkxQeKKURAAAMntbsxLCK5Lbv3bPnX3/9zSijKN9WFs9fOEfEPnPfPQ88dP/pe+4yWIBWtR+eKAvFMlKqVWMTp06cfOyRRwM/I/3V7Ih6lQ6ygly35lRZEQIYD0Vln84jw7OuZkSnm5AKesPyZGeeNDw4QJd64vjR+++5mzN253HdihFvvgaJmxXWV/FiBEmnh4dmbdF2k0KwHgjQAeCBl4ql2mCACeJBVqguPeinzIab1UDZtIpIk372emubrgZNmxsIcxqCMWAlnsZTqLo4eJeuKZqmS0htqjAifGK5bwvBXKJ8YBDyHE+ROYPOsqmjjbGdTTinPlmH23eZnV944623TaKERuDJpljYyLfFSUMBvwE/8Jo/A+utRtVfeduI7funmdiM7Hv5odFwZkhi6uYWEGOWne5Ncy2nMzmPJo6d2Kd0Nl4f+7t9BaDggvC9gV5+SgSE9IACWx8A7YcC9HO9aMwrqhFi/5WZJsOshQvPzb5+ByBbFxcWjQNqUMaIl65ceeON1+45cz8ezeeMzqPr0BO6QQG4DxrV98gXfZPsNMEINJPX429XLl2gC9L31gT06Yd4XxsdxbCUoPM3VyzYqV8HMMEW9hSmppvkC2fEw9TsL6pOgeriAVF1EJdBfrCNRoU4fGN6hv317MzC8vwiBTJgxiYmUD9dkJXB4soCGnIWLNsbRVOP2ow0XIRnBfI9h5nRWXOOgx23dhwaG19cXoWQS5cvU7z29w2scDi7sdXbkwu752YXBvpHUsLWNtkQGCxSwIY6Dc4IpExKMh/obsM4q8LoJVpbiYon77qHBvMLX/zcW2+/Y3ck5nsx48mOOD5I+KV56HBZFoxiCATD8AX/OGh6h3OVB1pWwkNadk/ecYIF5/TMUmdxwIt7aY/BoOFsbzQ8RyELuopexZ5cJ0ZGimZk9KNnnv+t3/k7Rh8PFoM5npqJ1nKMNQ6vrj8PCeERCLR+gUwLpaLXkBEWbJxmBijyfoPOo2sr/Uj6NLHawXX+wJxH9idEHz1+7OCbByl2wY/r6V5aaTcUEHthW6gU5QktLLvYX7388kvUWfYSgGELyivZcBl4UFGFTAeFYD4gwLJUi7y6PojKojQH6vIKYbBFMZnL5IZkBynWt1bNuAuzc1KqvYotLATsA1vcEqtYmkHRyuygSyQVlO1xApMDzCRxQJJI1JVhQ3LKjmuQ5ZnTOSVoAtzaLSPXQ7Ebk+bmZp1AU5oJpqudIeamDYaTRw+7oONib8+V6zfWFhd3u7etIXETHUoE4ZxjdWN1p2XQwisrDFLbVtyIQQ5hSFEhCMHGr0fohQSaHQCvKnhJ0HVeBZeQVfRLstPSOgFQth6IPRsmBPvMnUS6lbHRbAcSQcYnx9VIzwsPDjUgTpVa+rjrrdTZEN5lpu6TH+oKPm6aEXUiGmBtoVYXPc0v8mUyfGh8fG1jldDj80hjw9EXicvsQzmF0oZwzppSfzbTS5Zbj5rH70QKvy2RBvu9la9m2P97L87kwdFbuM0WFnOVau4GjBB59EGVpxoQdVhUHKuqMW7AV4uC5SC6/ITW+ldfNdh0KemvNl7LB2NkhH24QydABAvKoG5GJfbHhoYHHJfXo2+/8xZx9kgOE3JhxiSmXwTHFyhGLOod9x7qp48eMAtIpB5RuN4dH5/Ejqdn56wJmChcu37j4qXLLHaMsJHRseGRQz29g1wTl3OOBGlDL1o8HSzAGEYaYSQHviJl5z2TXp6GdjYZD3BA/9CD95+5926zBWKi2QAJVwQGlD1W0j1JigjUbKZIBL4sKLLPQD26uLRiIUIUAzYdFxWNd84ZmsAAoHe13bhCzZYFxqcxKwVNm7SsXYpCyw631fc2p6FGKe5HcSGP7UqSKJvlL3zhC4jVMkWcQZ4ywUDStylOOaOY/oF4frPdaxVROD95Nop1+h9ORLh4oyQ3wRilzCIfeeRh8yY24qdgICnc/CRondUJrXo8d7S1ibtdjBpsdcVZh0Nn37n49HefGRwYizFXW5YywbCpgZ+JIvf5/N8kFMF/T3gMpwg57wmSlbZhQwSz8xQHNsFpaGDAlJn5tbvv/nvvd95qaHDU/EQFhBpMXZ3djhBHeMJEcBnfoiw3v1tpoYEXX37xzbffcPgBEcsACbiDRinfcz93+IBGMXFvTLaZVvMX+cfITVGmZZpPXawos5Eef+edc/bwl1fX77r7zOjYBOHO5FFknQPxgdU3AFanHBxuQDz2vamHdAf8k/pJSxqOr2GCEC6eruJMorAwifML8+gwEzfSYkRLO1ouS5EBLJevXiFGWOxGaGjZdUJCZHNtlRXmmbvuuvfuu4b6eleWWHDk4utQRdggDZj95q30hVv54sGkIWhDBXwZQ56ke1K8EDKoHCm9FsZgHkwfqrGgxTAkwMmJ2g0B1C5uOsHBw8f7+u0HKMbYWl5e0moQqEiVlT5tO5mFImrqXWPZZXC2QSk6GUPvUv2TIDeMB+MXWjhmdyro/MUL3GiQDCaPHLWfAcJapm4FqvGofCk1pFFl1pcuNNqyx9n8rCkyy1lD88NGEeUfr2qe+tzLe/u/UANaaKLfx/ptMZq97dz29DMnsaxjoEehQJIpp9WjbcH2S6hw1OdtpQbGEqT797a3f7U/Mz1VRZUGZ4KBsxwMNKGp2k9cTI122HA93UPD/MknP44Kf/KTnzAg0euwjHDxXHSAAuALuz90aJz+2pgpFE6uXJMHrVjBsZHQtTxmyYP58Iv59jtcf583GbCHyVUbrl6LOYm1VGxglK/X2RcbAAaM3lWR0OxmltqGqXsmcTu1uymCZdjkJLFoiHy9sLQ4ceSowjgmU2K0O2VGCQOqAmpuoaBpaaOzAjBpy8Cr6xIqSm1XkXOnmiDuhiwD2byCt9ia0yI1Gs9mi/CKiJlur3Rik0N8Q72NGxMuNhGk6YFB90c/+lGsxAoJMp/54Y/rvOgr800vi9detyEM9vZk1gQP3gcelYaRbW0eOXKY5wZ6JNKWTwqBtDoTB5nGYcWGIaF8+ZVvLs7UciAHxEiRirL9rrO3t27i+25z+H//9/9sc2PHhWLE/8KJciRHI9T484fCNyv3bD4LB4EfPajAKmP6WQz8G73gl8GhLY47QCadoSlM83mOe/TRx06dustbvaCBmla7XlHaQslQ5rzUS0Cx+fzccz/96U+ftfzCmOSsg1/z5a8AfFijaCFkaWnNzFeWVo2MFTbwEOmqOZa408IsBCw3H3vsoy48QJ8on/kQ8Lwt9bZYvrBVBSQubh4ivZ4/d86Ur6fuOHGSqQJuq7G1y2Sr4KEfRfX39YdZlwlShsBAa0/UZ3DZ1YnSZmanpOsvi09TO65s9rLhYzlw8uiR+++7l0tYkrgFChVQSra3epPyYdWPfFVKg89ab3qjKELVCFeF+cNreiQjsDB6cWEPe9HYKIeZuOFYVgZxuQzt5oCY1vFt3O0OlpgXy3H96jUKXrMizuCpHInFPoJMmaBSr0Q8lSxoqfJNWbi/dLLX3Pz8xOFJZIyfSlFIATWZQRXgyojWltocP6U3fzbzlIy3v9pr160ppH5Yi6rPZp4PjAADPDqXmoLVNv0zbapWOHFd/1hnU4ZYyiJ6cvZ7VECm08zlZVWwb05KRc1mZPSU0OyED/zZyOSf2/Ltvbg15ZU6Gz+z7tHXINtuDn3NjoLVlbzlyKKjeYiCwt3f4uXrjE/uvfceRtCvv/7qMar2Y8e0H2lio/EGVXb8SwkRGUwl9qfoFvS6WZ0Aw8IXH7QVrGtHx8aplewkX752/ey754sYPeD0jcUk4+WR4UHyLmHCti/8ksVAVdlHaQFmGDi326kR2jrcS0NQJuNvxIwd9hCcBYf72k3Ohw9PLC4v2iG44+RxbI4kX7s2SOaEgQvy1dUbM7POTWqIsTFe3KZrl6Fi2f6db39r7t45yhnMxX6g1oAH/F4R12gGTBgKNH4MOUsi/ssoJch5+IKcslFWGN2GPcNB9ils+1544QX7WmsXL5tUsL++gUFjplw15ZCnOVlJtt75fcseJnMxF1La8IiZZps1We/GpplmxZqMlvnKVYbngwgRDCZaze/L6QGWXbvQbnWCwmi4FEgyRYLmgMmJY2ffeeOb3/izL3z501hQTpOWzausTCPw/VyhUmjRpIeqakQhmQ6tXfRR2QzOpAWGwInpqaYEKb5BaXyLIDlSMw5rqj5+7KR9I26/5uZvLK4s4qQwaRTpLA1QCNGkr7+3nDnY1EbOfOwhw7BpAzepbDSqjfCCLCJrRbc3LEw/ANi78hQzB2REFBKq5ZhMuzs5LzNxZ1U3cWT8oUceOXLs+OLSgtpJRQAmDTgdyaBrZmrWwTHphACdmm8tiQkK8Xu4rECzPgKz4sQjAsyexA28pCclFjsBC9wkl/AWLefybQf5WXoucZjQ747i+D4BrvskbPSyo8CHeAAl1XScf/fi1St0RNYPCFwfEF/sV2PZpgKDCRgdXWFEtQvUS+4SL8MqIAgwVrbc2lozQzfEaotEWiryRGx2d7mkHXEmUdcAnhyF2BA8CQxjjxrqQJvRlHZtsxLslQ0G9IupQoOUT4xxUx1gfMgiEPfkplscMVgZGQ4vvvwSAeXhhx+lm52ZnaNlXV1bIZ/6FrmaJ0AuTh7wBLNEbWjSVX5mgIcoS+vSrmZ4f0rz1QdGlPb+dEkcea8vrzFC0SgdTbGBaZD6gRIug55MxZakFAuo0p45KazAVQZaGW51wJXMVf94q6ICpfzk8luJVCGm/vqVVANu37ufPxpHuVhnBmIoTwHlh/ZWQx2sFxhMMnildKHEwtLy7s7GQw/eS6vyysuv6dc7T91l45egYQmsIN1MsR4RgEy3k20rfYwERXjutHqgnMHC7r77bic+IM4anz7E/MnHskW9tYXVcn9P952nTk5y/x0zx4M5jcKQNdJkBklEACb2+V24TBwH4JUtrozc7fEM4zZoeHRpPTDBBYTTRpyDY8TsEwa6Dm50RXInlBL241Vlx/6hLYK5kfFJzoUoYTmqUwKzikwAE5OzTvrPu+1goLuTp5eN/h47tF3Xrt7g91TX2gGmw1YKIiSKcn/tzMDsyiIplUDPKMKKBGbI8WbNw0eOvf7m2X/+P//e0OAhuoKxQzle0N0TwR9BpydoIHL0xuil6XHBC/LZbD2wNTExyvRjcwMTcQPPoCNjjE/TYpdxLjMQ6tdJLCw31rVnt8/lzW66OsihyiF9V3bjY4ZvWBGgnXIanxheWBn9/d///Y9/6iPdPfy32OZpseWzsrji4P1fnIZQXiHMSJpGWfkwe75lMCLuzGNlVNZhGRoHmXGb9CK4iddxiokjBp/SImKg6GpoYPixRx+n23nn/Ntrq5xGxCxHj6BSPoStdZbXlnsO9ilqZW25OPLc+d73/8xqzP6h6ZZjV2dOFa82tbxvwIfShfpPOAoeUhojKrOAkVnNk2qx/htT1/SMk2iPfewx07mFnHpN/DQeVnnjhyYJBC+99JLFIsFZCWok7D/08IO8Q7taz5EuxxXlf/CB+w2NQxRDcecX1bslo7OHlsGCbSxyBqh8jleyKtK/JhJasqnr1/p7+1eNn8XlseHR7VY7VW25ipXvnYEhZDw9N9ve2TU+MpylclvrjekpZGRz0hxnAOJIbL7sR2LsOGYW/ggmA4nEv20VTDDIMc9Y+xAd6HnohmjXqAWzIpGui4mKfFJjCAR4s7jJ7PLFS66Q8tZWzcDICFUnOW9weGiVyWZMunt5+7h+7YbV0syUo6KzGALJzKgpbYw1HcgO9fbh7+QhXgP4ZULHzN3evXjBhCfAc99APsH9zQ2cnKfXiiQBS3UCaPRcJGwvUWKjcxtMtqShy8g30Wvhnq6z1081X/orIR8j1wb5lo/+/AdIrk9P6XosjtICfWZirnQVk4Tg2ZoAqDVE84CCa23V/KlWCXYQhBVnwk0PlVIACahswABTStR/VT9Tc2bYYeFl00OuWE1YFSak2PJJfdZJsrzJN6lLbREQotuj6ottTfZeqUlMYNSC7bHQ321ho+Dc0/jkEbtamGZv98Hjx8dmZxbvOHnM9P/222dNgKfvPsOmnjbZjam4vw4z7y1trDJUyPnhFl4D47jCQtm+qHGVefFmG1t+gglVO6Le2NlkGM6aYnlpfmtjxXC6ePkCh/XHj9/tthPW2hyTkqdYmROx4xk9c34sPYpbKlrsTLdGjftP+FrmL6t/kIuLxdaWrRPHDjs9YIUxfWNm/NAwaYxGK2ImQqPQJNF090zNzCvQEm5t5XJGHfZJvthcY5q32bL78See+PqffP3X//Zv4rCE6MsXrowMjr31+lnKefo9g9CY2d0hZHVbSbRkG299Zv7Gox95mKE7gugb4U5yAXKYtnAE9PT3fjg9uzwy3N3R2zc5EZUxvWHpBaeDQzrWTeaBpcVZ+3Nrq0tmtdGxgWPHDxu3HD/0cI/Oo+9ulLDvXrg+O3PDaM9CqL1zfnbJJUP2mREef71GGm6+vWG/Jt6/yyKUNEd33L64NNPXf3Bq+ur3vvv03/qtv2GqgWTnPCrZVNorpFJ5eoNqPuCfMoJCb2gT3wxVZTmpBNsfxlnZruZftRzT3+EXiBaCsiUiZegYRVnihcIJdHzH9rkImU7PUMGLtvk827j50P2P22//0Y+/v+boU/sq70lRxxkWcbOhtFwpk0nl5pbbdyYOj/7hH/3BiTvuQgnHT93R09fNGsXxFHdUUENHkm6L6Rdsh0fGI4Ch0xiuZZiU0ZfW3KTCxb9UYaVlbxmnnBybuPPu44TXjq4Djm0faHFntRumb3a1d519+93nnv2JHZfRIbYDHF8u+vC1N948e/7s0vJM3yCPh4MnT50ggmCFXFRFx8lMxL1KOy2kaZologON5f/u//C/v35j2lBiBwEJQ4ODS4sr/Py7Ep0I4uQM9ePV6zMnj99BqW4XBIbMlyYhy1w7AVjPxtJC582W+07d0d918Pyly5RqXX39egHLzSrwZgddKD/nRpypBTZcr9TbybLvgJ0DHAaXMBAah7/A5HQk+wRHT9yjsLvjfKHzOvyXtW3uxDfA9vbJIxOO9LfwinHTXRpbCtIvOACRv/K+ibEJdblG23zGf59KNcNdLVkK9PZduXrN5QSmARXZpZs4fJSJAIbg3qSHH30kc3x8LB5ACZYLRjwOrlg0hgbMo9Coo60yMXQ7w1Zd/iRiaca1CS5Tl1urHVwtG9RcBnNghASyiYT7l51jYi5qQ8JKNhsZe5lAy9lmdCKx0GfUYu+nf8zZiXxT+8c+/gRt8wzxkYO8um2Tg9Cb1vqafDCXduZyIad5yvVeqS4ykQ4zQdRyA1IRPVQJ+tKADKX1LHm8i7IPLCYA7CYzVXyD+1aac0xZNvpaUYZ7LTGg11rKM8NmX1CXoHwTfRyilSEHghSaecsNMJvKKRMLVIX1EyegFte+fvWirVdXaHHIw1j03LsXn/nhDz/6sY8T7Qna/YP9tHWWPMaAXZF0QwZUgCmzmDp14Q46MJ9jf0aFw0AEBwfrHdk9emTs1MnjXpGzyCzQaqhQ/YCKoI9TRPaPb/rwlkgr/K0Ariiw4BLjZqfDbQ/X+tiCxcrmxoph4zw9OkNbw8OIbyN2ll3d1N/sPlemZuzB3nHyTueNL1y6zPugvSwWsCy37FC13ezgota61YGg03fd60aXteVNkjLIiWw4sp46efL42jrZnDK95cKFd0/dferxUx8hivYahV0dJETneTn+fPYnL373ez9++9x529jWEyz99Z25BjZICeZH3YzLGw1oxUDDepgtzcxNPXHXA3aAu3scjV7l2B0e8TJoeOHF51E/YZmavKd7EAmZuaGawzsoMsGtrW9SoVlWw5QluIvgKVHVwBHp5NGJK1ff/da3vvGlL3/WMLO+5jmj0kzpqX+TBwpEVGgFsyl81gVkGTkCUUQ/RvcDwBCEf0okhJFEedQuVrKEw5dE971sjw5NwPy7F96+PnP5YGeP6QTxOHuqii37GHUzcJuFrlpaXUz/+huvHRodu/eBBxE18rPbZFGOKQSkYDjXU6uH3gOZ2RMtsFT6FG0E86tsJH0rPJ1kUwdBklJHxga4JDl0aIw1Cu/QxIjz75znBV0PD04OU1hTjw8cPnbh0rucAvFg9pGPPnDqzmP8SplOcAdlOsnsicfoI3wQa2K+icDO3H361//Gr/2T/+qfZjBaUe5sG7MZCEyMh4YWB4ZurGpjBwXz9NTsyHB/NKWdXVagIMbjoNNqp4iJ4QVHi8NnzgVVwUQHRfUSGdkmZkkGt9ZGsc4kEGPZJKo2HiMsxsnU3hX1T3rStjEcEidyLqwjR8N2DTFH+bqkW52mm2K8VDRsxa0j+jQtAUmHaqCAVgdt8hd7TQNV35XWsYxYNG/RcbFapjKy0LFTgg/APFvBSg+eYeENBUioQycacaUHw7IFEqE+pYH3yjTQDrVF7pbH10UGBo1mc7EVGTmwNToZmYWhWnEhiJKYtz9fKCdyPvvZzw4M8SkbuwUIxy+NShfTfu/pp6k39KDpCsYybF957TUVgOy25/5WwVqdAKDX9SThyTGAiYSlBRFcw/tKoGnV3UFS0rQZY9hfcq1Iiro9BSlBHwAgqHipzLzHPAaqkR1n8WX3PHUYpKYEQ6egsqC1bhEhy3gj8KCyj/vyzUs/fvYHDz70CAGBvRfSRtAKTd8hHxNMZikkmvolqt4iHaaQuJaaJCfHx0eHeUdYX15a/Bf/4l/80i/9kvXy/NysScWJR3UVcxffw3CO4GYZa/Zytsq2gIvsiwcDDMGo7unJ0KWCLzuxfDloxW6fGx87eMJZZIxsJ82SGWCW25gjCj989PiFi1eZmrkeBzfFrZ06IGrkMtLtHRzEVodVHiP64KQt98YYVsjRBCDFvgJdPNWK3TbHFDmSxCwMOWOrx70r0/y+dXNm+eyzP332x8+tr+1OjB+zQ+SYPTc0Ddzqv5BEsA0J9rSjTtreYCKJuO87c/f4oRG3ltXuAAGh2i1aThXYU3HzEmXrwYO5CWugP9stcGTIQqwmMEfhfgeQrvzFf5gS0gpQZTiPFs5Q2K1OkpnAYlHPhFTmv3go8MteGWg6WIpeVjK2iwb2F1Uze74/hFCKyOLDMjhSDqgwLO0yimzWmABIhfpcsWxDU7izuzkUaL6OfKLXVjYIqDetIF955aXPPvVFtiTo0xqWU9XAxjWY7bgwWF9Hj1zG/34YG3EUrgfRJ/qi4mNzZUanp9pa37Zd4S6lzbXsW7oFkqM321f0HjJTU5hKLQIIB7j2g4/c9+STH2WprBY7OhqCkivZW6vGAKeoW7Ud8g0Z22Pd/91/T4Rk1YZlgVLzMWWCi+HgngjqGmi5cvXS4clHV2gIC9bT0UUAIiKxfCqWKYSA/vE1bmUPzLgeDlcmY0dhgoMajKGgss4MvyPvhjmw9OO6OQDFi2eZUTgLLmoi5du4tnQnQhdhWX622GrzucHOPMrotgjPxGFhlNmrEdKEkHYrshRHlOCvfW0CgA35WF4IuL8U9GzlKu4YZs3W5Oa1Y3SbrkmxhbUXVhB1ma6hYlKaryDEU9wntbr6U3ot5Gc85a/hZ+TZ/4pFF9akQmgsRkBlpmlvxxilc2dw3z13Hzt6FACA9GEuFw2z1rP4NuULmvSJ2+X5PNqLH2BVDOdFRNrcXvY2MpWGFUE/y8cycUsRoh+iBGiMQP+UKa6UvL98GzOlnBRRS671osloHKJkL52zu93REkEg3KiEimvdUHvCNcDIx8KzoD6+2u/puBOr5Q3xB9//7h2n73n4kY/MLi6558XOZGGChnPmKFSgPKwhraXkMk2WrpJo5Ihny4Fjic3Nj3304yzteE6+846TZ8+9Ix1NsC7QaiIHIqZJABWOAWQjArQZyWUP9mAbQ9SDlgCmotFDIxt9bEAxjax+6HQxCrKbcciXw9TMnLtSGN6gQmzQJFQsl6hKve8lHTH7V77Jsa+7j/3S88+/ZJFu6QAPSBCl5vbK65fO3Hsa8CQXXPi+B8/ccedJE2odmVKY/KvWzsE3v/Gtl196nbA+Pn50bGzC9WVsncnjJpiMcs0hwxHisP0Scrazm4S4wdE5vYH2emWs0cxG1tvZsZ/c19t/8uRd3CG//vrbTkZT8TuvB35zmPzBSUvL3PxUvGs4j7puydU2emhodn7qued/2j/U+/jjj3/5K1+UDXr5jTEI65jZT99/kXjp1mTUr5kJIlfoI+aYsd6RVOioaO201buSby+9vCzKB5CYfArkYWxeQDVPVcRwTYOE199++cbU1faDzC4LqFQNnd20K9ENxmwB2ts3dzcokeZmFt96642HHvzI0aPHMtJCeLiSQXSTYr+1HfuHULoDy+UPZAplfiAzlnsdFWi/nf2lcnyIsKeuTRnys9MzL7zwEtisDPQs2RbTt9n30+d/4tqWz3z20098/HEaeOe34RYqWLMZERoloDrt1e/icGW1B/mYA7JffMVuM89RcbeDJvsH+kaGh9hTgOH61SvsLs0HZA4fZrMRq8jOb4Q/wWm0sIK2sJu+7p7NoZ01NBTP+1v+yAWbO8SISC2IVlAIXg8tvIXjzblZhkBUsI9TkCAibcnT1sKhhctWydg6SOEEzXIILJdjAyDCb27dNkt0AEMeZdRAGyxFXAPVVyuVDboG+YTq6rNxQmFA+DB3QgtEKb9mA54gXksQUY4UGZQmUbwSrbhEcgBgBOlN2iuiVVR/KvV5KWqPBCuI733WuurzvW8+4Ff4BiopYqht3lA5G+UD7dPXb5gyfWBmAg9WUAFu77FhiBma2A2U8jTwxZEORpxpvxy606817qJLpVgBaLwJQDxKqZyby/wWjFDORO9aRTATdNJrmbWE+rRUVLLJw9Pb+tRIpCaeURnlWpkKgm2EkCknsdJ54uUnGLhDyTpdq1g9OYzOWdPyytLx44fJvxfOvwPRp++9z37pwpzNyb7yOR2VHSaAwXt2LPyErGyylXvQyLw0udLZWg8PjdhsVj7Dzldfff3xxz/iCuV4iWHel0U+wio4ChlYJzmDwQtjuGcwERWhtU67/czDNtlcu0H/E8Wv7VMqrU37V3YaR8YOWb84emw/jVmF8WzbkNqqvaeXnZz9LBMFYqIyoiaFTPOThjjLxru1FS2/+mrEDoD0zrm3Hn70QZs/Xb1DNjCOnzjCcAUwNPJ9fVkModJcPv76q09/94dTN2b7+xyMH2fpT09YFtylExFl+F5U9TzqqjrLnQieg9euXnzqcx83B2BXyCyzOKfwB+2sbJExTUu2fyePHH7p5dftObdstrHJyLGlYmUIh6uriyOHhiisUVNXT7ulz9TZ64fGhj/72c88/sRHjhw9fPr0HfQ/2oQ6bWYYkyxeNPnfLJSpvfEpzmVnAbskLmgbYKIL3BcqXYW8SvAGq/GUNUwJSRfmqJspspwptBiK70/jK8ycg7lOZGxphbcadPqXehdR9HX335ia7e3v2dje+O7T33nwgYcfffTxnptdZVhoZRlHiidgGSuKIj/dCuKADPNCxurSxS4s0PvEc+RqPDjgMjs1g/vzAvfMMz+mRXzgsQfInmwN3Lcg/3PPP2+0/+Iv/uInPvEJVmxZe+s2vCe3wBpfWGUEZCKIJ9LKnq2ZIJ5IcpRSCU6MAoAa/WB093EXZtqw0LEIcFXqwZ7O1eVdx2kcv7duYAEHf8FJeEMN4D/ATEjBfSb/eNwyC4S0tAT7z9hPMzXUSM5amgttJg+R8eEJXVpmlOUC/aYlUlQ9hrvJAKqNXCMjG+yhk7CpLDcph2P0ov+80ncZnFFCBrf1hFS0f4WfVC4sT3V/QjqTh0ER1q+ZwMRY5NEo6enuwvTFm0GiNXLNoBY/TZy6wAJiZCjcVooAvXkWPqYQP2vV9cNmabdF6ttmHpEKQDNlf34g8m5Op2ex7kotFAIhKIdxlKYPHxrhltEu+jaPIHZQ6M2gyFzXLKIWHR7Q0oKAvBbEC/zBnZ9b26sSCuPTbSHN2nmqkYyQw/kK949gnVgUQiK18PqsP/HdIthn+aDkynvgq9STb2vtKTSSdVLEJXoCyU+0SwJFH1YMIc2deBNDqCNDPUbh+sYRFHz9xtTT35l64KFH77jjzuvXpxyLMU+XkvMsvUkpxEyoG+lhZKBFeaQVlaqIKLS15C6XEdeInD/7zg9+8MxnP/Pp115/VUXUfHQ+9PKhpVBkuLOvYiRXQA01FM3joZFhKDPMe+ORjcqYh7dVXWIhv7CyZA6g9uQdk1dzF1LSKiEdO2w9A0PIN6ce3KME0xGAzDHtczMz8psAuIdEr12UETn83DI0MmjHVfcbZYePTJw5c9f5C+cNF/DonUJ/lsQHr1y++vU//dbCwjIWUOw1vSWe23oDLcfaZn/4jL3/hj3Q9dVMyW5dzdIuXjD5umCAu727wgjGKsCOrqFin9Hgddf21SvTzEO5DJ51JPjgto01SNZNgi5zDG15Zc6swUIxF+/1dD312U9+/OMfP3Xn8SPHj1IuuRsAOzLulCli9WBMQ+ZfPOz1aeOLcJdCwiIEXpOoF7rdxE2t0MwscluQDcCV3prElgMc63GgT6+5tmY6YWmW1QzdDBrX9fhRfFLaCOCLOPW0cpmMLpCKRt24ce3Z9XV9e999D4wMEiwsFFrNlDrHpwQeWPqwlqrFaqvQF+qnjLLGD2Na4QVifhlRvfAC1yZLDzzwgIY49YM+WcCce+21K9cuk/1/+Vd+SXu0f2RgCLeyBDSAfLW55S4Bm4UzSM5PX2Fe2D54ZMMc1FtmIN3noGwHucj6xujAR0yATuJAkc5SiAO3FXgAhBuU8SueYXzTQucAoNt32jJDxn1e2FB7/4BpOOitS7EyahBqxGnjjc0Q0ncrlNcM7KywtRwbhQi1snOzigYSeatMz2pMf5EncZYifxH2MSVUKoAB2qRrGrwZD9ornXRSR4dXpk+WpWTf/qFBp6x9Qs8mv/V0LaFWUZtW46moHI6p1FJf1QnA2OSeKHUXRyBKq28LX7y1ApD4M4Kvmh+K1Op+Rn4CPmcVpmezvGyqhFrzqrhvAZl1Yb/DPWiYifNau5nqA4uTFdy17matfhIu5a+Dsr6tn8uTwVaqySaGcedn7EGyjN5LDxBC85Mab6agFUwUBzIkAiyugW86abg3GewvRxyd7EbHl7EK2uXFJetK28LuF9zZmTp16rg+Nj2sre+ce+uthen5Bx562MQGxkqUiSAYu5NtrirNdpPOJtgSDbE/5oxEAB6B7IhC66XLF++99/4f/vD73/rWt8YnxlB8R8c4ho56LJSMX9ggX4NfGba+cS78HzHbcrCcjDAbA/tux4RsWS9mdZFrj3oGDl+97jTNzUhtK5zWZq/i+o0bR0+c5DqCrLelnHI7ksbSAvV1Rt3J6byjKIaroTtQyKJ/cJBXSJT3+MceO3XXHbYKCWU+ZNRhQaNM5wNMWXjEt7757Vdfeb3zYHy5OfBlkYp3oxebVTrCaNFrWUGy+ozF1SrR13kspAC3x48cvvOOE1CEyxmNWy1M4DO7OF7EjpZ+hAH1mTP3Q8m/+L1/1bpNirRCj5oY8GBmRWqSvnTpMqg++8WnPvOZTzFLNQKdwDTRylm2GXpUih0CxITBBLNSy1/8qTrzcZ6ZPAyBbBRx01kFT20sISQAKn0kUguvEc8a0UE1XcQnEiEID4X2llY3cfIuE7tyb2AAA9VZzltQ5ZNakXg+b2vjEqpnYBjjIo6ZAJdXl773vacNvJMnT9EwDA8MWwQDI3wSDRNvP6SdKBwMqlNXDZmhOUCcmuPz9O133rb3e+L4Sb71L129BKUyY2GXLl/g9NBBd8d/cDFkbOIH/0Bfp59vv/kGtSEIFThxeBzxICqbw+rCIo1+jWQ0fOzoMd60ZufCKA625aIVTZYBDeCPc7N0er089/GXMDjQR/mCEQT35X9Qa5o9TRzH6ktjLWHswSJ158mMjoKlMnLcqHGAxQQnhVblWR/E7rv448yNYwZ5dkazSGKEasowCmAAhYNEYzUhKCp8gF5WBK/B+5zs4ewoHaoPeMNQUOaHUAVdqD4k+Vjva1pMdTc2jhbncVYDSrMOUCw+rmdLHzXoZH8XyeZnIaRMJ3rWElZ1OA/ABK/kqbS0vxDxmhjYPjx4W8P+LJUa96c042V5Rlux2kEtyYKIto8uuSi4LAR6ujqtsXp7uiMyolT0r22VuxK4QoXpvDzNFiRi2JLuWcS4QBIDrHyQDi6RvWch0Do1wHBe5bSARvqRCaCZv0a0XzNqSO69oDMJ9ERBXWgKcw9114FiJl+mFvllbH4F42ZzBapLIxEZ3hQR0nn0fjYtJAuDcXdqeomvVne4/+THPzrz4P1N4FMnHqHIDG3l6ktMyBeIyf3g3caD26LJ5nZcXc2qHnc+uGQGJ6eucQbNWawCeICtq2lzC/BMYDKbFTRTcBTeE4Ol/SRl26IAuTu8pufndpYjX3A7YwLghQIbhfq++R4TRn9uXlqkA0KFaiG4wDHdgmYyPuFkE4Q8ILl5xdCdn5/jSvPYiaOPPvooVPQP987MTDsClhVMtqSG1Muv5xuvv/TdP/uBAY4AMH36YpvY9D9R8zBgCyLVRTyyKcjfjSOa2zQNxIUtzgU72u66515WUrAkKCTSgPM1K5sspp/6zOfOnb9k0/vUqTtYFn7zW99ZXFyZm5uicVY7PaRVjwuk5hYuP/LofZ/73OdczECJYsi5fNhA10Aj1NoFtAYGdNnNM5ZsGhcM/3wPDdn7QIfoVuI/+0D2fcAON9flMqRTIlbfCvXD+gxD2UdvmlzzSYQpnWIUgRCpIHL9VdmuPHKa9WOUu5uzb8yK6YuckDL7jjlwfnOZvyBTJmn93rvv8ZXqsFTVlSrUsh+kWmkSZZMhI7JovfEaqzLOaGdX5s+ePc9NDf5++epV2NN/tp0XFucmDx/+8pe/fPjYYT/d4Atiru7Qm7nh8pWLU65L2mST2j005MDaKaA6VKwWLE+c1NI70Pef/aP/9blz71jhvf7amxfOXzR5t2y3uQHgGEcIq2vyKIlV6e5aiwlgYvwQfxG09nsIzBQK2siGGEt28nZZbra0Ri6G/KyTMqAbzAFdx7KTEmV3a3Fujg6fIEltRTErDxKNSUiu840zomixnWayDKqCCwO/ouExiWLxOUuoamRAFHMbQWHHOk6l4f9lIjdMKrFlImnPbqi3kGNYOQx56dIlE1tl/Xq51159CQF3D2CRSiRpY5mErJpocZXGTMMra6M9KSEMsw5kOQU/ZSiFBZ5bBFuT/k2fmZ6rh5KiN9YX1MjAg1tPTUa0wEA8BDgtbTcILPAZJtr8wyMMYKIifmapS8VIELNSjnCSrd4iB5XlzMZ6XN9hlWiOeaIG0Cd4Fi1Q6dK9BpQB1hg5e2n5V+bkL6gEWU2BEUdLiIrIHEeyLbW0OM+gJfMVF6xDQ7CGlDWDpIxMITpnBOhPizdwgkRne6drfwDqlhY3805OjDHnOnf20tnzvNSyQdx95aUXHnz4UXK+MqPoZI7NJ4HhyjeDRbu5KgIvMlNmw3emLqTulF89aOLtt+ZpMGwzOAzFUkgJmoHXW1yafp29zt3KlhQsc8rl4OyjNZDMC0jrLqRIta4qNnmwyjcHx2G4v85w4vf8uQsDw8OGltXyzI0bYAAJkUdpWWm0uEAxpw0gCmn6hFx57fqVvv7TsPT22Tf+3n/474+MjXLi0nkz8yLBQ8dDF6Ls680ew9Pf/Z7br0ZHxjc3bAcNsfsBe0Sl6PSxmDDGJZZPC7O0fSuri055ri4t8q1CNv31X/+111550Uwz0D/Bx7qLwwyYrs7+61PTBoq9H1bGn/nMZ3DZ/sE+u/G4DAuptc2V7t1cYGts0P/81r/9a489/hDbJHhTPirq6nDxGa8Psf2DqIhFhTAof4kvhVGHYG4LlWZuS7R2qai27LMtl1Vum4s5k1ftwEPsbtQyE4B8ty3jAZYi8OyNv9Ck/wsABgnsoTGzlIokpr3dOblqrwd7nVmY6esxtZPE19kfh010W1dxkOnmdBKlS6R3XePFDACDp07BuZCNOZf/ztW1pe9//3vnzp197LHH3LK1HLP3XOKWwxxIuiwgQAEuCCmONIyIDcDYmACYfte2hY2F9tauV156xc2gX/ziF8++e87rjtYDrFaW3GG4tPS7f+tv3f/AvTrCpgGRxGT/5htvL8wtXLlyORaKado6kv7oRx/j9slYtzOr3J7+3phb7uRCm86eNu5SyDdPfvLTdLVry6vnz158/fXXr125atufD31MkubEVMe6ye4IiZf9Q1WHGk0IC95iEmWQxHK/m+stenyEO8d/MsHC8I2sGWnRagE8Nzd3nSEwsuam2JOtdI0e6urtw6NB79CJczzwbMfFXjQb+zC4rEj4ya7bw1ZReilnm7VOOoEVFQjiKpCMGmTgygKmtb1yf3SIbusUgjKFYLKjw0Ifq9EdKMSg861XSvMzIBWDEb1WNIGtCMxbk6IP5ZQBqEoOPHtqIvO4nwoXZDBD1MKbHFGZCFIV0pWmnBoX8Umtt6bIcFswfFWdVheOqvu0aNdpzNIcibXqWhTnqdH7nTxxBBxKxE/l8/FmmslOMYKJIO6pJuzV09xLve5av4PdEd/woDg7iTOQwuXrhF7wVT8xPG6Dsv4ESrqk5Kzl+4mJAhoPDd0b/5wfFP4FPGpB2Yw9o8up9YrT8klGCOHUM360Is9nWhakMbM2FMcOjQDxyuXrV67d6OkfeO4nP3r88Y/Ktrg077JtfhBRMIZvlJZDryi/jHUiy25UHLfAK/tOOC+2YMfSgV71nTx5dLGY3EC9vmeJgWWjOfeaOWSmA2JaHVsLfC2YxNONXtpT5NjTtbRO077uiHyr1TQ2bS+X7MNqk0VmV2+xCMosTKA54GSkORgFYlE+sVlH1f7mm29aBTt6On1p5hOffOLknXconyhtEdM30KtnbYkRfvmHAcAbz7/6o2d+arAxnTIHkN/1OEySzyiU9YbCWeksLs612QnIn3XYjmXEzOyNr3zpy06QlN1HWm+skPq71+ccOVy6ePnEiTvCZehAcvLFCr3985//DEetRgouf+36ZbWcPn3PP/rf/sNjJ0d6es2+br5hFNhQN6FshFAJ4y/5rOMKohCSC+JsEDoup+3MikwJSKPSsyYIpTsaFYoLeVsIXkQGfapAglp9JRGBS9jcXmf6gqVBAMjljA2FE/as6EPA0VGQvFbiStC4cLMx1TNRSjOVHgfSkKlkk/c3vjnDh5KV5dDAEH5BYMOVFEgOUx3Oojr9SJQVCBnMAjYzDkwnLk5pc+rnyuVrE5OHsSpDEQD8bRrYr7z26t/9u3/XVUX8NgOpqukvnr989eI1W1CEE1wGlyConrrzpL2ohi6+yKRqhxQP1AskcOpWopH9Bp+YD6xdXnjuRYzvhZ8+xw7N8UA2xxcvXL7rxB2EiAwkuPWBLg03K3+sORWYw0M4eat1wBLisPlRnIJQVKNwcJJWXOGuY0wS7KlsrhQJOu5GwmiUerOTmtJaHXKy9Vb0csZ+k2ygKENgj7c0I3pwP4mF7DMYM6nXYDyK6HHP0uSoTgpEeSpf/tB7w4A1EwysMlIg3DhULwPtFvsrgyi8qFBXEyqRwFuCV4KfxnVg2J/pfXEZkqc0530vPyCB9GziAptWRN9g1y+3iXANEK+RIl5J8RYPSUu//AtfQEwq0NOa5zWMKzi0WGYMmWpIAzI6os5Lym7LlSvXsn9qvrLAi86twdB9nj4vGMfTPwBMNuTFsio5SxDxOcjSk+mb0sFlVQU6sFZ84aQB72a0Ig2kZAsoE2b4/2YapkaLcprnMnbp5jcH3PnEPVyrg0jLa1trnPl++1tf/9Snn2LW+ebb73B4aVdTsWoXQvaUlfaO/JcjXbdoCwx+IkTj4cknn7x8+d03Xn8dnu8+fZrSTcdfuHTJAQI4hCg2SPOLC4ZAyMgBmeiGMyZ0OMVcTzQqORLlBCWxizerlQyiGbra1t6bR44dWd/Ybo0Hx+jFiy5B5fCf/W5ysQOZ1m8W7FZsUHXt2hVXED/11GdopfBWq2IYM2QcGYUr/Wu6Xl3Z+LPvfJfziZHhCcY/jrlatAXpRlsrjkJvmOu+F9zG7r6z1pt8ChCuDO0jTsYN9U/fuPaD7y3S27r8b+zQgI7ovGmZuDkzu8yD3hNPPGk6nDxyhFFZ6ffWBx994PSZu5gGXb12kR757/z2b565l2/UO3v725fW5nkjsMnnsJJGmSADRfRviKAxSBL/NwqQv7yyqr2o1F6oCU4XUhU49xC9ogEfFBIaonRSux4XAXPwW4JYpUl9bbAoMJNuGc/I36QI5wvLK9euXfUhPVBMhMhZxfUunbLuFlA9ArBOtJDNHtyOuQQpIK+IkarAR/jsLK571p577ieXLl146KFHaIRIphlc0YCRtOKjRrxCWOBRmcGRRb10UcK4Tb+HJyddP0BXLiflklkBj37iiSdks3wf6Bu8ylaf+ubCNUYJa44wm6FiSd/icsc777yjtMIAju+FIKP8YYh+2RfgUGFjY15neadAHlPQygP33m8v8e033uQXh1Hq5StXllc5uM3BXbr2MmOmFKVZSnhS8JWhlEP4zO+JR5QtDqxzuYOW0JWVE+dT7oyk/1GvZYFbqMuaIHv3vqXW4XhVjyhRMKAArF9MJxE7y4EAP00K4SLF0EM/6kBEXqaKBnElHm1v4UxhFmAj6+QTf7Ca0pvceU+aDraLeIqujBbdV3mRcyqmW9s5WQTEVoru6AKpn2pEIQWbwQKs1J/iNSiwICS/CnU10j/wn4ypv1jg8xN0SAwSshos9drgxM8HWSjY16GdTmfEGRy2mBO2NvzCenl2NDNbGMRsvXVybBTEoBTgWlwAB/vceugRcTsWRYOBTbJBiWyyj9eHSsPrduk8wkdxqfc+UU+2ako6wvOWhAwKSkmTGJwQTa0A+LIsM1bMKo0reAdMNdaEkgzbCDK2GRUQ6ow4m/+wyhgIWSqS7pk7s3mbnBhu77jrhVde7+/LoYHnfvrsHaddrzrB67IdoEI6kYIDdSjBKhY4+al8ZeOJpfKypRny2ySzD37s8XfesRR+88gRI3Dprrvuun7lOhIBKpW9E/++VYrCU/5e0PFmYxsEnh18SqxFn8bVBN8P/b3dQ6NHKTGNpWzfh9Q0MMfukHiOVpYZRUlQoWR+ny08nXb8lb/+KydOncDHmeqRLpdWl7Zyh62+6hjpoos4QA/miBBNMXGwLkvJxzGCzUgwDJiuokirfju3G7wy3HPmzo9/9Euul6JIwQWc7yfzzs/NoHul6m7qgc7O3h/96GUefiRqsglJ0wxX+3PHjk0ePjL6yqsvfPEXnvr0pz/92c9+1na6Ywpr27hXHC7CkmozjItqco/E30fof2HSr9hVJnRplO+QLjNZMuY8yOexG4z61npOjYWkI1WKNIMfXsGttmQRWWZIhRck6Zn413WXPaeB7lQzoFRUKvVdjjq3d6z3IFYWU6ZQLtIi4aazSgnGJI1qauQ+iINiysIoUdfXr1xxEdvq/Pz0mbvucXCavILwwE89Gz4ccMKbVZRHKJ9UZNLefOPtt45OHvXWEsR1jOuba7zW0Fj+2q/9mlagyeGhIVrTl154OSS7tkFxuNuJPViCtB8aG0L/enFzay2HqmAMnYdb6wXVJc6LDhrqae+EPTYIJjMTd0tnC0lCo2yPvfLKKy5oQgwdNzty6+9Af0oovQZzQRr6B6574blw4FuJMp1LEP5OOm8Y/vgNRNnRDYPHlqIuyqTnGA6rLZ+zySECuYNsbYtntz5O5CIzh8FlNpUBOkTVqAqRYAknkUxgjxY0KYL+LZm9zEgs7wNeDSVLHuF3uXA7joRhzFee4piBnCJajdplqHmsANAJkzxvbY3UVw7lyKkcibVkkfoTbdVE5SCGZr0fFlGOUD8RaZbWjN/2oZGFFdJuGdaZsxlDlmtKzUy4jSB//VYbAICdZ9aWSjRSjZUXmPNHaFEx0iuHq2GyfibN1ir9o91DWIUTfe+DiFr5sIFcXV9qSslJf9+TvFFzZ/a2lM0OQ1R0sOl/LVVf+rh0rW6oXHV92SUtMTvzNE4tyLJhcDOmJgUYK5EUp7xITwqIKEEPsG5Lk+TOD49uuHjpitLWb0y9+tKLDuiPHppYWlqwo7k3h+jwXAlUKSd2TJHdQ1s0x8rRs1aB5GUiNlM1Fz2++srLzzzzzMc+9jGyAAMyRLDi6KzD/aaBg1HacEGhXUFIxCGUmi7NKqOQBSWQoTw0ODA5PmFxMDg09O6lS/Q/HNqBAfzRuUXLFVAoEsiz4AfPpSuXnb+nVr77nns+//nPq84YZ52pIqNa4bLNzy26Dxlz+s53vkNU7+8bsREKdeA3cdv3RYiVxCnr/Jn/WS4ePzrxG7/2b911+iTLzrUVrlWNzCgJ33z9DYWbqPgWNAAsTVyo8NmnPn/23LtuUMC2FKt042hpef7e++52Y8yv/uqvOpXKzd3Symy8qXZoTqZbBwwIgCKmKPoRGm4l/+WD/g2TzXUoFPeuKO/ZXNsm/hsG6iaOEBG8VVGBMxXqDcFPocYlarJgcNREn0C4dPI8VmATaG3bvSIkEuVQY3OpEqsvA48gTM5C0hur9rdvmoCoPRSCZtiap2r9k6P5VpzURFtcyJF92ZWB8KfP/YThDoq65557kQkFiNkaGBTdiLlCUhgR33w7jpFTPkgcGh2ZmZ9TlLIdxgbko48/ag7QrfYk+CV9+aWX3CEc68bsc2YVq+TugV7+PCh/xFGLLoMSyEgtEYOydACtsabfBTKENYmpf+r6lFs83ekGV/fcfd/Zs+c4UWSJQAdlk3jygfuCWeMw66KI/QRrUhn8QLpPwqFa4iAAYSNv+1skAiIghUvEwZ0dZ44LS7BeQuzRC+mE9o12YsXSykpvzzDALLFyYa9pFtobc4xhHzGpyjOlW/EIUGS0+bk/SEQnJSVsGrz1J4zpZaHCKVulJc8yuHInjESs08+iCXB1xDDhug4iPYjPQq88Qi1TUYIyFa7GxAv5+amQmoLzlUl3P4yNePm68ahJSv6AfM2k7LY4KREK4ZAq7JGR5IHYkXO7lF3PnZuxeiLuoUIeNnOYOn833eIW7IVB6aCUV7ohmjuozf97cGNiUUprSzF3I9JgKaUF+Sz5/IsH54kYUnZevPdJP5Wc+7on1lLmfvtG5SvdYh6AJnzCYHYnrrdQrCSo9yFunKKZrOxukAikQD26Mt7U7biMpvhcb7gIy3lI3MaMe8eJo2j6py++NDE+Oru4+vzzP73v/odogXKQJ0tHsBtuBB1s2qwEFZg2VTiOgJIKw7KGvbnF2n165sYodr+5biCdOHnk/Ltnof7IkeOI3tYmbCELXDLjpijNgGc4gB9lgDyj5OY2ZWgk6/n5Rx99WDawWQ67Uyk9lFFkvgVHVqc5wUFQKuodoCrBSWAaXo5Lv/ilL5jg3bV0sBtLogSOayoNUJFhb4ffNTLf//4Pbehj0C63R/HcqToRxgbOAgvPNHMYERgX5skY//Of/+VPffrjjj1vXF3FnnzlOnIKT0cW7G2GpFxYv7x56dIVViVOt/70+eeZkWRKyGqMjNzGQ9yjH3nQ0TBt5kCJvpgzDGfCwhWKkA42/BjrAYxurYcnIOcvGRRruEJOUfhEwiIF37g+BZcYNAJHU5XqDPyKRpmbQf76FtjehmhLqDmBWhJ37IQXgSOHU9VYZnQHCzqsOzl7KwzUjEaNY26LmZFBoGQ5kUQpJDYtZH+g4inz83Br1dipE+fmuej4MZJwVsCWkmFsTWy9BColgAXtgMF0wqqVo3/LUIXPL84R2U3AloP8gzrzpSKZV5fXXnv11eWFZZ472fTqcYnK0To9QmEtwty5t6+rDFPKgUxdlVcX/uDsXhZ8vjl3/vyrL7x2/do0MzE55mcXPEdtrw0feuvs2yyKb7bOmW5huMJZAa54M4xoMg1R8wBrWPs/VughADhWnw2AmEQz/8mmrkEI76YEzcEKnCUEFmWZuw3tCCBFFeRsi2EIJRlECSQkNaZSsJIt08pGSGIJ5X2mC79qou6rfQrOxtuSGWxSvKrZ1FU/ga4apIhIxGFqNoMXQ69v8Ss8qqaDrX6rTJEaFOtDewjeNoDbe3Xbv/Xz2xJ/xk/FWuETueIDdWMdcoKpYkeuRcQCG3WArPADyfWDEcRSYuFu5uSKCYM5aQV6ERCLevb1dlvniiLsQtmZ7y2JmGMF9eFLyR626fNQwx76Je8LrghRmiAtWKgSFr7CyWt6xf4QK45yRdGBhvgPXIM5iItaNsGn9CKYV9YAdYkXTVK0Nji2P5frgUQ2mkPyFvtSfcMH51OffvLpHz6jvxh3vvPO28dPnBo/2BkZL3REO4YcqvCQpqikQFp1Cxk8BBXM1w7bIuPo1ptWfPyzg8qS/NXXXusbHHIvN9kZc7dexBOVR7w2O+UA8t4EYCSD2Vdb6xt8qjtcY9BCM4WVA4RcPocf46egNseViRSyKmlqhaHuzDqEfOkrv+AsFY1qZw9mmqlFmcouimJI2TW7/Nl3ntahBvzy8hogry1dwz5IVzTOCDdKttisZ2iYb5xbpheeX5jDj7yUBuv4BfBUBxUGIWqnF5qdfRmLd26ZaClItzuiRoicmBxj0aH/VznT7jdn0IE43NO2vEKlUBS68SNhKm0suq3VQwmhoUget8IeBd5K+Zkx+KGjjxgTo5cceacAgQEggdxbmMTRPBGurizkcYvOlV37ulaiEMG3fvokhcfrwxZsYzJIEbqUhNQyjtEtqs36EftC/w7NuE3Bp9BbS8gE4HNV6HG2TzurZb+x+6DeQio6znSuZ5WvrjNn7mOQSLAxo4HB/K2smOeWWYR20B+/gWXeDWxumODwFTHgPvqCpee1K9e1nR8eepu1pTVHt4nq61trxALmvEWqpf7NTkZ04P7LsrxyfhKiFrSZoX/0o2dffu4lHmS31whAbcyygeTuDV85SDI5Of7W2bdm52YgiixcRociEXIwCeCCwsgxJclY7qKmrh2h8HLQd7un4yCnh3ymGCcFX9AaSgjWc4UDQdUGB/bajZyIpPHSbaQWuwp1pMvIoc3g20CQOtWetyWIlaz5ob88IVW3glmIvFe6STFho8VbRtILAaCb9I6tMwy0iKHQDsl9uUE6uyM+MTp8Zd6STeFKTkWVIZafslV4RGAgXq9LCtIM7X9I8EkNH/L+PclkLCpYZ/uWsCR2Pfg7UaAtZsqacO7sWRCiIAWSJ40O+oJydheOI2gWXoftOPFxAFEWRq79+qHM7J7WEZkAGKWQ1LNEYvJQ7JzqICgzr2kH/mFeNUHE3rf7ywGXd8TzWos4LuSJc7XttMUWziZJoOQ4MSdd29p40GVW4Yg9/V+kBvzRJBS7fRsRJgDrmoLrIMuctLXZ19aL12QhZPfPEXV28ojPufWdLSaHTzz6yGtvvXP52tTk2PCN61d0mwMSrT2mx7B/o7k0Olu4qgjt6jO23ThykNHCu7qzrL3ddGq7129cJXHzQmHgfepTn+KGyLZA+7lYCplytQu/BluWKEFJga9IXGaWpcVFovHDDz+IWtlAh2JUE5eKGmP6MhpTHXwaHYK5luRo5+2td96cnpvWpiee+OjY+OiVa9d6+llbzuDqrvKy/6wEg81EikB1/z/4B/9gfOKIXn777XOXL+ELi7RDV29cd5TM7q/a8XommZcuX3rs0Qcfevi+dy+cdUqLGa4NZwTNMtScwSuc/S7NxBKRwetvvPnX/vrDdh2pkiVqSHtn7821WBMA9fDRI7hP1EpdA9emro2Njto3qubCOKJOIvhjqvbqKdMwxorwNBay0UXo7r2Tgd8/O2QQlw/jQQy+2hdXlojJ1OVuoNQDjKNQOuBRlnz2B4qgfGvswX8YYBmW+qn0mqRMHgaS7fouHq13N6n3ZWOCHA4Szu8wmH8z/XpKZOpF8UPphEcXpWZouS5Jw3zoi2duoBlIw1YKSRCdTB+bC+vrI2ODBP8fPftDKr5PPPFJhmrQHkVrQYiTcQDZ4YVzPWS/Xi78YXpMhfPaa6/9jb/xq/fcdQ/XQEiOT9DlRa5Huvhes+wZHh71KfmOQTEfpSNjI7FGatuubiqCfO3GU4NzrdCEEN/T33n6m9/89qULl+6+4/SZe+7m/mNuZpZCaWNtSTPX3Xu3usCkbfHiAvrHnTNXxquFEvxlEJXWkcCyotIFVDdGfQZv0S9tMQbb2Sai0j2yXoElJQSrO7lH2oCxNMcNNMf6iieDuY2YqECggDurAbWY6VUakIFeeE4lk33SNWalXCVrZGBDBiWYADK1C1qLVjMH6E4zXVmq5onfEN32uLmcWBMIBTCgYdQOPIxCkAgACzgDXwSthR5oJDC6aBVC2lm4gKAsQEWorYP8hNSRuEwlZAD8XIFdxsbWG2+6yGHOuLVxYtWLEwJYodC1tLCIe1DqmgZMqCYw0m5wxx894Ih/FG2EYJTNuhb6JHkb7kc8zKY7vQQZoI/NyeLVqxiw0x9mAE0qgzUt1mwwGwQZNmlTVIqwe9sznYwkYERfmEzwQqBwxQNaEz4dfusmaceYglZl8u3HaML19sNj437iNU5ROsQ4PDRg/5KTRYVhN4cP96U/qMIdaNhcIxfoAycVut2k0dHLRo5BtM+9GnOfypk7eea+emOmu7Xt0oVzDlRxF0GJz7FRGD0/dAfSwc7rrq1lejdijT2tU0W0FsU4DBHgjzUR1bChP3XHCbfHMItk5f3WG2+OjQ6PT04eGhnRvQjWWVlnDk1p2owLO/71yMMPhyp3dpmH28SzyIdqsxqfJmFA1KPGTDkbBTOGB1Hxjbdef/WNV1fWFj/6xMe+8JUvumisq7dziY7FKZsW6p1VndignNg0tfzWb/8dsOkLrGPyyKhJc24u3uJQKgFZYDlOoQyrc92tZ+45Rb9sbc9/y/jo+EDvOqIh4P/B7/9hFgoHuHh0RVq3rRQGhXRQJoBPfvpTC8tLA8NDdEQEtcGRAXUhwehwO7pYc7tgWC/AmO7GOkPz9kiyXZGRxg0aZlQ5o5ZKQUQZmduMypNDQC/ouOK//lQENErBQ3VNfq7TVxxwM7R7CvjMuXJ56pVX3piZJgIPkwPUQTKE1LCn0GYro8lMBFE6gyvWVgopA7mhnM2E4jW2JLS0RtYrJzzo7AwWGhXmTLQ36xFQnI6mnTDiOijxzD0HD3TTq4U3aYpasmEWE1JVCLEOclOTk1wNS1Pp3u+0d7cvrS4aOz0DXbMLM9/57rfOnLn34QcficF+dy+LBs3o7+mncJ+6MYNprt90HirmAD/64TOPPPTw6Tvv5hTa3ODcllp4pFesRavRx9ogumb+EDraBkb6D/YwLHbhrV1sR0ughgar27cWdllZbG3xOu6Wve9+5+nrl67MXp/60ZXrP3n6B7jj5KExjvAOHT5MAGIV2zfcf+ny2c4ul+hyarG627blbLh60sjswmLRBnbYNaHk0PjkUoSAmMmDGcbmFpbcmTF57ARXvPMbu3ccObK5xnXjCmIta8LwE8K++1g1wW7ZId4PUzSGE3pGCdLJttlsgGK8Mz0WbhNptnh6MJa3iIf2SOJowBfZ4GOgYQgMDvaFzFo3mG85nllp27UN67Nr2bzR75BDEi22A1YhvKlbq1m60c4ZMi6JQ9LaVllBln/8Ka1nu3F1zf5/3dhOz7OVIV5BRMY26otQQNTbspPKZTYX8Txq4a4hAeAjFojLI1v9vMGjQBpMnFS/mCeNYs1IzoJmkRpMM0xelPPiq691ckIMM2vr/IwZhmHEDuANZavJjU8ANg109wzZtvItWuZhgOogBouG0I5Dw07SBvn+z3hBwgWvhu8BU4qdR+KgCsg4JjYMkfxYgYCOgv1kF8Q/7OlN3pa5oT5TX2MqMVUafHSFaaIyzTRbO/1WwoznDEY0EUGeroOpQLb6wx2QlEUo8sq0VLZxM4Gb0rXI1odjWmsbxHSnUTDRzVX3N3U8fN/p0ZFDr71zYWphGa3i8jhWdp8yT8fY2EaTAIDwPvGsDzIlShHStn0B/IeGR9zTawBNHDp07PBh53HOnz//yksvoRXr7uHhEV/pRVbeeERvV+9iR3zfY2EXL75r4c/EVIu1AjvCfdRVLPRTkcJNpqj5+tTcxSsX3Vbmypdf/uu/sri4AKJswiSkO/eHCqR1tLYogSBCn4n8JiYdcx9wFdfJO46giZiURJbZnL5xnUlDmBpDUo6VYodOQu81nzHC+8xnPnX8+FF73QgIr6+f0CxREHF043MfUgsglrD5dGU61CSmAQYnYOIltYG3NnMskMKYW22YOy5n+BhyW+SvinNUbr/JrIUj1U4oTQgHYNoAM2ToMitnMatvSJfoJvPo2vZ5y913LlBcMB8rRNXEDCxAJmjKbmd2KMMp0I8n2AJSEHV756q0ErMJOCtUQ2E3bodTXCMUmkGuuFAYETijAHp/p0jSQF8aOOIikJwhHfk5Uri3viYEzC3OsTGD8EcfejzsIavedov3pRxGXGJDtLK4tNrXS/RBmA/c98DRw0fNDXSDOiBN8F8JaEn7C6CZAEzS2WFTM8vAAqR/rGUOdnZbxZin+roPXrl0+Rt/8rU3X3zxxpXLhtipYyeYkzrKvTh17e2l+fnrV+68+7RrLtxGAHYnrFkxD/dZHkWtnOaXUFqKsaWOWP3GNb2WQfJudD58bU5NEQJd7x3ffzNz16euuYhueKAXLRwo7lKCkuxDlv7CwTWqbPjV8pu1oCUMP7NBFmRF1PeuiAjBv+kihaBGnWw34uZGOd+g0w3GMgezAjmwsrbS7RpBBSVnuhuxlmEf9iJlf9BrWDUhWieKp8tKV+pHgcxk1EgvQgVMxy0KeQW1VEL0CpZ8FAkZ1ZWRm+ky3ZTa05JSYPk3RCLUuGf4uTy3EvIGcgklVlPx3MetMnMmW6iBIeCFe2DSgcRMQicdR1Ttb71zrqDGa7p141oW64iYH2T+A25ZNQdrAZ2c1mZyUz0mxS1B8U+QT9BNQKizdmJpWPn3Qx+lRe9pVWlhbXgIqPIHiaD30zpLpcP9/QQ3d9lUjq//vJIBcgloMuCzZfGIwGNyUD+vveKpt+QXRKwuw3y7BqcX10wAKiwcLRddmXx8X252jKjSCKlnf9B/oM3IKpCnpfMLsybFsphNaQa22yTuu+/MK6+85vD9G2+8MTIyyqeQg7K5QnCZP4kRYrhCkQus0v9aufUNDzqCGWtq3DMq2qwxNXAzCowdlh6Yr68ee/wLn/vc5wjgtn0aVFWQV8kiq80QsaQwOL3pJxnQaiLN3yI9gZNr6yxf0oPJI/uDBBxx17QO9rsgrPPmKquLNp5HbQlwNzAzNw1aqqfXXnsFYFF3RpCPhRIpwtLQJ0rIhKniUnTzofzCYxvcweQaYpeIsZEjtAEJAy7DIhHEqqM3b7ITRwNGot3IomS/udvT2asW292OzjlLrKAs23ay5Ts3u3DhwmXWL9iFuy1NIRioA6tFhRIkqLGGCph4bbuftXeB0IT5tohXlUiMaV956/nh2W/7+tZPFam3zjqe4t5ZH0BjIecQPOKRhVhAzzI7PffJT3zq8MQR9/1y/d/eecABPaZEyIaJDpKgc7Afgx+x9/eJsaxAhdQgvtdkBqBxHIsKsvBOxWFAaEbVhFwdGQFoe/fVF1/6zp98bWdh/t7J8aNHjhwenxjsH8KXrznXd+XK9NULq2uL/a4WoVLgB2h3t7sr0rReSLdhwspFbppZuljnYvfIWFWmamtQG112oBymt4hEz+Ojo71mAbZ75Tp7oncTw5WKCvsJh1RCxWMpKj3mZ+2L2uT6tsYtsiJtQ2eOasCzP2zMqt1xTtsnmYAjkK0tDQweJsfsYalRS63CU5Czvm3mEdFHRlF9BYGVNkRMw7hQVRuEq5bz5Coi9wNXaTrdE0diOUH1oYSfEVRUAfgZeeor06MzrWwE/eHdho0qTJuq40nD4poDGH2NtZgQ/bW//PobclQkglJQWeWqtUQ/RZpPvomZAxspKTFeJLOcN0uWDtC0CB41f/2klFy5Uy3vPU9f1Wz7PikiWIgnOZuFIHTU4zJmNtKMJl1qA8uITHWq8PRW/2Gp4uCv3+obcIrLo5l+WjdYvKjXGFC3wcNf8bHjR85eukwjK13IOj3TnRmzSBQB5Paglhr0pr9mKyCwiH5ov+gPAiAEtt5//70bG3dRtriY6dvf/qbimc3k9ACHKkOjJHQaGKAO8Uju4Hv0gyShrFfxUZwfMdUJwKFf10kCG1V9/gtfAFZWOVjw+ySUCrHqRYBXR00DaMyFVamF8266u2YoT2DnoJ9sIYU9V1ZQ7YrXIxOTGA3Kfuihh2R21pTB4tDoEPaK45C7+alXpiO+6FqGDwyqqzVWSPZQB0gUmdVOJUXlhGAdSdimso5lVsbLLtbn6hMGJVZmy7nnIKslar6btEyLc/OwZF0fBQYFWw7tMl211+12p/5oYFOxxqa9jZABEkacNxXbwXiGAwD2Mr3nX68w2UpU9SuvayHvyffn/ahVqEVQTu0mKg1TX5UeLEisXq2o0JEJgt+ep7/3Z6dO3nn6rnuGRwauXrlmM46sAz/kfV3g2BeStvlEhig79mW+3+vvJjiq6+nGaeNOR6KqIxdSmOIRZlACHoP9tjb+f579wTPOON13ePzh06dPuMagrFcO9naP9Z04MTlyY3buB88+d+nKxSN3noYxphMwzs2oMmKOE815SK6gKAo93AJ4C4txjcDcH6OMMbGNoonJeW5bbkzJMTk8bLWp8/BNRkEpJiErgPyTqcSsW/qwQF4bVVEXco0xQ62x9HWZX2kCfYvf7mVGmZkNyE8mAJ3MbMFlItyU6NOM1CKJV7TVTzRBqLWU7moQRjNd+cYm3lIBNs+J41dkO698orG4U3068qlYOekARaxZmWVYfVT5Oa9qreWZ9pawL60RrfDsz+yFPjU6sLiyneT+I8tU21SxxDWoV/lWMKRjmB7Xqm6XgrD21TWL68xF+Z7+bm86lVITpTcj4o5vF2zoEpoxawLcFnKz5jLxF7GtQkWsg84Q93sbpYwaMM1EPEvEV7b+q7Ig3L9WClZ5QAVi95LXwRlW6HxwSwuvpzpTFTIblhRzcupIKXL6VjaTgYA4cDGv2LVE0RDftp16RWh3V0AEokwPlj4+USO3U0DDgbBz5ZReKJA2YmEcai5AAiQE6o2IO81LpTwQRDPoU1wJvyagGcw2S48cPmbBTuvOOP2F518aPjSGfxuxRGmApbHtO3HDy4uhw8xM+1tiBcucxZMFCf5L+Yh8OVN78sknzSgIrpJkQacCbgsVgY3ECj6oCvxBee2tNIF6ONKRm92jooUr8jUhnfGSg2ZWx8dOHh+bHFcdFfALL7zAHsa2oFWwtYJyUDwzJEMXtsvkGpLWjak4JZO6yIa6kqlfkbilhmZCBqqrmj2Vblqb+p+ehZ+4svQBFVICKNVHHLaQX2hOt7bHJsbZt7Axvcrc5cZ1TMRpLyfdrIKVBtuMv0ILsbAhVkelW0gtvSZWaDMIV7sgAh5kUAkvYH9Q8FaH5kQeJhcVaBaa0a2n93++oCihfqOlYAAAS5iCECjaIYKg25Khtbe/98b0dYdyXfBw+s67rHm6djs3dtZVjiTs0Nxzzz0AE69llrJTeI1U8PBhRO1iH2qCbG0U5U99FaxCiQ2Grh5y7E+e+dHrL71499Gjn7nv7n63r6wvIXHTzNzm+tj45JmHzrR197gX+vf++Bvn3nrzQN8gu+fp69c7SIO2SmLdGTurrOB1MZ9uJoecTMpFJUEyuDLr0EXscOpvFW6g0tKjah77KBO0GSQ2HIu1Z2zzBNwmnBszK5gGdjOEkPZCbe8eEvA4Y5AwkWPDOJbuzcX0rW0TAyPUnmvuOoiV7QGWbwzbkFyfsyqaGkGodI26tKJs2AJevPkXGnKmEZUiVueqjXYFFY6P2Tska9RjSpWiSEgAxBlK/2I/cVKERehf4GXiyi5RrXKvJeXfZhvfk/phP1p3OWQ97PJXwHR3RRPN3Z5rO93pvbpCY9Pa0emwdYgeq4WUSPAx3VW3IZotRkMtQ4U60PZQSS+Njmhf87Tk1EtWDxncGVMolaDagdCSskfQIhljJobqyP99EPswYOwNm+RPyGooPgPJg97uZdDB5k9rVLQyOjyCI+JPUNbGUzSwyzExbcU+NBzS5Q8rKcf5RGotqihbAtnQR3neQgB2ZuGNsgFD/nRXnx1gw9ksh8OH2ELFeyHwNoL8KTDtrX9+hgphXBo6E+GJU/erwsykClOSxK5+i+bsqUrksWB6bp6/BGAzy3ORH9aPxynTwHYEQoFah5LEXKNkn418ZxsZ/L/w5S85AXT1+jXXufDyGGx+WAjnjUgO9FKeFsFBo121FRlZCXXJUxYHZVAZMew3TDkmm+rmAahEzldffZUd1NHsByzZA+gfHPCxPoLtjNWC//eBk6GrVnAEQzW4mBd7sKu/4Mypzb/cu20W1puVJ4pg4Hoi84f+aLvp7CUR1laO9ezaysbs9OzSwopJJX5jD6ya2V0jQvHKa1ic2/c5lxeX9zzfNeHB+IoqIANB7SryFAcRbGiIn6Vnm1/cikjHZ20cRhltVir5xX7eoBafVM5V4yoVjBc/Tfz1lW6q/I5v/qGhQTPZSy89f/Xqpfvvu4+lNyedpjpgEzaxErtNykRaIKTmAZsgpZYv4mcZLHGyrC7pUupbUXobG2euaH/r7Xde/ulPnXW85+4Hj44Mty7PcyaOMwx1th0eG584fnji2OhOW/v4l54aHB35n37/j5599c3dju5+txZTAFmvWQQ36g0ZB017IY3S2W4oUht+Q9mwsT48OJBV3ca6Y4JaYYsqJzzDuTJJyU1nkQIpF8pa31e1URVycUG7BNlqUFGJpGotNQVEDs78bppLp5eZ8sDIoXEmfPSpg0MukkrYKyD/1vI9BT/VIqIWzxoX0SBf1eoQsGFuFkHG8hPppOsa8pAhj5Id2thcXfGtt6jOU3MBUwuX3gwqC6B7qGumNyPAEM+ctC8YV4To/jgz7bI6tADA5Qx+IGF9ly9fte+CPCqrdNkHedeVdcqof2keTIKmjgLxAoCx0ZgA9B5M8+VRs0FnMJLTQw0dFuSAJ5JeGplsAfODQqoswctUWPLgDeH7wChzSc3jTcUvLTgxE1qLNN0Va6Xi7Mxb+CV7win2RI4ATy3cE5CGUw2KklI5S4APmkMo0KQQ37asEKl0aqZDUgyLCXrSAtqHPgrsFfy0wwZb7VqlYf0Oka2try4szsP7wQ6OJO2auMXCcS6+UBZ57XcTCvcdU7Mzb775Fg571913T4xPujubxaRBkf2hliwwEYvtHLpwhpvIi0OuT37yk8a5WupI/nD4wF96Rdu1Hs8qndlE0d6HyN3rNsblGC7ygudaslUZoym+ZbBmBhLwwxbCn/j09A2MdWB4EDLNu5pvuvCMRv89IfhBrBEK3Bukw4mDyi0nSBxJ40bSieIychSzFmtbgzkZjV4KH+swZrw53W0ia3PfijGznVX8ymL+Y9rBSpxtDGq7fOX6xDhl7rBVPy/2vAGVCTgKQ5AL0NCgtkIMNdFTp9cAVOVr0XtasPdDThCmOZX1l5Fsxtt7/3P/q5zmNwq3zbO9u8HyEdjlbGyGHMAMiIXlBRKxyW92fuaZH/+Q441jR0+srISesRjEwKLMQFCg4JNarDJFamIQn/32KCtywjLufglxEXP0mTm2k3JmefnFZ5+dvXzl/jvvODw6gqUNprTwgInJ0ZOn7+D8eXXbFO2ijtanPvVYe+/B3X/2+y+/ddakb1PcTufNzrJ9VpiGilQK45gvPgyrcBsYjK1Y2R3ASzTOvGHeHhrop5xyNJUbXUahZBL5jZdI/6QzkwZlS+6I1iZFJtxqWrONe5HyFnsi7KZ9Gc6EyxyBJJhvnL/gMqW1pz7zueiWt9Z5JokBXkiywd9ryc3ylVZfpe6C0hrxBKFqWEAwojMHFCqKNMmsyMi1yWGQms+s3qzXB/mILRCGhssEoNiMCGujCL4fHJo1Nl/XlCocNBP9XJifdbJPF9/c6oFa9u5WqVTEISEmz1ub0JulGQmag4S1FQess4la+ijNKOUW6+ZyTN9YKG9VkYFd2Kl/c4NuUFv0yPb9CxYyGdRg7Jav8gjhfGi7bkEu5luYaSaFO+8F5eBHy/Mzde7CTN0tx3oE03eFBBqp05rsCAUf0amQLt1TIlxrP0Rnwug8SPJngOhABz+g5Eyeh2yEqkJ+smE5eGKBQGtA5GzIFHuANP6Vuba0CXBpqUcr7gwGA4aAhfWr2k/gJX9LVFJIJFZcvRkJfuKqVL3E/5FDo1evX3/9zbecrhweHbMaU1pMkhiTWXIlpAxrSTZOH/v4E5NHj0zPTstggV3f3QZkfhYJqqA27K92osxW02qHkPoJ5ECStxQEUKFDASYbTIrw/Az5uC1kQiwitg7DcaRYGZw6fTdqI/goXzZPSA5NZxrIelI/hu/nmUWGWVBVafv6FtavkOkbMxzlR3dp5okIrOUx4TfejXJToWQL+e7WWBvTDa3lloKtmfa5QlcZbtbrW+v5nHFqZzvvjKSwnbFDvHUPwLbZk3yiOSW/WaiQ7h6ySnreKidcpso0e5jZy3Xr30pFzd8FqxE/aznN9D83Uj/0VTPSLAECuS5p/kzziuwKfiix241K0cD5C+c45Dk0PMlAy2pMLxBFPfWa3tH3tWTPZlE1QsWhKKEsCwukZbsKZ1D+0uz86y++uLO+8tDdT/a1bHc5abOxan4dnxg5fGyyt5++0aGWTQNwfm1eRzz58UfdXPR//i/+yfdfeLG/o5f7Kk7ZWzrCSWC81Bj4EaEaRbTO74JnR0BoOCl2CFz+IXQZIOt0McYmjlr4oXIyciO0yWNE2MwtdjS1LZ41UvtOPeoV0roMfB4hy1dF3612FI1p2Cj63d/93f/hf/gfjdbiYC79jtRReO5w2JsDasm+EmqH1sL3dy51blpUuIds5G7HQk3eDopmakGIZXgqWacwdlJCsygRwySzU5nJanoV/JtVNPM3U0Tkr58YWbcFhhury1lkIBuL26jaIjTlyL0FVmdbO98bxIgMf7xv0w5Tlhr5I+nWP1JnjVhBvP8PTu2w1VaYPDALlYVkM9IYt8fvjWZHkDPPFuedjJdF65+4idfStSb6yJ9Xe3ncGbLouBFfOjCL2RV9SKhVLYiAOKghoPe9FFsoaoFoGXShOB7klWGgD6gmdIk4JPpKOipRiGx+MiWqo12PK7B2rQyKVZo9Unou5UO01ilWW5QprkCJlUpq99TO8KGf8sigXon1KSfE+Nxb9KEEMMgDDCnwZrXu5B6ud/z4SX6bL1y6cv7di8Mjo0eOHUep7LKB53Mfzswyl5i+8847v/rVr8IPklKC0m4jA4mAuS2AB7fROG8ViA8S/iqEUkrAdMqaEcQFZtjQcMCbpeoJcozeklaNcG4n4NOf/jRVO1sUOQUQKpnkTiRwvwLen7sRchaDR6UonInqdLh8Ely7cu31V1/nUviN1952aolYx2SeGudAi12d3KhA5Ddh+HBwcEgJ7HfphcjGxZzvgAOtCq/x6IUoLLMWz64Ux9RrK+tzM/N0abyMOc7C+1h8fXNbgoNgCqF7EmduI/WnLRoLV4jBE/wCtEislCODpkmEBwiXiO12tDasy+q3RcZs4Fx+mRUF3bd1wf6fpTtuZdjrApxLpzj46xRLvMmn3+moKLFvbvFuZTG0sr4KnTZgzKd2Sy5evmQNZA6AfLQHyHRzCRUGbRFuVWdsk2uKP1RjlyTHOtO0arq1Dhvq7f/pj37wyvM/+dTjj3W1bPMMRhhc3N4ZnJg8dvq0DQpKyANdHdt89rdusWu/6XjM7KXjk/3/2T/83d/4yuc3tpy7m+rtdnbSHthNvmkN4YoN2zYmBJgEJFSDR43k4rLG22CaYsABHvZqyFeFq2oFJGtQhRZC/FSCRon4RMNre72SaGj7pAorIu7WZiMXByqbkQudlbtw+dK///f+HtXZFz7/C2+9886pO09TSDotCO2QTX2PPGgXjH0R1FLjCKZGFucXKgmJILD+nl580+YqHsoEfKC3T7u41SVmONuP1Voti8fAqVxrA9QMwR2XjrQ772l8gVmTgSooRICc/FP4SZOWNFa8trQipMY9/WwG2mDXfq2tLGNfdiRI/yR9npfQv8kRnh1SwaFzi45hw2sLaq6V1SIUd4tW9oCQWKExhOJhsimnl3mxglu/MmYrQJ4aJhiGtfzms5amumY76ys/kUg8JZO79fo2710YyfpAmTY1XmmGH5zqf1gGhkKQgqcSfN5gQIU7y6wiBFeHRCWOpPj2lsIqH/q8YDb7Y4Ee5cVWTPCqYaaNmed3CTWifPVIKD8br9KE0KqfotRuDk42+jLgccbkfoLImLnYC2AMRvFKAFgiKIog3N3b5/aWn77wgu2a/uGRaMdRg6puckC2ROImk5+5/z6n1dhcclmkJiexlVChqs9aZYnfAmw/8IDZ/7MZ179ZUhQHKT6vxZq7CEoQKMW4Ar8xZh1AoSlCnoqPNeO3INwnEfa4EHCAc4vP8SgfsRhD3rDBxC9cendlaRVfcIhMf9E/FNMNEKHPMPFMm2aKBuBotGxDRGUdMVDfyQopBeZ0V23LXue4CWHHzHTlyhUKcWaRbjrmP8apx0zH2f0JWdavdHuTd1QM7H8qVluklP4qU2aJk3l9Lt3Tv/4PPJlZ/8rCXotSjSarQuMzJ4RvVqExKyrdU1zxune+j9TpK0HraiiwN8CrkBVQM+UjPE3r6ujMkYsw2Q5bXuSPvq7uN1/F/J89OnZolLa4s2NzedHiq3d0pHd0qK3HZaat2wd4c91uaW9dXJodHBm1UTi7uKD77zo+9qtf+Uxfx81//q++fd+9dzu/aYOQep3LLOKdLeL0X9l7C3ixyjR5ZJSFD2ZlHuHOGQeTv2Z2uMd0laonLF4eyPZRWie210Y/tas2ubQiZIk/pJZyjyNaRS2DQ6M8ZJw4eZT/oe985zuK+Uf/6B+99eY7ZQ9uBPVevHipFH5gZnrWt1SNtQRlmu+9QvmyGaGkHzsHJDCUbxqzhyeDiIrUC2yZBXHP+rMCqQmlFemHuEPao5/aL/8GTyXUkt/3LYptLFbqqzqjSJI/A02kkGotIe11nqRm9UOoL2ozavp7wC2XtKWIdIcOCBwlootqVPbIQ6mpqE/sN9USamk1c826PyX5S48SdYARygUc9V8RGWBZIqj2xv9evUUnhaBl97ZOAFBfGHp0ERL1ny4RV0hNV5SIV6oiGqBmIZU2RnUBgLyR86jehPcYJvWtr+TMByXUJtQGFhKl6aisIV+CFoA+D/CtOYKgQCt1kq04kORRgou6bBewTeClZ2xo2Fm8K1evn5iePcCqZm9/CUW5ggpf8wntfxY9LTetZxWOCok5eFGAKbQlmo4X92em3wtqh+b6q0yyey9KwyvpEMJUStmgUWYeYzu+QsoZZpv/mDj5mjeCV19+7Utf+pIs+iQCezFkJvo6OJkjvaSLnLapWvtcT8MtyTzVzMLyzI0Zvo+sfuBbT0V7riURe4tZQZk4wV4xU7CZsy2oIo5YNxwxRcaZHpKhtBjNakZhDp5BPmtU2+9wxXTSKhDYmeW9aMhPDe1KlSiRaVpaOuIWOgoAcCsFjLpPZ4nr0NW1qPV8Uph/vsi3f3UTgNJK1wRI1ZMAtnYj1Nt4Q8aV/jOTwXD0uGT41pHhMVOduEaiT5kFXRrgSmg2UERzNmy354LoGEHaDse7kLcFk/tWXvjJs++8+urj959xTL6boYop5kDHwORY36FD3HXqA8Y6zDQNDWK1HSw4JOW23dxo21w5c3Jy8m/9W1Ylf/QHf/h3fuu3Flwst7S022PFzHfOGuANu2IYxKpTtzvlFW+oVnZoNbz6QC5Q0kQgV2xXJJeBmSjupUnNBpZW+tUIvhIzrESMCBEfGvJcWo2NHyKGvvzKy5QTf/tv/y3HDqSzjXnxxZfce/iD7z/z13/1l1966QUHpI5MHmZRRiqvDAfHV6bhgPtbcPsJ/0C0B4npywPOkG0cF5nAzGi5fShLXcctzWQYCxYCxRmHSQQbqGpIk0qQiHy0DiHf6jOpJb3mKY29NZDLy8ZDhv0/Q5qFBJKOHup4p9WxA1LUmzVz3toHIliMj41V+woaoAx7pxstzg60ENZqOl5CIhOPXAYmSrui2E18DyTwEZsjCZWkIp/hkslfuXOFsjajPqVXUOrPZrxc0MgknDzIY/nN7fXosyCa40qF6Fcf4uk5GA7HhdylwKlyaq9rp09krqzfk5FlrY4WSO8iP2eyfYqg0R3lsVJ90oA//dRg8SLSFa4iT2X6SkRiqRrqpZXmSkoJWXTJUPKkZVVgBBjSydIe6ipvjayG1tscSKHnod/hvQ9VcdtCNJaYgzycbvT0KUTJGoX+HL6fnDz80CMPW8XBNYAM+9j6FouCAFBIiA2XV6Vzymq/tCLw6cs9cqkTQC08H6aWfAG5lVDSruxpuywe5G1kn6OHj6AnARr9hFVKA3SlsXwwKDiFhwVZ+LRj2YR5cLhGaobToulpQ4i+q8NhruwERLZSHfCrcxsqJj/TqFgspQ8yJEDELL0cRwjjKR7MYSlARIZsBB8KNZGKGHuzS+E9Z6WKd/16EQqxhvQgaANiqd1XUprf7v8pDjZlyqle8TAn/v6K75cypOunBXUFGJ/8FYQMX8Xk/0bzAmBkiAp8IW+iUQz1zO5go1fUXoD5CpByl8y1T1NIxZUSsVozqFPolnR9g32mDK0PBXGoGz9Pa2++8ZqLRo8dnrDTzoFCpz3arraBQ/0Hezv9jtaAPLS9SU9nzi9jqq27w9WwW8sLU5xfTIwM/3v/zm+hxu9971uffPIzjgnaFx0cjqBdwK4gRQa2sQ0qiYgYXosQzeGJdoVtAcxA0xChwJ9I7V9vG80pv0tPNua80OFmjl6WYxDOdjmjG9HQZuwzP/qeGxf+l//pf2IQsaNjJvCTn/zkj/711zgxffvts2yywQLBjvBDoHb5Fn9Hk37aprKGMA1AVLkQO3ZWuAqQKsNRrwAST0DJJgIMratkBoYaSuMa8TSp9sh7GHhNTk9VoaLmrqm14Y0c5R9vmz9LPMiRYuDkp2gVlUomIKU04kphHWBzZKAdE0xtKQgdGIEQnOzxl4BPYv77n17kSpL3BBrJFJuK686laOKpqhileQaaErxSsWczRXLJX99zMUYuzskPp3A7kCEJp4jnsAndOgb32cR3brZafWkSxQCMC/vLUYX8EpOh2IYqRCS67H7markuytTNuI05SzlwlFp8JdRyCFlFmxXYfOgJYEGG2s1S9mpsiKK1AckU9NepV66In56w4eSBl2X/HFPL5UaKQvTEeX5yKEycR1hcWX734kViBmkFtCmtoE79fiLNhx99xGEC/JcEogRssVJhhbwyjSJqVHB0Q6YrIeXs9UL5mcTSiIr/NEdgoOSek7DuwnGiZIprpvbzrh3viVWDcgwhxNLL1r6jXFZMDiyG0gYypVYg3olbHmv/BY4DnFqYXTBg9AkznrKwo4BsaNWlgz+fFLpE9aCMljoSboNsNC2conSE9ta4LyrA+58SZWRKq4vdUhKpbWnewQmHZrNuaBxXTLE1lG5N8wW1eEpvFliHsZ8VQtiWp7CViJlCMjfQVhP+Cp4VgEI26R37cQXU3NqcWYBRBvWxSdEQKUIMaccqB7fC0wueoCfmGPrWU4uaMCWx8AWLs7XVWCJYa2Z3xiZDdko6Xnn+BfLvPafvGOjsMFQ463PhxcGBTv4ub1pdb67HLImtjymqpd1tB9Toyrc7o2Smhwb/2tJCb/fAf/If/71/8n/7pz/90ffvffBRbq9YKo+NH3GHWsEwcJwythGR45Zuhetxl3jp6IzjIqgaEfqKUUAWr/4LU01razC6SuvSrL20tFHhTSJBpXVQSKeD+v4z35+euf53/u3fJj+xklIsL3v/8l/+S24nXWhDIvyjP/76ww/ff/jIYX6tnPthRq+vdTQ9p4gMRH6VolV0pUwRb9WIjdSqZRMXgCQd5ZTGNpDv22ZI/lsk5td7QmX6eFAzSx2Git2fr5Ympab62Xwb7YvMRT6QbgoqCo0I88ZmKCiFF+khNlEtjGjsJlmpFGkr/grtLUWfk+8UG5c0+iD3kePzgA9r04RbVZr1UruBl6KVXaREcaAL6Cyv94XamCqq7Esu0SI/FilNQ6wR07DatXq3zsx1NHriyxKJhTJUjPgpv1eqEK8/PetPwHiVnsP63RPQEiuXnt5+kOjjIEDnlR7QQj8whLB+L0p31irUJbGKj/KXftHwZkdEU1FQJEkxMlBiVZqIFG9u2MmtIGkUJgha8kXfwCAKz24wj6Q7N+1HMWvkwp7bLLMdcUPVABYnhnz0ox9Vjs1Wswe+LNT21h6BOmXWzqkpRpqUGnTpXtS/wEvTGq/yTVqhcIm+DbQIpOynEakunDuP+Zp7xAXHjmDGJhjfD2Za9n/kfi0yj3FxwXWBbViqLQ5HHbbRVt7ZgOqTbY5Ot7mTs8KE/vAO+DdymmBAWTFHAJ/ut3AOWICRTf46AcBDE/L6oaeiQi4H2rrbcxemPrrj1AlHFlyEeLTlKJgV4uSzLL4VZC8dmEdevW8CkNMr3a1SbwHpK73gZ17lZfm/VC3l/x+hLIcifwTcKGC1MfOlbgnV77S5yoJYGkItrajPJiS1jfUpUUQTRBhikIVHJw/pEyNCor0fZzu2N9ePTozbHLGnaYru7mgdGsXbjXqVWvsbYF5w1Nh2oCuER6sT+1zJ0eOVK6F2id4r/9l/+g//j//5/+n8ubePHD8JtzQkEQoK1YMhIjJNw81MJ35WKTX4Lz2zubvOB1hkkBLwLX2mXYKEZqTGa69JhAEdZCDrHXSiUnJVZ3eXRvGy9Zu/9Ru8bPGha7J0POob3/gGE5M7T93D/mJkpPet738fb/md3/lNN93zK6KLsX5lQktV9ytQRdJlkyggZpBDnXr9lFkGlUoUpFTgm8+a7lnh9wz8zdcfHqkffvj79GnzLY1s5LWyIspM4N0eVSebPdUifmLvyAm4OVHvxvKwujoAfFnmD2i2sZGCa/G3nlQKET1qA4pOqHZJOLdc0RSVAA6oYVNl4FSGeAvKAnEdRbcKblQFevMnZRTot8grskE65thajGr9xAhybVnhyxXjdeKF9MpH9Ja6KlsU0VW1w0TM/3rRPrKRBFckRBOAq3d9GOALYJ61/0pCEOin9tafIn5iLn7qv4KH/FvfaoTGFmGz4i4yV34fiBY7zWqQDswYBpQrBznzctWpybnCXOmJaRracpQbIdGxS4QELUKOp07fxYyZxNdoo+OUxfeyPFKAtfdoxCujL4lNQmkMLTBjg0CqlYpI4UV5/UBjv7eM1F3cluTOsv769Sn7t4IV/bl3zls7u8089/mlBOU4RL0tw/wc3zUrC7ML5n7ws+9w3g0DVwtJ0zwB4HByHtVyEJHopDVdNKjBISYAh/k/FOCvqIOK5uJgh2WSv7bt3Cgb+q74L2PJD19LM4VLwLRRaV9fLwGwmmCTN9Vi4UUz27IdGQ1mdGb0VGWC0U0Nqva7BD8F0AoFzhy5QF1ZKZeqS82hgaxZ/iKjuVHwz/onpZXQzBRzp/DOvTc5wnlzyxIMEW/dPHX4lFkZwo0FQMq0l68SZyHU9wKHcq9du7G8vsw1c/9Qr9bZxLxx9Zo5fmJsnCJ+d2ORAYldBwYBw/1dHa2RqBgMkm4QNAHPPIoq5lfm9ZnLHqxyLU+hlB9AXgiMz/WNlf/NP/pP//P//P9y5dLFO06dYa98sKvP3AHpWZKml8s2BqVNTBF5AS6nS4uDT2Mcnnl4UmBM8Zoh5Bm5RAJ4CptpPGqTfWUbWFzEiPak7n/1tZd/5+/+NtKDHNODIf/cCy86emnbHMxGGKs2Z1xuTF27ePEydyznF2YeuO/M4YkJ1OJnRiyBUtPjCzyDlq8r7M8a3TxDHw17KvIEmAjYfFF70LMJu4ifXmXSKwGcNezP8/54syiZva3PZrb9VSRncpgBsoAu7In2JkJ0BoYE5B4AkVPJ2B5Xhu0njk3apTEwPCPEFUKTVWn7qxTHc4kA2kgqkS2rBEJabUzKJLhl3pMxKzjfY1vbrpBeMBRrekB8b5DeTKjx3Fum6sxkhIubq1gjbx7FboflKjGDo4LWjlhQQTNkq67sYqWPCnFkl0rcQNV1oLMACN474jnSEKGMJqjGtG59g/Td2zfQ3hXhWqUVAPX6vIBlEYJYRSNelbdVF+TJurgxyZdXQVf93C6RSqGh8NVIB37KQyVYQLppFWkSRTGVaPri0msdP+e5F0vE9iGYtNne1U37gjkyeQQOjqm9hw6NOkRsbkDKvlIgQrd2prMJwxTIpGGciYPYP6quq7rahAJkMtaAJgv1QodRB9jQrjnMZq+SVYHEjQQRhob2qHmuZrfGMlWfnj/7LtefIPGVCcAURdgn/kOmcaEPyYb22MmtgN/ZWY8NaEJGiKHiGcxkhzazNe4AQrXnWeRd4r8mWLn6JVHnyu9DwSc1p0htV22yJxpm1wAqggK2aP1k5NPhWo7g+b29ikmN9cN8a78Jxdr3yg9xDCp9XTN41hrxOx+6CYDl5Ta1ZJGyspzL3A/BBd3lq1sPFJJ+aNDJrfSfHYvKA5nrxrKULLKaQrSroEcTE2Asc+7mrlMaxBoSqybDT+1BTwiTLW0qQYElKgv/nzvXrl9rmWrpHxxsbz+GwPmZePmdcyw4H3n0kaz79A56Mr6z5emiJ6I9ndMBE7Z+1Y/eMuPqLPdX2JKDDKoeQPITzJDS5aA3pqe7e27+x//Rf/hf/JP/5o3XXz597wNxUZMxHV+jYDMu0ZlTlvEIFPsuwzbH6yC5zrWoGmLVphXBSPAY0swqMp2uaRG1atC29E6RhDAbiTLDyfMvPfeVX/xCvO/kGp+dgcHR1159/bvffebQ2NHOdgdZFpw7P3L4sFX1xMTY1772tcuOv913j8WikUXKQcl1TlWZSnGhsgRqY8RudEiks/VMBxsyBVD6E7QUXSO1aEnxVpqnZoAqtFaagNTSkLQmLDkRCfV3SQyiSiQ5StBMRe79KkNg78f+9NrTUtCREn0EmvxMxRk7yVB/sor89V//KuHIpGtkQqn+hj6jnWRqaSlbIaZUzGmSCTNr7NZ2JhaCcxw88Ba8p0CdqBuUDteOnmkWUS+ePco5tJAmPEnXl5XRfBD0zCZxcJhlqoBXEB+LPs8EvAGyloY9YSYJX3tyQsu4dXlxYXCo39UlBEDM0+aPDRx8x7i1JTg8OrLiiG/rLs+RvQP9VNin77yDNMr57dT07OHhQ/QuWq1AT01IySRNx8i6mcrlMmuWsxwV2p0yqXhbZEnKbmjFMUOfBovWwbPDdiHOovrPbmY0Z1SeRmtOdcmEQ/Z0ZyFCVc3KwrHJTtMuSZQ77sx7bas721zc3OzumZ+aJTvbUPVnPEwvzH3i809pFyl4dXkpddjGoQGr3QkswaBIp9cf+TdTWZG2Gkn+qW/t/WS8NUY5TQw+hkAxTVo/tLC5k6sNUbxLeJjx8KlAumcIgJw2Vrf6e3gGXrl2aQqXVw7eGpYUth4SN30RFgvVI5cowVpY8hj8hXM5V+zPV9BoOoRwFQGr2aeGSRXM/aNYg9CA9JYPCEd7eTXp6e/TeJX5rs4qEa7UbgLg7qnLnGRCModFirT4cH3VubPvolu3Y9bWK1OVZSrJ9JwmYE3aq4FQWCQly+We7i5EBYZM20X8vDZzzWTBKRGzbuuRjJrMBvo+LfB95T4kDLZKoSXp+0Kta1/C7dHIUUKEBr2ZzgoXSBwVVdkIgKHVUF+5M50zzsG+AfOv8xE+YbuDPfGCqe1ygQFRI1Dwh63nCN729Mz85OHDbiTbWTOu7WxszVy8MNhxYHKwb3Nxxr0rOxur264m6B1myI7GQYA5FDylUkTlOtE6Fop0Z6WeZbfWcee5ujLbcxCj3mYU/+/93d/++je+87Vv/Jk9YdsAjiDqa0tuOXmUH+zrhTKll2+xhhCegaCxTIIqrlQKchKEYakdmztrVI0ONtE8Za+KACEHaggVReDVbo7kzl9kb3z+k5984s6T4/zhr2xs9Q2MXZua/+NvPH19eunxj9zHrSTnd3w4HJ+YeOyhh+xUDQ8OvfH6spvaHCA3m9I+cP9PAMSCMhyMiqJYt6x1RGPMnUszs7K53f5m67y9cbpeoptgleQYvxS3Q+N33OaTk3zFPyF7tiLwtCCexd1VBrWx0I97qwjP4dQFGZh05dTWP4WukXRXHV/Kxx49S+cm320B5RIhLKjIcH09POauQVCM/rOWihxsyOMIocwdXd/FWsPl4J6uwonKnaWvmc7hPye6HAiV1bhVRKhHz7g6og0PzhHggxDOlCszRK4uwTtouJPmBBqRQSfqTsPPsAnteKEwvV8HhOYGcsXmnxKvP6l3YAHGccVIVkAPwYeG/RmmyA5IWCorL0NVU2MtWuZ/ZljwwjC37NVEd4FHk4/KYSWAWBbElkNFzL+UZpxgBGAo5d3CJfw2f+D5fqo4YCYC5uA4EYkZDqKNEAos8mPyCHUwlw/DraLCzdAV0gSyt/+LSIVP1GIk5OaHtgMuFMehD4IDb3XYZZOY39490Fcx5gmY8PoCaDNSC28+FZr/9sKtmFIL5hWScnSPXgJEOarmNB/WhucaA8gulLe51d87cOPaOzYPLZu0kVLIaT4q1I3ljHxdrdNwfM0LvxAJv0iFBWDcR9lY0jYOjoJLj2YHQx40UZtT8oumSfWZkkvQv5XifeJzi3fdmm9L39XMfio2ZJqqwkLDjyNysFjJTqlJ1/qPwQzyENcu40oHFAlMh9auCaOsKQ2ialhwJR3GcTpbFFoI7MAuSZUFkgas6XRFScwcsz+UBu5P+PB4pZx9z1uy2x5ylIZ9aAs6Dy0Vw0fkLV3fsclpVpeJoBCwT0lsU9eu+cTsaHXec/DG+FD/5uy6M9mDrtre2STuhOkEgdgsR0OOm2C/oTccokJcES7emK5utcNldmsDvNBst8wvLDlpMHlo+GMffQwFPf2DZz72xCexTmsoR1Whz4Vxc+7UY+2WSQA2K9ozpBRMgMBvdaKycYNSVxDe6x7dMu4MTLVnvBkvYUK7o+OjZLuBgT6qm7ffeP3uu+++7957d7dXOJAdHpxYWV3/0z/91o3phcGBQzyHOFpor2Lw0OjDD967ueZ4Yx9dyI+eic4ZizSbaqMnRJG3oNdQhxArIjKLAULuwJ1kZtlsbPYwoW05YLTwvGwq6unu0x3SZ124NOW+hNB5ykxzQt7hDKHSxDM5JymhcGD/psOEgt7GgrWm/LnPYKoZGmxMaZJTdqmSk0HSOYiM+EiXmUchm+QjW0ZmAMpYksNHHiJoIl9U6b5cUGV45HdpQyL6ojRN7b7yV940mGYyFHaw/ymnnxULt2DeY6hemek9EymCeQUJJJCrSwQF+NwICNSpMYH5VTQa5UMHjojMASxX0GFQEY5kpkXhNo9WyIDBlkJMJVSQyqeF5sKzGg1Pu4rkVVM8y3yWSivIvtrfIumNzm62rURk86rZCsRFyaGMaONzz0nj3FytpQCV+UmTDXX6SmWUklNWfbs/JakfFPbm3VvvalsaMEuubcjRuYNtu0yUdthC7/akar45BZu2fEEDD9FLwX/Pnj2P0fhZvq44K4unApZOq+medc7WvEwAubklGzN19q3Y8EWFRGahNrA+/fQKtH56Ytlg0K10OyVvRKT6qmarR/m9qgisiXqZIYcPzRzQqHZFeaVdevXWeKskW8vN8ig78xroNFmdgTQP/EqWRaVKEN77UQW+MRK8Lbxrr8S/xL/7qhNN+ZpgaUgdBxDLnfyqgiGGqFEN3WNRoRS3LgHGINndJe1OHjlCxF6Ymzfpd97cWV+YYld2aGSIUsZBS5ISYfRAq7VB1ldlFdlokZ/Zoi9Lp7SmJIdj18Cb0MFuZ/thCOukWTZATx4/PDz85dn5+ZdefO7uM/d2dbY7QGBLaW56psfhsthZAE0RBlpl7coKi6ps0asomx2wynZzeFblmZnXyxoAxyXoYK2XLlw0u1+/fvX555+/557TH//YE+ZrGoHODpdz9z/3wnMvP//K1NT8yeMnp6eur6+t3n3XqaeefKKvv3N5Zfb6u1PtB3empi9THjh6hLDRp0Gn32mb1Q4MiaYWrAMJ2aJwxBclOA6WRXPxQiYd6LYZ+IGQDYkiV2PWQkEG35ZmNjBZO1GKUOJNJDZw2cCod6W7PeV8z7sP+VGzle9SV/3ZTCzjpRJtSgtmNVJIrLSzZq0/mykSa6jUX9/6vgK3H5ImuBWC+lUzw14xjX+lN1Nq3HP/h7U0eUTwcRGTk0iWASbcra25GVfaNvbic+o6cgov8CsgNM45YlagMSx4lcMQLvZzyLtYE8rgbeECjUorDHKK1OCtomq8RhC3DBWw+tzLC/RGTunN4G2zQBGFeEKjIA/AakRFfmqLn8il5szwKMB4xaoBtYko0LNGmlXXlNueZpVmhtsipc/T6c3yA0A2Gxpn67P50tWlUipRlubmURFsAuv3bbU88bOWUOttVlFh86q+rS0yfgSNk4gjC8rxSc3cLAE8FaT6lKHipxZuWAqEKUF6yZu+EJpF1Q+l1A/9VKO6DEVD1AoG2H7WYVmL3f8shaU0eUwA0BJeVgw8xJGWDMr0rK0rNTcKkNgsqsLW/PmXj9QCa9VKEwFVnRFREbSAp85YcKvtNY/nfqi0nZ8GOwdEInycGOzaZ9fAra+u8LNrXCAIrxTlqb0VybWl4lKE/QXe4v6lhdnt36T/bqEyxa/XVhc5DpocH/qVX/7S/feffvWVF9ZXl04cO+r0h8UakzCFpZvSHFoEWCUbZ91WrpEkYqbjjFMtqs+c9IqKww3ZHTmfRG/Jq8cuX7AdPDFcPHf26T/79qnjxz731KcpJGit+7oGhwYOXTp/9XtP/9iNv7zYmdVW5hdHh/sffODeyYnRrc0V0vzq8szaKqmih2xesadeDWrGNdkQQPzwbHuAkhwxI4wsiFtbvdIK6w9WZxi98WuwIDBWGz4RUQ4cNvEmklbvkVDB3Ic+ZBM+9PX7XlQ6qV/VuCwiniqt9TY/ioVMDclEZwOyqHOjbRSaYvVeLu+zyg6nK+uZkkGi0vG+cm4gBIf4sjQu6c26PiBSwUpFeyCaykvNSakRVYt4StErgq+kIEQvCIMWwoigviLC6GB9Y1kTwiHraXmBA4gpB1kwIrRLEfeEhfqKrFQB2A9PBUC9xCDpiZSZwFfNbLVM4FeQNMJXBRVRAamumbMOIQRdU5Qm1HhaFP1aRh2+5llf+byyOREjXDbEJy7Uwm97+vlBoaFcar6yOEuokBbMBL97ZXqJDPwysvwl5P7DuL+fmJi8cukqZzurS6sEarMC6h8dGPWtXIrcU1NogWZqu78QfcooQTmQbzAImlPgaJBmBcCPgFaeUkQ80017VehQLM/nJHHcXGnyKL/mFMkW3F5oflXLNCalkH8NYBOboLS9vPnX2/KsfZcU3iuoClWXH3s384hoYM1c6q0AV7TWTi+5a0NKW+rv+om4iA8bmf5y/5AYBvqGOH8HhNMkNuk46zB+oUItNaih4sdKEpOCBx7BzGQU0lTyuOHsjSmmOH29PTtL85QCZCxcl6BvQz8E6fBe0ZTGJRGXSlH2YdAV7vS7UImM3s9K0X2EMnAAZnXL85gVw8L81Ikj47/xN37FYe7X3niT2ravd4B7EYRFHDBgo1wrWMmqukzYtdjybJCEEY3jR9Vsr0MvY1bURNYKFgJsf7u6Ll2+/MPv/+DEHcef+NjjLFm5FjVh0ca07rQ//9OXXKJJ6U8tPjZ6aG11ZWJs9Njk2ObG6pFD49/93necjVtaWTt8ZFTrUCb1TtwEFLEYDiv2oIJASWgaGhxEEuZaRDgyNHr50qXz584hcGyHi1bKRlZVvpXS1dlpl04zHbIzucYGmlHVHnlr3fsau6/dJbrXh5UyG2RT4bk9697vWn4lAGk1c01s0AM6z4DKyAo/2guNAekb+XQhvNZXJS6nfYSGyKb0WoEMjUL3qq//NuG+7W0zvZldyv64AtFUJa/E9yqqXABAOiBas+gNozdxmWhli7pHl1jVWrJBPRsAa0zZjBBV6I+0BYui+Y2rgwCizCa02uh982deN9hBvpUOEM/UaWOj7Hw2oMw3hR2EbzZC0ur4L8iUmsrNj0F9Vgm1NIm13lp1HWaV3dQ5uPlEanVU+7bW0Yw0f0p5f6hv3/9UWi2wCUkFhtNl6hlWYbBaAyYrgIrlHGQKPlSROYAtOVM4aKzwNyFpIlPh+kLX1Lpkq+xbhgpq85MmhNJr3Le1g3wrxbeVBuq6BEKULL3Z5PqVbDXsL9+ryuvNGVZR2mWdbhrQLpmbOWvV9al29apRZtD6KadKNV8GcSnN/LWQ9O0ezdQ80ptByl8y1AZ6KlNRIjism3DACUhPsOkmjQJnzQxIocZlyNm8tfWx0XHMCHINJVI4g4Kp69dxf5OBQRJZKne6RDxi48vlWaW9JvBlCN4idYVjl81wsKMLX47aJIXQJLnQyPFapz12+3o7fvu3f/3ee+566cXn+YMsS4Sy7xjZkfLHwCefUZplu88mhMkseuUSakM8EacMligR8DoOotP4D2prfenll7/2p388eWTiy1/+hd5edyGw+OrBkbUiJ+3Xtz/yyGNOOFrlMAR2jdSZ06cYuR6eGJ2ZujYzfQPSDh+eQBK1mTCMaNGMz5tVQyBUSJFHyTxdXL927envftdXrn11I9vp06cJ+8hSNvOr0YF16BqihnSRJg61qfZLJQ8/m69uizRfNSO3Zfiwn7WKSiryNCPNOAC0hQQE+5W5R0WOr5be9EG2NfAn9Fa/yc+SKoWEQSyz/Vo/NxbKkNaOMrDL+qDoB5VZvtdgENWydPZepEIvvUY8oazBPvRqKQLXjkiSJojeojU/5cUO6OPEdZj2uGdXIcwAZqedlXWyqtc0QDVEnDFbKJwhn85eWlg0vrHh0sJogRqV7iu/QJW2l6aFBYinDbcWbsFVTURw0uUBIrgkAklrSvbaOj+Txf+qy9ojRgOGWbwbRmLb4Y09+RvSVtECKcRPlEd5rYFyytAEo1Th188KJX8gFwhonk1oklRSlCNbcWICRC0piK8tYnqyGT7Iagkbl9Mil3YNlcMtQsdJ4ZM5Dzgrq8EtgzH2OIWHbjjwFVfPvKPIkvPxFWw1igjYprcBpoTaxoKiCP4KF/eVb03wKacYdFv5QYsMgsRalAJqUX6Ke1XLTC0F7b41AQDP53UCKARcc+Xr8lG+ineXUj4A/KJw9BUOq+G1rv2VNr8XUVGpPGkBo1RdM1QwavznfdZva4tSbGkpiZwuYqA3LogDZxvLoJiH1i0+meFGK9IdhWexeiyGV93ICUsyOTNoZdy2OD9/+Ng4tYx5/uZ2sf6Cg2KyRZDqHnBWYFd+vWC8eNPsrv2ry4hGLU7hdawsr9LRdvfSx7aRrOG0p7eHw18OhPq6Dv72b/56W8vvvfX2Wx99/OMz8wsHurqzSiwrKuzelKF1AI5FTFqZoBml/7zn29jcgGRacHGKIYNiamYKq/3JT3581+lTTz75CRhwPZFT6u+cPXvkyBH9pdfuPHXH+ubOiWPHllaWV5YX6H/uvuv01PWLjv26h+PJJz/Nu+Lq1sa//to3zSw4hVUQ81ZyfHEmEULmJpRzBEi2gnzrjUsoX5yG565Td4pDiS1l2eiCMHpoOnx4EuoITsiM1xuvQukRbhuh9E7k7Nqbe8m3/1uzed7+4sN/K1BofiK+P29+lsIQMNpwdNMGd+4nM27LkEyN9q99o9fFTYH6PORO24aYiiPcfBybHz3XoEUtacKYrwrfF1GOZzPcBk1924RPNuxfHkGB1DXNV0lSGBoAFG7Oksn2tTHp4pQe9zCmb3AKEJoSYi+4uuoLMwGl59qK+4yi2LJ49CEmpL0yp7rCjzQyKqOCqSaotWofpuaEwhlLc9Jt1etTXhtdeWuw1ekwP6LqyTeNQhLJTwZXOL2BAoH5WYy6thxL2ILioDN4Ll9GQLPyKKpP6VWW8aqJkNsi8tyW0qg6vb0fjEYu3BiPrl/5tNRcYCyGglmtlktMCTJsNsrck2nScLLBdeTIMbyYsCkFfYM5Tlr3VDrKLHCm/XDuW6XBmAz6SOdJF4LDPYQroX4epITk0o+egk+8lRnvBrq4SK1aXKiJtTQFSqnF1mdtrXhl3D6UYogqRBWAt4la8+x/FigCvMT6iWJBaJEJpKLGS0fUbCL762qW00wUkbM+m29/3kj9vJZTSwYSNM0tLJw99zaoGL1oFM7uaW62Q6YKw9Sf05A+REIGhVcGqohbtRfW1jmTc9Rke3ODJM3YzMWI21su9mk0DUUTn9e2Nml8hDoHeEcqgHBDMRbu+5iaGpcWl/vYUB5wwHhJBuMSR15anOvs6nXBM3uskeGB3/ibv/p7/+Jfff+73/74k59Zc99Pw+il0nYxULGhXfaEiaNSwZPqC7Ww+2RPqTkGrPbfmJ3i4fns2bfPnLn7c1/6fH9vD/pdWl+ZW54bPDSk6uKEeZt0/81vfeeOE0feeOMNV4/df+ajtj4yRHdbB5yF6xl4682zb547Nz52pBKSvq60VxGuXSIcJ+P+RoR1pBlXMAE4aQ7h9ntRix6BZN9KQW8oH8wKREJ+KtCo6Ys8kaDAGqntqvG//LMJ8P4qxIO+Emq8DjQAt8MmlwdYBJ5oeUUrSPFnbtWeG1MzcoMbW/It0zBNMhIlaI9WMocyNXolGzfFDvUYuXkFBbnw02V+Ged+ylMbXPFbi/UU6ufNuCpwcLI9rZlj2fLnpIlsN1sM14GDWZTBr2wS1WXzh1xjEWA1AE5rrbpInxwbT2e0tFL5TV277voUjGxoZBTp67kUUrYK4l9ln1itOg3XwQuryzsWl4zpLNxiXB52bHSNHhrRkNqj7F3LuqTCXlFs6ywt3SszeBMUC2+FiYdKfF6HIn0WH1u8afJZnx2qwnF8ri7LntXlVffayI9uNFkk6SUorhmX4GcDiPf907j8ofQgGABjja8iYx5n3nAbFwE9Rp+6PSfLuHrM+A6YGMctHr28WA9VuXBt6vjxgNHd10vCOvvO2U984hNIYH5+DhhuJslNZ8VpO6SRJArYDuvBpEbA5K3ZyCvw4qfaIoiXVWk+Ub4u1nATAHRJ8VNfSK9YcvzVDoQSJeovNWJtOoiptXJkE5rIqHFt962ifGJDWGbLF99665WiPMFM9hepI7YoExq9Garg3b5MYMopACvM5IQOfVJru9X7tVhAKE2oUMnfBKZGPIWaIUXsFVSLaz5rnmY50kMDB9vXN1YXlzveeufN+cU5/jmsbzItbHP0iPc5YS7SWL6Q36ipJyeOGCCjQ66TzP3sPR3dCzcuE23tCnQ621R2yJzYZvgLS7ZzrdvcznFjcwrFQlrfYL90bS9QB8NEdoKECJHQZQtuWGcybx7Wa/xrBp8MjXC9m9tdB7uYRjrgfmhk4Ld+8zecwPrjP/nGk5/7/PTcnJJzMGZ9vSdn02Ke5FJDppZ9/X071DfbHPTHFUdYURvdusHY2tHb/fprrzz99HfHxka/9NUvf/Sxj/TyY9fNXp4T68VqrcsoBPfd2V3vH+wbGu5ZXFrjXNWFE/09jte0ra+s8lDy7I+e+5/+5z84fPzEqXvu6VnYckcU0yStUxZsoyvYZD18/uzZkydPnr7zTj1Iy48S4j+Ac4HePpipCgay6VD/gOUIZEKJp/FlhwMy/cRg6auViZK1UYA0ZUgRMN4yVnbFMIxKJ7rYYIRD8IgLSd8TcXxeg7eNSKEKSK8cZmR4qMAfhll5iJ/6zolO92KpVNPaz5676LgmHYui5fMlhoBXVj6O98lkXMotg3jdZPOT7A+JnijW/76K3YDVgyNUaBA94C94DE1H0RFrxh7AkeM0xs98/N5gVW/45m9vkpSnZsNtfVXWARGhC9VlSwDwKcoXQU6Cf/zSVJTn/XrnqpUxYOaYqbFhdV27gxhFQ5eii7/J90LR+KU5XBC7BUQhMMNqzcIG16K6CU1z9h89jlzpoVJnzID3YJd2q1TjzbRIUvY5PCsQHdgo0yW79GQoaFvXx5MasGVwItozLnZK1QrSI/AvQw1SAnwJt6p5X6yOFkbf8K+uVJfTfHxQL+LO9q08BYV7JbPxjN5UFDRy/7LHTLVXNiAZGJcuXcJtZThx6o53371oXxGQtRBnbu+44xQ2hMtIkceHZvS0qJyu9HkTRg1JvDxCWnskIVJqT29K10Q4kdFPQUSK7hCIY1FlFNJVo+G0b9GYsvcH1VV0KR88tUVmEZuiIIQBGZRpkamoWpGcgq9ScZmEQLG/zPfHSxX1u3xYQzObn/vjFQP7E5tv/0KR1t25hVnw9/R283v88isvsc46PDE5MDCI3ay5V4x8nUuKaG9MaTndqi7I9AxX5a67nJNfW1mKumNjdXk3d0Q5WWlqcWALsWct27JlS3R1ea1ldw7RknYdkIRqjQSkPd50NN8++Ii9Ykql2qsqTv9GqZyhai5KNJ5klD0y3P/4Iw/xN/OHX/v6x5/81NT0FJsCCl2nuNnakKz5niNM8ovljhXbuSTTmWvX+kdGFpbmR8cnNOF//Of/4/zszC/90lc02J11LJftDU/PTlkN0M4fOTLpWAA6bNnc6uq269zidpa5hUWqnHEOdSfHl+Zm7d9yZ9J5sM8W8sVL1x949BPtHbOuvOfKAn83QNAeqkASnnfddRdxR3uxe21PwwtxelWzeQYRhVlDb6WA2rOeNRSEpGP9LOgJpsST9CGh+Yn3++Mfkr2R3CwzkXDTcBXBT0GkUrVI++UrV2NQa8vllunhTTtFhkfp4GgJooLfG4GGQ2kbunAUwsDwPmNDkwmtWK+nPwdHPPX6AT1erGiKrqjRWoXAVIAtwDUbk29QVVj6LaSoQJCnwi1ecS2iIdqjPnNvFDSqJ/BwxxY/RjkQEIUS4ZPOR302wVbX2kzLbITa2x3kQx+qU1oFoCDnVscEurJw1t8Yr562CMYaRHyF9ajYKMkBioCMp4QsWEGAKA3bF6Cov39AaY63WNBwoWhe0SYyHNTBk8+tbeE8pma7O12Dg64EAKQjYaBCgt4be0KFKl8VhHi7r54PiMqA76HS9JH5jzOcHP1sOzJxBAyakymgXKvEf6ds87MLaDiEXEgZzM1QhQgD1QSAY2Kd1lKW3pRsw8Oj3NNYgi3PrVy9fnVmbqY3Hq2zS6cHHKWxZ2RV2NfZX1UTAK3YDnhFgKhNs+QAm8RCUekLnSWzojz9bDYcTswlTO7AKb+fuBtWqFEfgIXyrWz1lSoEcSmAr/QgrkMJsaoob5F0Q+yqOXED6PrAwmtiKT9VaESJB+AUu1dvjdQmiNe38ov8jGJ/9qvVdddH51QEOevK9SvuDeaBeWho5NiRo3BiQksXr66Uqncdksryuoh+EJ6B09lVze5CY1TwOzCpAzIodEs8eeQgZGbfrbWdxfVlwqMzwq6D7h/qj/uYklsryXsRBrW7aPMz/PxHbayVQbNRUlbLSSAabvB2dezoWN9gj/sAv/7N7zz5qc8YVkuLC3zbOaDDhw9WcGRygvIWujTBaSt3HqxsukF+8LW33vyjP/ojlv5//Vd/B08bGqR273DB6NuvvH727Xc2t9YfuO/+Bx98kP3l3MLcMEmlddfEQEe/tDBvfTA+cQjlLM7m8r5Ll3l/63MubHl+eXaBFVUrBwe2ftWIXDu7CCvuTchhBSRBnUWoBX+xj6tWclZIfGyWnREKsYioYUYUog5P1r9KTll1x6HXZgvXeoXCdboAM6VrflYn7+X8c0Z6LULmZqQZrymV5kulKUpE97kpje45KvXsBWCjIVac3ZnrDAAjrn5scYwrZ6zy1IciisY/r0uwH5CN1nJQMEMdFRTTTKf+Ak8ZorXKWppnnVHqT+U002nDQdAsOagvVcigAfQ2eVW4fGaL0GaBsjBEGRtrsTLkZIif+qL99woft/+/ZiGwvkHEmV9dNQEoMGf+ALAHQ/nVRGL0nghFz5H11U9V4if5lydxONPd0Yhm1d3Yoe3siISr/lqOp6o9kZRI+4EsHFlKaBd+GuVaWV3BRmlN2mLsySwDFRT5qmbIXFBGAiQIslWM1XjzZxONzQgKU5QMsevPqjY2ggbbtavTGrXGCzyfQrxSmAOKrQ4DO/nrJ75qBhUF1nLJBmDkJyIRlGDAAbF77onOUGarY4xYmJ6aYSbkYE5ZK2T54m0tAY0VMguMEiErz33BW9WpBaqgwptQalk2AaxmhDEdIdHSCt+vnyh/XzEfEFWRUDMrUw5sgkynOYiBEkR1GuKV6b7ID7dQrWq4+oBCS9L+TpGglopDwmetsTZZtvq2luOViFc1UhP/4k8fm2OvXbtiRXv8+FHcEObPnXunre0cL2yQf3hykkgRdcf6+tLy1upatnNq+aV16RdB/Rvrq2zjGNiS7LN23+Aj8mYPzaQj6BEYsszWIl6gsxooGHNfUVYDXXyA835T1mdEr7gc0CokJxKprFgOcmBn+ITfCVjhzmqm7b6ezl/+xS/x7vWv/vCPHn3sY0cnJ3i8unD+/PDwiJKnbkx1dzHTio/P2akbfHvjBb/3h39gDvpbv/E3H374wRvXrszOTs1OXQE/8fzUHSc+++lPjYwMQz35jOKFd4ebRfqwML1y5RpxAaJ0NOWP5qMc4hbMb2zdHDk09vobb2/vrE2OnezoiFUVuoUoeMA1lAZvAvGldivga0BySoBDb1GO/EhI4T7PQC/aSz8F4h2dkcww4FuRxCOLx4/Qh3W6PPWViK8+LNv+9ApYTanx1KQnilwFfty3jkTDp/361LShZm1ARAQUQKPaKQwsmQqL8o1oetin2Z3Rp1EBNQMYDW6dq9b6ljoDa/AhirqVLYCkPRUF+4FuxsPWlVMU9Egw4BYU+7CWIyKxltN4ygA0r8vA8y+9my7hMddTi5Rpbusy90bHkmJUh2/rM7VRuJSWpQABm1KsVgjSBeoQ/YroV1Z4XV9SJt4Hhsz2RSuVdUYr8T/ch6OVUkgDHCl+elZWtbVZZt0D0caoxeDc2N3q7WaR3uXuCh0hZ4ipzBYywJaf6kI9GkLolkHEs7xt0AQgg7QPCl6VM5M+qTdi56blDGBe54qOHtVmQ7+ElGkvosSbhQXXJeDJgKEyYsRN0B4ZPkRc6u2OLQSPTCh+cTEbwsBD+piCNhLlSFuaiVlTESgzKC4IEZdZwXE7UPAjvRoU+lkL8RbnysjbzE0d2ij4Sgav1IJ90+NH/o0LoMzT+88ByNYMpdrGqKsleKW0oeEB/Mg1E8ssvA8MSEECpnP9JUNAiviSYkR+xgRQM9fRmkYV/YBETms8FVsz1LgMgsKbbRH3Sggufp5A6z23OEfCHT406G7IAwcGbLvr3wsXz1+7fuXd8wOmgWOHj+idogC4ubq+as8FOTGU4Hdrc9u2dvid1rlwmIdFNpgGC4DtMgEkQpdfOBVnN8YjO2osNXqPXbvH5gMXy2DQVgN6XKNs+5VrF8zr+dr/ERvdARAFAwo32shwjRWerVa9/yu/+CVLY075P/WZp2iuHEgOZrZizcGfq+XC2bNnv/qVL3/za1+7cPnCYx955OOffIILuW9+8+uLSwsf//jjd5++c2w0p22XF5cs8Wc3QiogwaNatoxcXqxtXK1MTc8tL6+PDA3zaqUftRen7uruj2+Sne1DoyPX5pbW1xcnDn+8ZTcm1xBghkiPH+yUU42ERZYfKNOEStlggqmjuPadp3rr2ITPgiLFNCYM8KhRYktXd3C7J05FjR6fNx8afFhDk0I+NGt5IXPN2fyq+VNFEpEchmAISUcF7YtUe7op7B2EGVqCd3FAVkZavo9JH74QeZt9n7y6FKWmHSWYDHSYZ/02n1gOFhKwSyWxka1gwVtogprUVELy70Xq6gHZGfcwHXBxB8NSw2qeqPeBUX4VBw91X65RQvlHdRpzsOUg6T4dtjeYlRZORAWzsqpSfNwur32nLBT2EIeChVqaCArwJvqjMr1jMXSNPvzxj39MtjbTGFdGhoC+tWx0eFRcjSWk6rxLSgy06VUTii+Nmu77FFEmHpXKLxs3aYtLOV8OfE90A2yv8FM/rb98ooHyB9Y9aCvM731mXwG2SPkYpavnQc7uS9WOd2mXb7MCKdNYnUHKEqtRZu0XEwC8GQNYuXoBg5v4ab+XOmiwvxck3/2uvbixgYEhGhVvMaDu/hhEy2YUqVoiaUsrHM5UbA0V/rpYAlJ+linBWz/hSQpsqF0v+CkuPcCVABhTi0lRp/gECyD/Hix3Cr4XCfm1v0Zf1xRPhWiFt+CUbjcSIADWWHUJaq+ZNVNzxD8sVKiaFflQSvornXtLm+RzKbWQZkSGDyv2Z6WzwGndtUTlnI6Qy8idUm54MI7hbEuBdpGB5/zs1PWrpgHmLv2sZOLmLOjVO+SmrgMtUmCAl9kWzp82ibrb+qiru5eClxfXnoNRgOSWi3gkJbCGVi20t8q8TFesFiuw3oGUTAvPh+D+SQzBl58c+IYpR1IrS964bwgS7EKt2Z/7tb/+1yjs//v/zz9/5COPdeXY7EHcFRvFVYRf/MpX/9v/9r8Z6uv/yle+cmhi2Fr1X/3Jn4yPj/3qr3wlS3G+wTc35sqpDj4ftAt3di7Mt8vLK0vLm+trOyvL9EsMknc62m32aI8VT0RDggt49Dg10eSRybfenIWxg+3ZDYV2VcuDaNGzYoVAU4K4DJTnN65dxzHQp3I85USEXvlKippqTikiJoyW/gYpehuqKKQexfmHBHmE215C3fsTax7p3t6WIYmh5QwxQaPgHo9E5HzR2/Pm5zo8AM8GViCz9qESKnKldQy+xtorOj7zlfMZOJ2eLDQsZyJYSNzy3aJs6Ri2KhlVUMtUcD1hpMJXgEgR9adnjVelDdwWQPJhzSDSDFLSmghQMc5xtSNZXPWmFF9hioGoTDPglO6tSAEmcpwIqkX0essFSzpbzwUxdWRGq9PAuIiONIMwRcFrSJq0qExLe9kzo86bm2iXtGj4CUUL1HLtyrWYPpkpE27tt/hUUYMDoz7sDYnnQGAYVjED8Pny8lrcDZcVeqU/FGPcgArJ+VZxDNFA7nxDzaCxFTmeBfwPeGyuc52WGxyFGGizrOeS0DZcke/IZIUOg9r6MVksI7bxq9BZZnz2fDFgAC0EAr5Cha3MTF33Sjqr51OnTmExdM7Aox+SXnkruofq7Jq0Msoa15C0v2h1dF9ZPzVkYcWCpDYq+Gtrw1xMWkpIzuTV7Y3G1pxVh+NVJdcPQEFJajawVtHMBslw661IejF2bg0yVpHaQtyFMPQC5Dc/vC2iBKHm3AMyNKxYP4FX84vXiMLlr8/bivq5flJoUi2gvpn5GRRoLA8NDFJbu2hTpxwaG4U6TPrixQtdXVMc9fQPjiJkUgnFH0q3WMPbWDfOT4z0H+Q1+WBL2bBxZgoW9HWAzCzjZLgQYcF40kuVVYTqF5dV0bven3Vez8HOnoOYaT0zZAgmczESMkwzMCNL0SGH50KAjD1dPfyyrSzMfe6pzwwOj/7X//T/fvj4yWNH72BU4kJGr576zKf+2//H//PQyMhv/vpvoKP2rrbvff8nf/tv/s377793YX7aEat1yn2mDUAJocZ4LA6rraG3b3Jk6zqiG9NLV69PzzNjc7cZJ7vzC33wQyfZsrOyas1KFN1cWlkaHz1kQ4IcMJSRmvs2hEpskT9Y6ZhWKZ/LdppXtZfpOS1ryDdyygAJiB/Z63qdLlJJV355KqXVD0Mue+qg5nhLlR8U5JRcnx/0/j1pIBFq/hoHjG/FPQUAVI0QCmknIVDzUJKAuw6wSqMHezLUdZN03+CrVojWKtuhhBRRxcbUVAT/bPruMRH11Qp9mM2fEipM9SnBcPL0s4ZaqTi+kMJ9Vkc7nVOxRamFKFDEcqDkTz2y4e22HxoTkhwlaIw84NYKQc4YRB5o5RRQXyphcmJianoabesYRQaYoq0sBO9nJdzGHG7PiqJAIe4XPTw5Qaw3GELHRV9kt2uvWlEjyGmzmFQaemhCSwFQzk/x3vwGx/QuotNS0nMZM2GsK/MrO9sz21kwZAXQ2W2tEHE4uDUOs8XSZUTO3ZhWKIITAAyeMpDwRL9gJq0oIb8zSFvaZqYpSWfZsYFEwcRoJTCu4E0leC57UHUyT0dEOmiPvtaGbkybUAwMRnBzn+XKyrJ1jIJlBEA5EHDEomR0dPjuu+/62te+jhczlmAZbSZQC5Nw6ib1ytzV3elDRV2+ekUXm0RdHsIqzp1NfioQijwrXRZAQu4CFGG75g8FGj9INk0rMHjrK5U6DCWbIQ17e1NXzfUBz1p4fZF62avtxBrP7K4iVijipi6sz4DITJ4JIBKEoa9byxrZoxDAvuILsCVnGRw+hD3v2V5SaNKDRGwqZ2jSp5H8khl6YVNP5xHazkhsLHX3Cn9/yt6b/FsnGJigfkAPyOyCexBHRkk8GkLrnJGiurabK+uMIFtaXu04ffoet58z/HQglnusS9PXv/vsjy017zlx+NjEGNGFVN5xkyKl0/TgEF94tfYEYCSXzU/TgeoUiuMSqJc2Vyjq3DLmTObx40zpUZUhrJ2qLoQJzvUN8rIyNDylZSFh1ncr6/LoyDhzuLmZa/ecPvkf/Pv/i//vv/yDF178yalTdw32T3YfGv3H//gff+yjj/7KV7+ysjy/sbPW1dH39//+f7i8MH/50nlqmZnp6ThVPtAxtzBNK4VCBgeG7V07sm2/2vyGQUwvrl65Mbe6tjU+ZgXUvwoRdnrYBM7N2RVDV84S7XYstk5dX1ict8HQv5MDLgK+r0D3kQgiKDbCnrFg0cFReNkLZDsNwyhcc5CfZ6GEEIFQf+oXifiAfeHad9ITyQCLfMqFtI3YcGXLLGSC5Ao3xediQ5mNTXiLgzx0GIyWJ2U8wV6fFHUbyhFPKEWjuOQrhIc3xu8TOTytirSPH6qcKNzSzt62yjmgLCEgApfXW0GcGFpTNDL+/w/GikAGRYlI9LbmbLTKbyUYIrWRfvAJWIIUPvFrtvxTMpR/G3ECA0hTMTvcntgdhjvkbGPGDND7h3t1WITurE57lL20ntVZnytKgsySp29wbTn6CgY5vV29TFu4vbaoRB+qKT6rd4cHBjfXVvt6uy2DqbNhAJOOBEHxFXNJbSaldtoZs6Fvp1S7US/dfMtNZuN12VHQXcdtQTScgIccaR/MXaf9PREKpNQgrjmAdwQVW0Rba6tzWxsr421jVOprbS2zS3Pt3b0c5TNFHh491NNu7LGo3plfWRrZGR3u7ua05M13zl69dOUjT3x0aiqH181G8wuz7mRB0KVl0KYeEwRu27a0tLy0sPru2UtwtRkJaZfDr5abkWEDzM2GQRGwobf2YG1CKDL2W3owak90rD931vDfbjg0BxTu1jI0NGwMHDt5zKp5YHBg/PD4D370zOjYBJX+Cy+9HJ2DMDxEpFpeXjJ9GgCYxcDwQMh+Z3duccEIhFeqA53liVrLqGloKgGpjdYNipKB6RGkscVWqd08T5mRh7bj3QoX5NeLtYENvBdiFpc5LS3iT30lLmIzX6dAAQA0FKzSnQ6zsoMWnm9MyhyiEuVZAy8szMZgN5s9Gax7IdNo+ZUBj/FBX/LkB2KJJ+3liB1Ma0joLYNDjiCsdvX0QodSMA/1smsok0GKrGX5OGMbwGVH9dZoUnclqzLgcflmoza2N6zRlcA2tLZuD8Kwicogzl288PIbL9116tTnnnpqYGgUSBcXZ6dbdr/+0kvff+vVxx6479H77h+gvyuz38rCik3e+HgPW/KoAknczUMaU1GKHcnU7LQrKGprc/ethbPIcvTQMJUf4kFXOy3ZZHarXORzB7hMCq2uCSJIwlmsOvAlU8n27hozkkcePr298+U//pOvX3733JGJyae//a07Th370pc/1z980EUaDz92emFpbXbhBta/PQ9lO6y6GZrMTLsUpJeS6fLV6z/4yUvUGb2DAz29fe1d/Vs7Xa+cffftK1e6nUThIiLXErXMT89y65Oto5ttC9MLQwOjs84EGOZFzXhobAxLWeP2R9ez/bWPyJgtzkiBvdPV30u/xpjDfnccCTBV4Ky/sHjt4QBVPCZ3UqwJGBTkSpJ1fFIHexoTpJlURPp2DLvDJpHDQM4zoRt0BlWWW4W+YgEYlbFL0xzgwT2czujMzTZx45EJNggMKWaygNDIaegttKSvbbmFG4QPt7nXyXhxX48UBSb37k5318EtW12GVgi18PQAXQIADBhV1hQRo8vkQ+XA6LtmligSmatMAHUm2CO4EH+Ni9R4jTTjNX8zsaabTGyca0RuLACkYBwWJTibJb9Uaqmi5AJvYHV+JVBmhkyF0FCn4AqeDBmDjnFZu1XlowlSK2sfxeWTm1DK4I3MW2EO0sp3tQVGcrbAKm+qcCrKdk+qS19lmbwX4h52L5565awBn5IuzpjM0pBcLFilbq2ur8R5OtFjbWRgqG+gf9EFLDu7fd3RPG60bQ309a1neO0M9fbTjz3zgx/e99DD9o1ZX8zhgz2dvLWQo3fcKd/FfXPr2rqFKi54YPr6wjvvnN1cUVqdoc3WXH6lHQF63xYCHNVE6eGGJtwGDRfY91Zgukw2BIR0jRDw0+uMHup/8KEHJsYnyZX/5X/5X1MEmSGwbCLh2toUkR3F2x5wXsknSlhcWAne0l9EmpC14YG64Cejohz7atKSPOLyqNdCTY3mDAVi1kpTToVHhopkKT9vwLfUEhbOzi2iHL1N/Ed1d/UryoxVFkW8DbbQJxctY62h0kyDyPVsXT6CaD8AZOCJ0dGpmWsH27s3N1xGTbTcNfHZD3KFUdGPdVJwGfNah9Qtxw1UA60WQukKVYY3waiRtL/098U1AySSIy+95235upRBdmQq+tMXfsJ+xuHh+x+414Gl1ZhE7NLl/OkPfvTiG288es+ZB06dGu8f6u7tJptawRp4soTZk0IJDyQziwOC0vIqcdtkhg+6wXRlcW2or9dydntje2Bwjb6UpRC/ncUchJgVLOszwxdAaV1bi2UGS7Sd3Q3zK/SurS+eODn523/nb//hH37jT/74X+vrhx56cGx8+NLldx40N2xzzd1KJuPz2baFvYob16Z21jfJD+7+/ckLLzLzm4i/h5WpxQVGrdemF65eIwet29SYmBi32QtFKAp5w3MWJQc7OWhjB0JppoPGD41alqJDbA0xeGaQYjv2wEhs5Q4+eFWC3QAYNgzQHur1iWw+CSXshVpOJeYirg1qzvySW7LjMNtXCncXeQaVTxAiU1oLgDa2TqWcrA3s0sdK0eyQndui8Gg7UE7MkENSEXCyCoivHMuDzEBOYcWrvHZhIHIAA7KLyB/Y5FWsiSbtcrLn7XfeSTklSKoE5FczXlvlpwjE2CWLnF64qmyaJ93b2k6l1+BVjdTWiZca8mjGm5F9r8IjAy57AbJBa9sWx3zms4JWTxX5SsdUpuCnCQwe6yvPGuSpAItIEYdun1Ro61uJZdLMF1KaATC1kJpOh27mNb+qFNGozjOTd0BqdDbME3YE31p81DamY+KrIgB4Ja5CcW/hJCJG8cylKyyqujdYAvWiEuXX2uk0puPYbqO1vz8jbWvL1KKip//se08+9VnXluY2GX6NBvs3brZZ4lCuumfLjb7dnT2rS2vn3j178fzlxYWlg+2d2Hut1FPhUOEJFRWYmthsPt4q7lWFNs+i/kVGpGMkVfa4staGkKj127YsnN0DPDY2YWVD13T//Q94NT09iwp1jeroVORXAi7ZPmJTNwpAQaM89YsG4oMyyCbAA8HWT0ACL2Ra9Kr4oyqk2Or0LSCBKpsM6vJMlzZWwM0G/TkRAERlgdicUSq2eq4A0Ey3tvnSW6REk8KxgmWH8vWd2bMWukc4Ga7GBMAI7/UvnC6Q3Lwxc+O+0/faMP/at/6UAfyJYyeuX5syaDp4Jl5eALwzVaCmLVRGb39fqTEj2rf4OMJpNMg0Likpe6Ey9PK6osKLgFDAEtnL955/MXLuUKhcXn7r1ctXLronnfssCDdEesiqS4uXbsxsLfz49eeeOzE++ZGHHzo8ebQcEu6xanNS1/VVROHOg1x60JvpU2aa7EMpyHZs63a3uSnXahMfpxqhtVuz8dzTxw8aoS3yolDnajBZX0J42KdbaDrcbNO1sb1FQ+vY2sT48f/Vf3L//+Uf/1//+I+/9tVf+jID+omxQzeu3ujro5prMd9QD2DRbnt3mGtpd/tf/qvfP3HixC/98i+ePHVH/+AwA34jlrLxnbNX/rv/1+/Nb2xaygXsjnanhe1Ub3EK7TyQ/Z7NoIsmgJna9YX5keFBCzw0XEnXE5khyMphYEkKyCvlA94QXpgL3RYEZusY5dhsk0dEyQYLgvG5DERnLP/uO+6IRudAPEgjEnMYdSj1VMZCKDja7Ay/0okeDtYyUyW8Qx2m5rxWq9OaWHgCakto/PI753AzPVilc6PQxb1HOHOyOJRvxgnxEhJNE65FjzeEzGEZSL4RRKQmewlq0CTN80tcgw1K1CDip5zyyyC/iJQa/NyLNpi+nxJrqHHPWmZNFN97naNV4gQvS5wAA153E+6t3L2yLvM0FCsYOIWfFWzFVkjqq2ZdEuX3FLzyrD+NHfH92epPKQqUR0T5WbmzqVhdZz+DAuhw4MnaE+IrnsxVJZJW0LIHyPi41ZUlDw9Wrbts/6MG2coaT7rr9jgt2Ol28GoOhbFD6V9Y8qHhbkTAKg2HJers1Iwa7VlJ7OqJJ0ts6AdP/8CRdIyJ7oioRYnBpMeBN6OQrGZP7PKla+fePre0uNrT1Ut5pRXNoIHNpjUT3x9JEwrheFXpCzbACSQpztRoL66NI991+iFUvrU1SwRzIfCLL75oj9EKwERSZPZ1nN3mgQ8RJSL0Fl7BUMHQLhQobnZRqVq0V6Kgukp7EiFEaXKqVAajyytfaQ44xSsZ+yqs9ecJtXCdgkA0qozk7OapwmSscADm/IaDI/PzNGA02zi9Gpqksj/iTfOnPFrkaYviq1/96kMP3v/P/tk/m7pyiaDX3XZwt73VjoJZp8ttIbttyysbEA1plH5VBZTBnxLC88voooUJQX5gUFGz3lpp8+dt+b2l26KfoSiYX1l89tlnc02hGamlRR8dGhy4ub7Wvmk+Xn7h3LlXz507emh8fHLirlN3nDx6hHR/4GYXSZkMSwtkCPgS4qCd1KmPCCJx+saq3NVGqxisjYGVwREXVmKwB4GooiAoAhVsW1bnF20I8CnfJSuEysXJhvGxo5988mPLK4sP3He3geN02LM/ev7Tn3nStDE7NU2Uvnzx4sgI++P5/+q/+qe/+Iu/+PFPPIlgcOTZuSmqat060Nv1xS9+7tqF2RdefO3KlUvb6+ujx48glfDBAy3aYNbhG85sMjp2iIpqbmmBFAAJmxvVAC/MDUngAGgPGYtXkoNS9KZ1nmpEKqoWRzzImIziE4RanxAurpkywAZnRL60Gb+8sLi+sT02eQyZHVzd6KLKMAMYxyjMgbzwJXdqt25vHLB3jI+oFO+jdXOnMzQqVqidawJQvoChbbSV9UGkz0CrLgMexQbzLp3N1lS4n9u60Z4GmhJ7/FaWuIi+FJcb0GHF6tVv9n2EmIvvGJTO2CpdPGXh1AUO31ZommDVn4V2G3m8qsEr2PH0U1F17PmVT0pp0hMvGdQCKnERVcov5icaysK7HKYFXYO2yittqd/WcpqVKiHq2lsTQGrx07MZkblmSIusUjMcYcHsmFUaFra+4pSWfjELBgRP+YVaiCV2qS5vIRLI5XPI0UyitxpJkQYOJLswA2rZkDlhEsYnQSvSBWVh6IKLhdl5JDXcP4B6LKWPHDu6eeXqcz/96Rc+/1n7riB0tCd0FuNUnrF752aXXn/9jcuXqOnaB/uHDMwKmyeooE75gp8VpQ2Y97Bdf3rW3mx8WwTeikPjRwRdwbC4Cen8+Qs2gbnDJfhMjB9lT+JzowitlyMg2XMWVIq7+Uq8IKShvTFy5FcRa5/QawlgM7r8BLCxJ0OF3FBRshIomo4dOwZIob6CBF/52jln+f/iwedaFEIuoo9GGQ2KqisSQ7qceSIw2lNZshpVcunW5iwQxFb0plJ2LfQ+jRD8WUksLi9zGvwf/f3/4OThf/hn3/7W17/xpzur8+QuMyTd9+ryIpf2rGRtCCyuLOOqjeFcCinEVyeBMiHUkqvsj4smhDUIwPBUY/n1oQ/a5KWVxa6Ozr7unoED5RDcjt0gp2QOHj9+8vGHHmIlvTJ1o40CYW7+7bffvjxz4+Lc1Bvn3nEu98xdd9554vihgaGe7l5zQPbidl2CGHZBINcX5mcHCYNQiPArFxSQnrbx2cHBAcpPNECK5JjByAnSOWvjH7CNtf4ae/z2gwe6iSwdbWs3N5muLs7P/sf/4O+x8bc/fOXiJZfYzFyfstB0lv3apWvWH0jun/3P//zkXXd+4a/9Cls3bkFRiB0IQ6ar8+DG2sq3/uD3We8/ePr04dGhl1950WIL3zbN9HUhy9X+4f6LVy7z8TniDsvWNoasJKgL77676hKbPSeAiE0TUKk2IhVCgGYiNuRdeU6d59RbJQYUWFcAqMUsVYkzSCiOrdD3gULALtvMBDw759iYdTxj1d7BcgAT98jUGDnCtI+j23zYXN9cmFtQHfYAEkUpNqrB0um13xMvnIjSwSIP2Aw/+PcwP8EwfgOYtGWTacaCzLUcy4Vq4ZMJQAXaBlY0ZBj4TL46zkW8zc/oSKMaE2T+/7H2H8C+J9d92HlzzuHlNG/ee5NzwACDTAIECBIgQQokQVmyLHur5JLW8trSare0tVsbyrtlr11le2vXOShZlCiRoAQSg0AQeTA5xzcv55tzvvv5dt/7nzcDggJt99z5vf73r3/dp0+fPn369OnTcvpQqBEZGkFijefDEi8Z86jpEFpT6gjceRJPVlfEY9gTkg7P8lS+clJUCTf/VJ6fgjeeDfjrz5quhFqdn8AWajZVSBFuzlxqCAcUwFo4UZppZSowc7S7W30FqzDdgOWnhPrMroIS5K/lNAoH/M1tUXiyNbWsrS8TGRZX4qeltz86EDSEmKiFBN3m7cLSoo40AZCsL1y7zuL7xz96yprXcpszdCc0eMoyodC6UPxcvnR9dZn/EykcvGfiFNLI0kzxClsDwkZK8pV1nmcjf76yBCinrgBmloIQgjg4YYPjmavXLmai3N4eHR3v7VmjnHnqqacV7pWc0G6SsFWgRZrMR02tXwahVFi6uRiY+qnJsqlIqH0kgthgT7rSLJxF4AQk8kOpqhVVCVLmppDtnyMoUwnK9PSZohC/ps3OBGajQIY0hM/B3C6XPDVnraO0Ig1pNKem7+RhRtxNLJ17/ZWXb1y5cvjA3n/zL//2xx578B//o3949vyFNaLE1uIWm7SeAcsCkz7OEomjwLNTUUwlMYUyB9Ca7DD9Wkmetd4GSH7W+PvgqR8oyAjONn5bK4ZrskmImQOPcgvY/dH9+++5/VTn1rYlwJ6hkcNHjl5emJ6Ynrp66fLZy5fPX7ywf8/4HcdPHD6wf3xgiBlRF39zTtpjLBtVkUCq0VmWdORIp5QpD5pZ40CdqwV6+11phwb6NBN4ALVgZf7CCoO5W53pdTqZG9lHbG3aHBsdmpuZxHOc8KLMvHrpak+722ba1uhwtpv/6ImvX756/W/9H/7utctXtNoSWf8QQWg2Bnt7Zm8sXLtwoWmrf++ou+67Xnv5+cX5uZGhfpqU1fUVi3ML0bn5eX1NnlUZHk+feN89d9tCR1cVY+DR+8QO9CYn8pMOVD/VKBsXSehEillHBqPY0ED89Ej8FdY8SpAYGWVt7c477pCT6UNn940zFy5V8lOCLdZgzQogHC/33hBurcvcz073pvlIFPtFkPg4amdDFxzucshEcCOUSIfU3kacUh2w8Q1VeIuHgFxKhzMWxdYc38peB6thjfSuDrPaMB/XJQ9RdEe/UcapBhuKvrQNAFK7zhkRRk5w8e54Du4yUgpAiZd5ArHuxv1L9xfwkYFCi1CfeGEKfiovebNjlCCu/Z7y+GkesOYUatuk11cGsbZIrxQm7ish1ZSBkXjxelRf0dzooZKlClM75fhHolcAjuqmeDVVrH2VFWMwLrZWoaVWCswylaWNJWVnYvOzQr6b7t8EJau9AmA8d3b0s2ZgjFRJgYxOTGBr3NpNCFt3yFZv2fnUoz1OubD86R+6PjH1o+//AJHde9fdw93DyrR8npyZfvudM9cu30A9g+ygVtn+rOaiqDIzyaM5tV21abrbz58MCEBm6Z47kaJiRKMgFNA6uRwVonUUasTTiREYWAvjyzi4s/h0+DvfFtZs6wQ/N3HIwE1NVf6qAiT4eqlnR/EFKoYlbThhFDxZYlr+S5RHZk89qwo4oQpDzYZcLacW4pOfbNGfneJDJJC+Lq3WL0DGFeuQLuOWY77ognGxCLZVM1/k7qCphny88wuBUVs2iH1iemKsuxfsogABAABJREFUf5gLhad//OStX/z86sL08YN7/m9/92//7j///VfeePPtc5dWm1qYVttb2Wpt7+0fhibiMdIHkz/F+6XoypBQZMqXUp618vzc7d8a96zd3cjQiDAqYhPnzDCpU2MZ7nR091LCjA6MXbl6/ht//C1WzHfeeqITnS+vdff07unuHN+3/5ajx69cvnjxzDlmlz+cfPqFjvb77r5n78jI/vF9PV2dhB6yMzNrO8MhbJwo/IFoVnCSubtlcYEobRNkwxlMuGW2EG1GWzQNmIhJqIPiPtdOLK1vrZjFX33l9WOHD5g6LJMjjra1z0zPDDrBsN3+zltnxvfv+/Gzz0xcn330Ax/+7vd/NL5nj8JsZC/OzVuiWmO8+NTzk9euDvSNtGx3tW6s0TbsHRubmrxxy/HDBoT9am7wbkxeR129veN2uVhKri4uHjh6UI+3L2WZi8bAjeCRn3GHJDzr6DA/ITx5DPDZ1uwB2M/3YZ0ekIqIthDXlADzvpInJFSc8fmwlqmPlCmzb22r2L3l/LFOAF7FSYFe39ima3Mpq3IMxMCDhXd0TE9OSVGUZzjwbo+bLhhyK1BHMFxWNSBl84nt+OGhAVWbFVjdrTqVbbu78SVYhTrqPBXhs9pskZoeFUXhDA3WVunMhzugNGAKXE0GbhhQmRtkqKG8SUvqzwpffcbaAQvMAier3EwsRfbXGF/Jn69oGHlkKiO2gJHG16IkptmFC0iRDrCas/7Mq2oMWyTKvN4NFSqZRTxr0Bn1fX6WLTm9AAqTcxmSeZk3hYMUbY8ZK9yqVlfLrAXWFJn9BHYlLIkWzFletnfMcIdLy1bMbyBfHv00wml776wLmyrl+Zzgz08cG/xvPvH1u26/wwa1Ppqdmn3jjTcX5knZ4CPGt3R32DbYIii1dhRVVam0wuBZwW6AVyGsP5VWgayJ4mZI8YLqkLIIS4mamZ4f+b719hvEfMWapQxgiwBn9x18U5SK8E2fYNZemSqqNyQN1GiF+EqQof4MQgtKVVvTuTyurxrdWimzOqTzquav8PzPeKqlViiiUrVUYLTLWl57KRUUa/Sm7fFySFb7U+qpn3s23qUJjBS6eugcFteWn3/umS/98qd1Sc61tG7+xV//ledfeeWJP/nBMy+/Nrkw39Hdt9VOnJyhJolyJHw/7BN5WRNEztotWGqZkRv17EQqAO9P/YnfshFZ7U+J2GrHfzXNaKBV6+sZ4A/wpVdfG+rpPbxnzzqre8txXkJxg47OE7ecOH746PzM7I2rV6cnb3zvhz8aGug/vP/ALUePHdy3PyyvaWt+baXJnayxE+swe1spbqPPjlbi7roLgFeiMScEIIbhYfcqDna11ePWdq+2mV1mc7I9KziyFg9Dtx4/xqSRJscSyZFjJD03s7g4sNza0jkzscBp6fXrU0eO41G9b7z5DkpwuTHbz+42mwTX8bXRodH1ZWru7YWp6e6BvjtvO/WDJ3+wvLhAckNCTICuTdwIMfd3x/act/m5uf6eU8gVDzFFVdICjJkAikSki/sEkaA6CGyEsNdyVsBXEnV9ZrJy3TeGWzvBh76qGeSpJVd+pVhe8EyiMYyrKwCDDrdr4ZJtzWQ5ODykHFojJfDkDH7YU4ufCeF5eYXSpNk4IR5ZCXVd7VEygUl+EUDWrtELGoiewZybP4s7iozAGI9ycl8YaOXPIT7SaNTVUYGBm70U6UOV4vldxPNo1ndJH1i1wZ4Bx+xf5PjILtFbZWALCtzJFqU58s4aQjE+T2MIKlIVZcfcGCg8AgABsmynQAexJashDLSc5FSat6rTTr2o2bX8Qt859Oxt8rflpm9FCcAwkzM4CjzldKuqpUCWFEUBfGt9s9vRB5X6ts91Dp1ZiBVnyKmxrHSydVuClJvX6DejosY9ZZRtBwCu5FdXst29vR2Ye4e2V3MQ3w0Hfc05RggGP40uJgS0Onv27sd8OUDHm1555ZU33niLXbwV5blz540uZdtCUnbgNwm0RHKxmshMWmY1zxoqDOI/CWGlpJq+2yi/UgIEKlAGCBSHdhGtGRocuXjhsvvwllaXIN9XFi5WLWCzSvAh4yZfDQ4OG95WVBXztcwa94kCK2yeu/UmQc83ctYMekqwAELlUiy0PTW5jjRoBFhGS5m3aqJhpsz6+fueAFM1omObF2yXtQua0VJjjLMjSj8ZVlazlLYHwBqc6gBImfXDo/WeN9m5gXG+0G2vZRuPCNzWrFOsZinBezu6L12+Zoec/mdpeoJl6+LMxAN33Xnk6NHjP/jxE3/yo7NXbiiwp6uPPsV6o39wiFR97fqEw0d9vX0ZzL3WOmVdvNuAuiYwxHYT3vMvkAJkQULjhRTtdcyQ5OuuCwtZtjEgh0+SSNZjmxtvv3N6fHhoZGAwtsihc3JELnRDXrTVeMktt97KqOnuu+/lb+7NN99848wZ1jUPP/zwocMHWCrngm6uEdb4ho2ZEMFcCYyOdLSBjoJwuLl4L+JBdnjvgf1d/T3wZ9DRfjhw42QvyG9Mz7i811odCwyP4tqhs/PSxUknKl54/tXe3n7IdRHJkcO3Pvmj5555/tVjx29JH7Q0XXj7/Ozk5NjQ4J2nTna0dC6tzm8szVpXseHEWvjM0NhYfOKG7e0G0a1HjkOI+Hx8Qmw47+knUBEAypFNfiSNb1QG4hVkoqVKV9CiWp/IKeLZYLUivpUNzj0rRfnQTyV4hpMU3aa2S0EktWSvQlyolThrmuEUhyt7Rp+OAtDH2IyiLLI6SDHR6GWdAMt+JQGzbRrQeSPDPf19VX8A+BpASzGlCQx5TOS1LW3UCuYPlWXUFcaEjiOShYZ3WHx4P/QmR+F13qdurSnIKLonKRkNxgQRFFWWuPxasDOgy+cBcjdSQH7vI7r/VK4UAAUTu5nrV54+UG2tWU6AStEHYfSctZapQmdU0q9ficugK+Qsn2TIeqV86WWeCta9rYkiPxmvRdVXnsrxYayihYJ+/0o3ETfy/KmRClh9wlf200uomWsh4iDUSFM6QjFd46T4XW/fwMjYXiK2856eX//615mX4P7MgYLx0ji81C695ihqp5Y/FY6fkuirVH1TNwWKwkq8qlh636d1JsAr2fvrBXRvjTw5OYUXK8onEis8MYsqoVFCLVBaI+VnjKjUyNFA4gz8YWG6UnVSBIXUMv+V5ddsBaiooVAK6wSlKcoEbN7FfEfHNCgXfSjWhApWbznWxhrkNIwBUMEm94EHI1AgOzyvDOzu1k6Ot3311ltvfezRB2i1OFSzHp+4eqmzf/BXf+mzx2458Q9+9/eee/lNdpCdHSwVO1cX50gfe/eMOdUxMx1ll9btLEF3EFTJLET7pwb5a9u9bYCHCeY8WFapGeSMXtwVRpuaXtuOkBSJbWPznfMXnCW+89aTzr22bhs4KDxi7JofRdKUwEXnbXfdffs9d1mMvvnaq9998of7L+zdMzz64O13jQ7mhKDen52fgwF7v1UCiFOALOyd7yOc2V1fYRIzvncP3Qrjck4aaPntZhGJqKcGh/p5JZEbQPYlRenV5uYgeG125nrcb3V1DPWPbW1eOn/28tTk/N5942dOn+YU6N47Th3cf9g51pllW8E9rOrp0NGwO6PGxkYunD9/++2nSFTvvPmWy1uMrFjdtLVm56CtDcdsIBP2GgisONTpFZOVZiQ2IuLvy1/LubmEmhLWaGAa24Vz6CQ/BW/TWH9lUxP7rCnh6LGz5YIhCncvkYHO82Et8OZnRPMt7hvS44hTMwFgOOg12fSyRHG9T2r0U2jr7mhfY3hmcZGlJUk4iwBmip5YuSdR0gc1HkiLwI5DYNVmodBTECGugxLXDDy5Efdp3u6o9yu0mR3MEg3Qy8/S4lRAw6IAn8XkAtKlaEZ5k4evKlo1Mm/LkgIypWubxDpvp51lZNbPC1tIjX5KryPc4IyyNkS5U6bIzXEVpYm7Qqjhk5mvBnNynAhAVqa+hDJbpWW74aYoDMBNaves8Nenz8B8c7oMoE3Vem4rJ1QxVnO4OQBzuXHj2n333zO/MPvKy69dvz6BNdx99z1XLl/jiE3ZBQ/RnL1b4Lvg7IL1Z/4Lb0LG3O58qfW+gLFdgHVHmlADhmD5SxfEJ4Q5ybfGKHaJwhwAHhwcKj0S60xndOsCHz535swCSVCcQy3Bz0+Ed4nkfa+wGG23BMFoDGM8BorQA5mtYk+9FUKoqPH3ldD4KZs8qEIJiMdsonAYwBB5euF/aXzPPXArD81JX3cvYbnOyli1nCpVlM9L2xcIWabquNhepdruIgy5g9QgMnxfff01m6WAkZ8VDUd6BtPy1OTdJ4//7/+dv/4vvv7Nf/Z7fzC/MDXUN0jlsoo6Vxbd+x4KYbVd7CIaMP8rI7VRNdvNcUJS5CvEVezTMoKKvXUuJaLlaNpml37xxrXOl1+JD1Gi5YYJwLvwPpKmvUgziyhNDgP/W2+9hcvpBx9+wL2Mly5deObF58+8+ebRfQdvv/12uko+lqEUIlq4wY93DVefouj1sBOa/Wj3utw/QWHkOhmW0F09fYCyAGLONdjfx9QCR4R2fArumUY7RYiQOvrdLsnyuYlnrdtO3rm58cb5Sxdtxpo/jtx67OQtp0YGRjZzdtKfjVMLHX1qGLgCft+LL79kx4LK1H7y0cNHwrEYIW03X7sxSWru6uvNBL87SGGpBhQlUdBwcYiSXnFbnzVbI/0n39ZsSkjObGFuwSjMZyZoRApvKe/D30FRJoPyLHEsuv7JGOH7J0PJVmZ2XKl4mE8leBSTrDX8CfZMiiaGgaER5Ira7SjYZbFyCBGr2ygHJWoWT4t/IsgnTeY8cZzE8rSAzWwRzh3QGnGAlnVECpJeQ36Un6W1u6lKkvmmhtVs8oDVE7Lqs47wJIF8R2GVvRrmbJ4YEL5gZAoGqj5TTr7c7bNQcnF8FNVj0S/VMdwASWKNg6zWlY9jg2rYbKSxaCBMK9mA5ZlR6rdwEyOT+m7bCsYqMDelE2+4gc6H2tioS1ywmy8FqPgpHjc1jbdcdx3S/PzsPffcQzil9P/ud7/LtGbP+D58T22qx70jXqTVAb+g8yac7gJ0Ewy7SeVf9Rq0VYwFVXCVnZ8s0j0FKULjmwqz4W2G8GEVMSQC2BJ7YCCb20aft1Zo4l6putYedO12SqPA90YMAXgtzOm9L8AAJNDWuaoWCFf4TXC3a3OlOt/J/NMqko6n6T4QopYy5/qIVS7fD920WG+++TqKcjzDnh63CH1uSI8Tlaw5aAxEZAaDWlRqTgKDRBLlCjdtLRxk5j4cShK+li9dmbCBP95ndy0OBnqbe0l2a4sLVsl7RkY++7HHD+wZ/d3f/QPqIMuL/qHRydk5WpMBNrUuMtKEXdKKALUja72HwG7GEFTXn0Fx2lhxGEuSuDPmBDGX9GwYCdlqlNbVqdMJHsxDbR2du3L5pddev++2U5ZsjrFguMgT/4BnpflgYHCQMYQFkgQ3SpoJ7r77zo2PfezFHz9z/q3Tp8+8c/z48TvuuJODUsOQ0ydDkhIV4dBo+URdzuV2NLMp395a25yfmuNHvbdvjYZzfTvrJ+hdW1nKdltTNsOQNwcnW5uLstsU0mFMeXCWeOpp52W/+cD4/rvvvP340SMtTZvcPLCz7mjlbIMl6iph1AGF+WKtT3PI8bc9KraoTE5NLa5FW1xeMtsePHaEj4Vw5BJCBDtICxOooeCyqg2Syc+KEG/rq/rtzU/p9aecAs2e8a4WHWQ+8aGd8KQYvAo0YlNuYfp5hON7Yj3+fBUeWLh83r03FDktTEiyJkd+WF8r8nqyVmaCitBn5YqIVu0spgg0OXMr5MvCT4mrYPBT7Tf/mbBKvpSoMZ5CbSFxfCe+C1kwwozJCC6h5M2j4MGkUMbkbiHACORhYalXSKS8FdFPAGtgWUojrrb6UwYTGgZEd+lzzKg2tVZXnzvF7sKQxMIdKmNKraW0VF2CWjBoHRVz59SfYLVkCy3o2pX8xWqRWJVc9dvy3MVFEBvGF51emZBqnkZFIuAXdG8qMjhtprlYtFyNawA5Izo5PXH1xnUe20f37jl58tSjjz32xBPfwF2/9vWvf/7zv+I4WGE9rEIJUHEsRTd9EyQ/axQqlGP4VZA8EYoANunQi3owjYpPmVGUpvnXKt4EZYBhi4444Z6+1QvaW4p0CTvM+HAHtz8rQD8lH5Bq/3qvU4AHpAJP9ui81QQpYBCk/5RikuxzGbFFravHky1eHNVTDlmJWsDihjcCWwJtNjhcleRSN2oKXguK4nEVvywqYC09duzIyOAQmrfjeW3COS/ScqtFigtsjWS2fm+fPTd6752wqb9sxqIG5uf0ncvTEwOdLRRE1Oh/7x/9k9fPX+5cmuvrao9zGIv6gjSyRmPYi9S5/c9ol1cNDIgAT1dw46CzssjOCA/byvEe/Kjogii0lhiP9XRvrCw//+qrAz3d9xw+TNGFqNLG5riWgy4lL8XqsVsBQ8ODHLph3N71Dw185KOPrz/8EGXXs88+f+bc+dtOnrzt1B18IMBevuXzY2WDGYcTpYXkXTEbrSlbSt5wF2eXuY5o72ISYRQITh13Ir2ymHRUBvmYgran5icNkx6eUZbX7EOsLCzecvjIhx/7oP0MN70wxLZFSax36pyWzsSjICqNraUtcs2esfELZy8szS4eO3pUTWGpzS1Xr91g+Xv4luOM8SqqNTCYKS2tEU84FCrC/azorT/lFGqiZ43UQhqflK+zwyoC5fxPUD2VSLiJ4gCDcZdyw/cLA0YaEa/9IWXY1muNv1p141khAwYarbminfBfUaIkW2SI8Cx/iWflzclEuGyoow4S1siglwKOCvHNT4wOsIqS2Ki4RnzeaLaUGk9BhJwiNd78SY3LU7PVKtCHiH22rB7S3sAZcG+Sjmtd0BRMVVwVU846Q2A38a+yGb05opG59MtOx/ip/Hy2O3/UlFpmfTYyBIJUH5WoMZ/eNZiLNhw42diGxgCZ7ix5YQxQvghmSuJOwTVeWyep1l4jnuYRKXT9KEPEpxJVpy1OtKtGoXCLvToAOzU7Mzc/c9ddd1EHnTx1q2F28eJll1Z84xvf+MhHPsYPIl1IeHfuc085Jdw8Ie2m/Zn/KgFvBQOQDHvcHD+F4ToNANLJfs0BlUAOLpJjjrZPTNyws0cwB7xW46demSEIaYYSusxQDPn8rxAqeKoASRC4s5cbQT4gF3WnuJq8FX5aleAU6mjTHA3H3BHPnvEB6bay3UT40svPjo7FwImHSUeB7DWZAlQBBsGGKq6KGFjy+QRImJ3lAkUQPLhSMF1Bz8yh2Nr6las3Oh7p3uKGHBum2bY77fQDDVpXh7Mgs9MTD9x9Z/OXf9MNWU+/9BrBvKWrj08l69UYeIQP/KxByTBTc4NK0wBma8MlKs4uMTe0riP51SagWa3Tl2b4+ZnpfqdD+wcmZ6Zeev3V/QzO9zKybOfeNrgsMiJsayOkU9b3d3c4Htnd2kv/vraxyqx8ZmPtrnvufuiRh9984/SPfvDDi5evnjx+657xcWf3BvsHHHxbXCAfdPFrxkDBNa2hWMN+3aWioN7o2GgbGI4z/ZAXnR4XdxZT7O6dpm93aizeYXKuYMJmiy2TNhfCxAwpZ7scTuOK0eIss122BNdp4Tqc6oZ/k8Hc5KS6+M5yURqbIqMXx5mdn3/n7JmhveP0P+BvuJMFQCUbT3E4FCqxeUrxrIkhrxIafePXzfHGT9xMPwLGzjrjqFqaNtaIOoLeMP5MznUApwoJOj/gJGRKyPuEmqdRV1IiktHap0w/9axPlJEVWBGjJSJylTLDFfi0CbNXUKrJVJN/iedUOhUIr9JQ4zdsLTU2norON7uhptfEGlduIv4vofGq8bNRwk6O8k9BBxQDq+wH7HJt9XjvrVDjnloiUTk1RPBcj8kHGq1crHIuHdb4xKsaJEI64Vwen8sgNCI1XoutWgjFZp4uXqNrgeHePsnMmpDv63O3+5JS4nAuVkvbyVLSs8Qrv+sr/VZ/Kh9UZHFKPHFdhbfKfM8D9x8/cct3vvO9W44d/7lP/fzv/M4/bW3buHLt6ksvv+wk5+FDx6y4EUFKyx6wmeo9fVTgKTDtAtFIqRHficAwxEJgwnoMRRTlCW94OlYASCDhKWqT30+AU/vQyI/1mKtiUUMfMs2d0fp6T3fMKhCmYuuUGeh2ARARar3vAyYEvJvtfa/Ujr0WALpUJ5u4Qmp6BbgCJlF43+eNn0HRDqOMYofoYPvD58pM09fXtQJKbXFbB6yuL5kAqo1+LVy9QZG91G32YzJ2ZeZubWabREd3fXbWhRHt/X3U0LYpWN3PLS23s8FfYmvI12iTnUl6SmuImekJ8B8c3zuxuPjBxx6m9Gtp/2fPvvQqX/7NHD1F4CjU1YD7Z4hodQN7mgYzzNmPDB9yyJYHmyaHB2MinJB+0XqSqQmpndLc5MHgpPPitWsvvf5yX88DQ8OjNlNjllK0EJgRPJA1Ri13IgY1L8/O57KZrq5Lly4Nj47QUPF6duzW43feeeerL7+GXCmLZmfmbzl2jBO3vn4OHNdNA7wLdTkMECVTFMVZTbL7XF3dXO8wIUGrsywsiOyN416tpFVHW9cWWzqaV2aWbLX0dPQdPXyAcxGyvPsncjlM36AlOw+/VVvmlAPVhz9aOM20C7W0OM85yvjIuEUCIJGy/TNT9R0P3peb8N6rgWjQhojQoKJGpIFeKTdnKEjNQ3ojj4ggxbRjGoitmN0XfEk7Ddj3dm9l3NicZGocHL8+K+tv5K1Mu1GdSMT/+sdkmf/V6DfBsNXNN2rOsiy7AsvWpaEMEIqGHaN1P2StEJdS3h2QFWjPWk1+6i1TkISbnmm/FFhqvC3xrHGKDFpLUJGIkFFzU6iJ9akBKtiJp0lGb7BvEISJhNskQEndn4THzKJ4kBVjZ+cymb2cdZYHVGhaqK3LV9mk4BsqMmNJ5AQyKoPKmCpEBciYSIhYQZXK6lCJIJDVmVOOu5MQ8DJrFl21Zz7Jh4FSvsaSUkp95WWxwqZeD/Kp6tJCBGuyS6Myw4kQGANGdnBiU4wpcepMa/vRj39s34H9p2677fzZ80b0l7/85f/pH/0TZ7xZhepAg8G+JRkIDFWdbeDfhOafjO4IieVF8AyT0CJIAYluau+IMwYpwBDwRDOmn4WhdLNdhnNfQeDY2Pjk5ASwg9vWbAPw3lbLITODVjZfp12aXBBV6v0zHjeD955sageMJBAqTZACNlVIrJ0rUVxFP70ufb/uQ/OdxutSZ9bg3pTurihLGXIuqZAW6OnnnpyanibshzYjc8S/k6DkYkfgH7s1pJYNizSLIRPA+NgYdzhTC8v9Y31cc/f0dTrypBPJUzgaf/JM/p26mpueYWS9Z2wM1VredXX2rS9M3XvHrU2/9st2uJ9/9TQHCUgE+fMBtoMCsFIjIy5yYSSS3fSd1/nH2qzg+N22y2zIfeSRB159sfWN5TddbuDkqwagE15nSE6OE9L0WEMzlp+dXxgbGV6YWn7xnTNHj9/SPTRsqQuVhfYjNdmmpmB3pHZ6etleuImfAf7s6vLI0MCGNja5Qr3bCmd+Ye748WN33HHHi8+9+HoJt506ccoV0qT0bVyp3w6vzHaHURxOHfWl2Xd13Unszuyvty7G9EE9fE6zbGnTKTML07YGDuzdMz66D1F5vbI0PzTgcKK741fiqLFFqdn4dYWTe4i6Oru5QODKs5IfE1tThInXbO/6h4mZGd7beZGDKRmom0M0dezvRrxKZ5cQhJafqEuk5qyRkj2Pm3/eHC+vIM8dJ3ZM8Q1Z3VHinwy3oo/CU3d6s5jJVFh2Cyz4T5UlvI/7hxjoHrOrEREFb8wqAJEUl5SED7ZnZVxkv4p6GA+TJ1woRv4RNPF0+zxemuhdia0/WnLA055LeVtfpWxVMWpAgiLsUA1Afz7cjdcUX1lnZljir+ahsuUdCmpx/3D8oklv/PlpbNixoRvjvZpsYDue8Rwn47FQdlSvpQV3QwoIhZKHpXe08oymrcc34y+bETo3IDZIQSjFaLTgNaQ9WWtYcGm/L5Ycblll5e0kYnegIwU5wUSIID9uxEwK6hzBpbqlDTNv4HZ4MfCi92lrBXDO6eQvcxRmRpKzKRB5Ds/b5BsLztUbjDjNbhLOPLzN85cTMTz9ugWVC9xuCsr4hC19nv2q1nY/2zq7eEN0bb2ZzEl9iFp0i7cZAkd3X/nqygGr6MNHW9u7bjlxgkLK0XRS1ec++4scCjLZvnD+7De//vVXX365vUMHby6uzPYP9HDKqL+VD2JKJtj3VyfE1L7bGJGdVzbG2QSQynKtr2ktCi+SP92/Q19R5boHYGSMU3tEw1vC9OzM5PSUI/X6lFzDap16yuhaXsnR8/179nJ6ZQHvyliFGaIwAwkQ4i+0HmklpK+xf+pfMLSbOWS3+weNubZwq0lvklWVQwEhBU2nr7fWPc0HJqeQe+bUUHZ93tTqbf62nE/FdMqszJzfIIrjlALV5vLawtrmyvjeMYhDlp3un7J5SkHNfQ0Nw/aGq6DduRkqbd9mVagpe8f3ONaxPLdw27GTHZst3W7DWNzs7XBx1Zpjly4imZyd4kYTS1pdXLDQcIDWyedlG6GM510BvTw30LG9MnPxnpMH/vd/4688fNdh15cM9kStV/YB25ADRCNtHjbX15bKCi/sozCadK6G5D7XdZulcWNPp2CwQxzYutuar7356t/813/jEw/d17O93t7kspf0WxifWYBw2MEJ+UqxN2+3NdozPLjY2vTD1149d2Oib2hUHt7L+zq6cEk3wXR0o9Kljv5u0LB0MjId8rA3S98H6W2b6828DMVNBAX/9N333Pb5L/ziwx944PS503/49T88c+HMNlf+donokayADHew03QhkvWNpcX182evz05v8MozPbmyNBcXQ9T4G+vLpNb+9p5Dew/sHR3TDxtrS/Dgtm+76Z0dLW4bidIW909z4Scaoaacd+bkPIoB14gsb2609fXbfplkWbe9efbGtbvuu0+P81W7MDOd7i3YNIbZeFGGYvs+NPk6C2Kiin/m5m3O2On9ZIQ6XBOeYyi5lZt03bjH0Kg+IV+6n2U8dfipr/3UI4ZXR+v26tKsixKsxLQkkyImyXWOAU8SDKNVNTcBuQEAXZJzS7IRkZmnDpwMkPJH1BYynRitlhTFeNY1JhpOwWxfJFcOMFx0L3lU2fYZnc1e3zkvo8BGqMSkLCni2u7ZiIAD50vTo656N25yKWnvfzAiMe0oxFOorxVeI7WKGq8V6ao6BeKr3rJ/cz8RP/g1T5lx4CRcweSpt00Cis0VCUWHbgHrpDQ51latAmvISqUEbWIgiwvoT1wAGNlLcIFcI4Qh7oRwKHJXVgCU10RY9hrLcGexARgdH5B22pEU3ZZ12kbmKlSRTowon3lCCkHVfUCgVSZImS5EcC7XR6Sc0p15ouTyT+5e5/emaXt+aVFPQMs7Z8/+wud+0TlAs5H7XU/edtvMjVl5LNY/97nPPfGHT1jJLrcuv/7GqwvLs/fee+/Y+Mj1a1dHhsZWcv1RBHB8WdnaCvjSFwH73YCgLKKy/Rtk4p5A9bbikFocwIR66cQ9GUyWxDHzllf2J0abhxVLKrfF55UgD5qkdpCfhSgOCA/vVve/LFZhq2U04soHJO2NCE2CGxDBIF6e76440ym639yzs4UDwTto94+Rp1hKfMLExOTk6NgIi8msq852lvNNbXLDIcapZAiKJNTaYgKuh5hi1iVYIXHeN75/4fxFcwXZG4/IeCuDHCsPn2baWBqAJmL5CDlOJlIiLS9srC7093YdO7Lnr/xrX+r//a8/8cMXu3pH+YpwyRWwKb43Npa2t1b51Vmud5S9B5mQXFfYOwo3AohRIgub7+uXzrse98u//gUncb/6tW+hx+HBkdllHvnlIszFCwcx0I1LDH8YZG62tV+emXnr7PnBHk58OuNFgZ49m8lsiCLVkds6unt8G8qJGJmFQjbpAGFohQ97mbkfbZw4cWuUQq+//uMf//jlV1+//967j+w7UOwKePVf3VyajwF6e+f8YuyFpqcWqHzYd5qVw9dUmAN9UfQJKd/AzrOMskyPfta/jHepOBQ9FYnEDT/r280TkxcIfo7SLPCRiZ22t7/21ttmyQcefJB+7+CRg4cPHHSJUtik/tWR1WdO0Z5pne42ir1S6c1hl5xCVDen3xxvvKqUBjNym3LoIkzhOfKzw0pI7ztMMk3QuBLq53ivv0Z4X2WFhGP9EaKMWhofbTzRqFQfN57J4/+Yeya6G2r85mdtnhQhOC2Zy6/3PGDnPb93f2AKNdSlunr89NKzUbWftWRPfkmcLUil3J6GH242r60aXUHZrtAof4U35ZD9ioBjyEm0qrHBYd7MwYYS5BG8yuuw5R0dSy1B43GBnXhQsdPA5Feg/0t/a11tBUCLtmm3s9MUdFjbng6rBVot+Ngg8dr/ALF0UFRl78YPSdqGmOVFwVvqR9+1LRVsY5cCXWOCjZYWCuXDBw8+9MCD+C9/bIN9QzjUhXcu+nBpaeHAgQO/+qu/+sQTT9yYmpTh+eefZ6b9wQ9+0AV4+CDQaesJDAYhsgaSvvhT+isahiANLJ4VaYGsUIhPsFFN8AqrM5cYHkqLsBxLIb9igiVYAckZZ9dlAqAKcH6nlhY56uZQWO3NCT97vNEvPqlQiWiUOcmEJGLWIZCCQcfBSVYeJZQGhuZrY/V/idfHDnhwYGaFrrWZnVWzrWCH785ePdPFS5EVrOPjbfaf85UCVWFdxKMnVGRDYjum65utm066nrs2Mbu6ZFsG5W3YEnYNNybCJhtWUUOVrgqxhcLaM1fZ8uzt63UC2UT6occe3mrpft09XlenOy1v4ibMRx3xGrK+wS1Tpp+bW7DbGIUBJiQHysI6/dRrGwutzzz7/Kc+85lf+sXPHjh45A+++sTrF891dg64R4IwzuO5FShVTBeXYZsk8cW+XnqSpTfPnN43Mnrq0GHXYK24BCareb6qsH6KuBXXtSu8w90AVSrF/ovMBzHBT1GWtXfkVu04PVxahEynBJxjNw1c3LPv9lMnrWxZWpghesyQdmtzOUTrzNxcFK0R2jJoQ4bZtU6RlURhvhFCbJHz8pc6M679j4+jWAy2NQt/13wWp2wLK6vgYab80uuv3XPn7TrL2eblpcXrVy67IZF2C7u3nsAtUHjuAyG54kk6zBCH71JFketARUo30RTNvp6g1i/xHWYNkMq1A1GyKUpzcg174YTK14R0VuBPuX92kOdnyfbTCiFiRMrI3BCGCrgGxTcwuRMBE0AbzxqR0ghSbk5E1n9qYDV0c7afjKeU3bpkRrM5mIFXgxKVxfQmapTdLi3jLUiN9G6WcNDDMs1ftaWCHSjWoxUF9acU4w3kICzNg2h0FFISpCCzm9Eqpb6qb4GHIAweoxfvw/Jwb2Y5u2F4eGTQDi3l6eCwW/aGhkZHHCoZGpHm906gFKZKdqRLYi2n2owbHaGQHfllBx7/eEu5mUgfw4ml6anZX/+1L/GFS2OHyQJpyNGvoaHKUAwYMH/2s5+tl/Ee3H/AXtw/+Af/4KWXXkJhuL38JDeKEf4kcicGdUxCRULFw048/lsKaRZmnopguuIzg6EsC6DRW09FwG3dJp2bXbAECfLXNk1XlfUoCt6glzkN2fxmJBcA/uc/lN8oTcRPZelitegssMFe+r0cpGjkbNRXyMBjZyg30kWkohSzm97mcT6W5Kvr+/YdOHXq9ozmyFW0klZijj4w+8kCETZMPKRXNZpxlQBXVCiopd8EuUtpKpOSWkvAYeUvYJedZEpLhjmQ1bLt9Kyecu+ClfqD993xb/yl3xrsbd9cX2rZWOYKwDJeNhrF+eWVmyF/XxwM6tGDMourS7soUK9cuepeXKzx4Qfu/yt/6cuP3HF3s3vj5mfJCP1seB1Tiu+HSPP0LoaX0TA7v3ju8qXp+QUplLQ0NvhhWBYfakwCCJq7gl1tHbQLFZkVKibCwECxcKVrZLMx8Llf/mUuQp967tnvP/kj3WngQPbC4iJH2ZitlS5ZJ1JVXW0XwcWHQm2UAoWaUlFa66rx8uTTbb2rs/f65BR7OVYLPp2anEEeEPLi88/dceLWI0cOff8H3yNFIZyDBw6wgAJh7UcyTWkXgsopFkGbPE0q0hWVrbuyzNdYkNTn+3rhfSD5HMA+F9EKVfjp25uz3VyCnI2fN8cbie+N1P3W96aVXxVL9YV4I0cw2AgVrZ410kivkZoYEZuiIFasidS4nxHPf+IPxAlleelZ/0zpNSVLw/f+KSFW9qR3m9TlLwoefcW1SHg4XDTUuCk4LUGp5SgDSNJIY1Q9tKkl6JLSYZG+85bh7W6QItRpIK8KUjw1tvzaSUErteEy+xS5E/EE/r3xSgxRYqqwqVGuvRXP1GRMtBDg2rPT5/6iODwxdmJXAy55BEWRUq3UAKzwKHmzcM6wEQwSPIUI72qOM2fO2Tl78P4HnVQFnqnOFIdMSVJKi6ZoPVcqYsT333OvlQGfa2Mj46acp5566itf+f1nnnnaZhd1ASuN4pZ8KfRGcmz8qTTCeH3W+sNMU9euLZB1NCCNBHhRV92AVaM8eC5QPb2qTbOTB0UVjUrA9a5fv4q3QOFOLbXqnar+1/kHKkAIw3UOEDfnaRcAQHIzbitg9YmGMgObyXbluiwpqXOLomx8dI8+sZDD7I4eveXULbcjOuPfT3wa4YVQ4+xFb0Q1ofn1Q4XDEiJ2B3J0IJH4Y5uAA9bWRtsbzY9lbtw35mRFwI8pEfgtYnI9fRy5b3M0+fGPPPprX/jMaH/76vpcix2uzVUDjzBSlsTvDuab8Vg7AkilG8ObKuH39Q9NTM1l/21tfer69btOnvgrv/2ln/vgIx0uH1ya2V5dGODV0vKOvLzuqqxBLv1t/phtLvFDfuUqhVNbd98anESINBfBgKVu9OEV/2AQMTH4i6ycRU4gxNxta7Ed0kHoIVmaYkv6yIceO3z0yI2ZqR8/98zbZ96hkOm2jcRKquyc+Rb8SiG84yK6pqbUMmuNWqppGph6d9lljVuCM0JeWFqbmp5fWl7zOb1PWEhTLpV86+L5T3ziE+44INI999xzly9dchENzJDO6et6DNzefpuFmra8yPmzOjPZi6SxlOrlT0VeqB2c9VlTbu6LCtUOSGUFIC4zVGAgKXd3hqtf1Zz1uYPP8qNRpl+N+E9GbhrYGWaw5i9alWwMv/8vEkctroHTWiK01hTPRn015eYqGynKuTm9xpN00zJiJ7GkaHMt9uba6UCYRGVahdNyQj3qFay0LKxqHwee2FFlTaYnYVB6Zg49kdrCvlUksVaX4V1Gpn0CRZtyfUInSxyWrOM0r5S8k99XKbgUojwDx1sjE5H51pD3Rs9Z+ZZcoUhUmurTKykKDGldUfeAqYIkk69gVe1SDPKIxvjOBgNnx752KFjttShbfyPj+0wSZ94+Tdb/63/9f0sazWq0MFm73CYX64lnnnrGdpPA1RoHmVTVH//IR//o60/48NaTx/08c/rss889bUHg9MDBgwcBBsIC6rvtDYWk2UkBpLdp8O6GDdYGeG2vw6w2p7ZRuiWIdF9Z3zgxUCcGbM4E4EPV1TxabZ9gt94/hVQKBH+Oh2JLae92FphBwgeP2QjzBRIYYKb2yE8turT65rdK1mnaZXrmG846ANpdrmk6fviBhxcX56dmJ6CXOTrTIaxPdtjAi7WRgjGTRzGw0KP+7AwbYwF1c6u7o2lsdLQi1nKBIF/k/zI24TseazbdAkr85+pje2Z7/0E3WNkEY2bT8pe//EU3i01868nN9UWqd2aE1rPZRPgprECrNSpNKU8QggE3H+rtm74y8+qrr3/g4Yd6Ozumrl0e6Gj98q99YWRg4EdPP316YkozOJ/UPBsezJAZZnT0dJKciP9nL15ysnd0cICJqHNZGBdSspPBVF8ttV1V7Vnr3cV88KNHskhqyUF9e7N6xycWSdQt9z384MGJIy+98sqzL75wZGb6luNHOX82eVi6uFzM+NGGsuGW5mTjr3SZ5twcao3KbIS81ROtrdduTJCyBkdGTWp8Qvb09V+6dvX5l1685+QJq+H+/j7u2KemJmIRNLHiBo1M5nWBm7VTnOooSbGAL/QcxpVpwKS+M5TCbeSsz7zb4R6Bxc/GU6SRB7ogISxlVx9ec/r5ZwR5fpZsP60EgFXYPE3gSCPdUJNEFN2IN/I1MjReNVJEGnHtrz/f/4Sz3VBf1ZzS/Ly5MconDlO5WZfjnlkLGF7cZUbYzjnADBATAz0gEdgczMGAOIfZuwwryCWZlIAXpKJiIRqZregxIm9lUgzteqvGVJkJYjdkPIWz1OCryvWACuCQRXtLd1+kXV/Viko5lSZ2ehqV1qZloyxUknoMACyfy1lCkPuYHCoqImSWTepHFxiEkHoV3bSNTP3EZ6hNH/vQRw8dOsKUkNznzkk2QU7AQw7Z3xwwMznDeOPq5WsWG/Pzi2aLL3zhC9/85jefeeaZBx988DOf+bTLGulbL1+5aA4QcGcyE5Bqd5Tnu5MBzFTgARK4C3fz9JUmCN6aumr3IV/5cUNNhhyjLW2wcZi9MpsTy8yr5Pd2ZGTIIsAgfG91N8NQx3h5/zM8gFT7qEJY42UCsEXR7SQvVS7ApFuZlbmt0mdli426FKKyIiehxrKrWGRWAmx6XGtIqWYCxiGEPiq4Bx98+I23Xr9w8by+lZOtXQimXCJGnOBHQYUmHgb+EBnR3qamXcWY2W8P9w2wrYSfTPyh7fA44p96QR5xtbl1cXHJIoAGPIjciDEb5uW0zuED+371l37eHPPDZ19eW2IoAe08bka9/adiK8SfkA7RSD0CUWqZmV0ZHt3jCOGxgwdPHj+yubzkKFbvQP+v/MInx0cGvv6dH5y+dG3FxWTt3bqNh1SL/PBNgnNzy/WZmYvXr+PjjEatXrFDhMRUhmSUjTcibQ6g6FOkXYZ2NTyLraEJtQPr12jE097vZq7Ibc6CLSwt4atDY6Mf+vDjzEQpLa/duPqBRx/VcfYhWNbpZyrMTBgWTCyLdBiMpPcl5K8y4TJN7LCyQgzlbVPz1es3KLSMlLbObjpQI2t6dvbs2bNQwZEi/BvLLBAPHmBRmqM2U9eyiwZUpA5Cje2P42rHAN2CGQv6urzPxAII2rqMEm1XdRYHZfhgLKgC/usfULGATMAy6PcCfGQsBFYpdrezwJxwc4fe/PPm+M15bo6Hhsuoqs/GK5UK9adIo6hMADU0kupPMNXQ+Ez6zfH3/Xzf57WQ5Cl8zYcaLNT0Rvzmr1J4bpqOLUEsdECJn5OsnDtFXjH8MSqNJKyX8X7MonUCJIJTsTALm0quZfqJaLyqGSTqV44VsM58RXiKfGEWzGxQwZMnFFX+LxDmxw4WiiUAWuHikXEx5kLT0nhFNAjeE7LIKOVpQvi4YDarrcYiL164ADAzWNGM0/m2UHMm026Qs0apGS5fvcZgFGPQhP/6v/pvDx85qOr9xw5a+7cPtE9PTY2P7LV5NXFtik0IBg1mK3vbvzBnBxg1f//73+eu3TTwwAMP/OhHP/rO97/juMD9999vC27vnv0VqvKsNBf6qBSpCRlyBZiKUsMjI9+JUK51cxZsNcjocmLT4YM+DfchhPT3DUa5UPZg5ORwUSGabKIyvIfHRm/ixaXm/7kPEDY+VW8FkhQtPSymHFKzewmZAPPcWeX8BA2H+ycUySBxXB1FxJxJexl10QNQ+LnHBmIZjD50/yPa7jqOxRW+TsvaPyzYyjKHp3xCbNH8d2nPzavp0o22phbalRGW75ZWjirR41OpMVqnC8LrI6zaYXWR54Am+GEg6He831YDgWfq2oVPffxDannn7PnllanW7vZlU1KBt4GHmyP5Nhw/t5rgxpVWwcGK1xGsq1eySTM7Pd20uTo2zHXrpOu0PvH4Y6j6H3/lD5975wwW3t831Ly6HZucuVn+26imuLwwB+xfXbXfvToza2rDDRkLw7A9VYWrlHkrPNTeMRaBpF1qp9Ki+TFSUAXlvg7yap6TDCZN1tPFX/Qdd905MDT44ovPf+UP/uCTn/zkJjOC1twzQynW3M7Fy6b9GFSns/BXXIJCA96AGv2TcZ+UPAlgwWZxd3f+3IWDR466wFiH2sSzx/D26bddEfzRj32YUtR+u7mWIyPKn9dff8sel1sEhodG6TZVRO2p012IBtS9e/eDk8SDmFNJER89GzjXZOn12UhsRLyq8UaeGtEL0m8ux8+SeSf/T5bQSPkZIyoAZZ0PghZ/JYRllfNMdWp6F/TaeVoLDvD5WUP9aX+tUbH0RrwA/Z4ZwluNQARmctmIuvoyiSGU8HrN5tujFusZeSqDQcdRFVOMEm/c/eYQyCanCAi5i7FBa9uNqenBgcGL1y6NH9zf1daxtjU/MjZ6+eIlXIkuz94cmQKrHSgG4HyMiBuTmMLla1c9Gb8an7090VEgvugvd2/johRKa3cWemJVNxeHNgBGECIU2ahc4KidY0412hSgJbh2/brBgyMuzHGBGc34jcncCYd6eGhANMgeMikWoMJIMB74JnRHHbSQp32lfDjHysM9WWR3ds8tzVydmDx45LABA6hXXn2dqmvtB6sGyQc/8CEqF9SJ42iU0+2t3W2xeym7kWgd9swNS0v3Ev+RsVuzP/rRD7O1MAE899wzHJzt33+QpzMzQdXhFPxjGS12M9ItZVqtnWV4gxzpS1S+Zx0JUiAEZwSwBsosXetMaL7wUzn1TIDVJnj4F3BMbN++/boZhL4yRfnQjoVIWo1IyvpDpMQrdb1LYzW9PitlVuKRIuKpL5VjeoZhVQjOcx04cEgEKw96+ZDMfdQRV1WdswJrmwwJxOl5HC6phWgjrEpUKjqxiWMVyqPZ8ur2tSvX7rv7gbHhsSeffvLylQuIx9ZOLO5RXvEmj7Uxnrl89QpRgOuO6Wmbq1v2dFeWFm7Zf8Bu7EB/9+IsM3TvQ/RL+CGFHn7f1kmHRvGsCUAVyDodXUxraEO3Bga6ZiavPv7o/esbf/Vv/t3/FytXjNHJLXrpKON3pI6Cq10JBk5quslZuwAGvXMLS4fGxi+em3MB5JG9H2jv6GH8PtzbbUd6cWbywbvvau/umfvv/v7bV6+2bvFCsdixHQ/+rqGi9plfWLg6cePY4lEDm3Oq+cmpfWOjPZxIrxkC3bo7RJIBrjtUaK0dBsK+wWIFeYeQLOMjGsVsTOO12vLJqSO55URGo+Pjd9x1z+DgxT/5k+/ew930qVMW3SvLUQHIbCqw6SanCrQ5yw5agdzQt+EYstrVF6mwqclOstW2UzX7Dx02lDAH/QOl5956kz3CQw8/cOLEcYfFcP9z588cOXTwrjvvPHL48IvPPf/mm2+3Nr+Dfogs43v2leWywbviwhyBKTOa776r1zV94NFqDbVOko2iQtWzc3NMREhAwJMuA30XzKC2xIv6F5zai8YQmKe3ukYc+fF6p9dK2AIuJWFpTYiwYlg2rZZBCXlWRBc+XD+zf1rUV234qxNF7P9s41ekcbNkF4Q/k87u8B+nTJ3j3+Hmdah7KvcnQ03/aW9r/ve93fnkpslNOwXpFVBfiQs14lnf0o3i0NpHzNfTmbKKPYAdpHMXzl84fbq7q90lQdPTk++cOXfs6OHDe/c6JXjk2NGnn35aHpY5zivBEZTVwnVG4eBhW/p1ZVG64pEKkYL3JzVnDEVzgX+wOs0yjdqxSI45Vhd1QZmnQ6PgVWwBdVeqKpK+b9G3jIvLC07PyWPu6VvJZmk1iMxRLKV6ofryrO1FRtmR2wgpBAnO3Q4Mmpn4fdOFH/3Exx96+OE6uuWkQHK350uvvMjChwj/i5/5RXf7zc/m6Gk+LTu0RgNgLLs11iUtyB0Cfv/3f/9LX/oSjo+MpCBlGwbmDx4OzFICFlzh7OFupUjNEKhFIFWv0ZtRV0apZ63IWxUxQJIBuwR/lBZlPwCq5fdK8zUTi2RlQVpaWl6Yn5/rHxzsplZejkZC+b4NKf+vFMCQGos/O2AbbLX3VSEdDLs9lfEDSDQwMDAMEqfkTRJ89uxQKDkkel7/Q7/9Oo5oDE4XfA3NzE7tHd/3wUc/+L0frl+7ftWRXpvzJgumNRaoCnSDqyt9ILBp3ahuHe3uWTbTNzUdHOUpqXdlbs49KZbG6IiOG6VR/piZTO5ZhzRtsURs7RzgeA0ETv85v2Oi2l5vXmlmb7N29MDoX/3yF//bf/TPmjr5wsyefMVeIc4Q1s2IzO8Sah6s113TDBgcwSX1Qw4dKk+l1tpWtcwwXVFweO/4X/3Xfvvv/9Pfe/nM6eGeHJp1LUt4ljtMit3R2YsXPvTwQxuz89YuRhJi4OiiqKrCjdmlhvOXUCutceD5CYBGCFyotnhBqHtsXuk5Q1j30dK89sbrZJp7777bxsPyQo5Imom7evvQM3gwfbt6ylCC0wsLK9n1ITI6nJgDMW497O4e37eXD1Fs18byytqygUMKfOChBz/3+c9du0Y5dHVmbtridXauh+8bF8U8+OADt5+6DTlz5koZ9cZbb46N7uHfUFGeKFyVSsY9KXIl2lQDBeJB54hNCnj0u8b6CTOGhkb7KWgdG1c/RQJ2EbNEhDr2G5hpRErmHZSJy9l49dMi8iDBFFqK9ZQTgrImas/GJKTlmG3WRzmNG1YlRy395jrEhUY1NVvjp8hPptS370vPmCsho++mCUDhftZyRPz0oUDoAi5AcVRvCdqXL664Sumfv/oqcR3jP370kDPoe/fH2dbkxPXXujs/+viHF1dXLl+/dvLUKeYEzljRp+sAONYDmY2dANyIkwCJXhky+sZATX2ZisPjUE/phrJ8zYsdtNQ9Aot2CXpROlBrh5HgKOUdXkw7gmEL+SbX8NLQa1Gne3f4efHXHasyx7B9WgpOyTXIhlwibIZ3Mu/IfLS0tjp78cLDj33oU5/9RfR3feJGdMjbuXGXgbbrT4/O33Jg72EubX/nd37n4x/5OLZOxc8StaMViwqpaYunT0wMFD7f+c631futb33rox/9uANZVirG2NTUDGPN06dPmwmsFRQyPrYXBYPTt8BTiJ8grByzUaaiYM9P40owGDJZF56rRt2Ih/q51RJ/nExPjQ2mUJBMSjp99kxOGnF3UK6qMJKVQ2AnD6LSXazs/hvzrh1Wspv07r9qevfHTTGjEZXpaFi1PML9be5FQCMsh1kwMbPzGvWIYPDrxLG9w7YxzawGs8N5ZTMG7en52O3kr4wlZep38uby0mrncOfBg4ePHDlmkuNjgEZHXTMzU9MzkzySpVjLSk3LUbStveyvRocvnnnn+plz05dcmzO8sDiLKmAqCFM+NoxCXNJtdVXO4vHas93RTJ/o0CgsdDit3wGtbvFu2T829Ku/9Jlnnnvx2dfe7uwfJiVEJC7cFasJqNYWhXphRURfILsGhjq77JDPW7naGp2enRsd6Op1WHRrbXFp3lUHbDBbtzbuv+u2ublPLv7u7IWJia0W3dWJsJcINL19ToFdvHxpc/vB6F6U3OTQaauNYKt891ZJKVVz17bTMjXXyqk0A09RQGSOSGo6NzOfciI+sTJo6drV4P3Wb375D7/61aeffRar/8DDj7DNp+/BsEwDkdes9uz+FQ8/Bq8AfoQqqNjJ8H4ylIWeNR8hr2kToz995m2I+gu/+WtI/cdP/dAosNp068C+/XsoKo1+nB1Uzv0tLS4fOLDPWQXTgN1ySwSUrCedtmEZFIFwu+XYkaO6/o3XXu/uzQ131RzO52YmABhfCM/oUCaQQFLaGxfFdXDJ4yvE76ktIjWD+PtC8FjC+9J/2k8kCpXeKtCKpCjgg2dloBGYNwFk4jQltLZQ5r6/4pvhEPeZZw210FqxlBq5OfFPTWnk/MlCGvlvLgT0kE3qZ24J7/w7rSwtv3z2TFcrLWT3vqODjz/2gWPHjn7wQx+AyrmF2ZdeeuH3/8VXLN8uXbk8uzDvFosox0dzJSHhHX4FC3QNSaSGgvaclA695ESgZG8D6k1cJSgzsLJcsHDHGnLDbW2OXvMpHO8UWK5pLr2YVUU2frM39W5IPYVh+Vxx4lEuCNtOLnda3tLt9rsxsbPj/Fvv9A8O/Mpf+M2f+4XPvvnW6bdOv+2lgswmyAhJ4dcqcnrT89rFa3Z6KTxwcD9lsOxAglrjJ6sb63qaImcv3WpC2P/Wt771qU99CjCsg+wVk1+oaEwD3hK4jh655eTJk3v2HvAtbKgUvQIVzH5W+CuWpAiyedofK0x2QRyLrLSuCpizBOEcgPtJC1tc3pLaNOfC0u65Ht/qXINFi9qcqs9a+CcmgB36kP5Tp4GdLIXcg87t+GoGKjDMXgAjqZEiASmx9odsWqHjUBrW4LzV3r17MHE2NnyPyFVmnXdrrA0Hg0+0EajEf6ombOiBex/Qn2+efpOG7PTpd9bWlmW23KGV1i45HaY9sm/vcGfngbGx/q31mcuXv/vE1x96+L5DRw6VBUbTquqaGPT4JsRq84KYYU+yOBPpbOVGtYd1Puud5W7yCY0QmWNro7e19bd+9fOn3/nPXXzRxFVcsJDxCDwhv0qoP+tTQn0VwuC4tDsKpavXr40NHscUVGEyNmWODvZPzM4vr689+uBd3LX8N//jP7zhDPlWhwsaeUIlS3V25aA1oWQg7QyRaLKSTTqsbrPM9aMsq/1bX4kI5XavUD5I6hCoQFq+W/TLYKNPSXBm4Y9Tc4zxsY9/3LmWl19++Q+f+NpD9z+AcVulmwkWlxZcp+MigL6B/sWV5bPnz1009qemeRkFw8DwEOegnrEQ2aI6GyA+en7oI4/zUqcP5xbnSEG0SK5WhWqkQos7MDBuqYNf60DqSlSEPHz14IP3myYFYg2l2cT0DEdGLhIAMPhvvfXWy1cvkcwinLW21mGoCXUuqThHbCKVKXtivg061BcQIr9IxUYptqCo8of0TOne+vpneyofMMZXHYxKIE9nqWsD2x20Dtyt56iK5PmVpT9rApBDvkZQe01pgOFVIy7y037WrzxvjtTSbv68pmDGMc7kr8MgZbVJY9Xeccdtt+0fGDr39tv93T37RsddVkekX6VeaNrmHG14z8h/91//N+fOn1/ltp9b8tbWM+fO2kyjOAyX2USXGe2wnEgUhgmMxBmCUjZxwJGhWpTCWEKUklmXF/HG4jFedNJJZHpfaaOcDYYYNW5ZI4SxZ8eaoQIR025zS3xK8i60hb3TlfAfU8S9ggSPSgQisNbbx+PYloX5mLt6BoZmVifnFhf/w//3f2TPw2GZu++5m0DhACr8uDj7rTdPGxKO1dDbjA6MulTv6uXrRtGtt54gVpsn8Dvcp4O/AD5biKMrK/fee7/tUCoOayb2znfccRc7fpkhx12SLpM5sP+Q6QGvdDJzdGyv1a7dAhkMAwHeyiCJfAeBtZtAXn9KEegqoAi9VF2ZtxBlSqUbcqbDgSYzDS5MTMYY/TRezEz03jivzMJ7KKFum7+HuN7zvsLwPnqTKEXbwWwqMhnhaNoIAxINQ4xFPyebXiv7Bax8be4N82jP385Q39TkbPTR9BQUGfoTKRRVIcafr8oihRth8gSNFkIaHR2/55777Cu++dZr1I9mDvaLZk90QrBw/THX2GPZS23Zmp8/ODS0v7v7rRdenLp88dd/60v9e4YZKqHzuCAm+Fs0MrFnTeDyyNzwSmxvb2rt4ESC6yxGPKzjCLROq26tLq0vNX/w4Qc/9OB93/jhU+TneG7asWp7V4iBigZWxYXaX8jVchemsIeLly/fc8fJXJi11TQ8PGoFg+T6erum5xY6tvoevOvktV/4uX/2h9+aWl0IDVQhACpac93NwP4DwYlZYnWZHiu4tRpw0IznmV1Srz1CmKuCv59WBp423vIsQ8cYZwUV4LQacETUKPXXMxE3N584edvhQ0eZDzz5tFMCZ++58w6kqGttkV26fOXsO2fmFxc4oB7bM377bXeExucXKM2gf2JyyuYBG1ON/fCHP2SwdHR3YPqwBeru3o6iwyHSWaEuWk0gTpDYhCcPIRtVENAz3luabArHL94SK747Ll+6ykSKrFD1QjOzG/xx8ZAFP1Rql65cNfqUPDAUpSJQwWlcmDiXVlbdqGQhUYZJkSzLCIIEKT7fwZV/doNXAmhrpD53X/7Uf8sn2SE3r1ulwTcvI7pALXDKeMMW6fWpyQoGVfCfNQH81ErKC91zc4bGz0akvt0BqHCE9+WvTZK/flJ/ukCUdTAJi4kuLjk1cWN8eOQv/eaXTh488ke/98+vvHPmzBunre9IbTjI0Eg/QXRgZPgXP//Lf+DI01e+8uXf+q2xwWHMq6wpc1qKCkL5hMFGLYYGnoXk9AMyBFUguKk5jZ8VpND5js1WWgB3+awsYyO/lSAxwz59GenbCgvraQRf2XwO/ZVaarFK0EnsjjELfza35uYXEfSlq1e++od/+Lkv/MqnP/c5rJ8Jv0VAN8vojc3+oX73QSp2enKGNl247bbbjuw/ytqHSI3K0bH1rKs1MonSLNuMbYs0yjUQ0pTf5IFgSS6gJraYoFThAj+yv7UFn8eTUzPA0xal0ZxY28rppyeMpf2lyfJUHNYZgqxUOG8OyuGbXjFmp/Fv7cjV6ojcRvS161cYaNryVQLFkZKrkB5N2m7Jpfif9QEGWW/uOD+BiuNbfBjDEKUKdeHvWY7siqu1RT5EJ2Y/zLenpYv7TtoGenzcKL1UOFAmg8KqCkx62xTYvjCrXbQL2wtzCxZSbhZ84cVnB4YG+M8x3cMAnChcAw+Mj/VQvdpJ2m52uQrWtT065pTT1/7FV3/u858ZO7gfhNWnUKjRytGqkks1nKuvd7Ozi2qJtSS7X+6ON1bn8KS5mWkKy5GB3pXNlV/81CdfffOdS3M5DKy6GgqcockyK8NQUCR4KwVlqqjNRS7u5O3pmZiatgnmZFSmREmW3bxV93QN9HauLMzAwice/8Db565878UX5xfn3NdIX6Z1LvEqer/CweNzabl3eAB7UQYtKDHArkkq3q26oDB7nkkhWd0UsCe30aPV6OXi7sHWZWZd0Fpq6DsDFFaYKmC4kxMTzzz/QtwfMQxZWjYN79u394EjD1v0s9Tkc9BookDztA7A+6DblsHayuLAoM04prNOdXQSyJbn5k0MODvnbiYIpOsrXcYXJdCQgWGSZrZvEZtwc145yENTM7NajWCMndlypxjXIPSxJs6VhVXUJehx5VCrGllQbd0gggVJN6lIQZyq0DodJOgLT0wDGUhMP/1EaGDrJ9786QkVz4pVu1agLk+iGTB0hObMLMwRKnJZWHPzxMzUuzNPhUypFRTPWvefCtnNiY38N0PUyFAlXz/TryEA4yl/WT+SmFWnwtRZpC2jjvoeHfCiTvGSC/OWDeWH7r73zedfWpqd1/FU171w6dO1janZjtmWlZP33s7vwuMf/cirL7707JNP0fLqV5cEwe9ox4gn6kYT/lW4inwN44yS0AlmbqFRFveBoTY/n5QQqEqHeVbMSoFcP+uzRpwdjMRWPifvs/Bjna1fyTL1T8fXkuVR8A6iwvfa0OiFixctkIdGx96m1z97/oMf+vDnfvVXPviRj14gUCwt0TRzUKV0jjYnrt/gGf3uu+9+8/W3GDlQqpjeFP7JT37y1VddEXxdyQi6YzMm8ABAjiRW3NsG1d1338sSFL0+++yz1qq03lnJdmdq5BsAZR87dsvtt99hErJQELjHUrjNYcNGsZrvqdWeWiHUn2qHz+iuE7JbmLmnqI/yT/JnRjSXUP7QysuPFo2lnHTd1Y0q6n95KCDpr2iuQKtwcHHQNjfXiWXgJqqAfsCIQA6QuAFwQMH86jAdDa8Bv7x8pdoFI05kqrdwLOqa8q0muzNbqVbXDH9zrI8DHB/aaHnm+WcowTFYFdFwgWFmbvbS2qobeqy8WX9aDirvlkOHljfXn33t5eeffe6+jraRffviFq78GRAhunLYFV2pcbvF6tTBF0MDBMgmojVB2dbxwtzy3adOffCRh3/vT37A8AVgPon+Kp/l0Qi1qPRNmQA0v1P+InWiroXF5bHBPrKiBSJ6YIa0wvKnsxt/XF1bNTN+4iMfnltef/atV2lLzOqbTog1xc9SKjNX5Q617H9QUwE9IIC8AK/GyElCwV6Fxwwhkjy7QSEKSi4Sq7El3UxQmkOLi3QNVaoeyezNjt966+TUDZVSSUlkW4WpcfIze/mSfhHP3El8dwHFpt2K9eWZFV4hc6NlHAtQjcJCsxFHNlCIVuhe8Fsqriwt2sbQd5OTN3i0tiI3mkw05hsmNM89/yzTioiVm9uXLl+wTD969DAK5lr4ySefpLk1K2DxyAy0howNBiOIIGIEoYR0a+H1jXhtvcTgp5zSkFIIuL7Js766CVXvvvqzY4o1m8Ee/ENvdJGmQ323vWWdumYTmI8NFybStFN3qVVNSnxf9Tf/rPEdgPwog983lV8G1hJvPMkO78ZLG5MFgeDEvlGdv8gcIoX5e+WT9H7z4sqKCXPD+UfnKtu2mUC4oGl2ZurQITc/9F1OWzgzYcXcNDh49eCxw0NH9s5endKzTOPvvfPO++++c3Z65lvf+MZzLz+HFTa132aGpQzh39mVf/Y+4sYjAztbsiiWuGB0AReWLF7j5Yv8SyC3sVkSkWxd0UKrzBpLIIYKWynep+0UBkU3ou9FysYml4YAzwVG/gw5MG8w4yhVBntpLl4UUWfF0pk82d199srV8xcvf+znPvFX/9pf7x8dsQ6wd2pA3phY6uYBVLnLLlvvX+/eYEJz/NZj6jp35pyZvCM2fJsnb7+Ndujq9Ym6yoZJKpCNro0iXsccEwV86EMf+t73vgeeb3zjGxyIIg6SkcAmW+uNB1IDCRcF2yTAqb2q/N23MtcAcKzEExJ8ZfDLI0hkkurPsT1SoRr7+nushFydqLNY450/8w79TywCXTu1tcVOpr93IIQX9sYnYvQesFuekkv4M/eBdzO951+AAQZyNNOzaoGMQ6B6JdHkLwPOzkuPYdzT23pjat7GvVYjMJ+kR0u3Rg1YSN2esbZWUWVued61hUWttOoeLxTT3tL5+GMfuXThImdImg5LyAFNWPEtrq6/MjF5a0/P1emF4f7ek0ePxtXyVtOj9z344nMvHDxEr9kPm9F8+AK/R0Lblnoby4tLqKRz0HFvJy02ibHRrmxvMuBzcMR46OseUNNDD9z5te//ANYM8jDSlB0tipbCo7/CkrP/RAFGoqLlMCu6b9HIW7WbkDseltvGRte3HCzvtHxBtACng+GJqLWp8+rklA1htshnzr0ztbZiw0ovK5ctqULpagG8ubLa291pIqGzBYS2I5DaJWoniTsJlPFSeHuWvEHpDueAXtsk2bY2OpuoTzXDHoACokYrfRU9Pmx7o3xc21IAZ/Cz9ikAjCZGCSJqUW6Uu2treJ/8Xd1d5Y4GVtS2qWPXawUnnWaUd4cMVTK79WJnvOQCDAcPH8cm12MFoCIL1mCvOBlEHiYkefp7u+2+jA4Nj4+3saqwdHb05fzVKyYM611AqgLzcfGNDzHiyYlJSwGzgp/FRMJchZnocq3O5B2s7oTab42fUjEkfCZstAyNxKNL0+y4LzFXauvOE0cyx+BrIAcndAAmAlxhOEXYjSEMxOISMQpmVGBniaqA2Epmze5V4Yk4XU2h3fPnp3SZHYMKxuUrvIwwlNcmt7J72njqcBWUZ5zLr2+bd2B1ybUOlmB0hf6IXZ5bJujmzeWNlXk3e64tLa9v8Bk4A/b1jem5aSLV26dfJVC99MoL16au9QwNOIg46SYhngi3W67Pzr/x+tvNsxvt05s9q82L1yaXJqc2VxZGxnp/7bd++Qu/+cuXpi59/bvf2Opu3+rqXW3pXG/tW2QeyWq7q3VpZaGpeb27042sHbxJuNXaJXjchfDds82kbClGKTBuo8mmjT0x00AQxVgzi1ZUlo2EjAEWFISI7a0YKttdD0t1fXDnZnYiWYzoi9iel7VtOALxRIHGJZ7vQ0TKEUTn8Miliak3z5y564EH/nf//t82xaF4QoohjInpL+MapTgYtLG5QitwbfJya1fz0RNHxvaNMzpiqmIWWVrdfOiRRx3ff/ONd/r7hklz/OgyWsRH7DFmm7Gp2XW1d5w6aZm+ND/39JM/Gurvc7J+bGSEPuPa5StL80sMZ9CHwUqfZfpyHXk/m9pdP6AhxjJVozhAetaBKt2MANpiyJG7GZhGDI8OYQf2z6i2nGpmJzkwNN7pbhnLuk1+ibsZsL7mEpuNTVOl8YPGNBC9Kg1uYdKwsPkAj39qkO19oWbzratz/A32DZDFyepWh6xH6BURN3eb1AdM/sf2jHL+ay+UHDfQ26e6mRl7g5wvHF3gKC0jKgxzR04pQoADKrmvvGtrbWtJr3ZTI7ipYaO1v723v633sz//WUZDTn4zs3Ezgc9bXGLe1tvcv/edtfa3tlpeWl79xptvnrEXMjpGG/3hu+778RPfeOWpp/q6KYqbl9cX5xaIbLhhxAVOgmxnby8vbS0tUk84RLa0aEN7CVIo71mFskVq2ly489b9n/7ow9tL09tLc83rG32d3dg/hGMpiBOxYS+w6toM/cpQ19LZmoKwbMolm5Cmqo4ClYqz/8JasSRzBBYoPjI4uHzjygfuPPGhB+6ybuIfk4bLrRXr25tLayt7Dx2w3sXXkEI7SxY714yoAVDsTAwKDCGMIh5MXfmCZnASa+O4vDcorEGd8bEFtEwy5RElWqTYk2G9fJ2Giykn7xkIYPGZI8hMhoYlZpgOzqevs+IM41pdWbJGyW3AW/bb1im9g8TVZNYcfvbqVzkAGr7b1qPv7Z/bXmlpt/oh99CGLSyvtFoxb7ecP3/x7NnzztXzLn9g/0G37zm1k0XG5sb46AjD2TjWCtNgR799YP/e2287+eAD9917z12YJM559szpZ59+xhbF1ctXe7t7OfK664672nnzXlyenZ27Menan163fbo4x0p1YzUw6JH1teXeHp3WriGZCmG1LedAaZwtNbQC3gxkGobMCIgk+MVEbGvk3hHP/LSd1NHl8La7MYwnf4bbxvL6zNQs/uRzGHKZms51thl3TyhzcsZ2HUJ+SjST1HRjAzSC8SZPLpYJbzcdZc4UZBD0RWNA1rfl5xYFqzlZc+RUbJ3r8A4UkLHqq0zgUdcGgK3m519+PXNnT+v1q+fbmteWFueGBnr4OnOK9fmnnptemDu4Z787gnqXF125NDMx+d1v/InrQI+eOHz7fbf3DnTPLk4trM73D/cPjw3/e3/n3//u9378xB//cU/H0PjYAaOGz53O1q3+4R4L67mpSWdI+gdHzflLBm4WJzEoJsFYqwuWURRozFeQmrZUDBCeslTs7AK5FDQasSuc0O51Nu9MJFwyeNvdsaZfdRvur2lqYcBgq1RR0ZOge5uhS6sdvcOn3zh99tKlo7ee+Au/8SVXjvRynq6roTcLJf+kh81HWWf51brlqhZO2LHHPfv3TUzNXp2/YciyF7GAuOvOe6iRXnvtNTp9FdphtCtp+oVeI1GfknP5WqGmZMzuyZARJI4MaAt4Vq+s9g2G7eumSBDs3jlPaY2zB32X6n+mANy4i/CJ4SrYV1CIqWVkZHzy+gSzLgbdWL9thutXr1pSmYRcdgwGGhroIn5iSXbFcWea85+pzt1MeoeMR4mQ81kOV7U50tU5OjqicBHEtrKwTFl74Mj+0T1jK+srADOpwYG51hUd2gtO/YUhKpIMVbBeVwX6OdVEye3AAHaWZaRuYge5vXf8wEcf//g3v/+tubl5p2otgPhkvXbx6kD3IDmirbt1tWkVt107/U7XxtZDp467jegDDzz0/ad+fODEkb23HLG2a+2Obp3kzYzYRGhMxE40I8QKgSjX5dIYdkokKPMzsCMGbi6T0J9/4ZWzF69zw4A7Y7qOJRpf+Kb/QastWmgNY0bioMJfO4HNcncVu0VUMfM1fmUjEZYmERWEaDHV29Vh+2r9zpPHn3n11anl1Z5u2/jObWX1YFVqoa6xupgqHzOGDHfr4A7qVUQpM3iC9mxKJpQ1iSFTFT/SMPW8KdgGsW/DXfJTFUDJR16XANS8zcBIaHxlxSUnXhi+qFGKFM0cEe4EkpLdc8s1ifmOn49s+eI5UYEidSWDVtMmbuTeYJITL7zlq3jRMGAr74L2oAbNRH2wEYMvomG53YUylwkAEUBPKe306TPWFtOTk1cvXbZKNqZsttknuHFjcrtpVtfi71DS1dmjr5Vvuewqw/nZGRqBDnOsq3U24hFSh60w3Am24yVzuzUHbkBYZKaKOlxH2HlqtIYYfaozBQPbtwJuRXDHvKUwUNUjEh1ra5udnizf51GZmhwRA8uqTQrgdDA0aRXBrKtnZzNNhl3Mqmhn06kW5VUjAiAziAzACuIyzURkrpBlgZivM/hL7c0jI/toIprWWwddANbTOtzXdfdddz780IPk59aNrRe2WiauXbfvT1lBMeKr2eiH1udW59dbNk/ddaJ3pL9pc2V6ap6Ga7Rv8EMfeOzY4eOvv/LO7/zj311eWP3t3/ry0PgeIuLm1lpv72gGPlLebMV1TQ5KMylh5kkufN0AAGcYRBHky7S5nAvC1uIkxLIovl4oaqNfIh2Y1tzc6FRIFCvY7tK8u6tXtlkwG1jWsC60Xl3XaYQZUwgRlZPmqaU1+/Kw+smf/7mHHnlkYmbW8hCeIA0SfdigcqvnMigC0qo1SpvD+gOoTe/0ctBYTF+8opJ+683X7VAxZKaIZDBBt9PHuXzzNq5kAnBglRnD/NyiDeHjx0/AvgW0fpmcnLasRpS6SetKT+10ce3NP9dTb9ZygISO/RRWy8SAD5rjud+yAXvp0gVsrCv3CyC5UDhEoUTszIcsef5clcrsDBZZanlteaCZZN/NiMz1OJtbq1TAyyvxu9DV3bJ/3/ChA+N9/R1z89PFgiW6nljgNzsq2O2yxizadhbdkB5mUucBg0zv6RXbRpiQxJA6Kmhqplc+dvy2jzQ3/eBH33PBlfvm5mbmu/v6izKCeBDDIYd6b6ysvn7u7N23nWDDcGR88Nz81Jl3zh07eWpxZv7QngMzy6u4C/bvFAMb0C3iZGTmQgZ4GaGEUm51LTwOKeQU++bJ47ecOH7LuYvXUS0DGLfFmMhEUKSeNUb1o6AY0ohTNbBqyVoEAmROJRIEy6C8kk2PR76TGNorKyA13nbylL3ua6++0dc3SPVNZadw8w3hiNJvYXo6Z3Rz0qXwckgpwc+SEt6UqUYTCtYMeX87yJPT2xLSpBICU1EcgawWIlkmulfDreSNhFS/it0gOMOaq54k39aa64CRTWYlSFRMMLfjGEa/xwIQc0OcGHHwkMkpoxsPxGTEkbGJwSc+L4gKZoTKzeBTYWp2Ks6hSR/i8mIkCTUZaFaW7FYXFp3X1L1rjo9Qyqwvu0pz2nx/7erV8f0HKPqwGvMH+W6FgF+sMNpacqDdhA8oCyCKpTqvM1rFkulRlV9DbWCNAxgnBUvW7gUhAd6CKJrrraa11S6eB2KQlHM8nAe0kUJ1homM9IvSza55ChYVOTvW1trdWjdbwhOziI6jvky0BBDLEMSI8dHzsKE2y0datfjaeSrFhnuFD/Kwf8iL+qBpG3I5l6EKgNf0TWuLWoCGHfs5MtQ7Msitwo2nn/z++XdObz740GMPP/zo/Q/ecuDov/jKv7SVzZtrH6dsbe1mausyFmBPPf3suSsXTt518tAtB+0Qkc2vX5u0xiGI7d9z8NStx7/97e/9/ld+9/DBI6duueXEsWNkfQKVZSm43d3qoAcoQhtOq2emAy2tV47pajUWSZZn8mXG7u3p6+mmNEBnZC6bLAx4oKLVQU77RawJ7FQjKcTsKAP0hGFAb7h6i71oczGTBMaoCHZucXVx2zWTm0eOHfvABz9kKUq0J7tGpZKP1IF2A5dptJBxFiIZzPGmYJ5zEGLOoFHd9ua6OX9mcgrlsZ5m18+gjdyBLDKwg+T0qpHPXY9TxGYIpp9MjChVdTlSI/Mqh40KG1M/TRX6A5UgHVS+Q2s/8z/qMqjUayApB+cyD7EFIphP3JhliJ05sgw80xJIHEOTjbVrORURacNKVltYGf7MdSYj1RnT/qy2Oo0Z3ndiWrm0NG+8zS/M0PvfcsvxY7cc4Wl5bXUeps0WeFHrNiplUdlEjAPF7OocfhkGWJBuROiBin9dQocAqXlLktQ/6SluEhZ5Mr77rvudWGUUZDBpl7vUWfrHJoWsvrExNDzYs7x4Y2Hl+vTMAw/c297T9vOf/sxLb71Kl2ttPm/C6Ort6Kbq5iwqVgQUUUZgQrZFs0NAflOcevUpGnAyxnHJu2479cwzzy+srOMSDu8RY4DtrRZBiFmtbiyXCTWCXfTskUiyKaV3FK/krXW7uBExZKh8GF1pnD4yf7sE9PjRYy+9cQZzMcEwbJTXqz2jwwpBYZRshrAeZ/eVji9KvIq9SOzFiMBPo1+8pufDneqSaNSDrIbkDPyZD7ySs5B9PqwTQDKXtxStkKS5VkRS5JWskvJ1WLbEkr5T6e6veBH2ltoqzxLwbv+GSRavJ/Ab1qmCYkQOAKFRr7de+SniWdtr3e5b9AOf5kVLMXHYw+gRgwHLvsK5pQMHDw/3D5QdhVjNXTx/fmphcdIJVg6Iejizac4VfkSY9dh3YaokJDykQqJkJJvaC2YqAtNtJcjjX8AAVR57K+DxU7tkidxQlJulx12FWzZaOAsj+0IZ5ZNRY2bQwVFtIxPI0Cm7z3RPNmqYFmbXKuy/TALiUqxca7qn9BoHP1B0biBGhmAIW8NzkwJMOgpm1EC0l2DodTj30t5LXJmZunp+6vLm2vzi7PSNK5enb1zf7Bu0cHjgwfuwjX/6T//plavXjp88QZm7vLTS39OLV8wszr308usXrl95ZPmR+x+8H+vHJ3u4G1xYoNC8884ThL6D+8afe+b1l15+89w7F+6+6za+cFCWjkFuGV3UhdFlu6g90xQEhPZyk3bWxituLl1au3Fj2q7mJN87nW0bTVs9NGtwTQY0rlayiEENCy12slcsFGxzFBoM/8VSc/aupY3hIGyXVX7HelP7xMTsuUuXH370A30DA/TUYcQtTXNLi/psp1fLP2UOSIySD3JtDk5OXHvz9dcnJmYQmQY6DkayRsT4rKNkfGO8/uorjBPoi7BRlAFOOctCZ4tvUYIJUY5rINMGsledCdWf2bxw6vkQTQk3g/GzxwPVrkEk2UppwIBeF+PqNRP24PAQRz1l7LBI27567fLQIJ3zIAJ0NBL3own1hyv9uYJ69+zldHnYTKPVQ8P91uUOUTi/SqFsc/vWWw/TCDkfQUMsc5ngdoYx9RoFECXQ9HS2HAuXz8DD7DK0IsBmNvY0+hGyEMVDkSsZW3f1D05MX3/ooQ+YVy9fvjDSPzg7P98+2G9DiwmeEyp0uouztr6aWvu6Rw/uNyHRJFuEzc8unLj11ktnL3YM9BkmZBcXz7rBrOgjYweZvrMwoMKyC2Xzqly+lg5q6Zi8MnnXnbcdP3r02Vff7OjupdmeXVzG1g1CQ8yXFVDKf8ZLCNXwo5LFNZUJfmss8dxQnotqSelhZyRoc4AmZu0e4YbB6/zhg4fGRocvXJ8gBq2uOeccpkxKQOqqcxDXpEv+yaZNjO1za1qQJpSHgsCTpUhCWLTajQe7CPkpZ2wt8hduElmzLIIDRriTDOXjbG+CMEUna1iwh1fZ2NAzmVTyzNaycpVc5oAwnRJ8Bf0BJA0lLKewAFSyaRF1NabpNaItUlE4qXR5Sp2psaKupux+F3dGSkE1ltM0OAajDgIMcrKs3LNnDCt2OYS9HMP8jTdeY4Tm+mhn1kbGxmcWFiGZh8GVa5Pcg3R3sZD2UbQ9wKGoBAPeYlMDDKr3cwee1JpQ2pUIBWjYKUYPhYU6MXrlwIaHbIDPbnuTHZ9sLwCyrchAmX59KbCGVRCMyArdUhrPtByLTN+lz4Sa009YS/27QUqJOtaYmTY/YUfH5KO8QjT6Xln4gkNbTKmQGmlj8sYMVz9XLp5pb12jr0fC/I8f2LtncW5xkrPypmkIHRsbsfNuEQB9mfopTEJQrVTMLuK6cP7a26d//4tf/JUl3qBaWI8N9HR2XLr4Dh3oF3/lc49/6JNf+5df/8H3v/u9709hCq5NGRwe6Rvpn52btgFm/OCtBgqas+UH30QJGEBdxHP6HCdNqKkx4dwMzgzOmAxTyFLJ9AlRSM0pf1veTERMbeTIzrYuii5Pqm2cem52updDkz66PzY6LXTf84tL/CAqhwMAi3c7z1k0BGP6NZQXyk4fi1unxR+WzbOpG1NXLl9T9dDASHabM6RDnYjPmIQl1tMk6z37xusEoEALLEwQkJg+E1KyiTPADrA40KT7MAjEQDmT8VzOs+DgyJQsDQOFmgPLzxh8K6dpVX/7XO1K6Ozq3+zsUKaqWeBUr7ykAXzk+vUJ5wYCPxk+J4o5CIo9j8b/jDXKJqujoYauicQEoKU6Et1nWTA4YB3NIZ2BZdah1aPAhVLSdSiykKufatdxdQFmrBFblBoqL/8YUQZqWJr1ceEjvjSabETaGHJnALBxl7Q9dhXMS9rsQtJIMWvHH/lBcqz76NjAnfffaz+OClHd1isU0rw8jQ0POZgYIRNFY454NmeFaJtgYkpABDobGCVkGJVg6X1g/74Ttx59/tU3zZeuDaO1tYMQMd9mCD5QZFg0oGm1FzZz67aaYz5abQ30EPqJGnNHNxJNOk0EFgEW7t4m5+bGhob3je85d/2ab5nYexoqA/1cG8309nSHTxe2nYuvizoXtEoLsKUHdaW5LYJSMQZMvHrxLDykNKWiOQ1sMLidJledRMmJnzQyy4anWRA586t8PzN7lCqLgJ7hAALPqGgK+4NAP0vO9Hsy7DIxkVJIpgcRoVJvmF5hd6XkHWqscZ8gNt1dGGz4gBRBLRBuN2qFcLseJqsoqNYJVpbOEm/cvkY79Pabb2FBH/rox2677eTo4v75lZVZPmaXGI/a8J/KZfC8SowNE9DLAUO9EyZeT7JqqlpqqDXWeG2RFBFsqg5bT62I2RBIygFpnWJiiFz21htveOfj2gbN9qXmiShFBDpkq28BFO/m1sBFq1Ar9spPKjCFyP/eZwvxHPakRxKJaijYSbGojXRdUOPnwvzcPF44tzgzNd/f13Ps0CG7YlfOv0OVNdTfO3XjKnmIIeSli9eIlUjZPrGJVNVdbo/L9bnTTmeM7hmnrbl07upzLz53/crkr37xl285fnhi4pq7NwZ7qYPnz59/c3Tk2K/8+i+duv3ov/yDf/Hk0z/eu3+f29WHcnLKlq/lEw2M5ZJxk1sHNNQRPgO+J4dhu7qHusI4mFVY03S20x3Uhap9eTYzHc3tJrBN2xfMdVq3ua3aXFskSJouCFJ8mBDc6DcMM3ycc1CmTgRvm0KOO/KAaLhCDmIyL+K51n0YT3AWCTSEBW8+RLGri+uXL1+9eP4iXNM1m4jiqGwdj+bqbwF7pV4zdx87fsvktGsu4hIZ+6FUFymMxXfNTsCa0qDN0QMW1l45f6kf4VZArwoBjKfJSuNL7X+Oh299VT9ES2gsFOlga1ubmenM+TOWGs7vdNzoMEsxvmbJZ2yuMBXLh04pbYVltsVk88+uNQTXCGE2rdOz8wyFy0xGqZomuy0HJNn+ZMeiF5yCKXsMGRUUJIXIg4BNbopN5LF2JECFcRUtiuLlMQtbh3nlq0LEGI+Dr1urnGFSiXS035iaGhkfeOmZZxfnZmMitLroatAw5dYmi8EQwdrysb39n/rUz912zyk2l90DLoZoX5lapvy0+9c9No7mcHxmW6iLTBF+H6VrRl8sZqxWdlUrmevX1twVap2j2FvZQ/d3Ty0QwVfr0l7DfYUPKAPOCbNWG6jR8DUnwYnGWewTSgxNOn28oF0ayR/7rmw0VKfTtizNbywsE2WolXnvZMGD7xM3mGoo2VUJzr3hK3xYkThBmLVzertOV+pHXJAb9PEQRYzBB7Qreudw9tqB6bmd2QHqU3GoVfv9+beIq1IaxeqPOiLSKfoHasx2GW65oiETQVmqWVdEkE2DFBQJuPCi8HogRmxK7wcboYiKK6OACCWoDM4RjOHgKedOY3YGYxoGydJ3X4WEyFhYhDMA0Bsgo3y1HKq5mikkzAkDg/0ujXU97DPPPT9x48bbTz/TNTTY1tszyLJ0fC+4XLC6NLdI2W8I21ikrF5cGmaXls0A23odHSwpAANpYEhkN+ADiWY6Jl5TQxSPfRZ4tgCAH5l7y+oNHVA0G3Gx9tGGjNQyyBWn/eKeQXbpRXFlll+bbVxdmgKqjFQGhnjNIM9OK8s/9SeKrImBaqezQ9a4LbR6RRjEZTx93d3Vddsjd1gBbK0v0BOMDA9+7HM/f++dt7/28iszEzM0xkODpP+ReUJ0b6/jeYwv5xcZkcLOysz83PkLl+gireGHBoZfev7FfXvGuCDpHwjX3trgUgJDt1E2s7K8ecedt953/99yiOP3vvKVp5978vitJ7lsWVzdGOjtMuPZ49VxaMNYNGrwIIReNO92B+A3roPRUrEMR1msGDd5Zgy/CIOjXPOhzRM4XKGyLGLKNu0u+nG/k00RWwsELHs5TPpm5xY++sEP2Z2jq2NURDbnQRpajIIMoJ0A/xH/jRx6Efad58+e58mFIwfaOusS4oVesOU7PjqqQ/UVDSMhgjdQfuJ0nA6FbUjWENII/zyEbjjE6y0C7rvvvtrdMRbJIIv84pUCrWQNFBvLlRJ24flX/0sZpagqRsit/FKyQygbTKffePstc7a5yi6FJYjt6FtuuRXM3axaY4+UacAqOHNRRzbTfvYAc2+/dfb1196GSYb2VlpEfnFEvZYLQRhoYi0GZhmRKCJhh7zJNzFyznK54j7p7wvoAHGUIyA0MJGSDS3qWg6/WRtyO/PiC0+P9PWwujt6cOzStctunHLcbXNtyeQ22Nn84cce/oVPf3xgpH99cV7T2GL19XfZITx+/Pi5c+d4sLFKMooAShORBcoWydHyoZNpK6k5zC6MKnNCuXZhHTUtL83v2zN+YO/epbUJMjYf6c4f0ICYCYrsmhaZTa1QS3MjppZGYQTme9tbxi/rQVrYKH7LyA5yLKtxUnOb+7AVZm+LOQTrSUqSwd4eI4vgn2HMQ0k8onfO53qvnc7S1zeFuu5PmRI1ASlYR6Eoi6CC7fCNgBQJPnHZ8NHwiwylUI6XBOHYPBpmkX7twWZepFSUAfyUOZS1tE8QJH8KLKsfnV1JVyacvr7yzKxQQo0rX4o8lPUQHlgM/sL3pRs0skn0bATFioOqyjeA8UlAKkFmcSXIJqP/JcOt9aWI6YRi0HNkdPiEc/i333bmypVLZoK33uD6fnyMG+qRwf174erwsQPXqYmnp7nfWJlfNGaZGxgpjBVU8b4AHikVBjVWAKSAUFxDMrazeM1hDT8tLtvGx8cqluUQtEGQ0pjxKprqM6U7IFKClJsj6bBMSAVJhcQqNKxiYIEG0hvLYut9HFOvsaLls3vGBUUrMcUb7Gf14y5SBprUfKt4rJH2hS98fu/ooG5dtTN59Rqz7onVq9/85h8z43NJgK3gqYlJpoI9eESzm956uTOLNZ+7p0eGFhdn33j59SMH9t7/wF3Ovq2tbCwuzWE32xu028wkmKx1f+DxB0/ccfyHP3zyhz96cvrsOyPs6oeHUCYdztJKfDe4ztdmjMm2q6W1v6uH35OMkGzS2hyG4NChBmP6kEla1DStXnefeEf3ClWsDR1dwv6KHfSK6+g6ZbJp0TrY5Zgl4wAW/jPzC3cS/3OXFkVT++LCMtY8xZOdJUWxD0OO5RriVVwMCzt7+jTnP7PTcyx/qGxIeHKqlE3U+Ogw8wD9qmswUP2DCFwB9vzzz0M+zxngFCH4s3LTXwyccWG7wRcvnn/ooYfEvWWUbsknAo3FZ9wAL/BMS80BUgoRa00GUggIWe/wUF+8J3hVf7+HTrQTaTGmHh83u5gJyDuOJZtvHAw29txSUIUPJKPTickzG9nkMJ3Ag6IUq2oBJMov0aRIr68418s2Ussa/d8ctTiNXrciOxwkjAqIiNGVn4xkfEW9HW5aPGBLZG5ujtzZz2QIFMOIULumyGyaiNwSJVWHcxiR9BwowhfN3Lanmtt+8IPvQZ5li6309iZW7rMUMi4bJOfsGew9deeJR+6/66H77mHgYBu1qYO/s0V6grPnLo6Mjk7OXu/kltMloQW3RqB5mj0gILTLAPY0TKiTt9rWqQkqeTAZ2F5aoVycW1gdHxt569xVWtQYCWhJZ1wH0jNaIcS0trWl300DK8tNG7m1Zn1tybx7x4ljRw4dnr5+mURvCd6stkjhEdNUV8U5nS6uKHq0xbl52tEjx47Mz0zv3bPHPpYNOaWRdmne7FGExeTrUAo2rmMKkcRwHO0F4ek+BUfwtozSLD2Rftzp1Sx2ayhWWZkM8gGeT5rOl01WS9aOxCMiUiEtMas8wn9cCkUNVfibRYSYCTNz204nWjMFMhNKHSMFsTsVy1MJFWLT2HLBWSObnD5Tuzw1NOJYmW0jDbE1Qo8n3bdGn3LqGsK3aXjM29xUwdH0tAWBlQNGZaMYSrUFh9kzPk4FxCjFnEjqYqrvkgl2/Nwe29MytBXroBSmR8VnsiChGgIkfGVSXAsyFABj96kJAr2kLDBoIo9cX/bqQahGYGN0yDNrQ00qb8P3ReQQ6gATkdh4kkHCnUtihsRNoVRfxklJDBmVD5UPHXTKMgRMV7jYaFlfJ3hKgSZ837N+DmW2PPaOj7/zxksuwrZz4grsq5ev9Hd3UblfuXhpkawFTRsbo2N7WMfes//AIPTjv+Q6fNYdchtb7FiW5hboGXCQG1duvNT00uGjewaHuu2806tgvNbB7MSWeF9u3hgY7P7wRx69++47v/Od783PLbz1+gs2xm49eRe+NjYy6mhYZ7fM0UUQ9TQKpNqlhu7+PmMVYcZeAecvVIpSi2xIZpELPnWJQZWOabcHiHDZY1me2c5Z39y/7+Cr75y+7Y7byeROkVFZWFpdv3FDLW63MOZ9aE2wtL6sU9wOz+XIG6+fvnFlYnaWu7fsPFMv6gR1yVBpFCbFy6gLTOL4LI9y3GmJM/jBZM2C8I8zyFZ7Hy+wCPMtJmux2uhVbZAoD2LQifoIbILBJo8CZSgqvcYX/6pIhDLctGWgf+jGRDYwlO/CFvPWww8/TG/DFFWZozQpbtpZWgm0Q8Oaxj61kpD8AkgIKCqTuQYpoXUHs0iC6RjH9TBN5OprhnPrL77wKjUF8Qm98Zdkk4AUZbtnnULICi5aC2ejQkXQAj/MvYpyIfyXILYziNP47ZXFRSe0JasUg7ZV5JDj9374YwuXq1dvtDatjA+0jR1ha9qztq9vz96DrhQ8tnff8SOu9jkwPNjrNJlFniGNplYWiCM5OsRVWWePvSIjM7zBn7aV3o29CkPMLqfienttJq82qY1XwMWKa/PZVPzV9KBPyKUdMAWamAh3xDlN0VW82TBfQ7kczNEl2Iqcj25wbv/+vcjVBGl6cKYplFMUCGlydhwpNBBDjGHQzLVib0aEM4sM9ztp0+ez3MaysQY9vqXliHYn/VuQVvgDjhFKKcKA5qRFWcwmjyEDnZnDdkPZX9khIb2JE9XOTRJZyxgnC9JswEwhvLKyoCm1H5f+cQgLbZgpNpqZ2FVhBTyZA3ZotRQo582cXdm79effHXoqvKumBxu70kzNHHh2g1eN0nxdk1VXi/JTgeIitbRS+SZlhPUj8SJWJ8EYJZVvctoUdWep0LoRXXFr8wsvPDc0yvlTLn81EnFQ7xG/OUOYW5jPlLCVNQoJxpONX50MjGVgyIlaQOjEqJ8yKBs0pgR6nv5eV6d0RA9TAyhLT5VWFBQE7tqGkhZmoz1l1NdW1WRPa4e0sLQziQUV+tjRf/US4Ly0D84xF10mgOjdik8VCyIA4F9BkK91F7euBw4dJHISDK+du8RIQftHhoavX72xZ8++I0dvffr5F/HWRx9+dG5quhN7zsIFhzKWnQmM4zvLhUP7eMscY3g409k80M+8oqv4D51nMUQi0+zVjbWlpW2iO3wd2N/1b/yl37IP6djQ1evT/+V//fdOnLxnYvK6Ja3zsQ5IIroFy3znSx0D7+/nTSSbUdRrpoO4QjSbAj4MPqJH8OsFccYTGWOUhtYWE26DU0tNc/HBMt55+szZUw88auGv8yYnp/Q81i9uBQBFrX1tlMQl/8rS3OrC3CLZf25mkXERq0HY0xfZ62PClEt/osEnx+TgUCicLJZ+QAeoiWTNKrS9fapuwCIyr1TkJySz+zQHYAcZ90UIUzLK1iPKhB85UZtPMhQAZPztBpWlmp85hNi3t1xqdmPyukkFeMeOHQOAvRBLHMeDY7W1vHx5nnQMGS6lypoGJBnbDjlSW6At67Aiq0by9+5dGIz1+F5HD9AOD0anzOzO6FEs1peWbL1M0890dU3YEoiJVF+XVbFjk8LUyty1a9djv8Fsf2XZAgEdZ9jEHMfJ7WINYrHV29HfNgBXC0vz165ee+P0mQsXrw4OjVlkvPXGylB3/2/8ys8fGOkccJRndWGgf6Szta3XX1dbX+sWbVAHybl7gEtPPJ5lLEO1YhzsTKqfK329g64W0wScgxTCdkjrTACWHnSv+C2Y9EgGdhEzHS8A+ctvnCVOCpCVozUJMWQm4xnnI4PFpERK5I+o/l2lYUJwK5ZstECka8tT2LKwLvS7w7YihbAqifFJXJuhAe4NMJRbTx3kSZ9qNZMTw2WHoWgYKmONbkdJu3RRpARItIDCNyTrsTKfRgQVfF+gzSMsYLcriUtZJpSgC+TU4+iOKqwmhlekRgdKTVMxjjLHZeqP2V7m6cg/wVj0t0owOCp7s7WakbojzFTqRSo7bFo+5asOJEAVRFBgYC2JjWdJyKOoweydJIJUy6wpOWWmEflLIZKUrEAyNJZVxHIMooWGH4nacwzWNFNoYZpFco+1JC2u839TNyauumOO9WBXF7t2qy66I0LjyPqILqCCIxDoHY6cLl+96i0RSUMY16ANZ+49DXCEDJH4EpwX/ywxWs36C3QVRk0XBzVgPRvxIKOkeBKj/KyNqa0SF6mYEhGkCFqrYNwivDCO2tdBqUpziDbal0sGY1kfMo1z6RIrZndo9HdfuXjuwx98cP+hg3NzN+RnPMhi0cSuGXtGx/qGRmnFXnz5tTvvvQ/GMQhkaoc2pXED19lJQTnb3XXu9NtHjx/mGpll9fKcm68j0bAN3XbFEUmig3FOhyECbIfIdcDi3FS7M6gdbt8e/ewvfPJ3f/+PPvTRTzrCSi+gP0YG+on6U9dvTE/z8bQcEuJkhCYtkzjfKhbq+jITN/PFMH5buNhQjoruBP1hSZrDOC4AiF/1numZGdPd/Q8+SJYnohKyfD4zO0unzw6mb6jXujoropWVK5cdmL0aO2JqpVbjjg4vk/kutkOvNahMIV5pF8QKeCjtYbXzEcFGQYKHYxQIYmiQwmmYtxLHsqy3VNfR5SRy+s6z9mlmlXJNx05LGpJBJYOdmn/WfzTWmDIaOSVdmF+iEhVRERk/sG3jVxqYRbT1IUSJVHjUrr36ugFbA54aKRA4L5jZSRsFEeRMgKgZFKhNJZFHAYilEdjenJgwLuwbqZ1nJCQqA50TK4PsyuycYI/qDDKLlwEMp5ljuxsT1y9dvXRtcmp2btHIbTfBbDV1tnZevXz2loOH+jtWOpoWWjt7yKN9nR0skHKXKPDXl0nmRFYePtEb7uAGWps6hNdkdtaxsAMESRg3yZMTDUWNsLxhIhTwtraNcGgRhxB4O37q6H/393/n+PE737kw8/rZK82dLZYTiDAUopDWlgELBGcL2JVbSvY5oTbLpdqpUyePHD2EuVkyuIzMIoAgWSSAzPp4JqZUllNWUm49zEaduvaOjfHKSTrLhpr80e7gEzl6YFDoR/rBSpZmEkgjmuepCSXI4IPCQPRN0iszoa6pGTzrxAD1tddKL6bXqjGAXqj8Rc6UDmQ9zgoLqmShg20vG7MM/DPvhwKSQ9+EqvOpojxruDleU2pmGGjAIz11lVATb0ohHKiXp6nUAjaLctxsq62sDsvkIXOExFI1tqxGVL3Z7uq0fOKnJmAkvk4tmUDoDByJz2wJWy4ccp0Zfxs4m960Jibyc9TINAvF2uCyVrbAo61VrAJNkMDA7memYuVoowgf960d01haqhE781/RoIINWyvGsxE40hv+r+jxLKRXWr6Lch9gn7LsYuTmSO3KLNVq8JEoBZVzcLPzrlsihXX29sdZkrpoTxGoQCDfzLXZ5lh7anFrxUjS7Y+f+/THJ1dmxsb2TF+/gtaV6QCwO5cWltbvvef+t945/0d/+LUPP/bYIHX24nxRdHbY/rHyZ0Z7YM/oW++cXl0cIzASnLs6h2enuHI1cPramngcgd4up3EZA5ZVbmQlx44tx65dvdHdM/SrX/jMCy+/9KMnv/vwIx/gL1E/9Pf0MC4fc13GxISGZHVM01f62+CPpB8LFwrlVuuMiko0RCoRdgSZHO7F+VZIl44+WJG9c+6cOy6oZUzdivXW/r5nX3cPLF2+cJmVJ19UzhUvLlB6oX+GGI5eEmQQTeToMq50gd2kbPLAYZVUGnOAr8izZHxPfhdMM2fPnOdBunhGDFHCiAmAEQ6q8jGCE/RJwC5qJWivfY3adrq1/PaQp6b8+Z5mRTfDrjJFHUWmHAmYxc0BysOR3cqsXq6A0TcpzeRn+QGwOhMQkNVVycZ8GeRqQwnwJluklxbMukGWOJ6ZOvpoRSmZgiDTYwZkgC9Cm9mbh2dKlQm6VMOp3DFyEZVaUlI3EkH4hgSAEuwLOTzrW+yXh+TldYrvDjfHmi8Yb9GK8MH01HcvW4DuOznevLo1NNg3v6wJDgP0Wm8gB8fBV20JN1m2GoQEvaK3wPeJ3musuYqlpjFJqnWCjGRe4NTBaAIB6BtzQwWelWCopa+P30oRir4XX7v48umLXA/byeGWLlI3js8ziQ0iKvJVvMA+atf5C2fh6jFjp88tNbzOpcBaJpyI+Iouqq01XMyaAMO2seISGCIM8rCZxAsLVlcEH9hocXIS9sv2rcKkKBGf14JIeIISDDraxUwSYSZ5abKP4Fs4Y5kTwtGxjKqE8H1YCW11YSiF6PRX6E5j60RlLjS6jC94AtvKuuXAZlds6NhQ2UbMAUkrdt8AuzQxTaMq165MT9k+CHxpbyJZZyhZ6alml7RqHomNlApMyaMEQmTh25kDfJ4/vja0ohRTVMNlBeNzFaErH4bT04I0cXapbrpH1/44kB+zoZBxdAbE/ZAxnmmRYBeQHsICxzpveGgI/NeuXLUFZQ06NT2hwcY4SnDyvLk9Ewl0GyDaE93p/ALgXVEOgNS6HZMQu2rGQXoWEaVh/i8hneN/oaAmT9DuPiFJCfW9ZxqyG3aRmN+BoASdOTk7rZ9AjIOoMqgvKhFxn4jDV+nign0nD9c3egf6f/z0k6duOfipjz46fy3epjqbWy+cvTg9taAYTRppavrMZz77z77yB1wqfuiuO7NsMW9srwEuA7Slpbur01GKG9eu8O7NhfKhA/uvXLzGDo72nY09O5zeIbb/3AJ0cOkJvw4KTU9N4J8YvYF4/sLbv/0X/8Lf/Nv/p8Ul7rzb56cZ6U3tGx0aHxke6O2BTYrIab4zseZl14BAX6gWC6pDCVKk7SJmByGWosiXhGnIO+A06ITa0uKD99yHNY/1DlDFiHDSitu8/cbbF85fMiUwJN2zZz+ZgiA2MDBoTMIVUi4YBkUmc/jMuDGcCr9OYqEz6E1nQ0i52IjMIUKNCHtcAFGv9fYhxPgtUbXMaqfXdsI5A74UIrG2IiOlzC3vNuq9rbu5pT9DPLJVaVHftfUb+AYma1vV7rdwcN9BcNqORqP2t8xPDK40zScwgwV7ioOwiuq1sZAgAmC1F/lQp5ZhkIGAXxhOOeocIaM0xCCvcOIx5Z5xs3mHg8/unX3lldfsiU/PxiGhzaqYjIIV2ouxxxbjmk0bsb2DQ0SvXm5/GehEsb5BQ9XR1zdk7hodGnvumec++tCX3DLMVMYxFMYLJD99gVEwIWByR/1iqdc1OMJJTKwDOmwMcJzneq/1sYEBzJQPY9NwTMkK77ABq+1+G+dO4TIVhoGwBh2xtfGDH/34wQcfpEDDptECLQEroILktT4HIHr7WJGH4RUxk+WEhSDJw4QBCfTGmRUInYXx1i727W5gXhmGrDdMM0rm4f7Rhx7UL44LYpjgs2UBqVU1n54K4it2iziZHgk/xWvA7OkdtAvQmvSwyps4RlH1SAnvLwWZMHaBqYXkJ5HA07gLY4HcyGD0XRFgwNCxXe4VyJBUBfaQKlJmWR8XXVBN2El890f5xFeV5Br11ohsIjdn9tOor4MrfLtMIb7Vd7q7fmU5W3HrQwDApHR5cHdyp5+a4GmkFu1/mz2NzCQymCGL1pEuqFZaqtvZ4LXHaSxTVIIWkRoOQsvUZFd3n7kTkeC3/f3x67U6MOhzGuCMIAfrnUxeWupwS0oRSeMXVLOMkzrfNppXScFPtTYSE8lEH2ZdwrtsTq4G9SD1ynpIBoB0UwIlpMYA1F98KHJM6H7RiNLJqShvBTVp9CrFZVvr3/+H/+DWQ2P7Rygbuwe7Xea+evECLXa7ocFu5fAttzBcee5HP7o8OLh/eMhWLRZnesEFgt/2tn3jYxcuX+IwyLkqIhxHZ2fOnAMPBTw4+8b2HDt16sAtRw1jR5hd4mTZ4egXs9nFlQ1zaWdz57/zN//af/Ff/vef+PDHLI+JPtwYrFFAF+MwaiHmqFvu09DSdFablW14T84fO4SJEDIrhC3t8krqLfkIkjzKs8I1WXB+QJjSQ6+++uq1K5fI4Nbm+P7c3IKxbS1y5ODhPSP7nRpzAnljJS5CYcduYUFVuqBO3EVpn26SXqurXQYVUqr1FzG/7AF0Mjd86aVXohBsHfUePjGOukSwurQ3G3PDEhSlm9RiDIV5lVkh7dltUa0lZPPnCYoCVR0GaveTGhQlsO41M40NjUvkEcGSFh4QK6apIRIxHXBCIDqWv15+oChvoctbeRTLBICAUVZdEcEqbwEjZr4Tx2IKonyLEJ0IxujJZua/t95+5/nnn71BP86NMPkoTChczEDlgrOzuZuNZQd3f05M97tsRH20OC6WiBRKlbW8uNHTsuWGNUc0piemD40OzMxepZsoZ4Ap2jPWlpu3Fss5Ph/S+TQ3Lbz52utHDh0d27NntXk5qzsHSTZtq7ZzC4gx1LHPBsGwtdtM8QLtUYtxndLdbXCdO3MGDu+5806uJuCh7gbJg96oRBkLDg30hUNu2VRkfxU397J97GMfGRoe2FieNzvwAopHubStKCF8WlaXZXGU3o+c0Xrm7Fn8pa27j7iA9SAIirXoMFg/FZbvMz9xhmxWkILLmEYp0hFM3hZ2r0ALrsjreZGkopEPARU2E+oyjDwb6Qg9mXdDJL0EX1jHJRadErQFU/TqIVe2EVhJHAo6EEeVFMBCpSk9WvhMxiL52FclsvOzQCsus5D3BexG/pqYD3e5YkT1tFdWH/gwwrsSUBdTH3CV0mJwoVR0B0CzF/CStajpVOEn1mStQ2OxmmjFWwBGeykqA9mmX0o2DYuT2JSJ4JGBJuudDJbmJrdjmhWY1CmKGQthxQ6ePKPjYypiJohmeKrxbZVpqkiemkqTd3AtnpbvpNU35WnSSqJOTb+UZ9J9rsSKFB8an0apsSqyd98B+6WYlzzGMYA0XE4pwWL27jUxi/QUQEqOAVaTs1Hf/KOv/P6/+KO/+7f/3Uun33RHsBPzE9emTp+xNu+zpn3lhRc+8PjjTIBOP/cspb8zdu5/gBmIxyHCUMb2XOPZb3L6jjtuY1MVRcfEa1wE9A+NkYDmL17p7OkfHt9jirQPxdKGr1Br3sXVtfbunsXlRbdm3HXbrQ/ff8c7b7/d3dE1OjJCw79WbpVhvI9GWVK2tC3WrS0aWpsL6XpjrCxxEUMQVOSYih9Sm26LZjPU0uSmM/MiwH7wzEvsZ8m383Mz1umHx0eWeddaWLq8MHP+rcWhnt5DR27t6aVDNsO1dPf0LC3P02lEuxSVa5ar0Jk+KNtHAIBSza8/aZ4XF5khdppdYB6rwygfeuiB73znO7ZA7Q/hGGYgG4CmHvcXUROFzMpWladCalwtqFC8hkoYpfcyWFP3zxqca13jkgBFsh3EiWrJKAVy2DuPj+3RUvv5HEUgUJI9l1hRqy46mpFj7rL5Ct1TZCEhk5ZNY4OBsVOFcN/B/fgxngVUowaQmSojh2biMYykgzmzGuZD9bLNWXgfn3Q/ePJHLPFheHzvHg7hTQDQWuTWIqu6u7ys9elzaGNcMqVsOxTEcZoce/t00LOTE6P7x/bsP/j2y+e+/8yLv/rZx5ujUoJmL/nKj4Iik4U1aKiDM6KNd85f+P2vPvHg/Q998PEP8w9hkWqTwI4Yn8hhH5xNLUe+ZA7a2z3IY/qqIja2V7BdboRXNpD3a6+8+uGPfIxZ+OL06qCe7LKftNAzMKx99EjR//TEYJw35sgf8QQ+s2es/7FH7rcm2eAVrqM7t7JvxVzEssMoRlCQtiOqt7S6lMO1w8+9/DLGDeH3njo1OjS4PDvNYDWcLNIbTpHVb8Z/zo9KMcBxu0IYYfdh+lFqIf3gXnp5VUR7sPkuPVSILf/4UAelnIQqvafswmO1Q8ZM8VluZ6sXrCp3xoNQnbnaCTwbSKaHzLnlBGykylCBqtO0IspIERcsET0zlcUfFDaNQpQcyil15lmoNDwq7UqoNJUnggpPJP95m9mnSkvh176qLZVYA50XDGOMRIHMD2XsYHoayxAAIgguJg2g5KxJWpatYrUoyodrzQwFdsCOrrJsqS6Uycy3junZWewfGJqem7veksspMzrm5pRjuBk1KAETwAn74zE9QZnZa1ZBha9EgycpWbBCZomrPgHH397ssgu8Oy9Ch5BxlaVKFl++ytq5eE+tQlmYkYVPOVuhXJqIWmbII/X4P/4ePEnIhrsFBmeae8aH77rvoT/4+reN809//PHF65M0om4uvHLpyvTMjb0Hj1jWvvjMUw89+MhAV+fzTz9z1113qAXSV5ZXhgeHmEYgFLjAGgpBtT7142dMMyjj8oWLp06dGBwZtQZ/9blnttfvsBXW0dm/tr6gA9t4Yd3a5neFZx/eUn/zi7/0H/1H/z+kPTU9293Tx3aQ3SeHjW3dHSv8WLd3t3bGO2MO3cdvJW+rPOhG75nO2115ZgRwAZ1jA4gyLtptlJHKqBZ4gmRlZMJamJmcm76+ubzoyB7rpJXl5Zg0t3V+54mvfOznfvHuBx+bXpgfGt03Oe3ckKO/XCiVo5suilmLVS2hQI3pR7WmV2AihCJFlzNPxjFNvvaraP/Bdc+9dzEMPXBgH1c5ywuL7HC44mGYe+edd0VRVfpVESK6XX9hyuL1Z2qJLLMTcLXaofXpbQ1+1vzluzJqQ0tRKzfmJ7AxBu0/3G9H1uazm13PX7rovjPKf4I8OXt+YRa2QnhRdhn1sfXOJpfDYu6rcmPBMAdCw8Q/PWuSE9549XVVY9/IzyCxmGvpij2chgCC4gAFplFl6eAsvJH+vaeefPHF55lS9Az1+daJbZKKAlUaRhBkZuec7sZifWxsPAt8FnuIxfk73Ro9frbdXR579cb1seGRwQNHv/fS2VMPP3LroSMry9eGuhxIZqC22drBWf+6KPcw9nUcJmhnmtzX+z999Q+/9fRzx0/ces/995w4eYv2OiBnL6ZpxZKzg+bLImhxje9+EtWadnX0jMDh+SsXnvja13/rl38hcuXGSl+3U1o8Sha+39XsyrCjBw/SMuNs7b3dLCWWVreuXLjYvLHwl3/tt3inXlxc6O7pcPSeG0Eb1G2s+Lc27Lg4IrCw6lW/Zp2/cLllaPzyjakLVydYzSLk++442UW7zpQi/U6FrLcNX0w0pln4VpATXGdBEEqImBLWAYEZF4XTZNm8GwozLdyu0FclHs9KTvXpTRhFFK0m7TKgMcrw3VBUOpaVUibZuJcwuHBJnBTtrjnGH5kBUw2bMjSVQLDwtDCz1cRAeHCwnyadftq0RXAoCj98KD/N/H66foGmlOkdwWPFbrkmOm635YaZXPCrLcWmDoWAmWcIVIEo0NjOSjqtL83RFg2x3UXDaZOLLsbeEtgyXbXH5/xgT9/0DMblHFLvEkIBAI6q7eVoRyxlrEB7dVOmObbsIUl3j2DIxdyTLnFxbR7m6QEHenoO7duHVPggBaOqKQDsxU4XAUi6U1MjQ4NGUHYd002FWfi4wpp/KmoNmMxGwXeMkyG97DV7q1Yo92HcJ8XRL/dCJrcMT3sadpx9xVg1d4Dslq+7KhakhGTK7CIewincwZ6OwoxaJ6FHRscPHr3l2z948viRoy5N6NYlG+tWoDGGmZ2hWGUx+/abr/f3D568666zFy9wgel4l+Ysrho3jPc3hodH8Ef3OJttQcuqkMh24rZTXT3WUM0Ozsh89eKl1cUFF7ruPbA3l0bkJrllKHUWjOW/heinf/7nfu8P/oiYLAOBHSIGhkZefuO13NUQCTKSDhtex34iBO0q/qBF0DTtzBPrSYgCzsycVRhHEJmBtzGCjJw1HH91oLtt79jgnn37ccbe/iH+HbsGxr771HNspB764MfZnLhLxM5PZpQYUGMHaZe53TOLJ/NrqevmB1YoVLQDSUSQwln06dNvYQGx/9vergIFqBzR8xNmas6UXIrzicSdUPS5smmvo+k1p1xSMCZBtjLq0t2CQjx3oLITCG0t8b4LOV5xlWgCgw07E88886ytV5/hEFx9RG6guA9/YZKSw/6KBQnChbTIK4WXSNFBgh11y01rAmPMuTLzQZVpsJ5YQRT3XmwqFILdu6zGNPPDHz1NFODFHnmgCgQDeH3KAYMBluWV3+XCWhofXrrS4XllSzO+OrJgIveycGOOmVusm65PzR6+5fZzF978H37nX/67//ZfPD60b2tzjpupNe6Tl1apHAc7e2am54nmKOHgkaN/8d/4K6+89CoB5ZnnXrh07WrLN5tvPXXrhz70YVtfTYt0QREbeJaEvX17D1noOJdoLfH3/t7/8NJLL/2df+9vdDSv4n1cSti1MD5dGdTTO8T/BJFyZmryoQceoDG05Ke3eufK+avXr335lz526MBoh/M10ZUyKy03QW3GXHh+2fl2I5o40+FGkZWNtUNHj11e2Hj2xZcHh0YuXzj/27/x6z6anrg6Othvb1Gfoif8yEYaKseucArjPwgrnF4G6Arfj340feint4Z+npkmFBCyqWGHQso/3t78s5FBasgfBaL9IopQdZkIolfFkCJDZoEskM9L1elARSmhwBsmVH5GQqpr6Lq4DdRhudx7ZCDj8ujBRpTMmG+R1kPGRk+h5zD83eGmIb71qxF5F3YfqKj+FsmA2l2jY6ogwwQyhgw4ExAAqn4s38iZEwOq9ks5GuWpKC0CYWMW9ZWag4ZcLc7ELBGrChAaWfUTuz5GtxFhGWd01DWBTs+oTl0lZEDBbQnKz8BNM6Pui+ELDYj7sDiWiW/kTP3l4pogwf0GC25cSt/k0lQTgEGaNSifacF6AKpwlLJLXKPqj8gAaZUgY1QpyMcF6P0Dtx4/+dIzTz751DMfuOduqoPm1TXsfnhg9cbkdHdPiwF/+cYN8j7BHK0TYI8dOqx5pF4CMk07LoqvMV9DLhY+Jg963vER9lJZIfLWilU5SWFrhG819og9/WzwnYY0pOFPbwTjjz78wJlz5xnPPPfUkyQ+27Skx3ywwvOttrIit0e/QSBVWvpJ31jO2d4oQQQmdSTsQ7Wgr2AVAgUuVA/dcsCdQeNDA+PZ7IBWomU87rpPyqmeibmVxx+679tPPqP/hvqGtzcWWPVbmtn5UhQPIbBKAQUqoJR+LKOtdGIwX07Mhl2WAaDemijFhvD582cpPcwEsAQ5DI3NTPzUypzeL833SeijkKxnOkk37QZxE5KnV9JquxgqiOiImisfJENte0BHDwUPKQeB2vnoO9Ar//joGKp1tyKf6W48ziYw4/k6wxoggjkvxy9imYsaPVFOgINyevzSXujWswd6evZYM66v61+rQGfOf/zUU1VZHIWNc20b6wjDVEGtYohRiAFSZ6mkNkSnScnsF6bAV3nnEF/SAyOc8UVa5BZ3YzVjAzDuwFpDrv363YaKI+i+HRne89rrz/+n/+l/+X/9W/+b7aW13kF6psGW7XmHGHUUCYx+i5TT39d26uTxUydOUMrbCrpy7er3fvCDP/nun3zzm99EI2Sa++9/0EYRnx+93d3W9LD09pm3//nv/pMDB/b/H//O3+pu2+Y4QnNacpjZFkIb8uwZ7nUlmZOD/FwZt8tbG6ODg5OMNy+fv/3EsUc/8DDLK7MsGiClAT/6RHYNcwQLx+s2Yp7Hr1Vbu20M7hQvXLzOF+/VK5ceuO+e48eOzjgcU7fZ4L6yndKz8IYE4CPkn04J1YSZ+K/8kMFPL5NuzJQQwtiJ5refjVApsP6smWuG1JJ6kzkV7ooXhio82BDOBFD05gBMpYXyCqwGbvivDrZ2MNGF+epHIjx3/BF06PQ2OqLpC3tNTsRQKI2QDlvU3ChERSDxigQQIMs+WU3ZhdC/GQ4grM9GK0R87qlAcIrLgErptBXYyKb0FFFCo5wakVZZChTUCBdFVjxZ1qSElFamjKKMK9fNQws4fYgfinvW/fxIe76tFTdKz7SpeUZd6Q6NYI6kYE84x3tcKEmhyNuBT6CaSjMwGZtLKwgrRhE+txRYjbDGnrr2qq5SQIPRy6O1Cq/11qarUQ/1tHeZoHjCcAuYswL7Dhx+/oVXH7jrXhA57sCeyBQwt7BiKiOPHdyzR4OXV1bJd+46n3JebHgYXpRPstU0fM30QJLXnUbdcOegcwP6EmxEfdnskuEbbPrOn70wtmeYn3rXiJsh3Lwq3WjvG+z94uc/99WvfvX1198cGhm7eu3GuXMX9uzdR8IkbViMcX9IZ52JF2G1uXBqjuwB0SRcwRxrLUEcOXHkqHiZk8JIqCbwPhS7tJiNeft6/ASSPZxUdmAM923rarWv09feNXj4gJ799le/8utf/u04s2ExYjeg7EWjcJVqhQ4OMZW+q2RU0z1rThmkg6pmFtHGO++886mnnmJTfPDgfog6c+YMU5yhYR2aMmHPt7U0z1pC/bkz/EonwmrNLL8A+UKty9Or+hSpwUArYCgvRAkPbk0iC+sUKZxDAGPv2F7b1GPDY9PLi9ngoXkxhzVclKfY2KVosqB89aY4IceaujB6wQghyOsAzuxauYN1ZWvZM8D6fWWQKAU6XV2JMOucrSSwKVATdKZC8DERsJXj9tlnpocyuZfT/Hohm3tmAIwH6cYnnBztnRM3rg8N99x5x31Pfv8b/+F/8l/861/+Yu/ogLsb9u87QNN448Z1s+/EtOV4p+vXOAVh3HT4yL5bjh+anpn7xV/+7NlzF15/7bWnn3qmuIe5xn6BUQdE4cM61GbShz/y2G/8xl+wLHArL6sRENo3cF2FIzFrOcEbHtw3MHjw4MGV+ZmBnq6lhZm3Xn3hyOHDX/ilTzvFaJWz3rThUnWtcu8M9jE/NUeCgUR+KC19skBb23A47vr07CsvPL84N8Nv1Cc+/GFO7gikfQ6OTE4UTXAYvVMCEXAK9w/G6cxu4mWQCck6GqsV0lNlqhD3SpBWnnlbI9pzc0ojXjKE2wgqTnqRyFFpBIFC6nqW3F42Eepo0H0y7gocmFDhOTKDMeXEsi7Xv6S0TFoawDIitSgUGZTCywHjsoyutaS+EkIcJR6Y3htqRTWbr7wU90RgPse1zDq1NJJ1MpTt4pJzh/tHii9Du37uW6M9g6tMolv8C1qt1mVA5t0ciYBLBGmlqwopaqkDpIjFeSWCkBSFK5KJrQNC7iqoT1V6Z1r1D96V3or8WmR8g9AJRdILtVn+W8fO+od60fs8tjG/SJglmKUd+Szzh+5RDtkskRLC4muH1G6Ak4KXWnswtOXCB4bbICjQN3ceOnzL0z/64bMvvfHgHXdstXUtrU8TeMlZXMnzBHTo2C1s2PBaUjwZ+eK58+R8Uh1xrFaE4YLQLqIpF75QrQ7IiUGTcPElYBYBYxQCs7PYF2lo74FxDdUrAGc9d+XC+b7+wS9+/hfnP/ExfnsuXLz01ltvXb56fWxsQAvprPyRaiHdbOdU9f6xIeYHkIOq1F7PZ6oUGFmqF0uV2ivp0dyau3j54qVrFy9vrCxTSHe3trhp1BFVzKx5Mz6mZxZm7zlx+NK50z/4xh88/onPrGx1OiKU9VAIqDApu6Mu0smBePgNoqvaqVCdSiIxV40O2lNjVRzBBgtFPOLa9cvSWN0gGqLB4aO3lgHrOyUZCUVGY7DsauICcAiirG/QYkpbW9c67RV8IBHZeTaoNgAVhaHyJeJOFpAUpAAALSxJN+Uf2LfPRHho/4ELZ8/duHbdNp+riijMNpeXGLGj1IirUsO687+q7UKy+k0LC6wIsKOVHoMWK+NT/5pFWILxHG7vxIRRJ4a8hZosLCIqgrYClmKjW82wF+r5AwDrMv0oaKamd7v13oUhTTkgLbfPUbtXOCZu4iIADiE21hdefY2ji7XhkQMvvXHl//mf/Dd/+S996VOf+sjUzGU1799/9Pq1KyQPZl98FJJQrq9r8UVLE+prytl7H7j3oYcf+OjHPnb+3Dk9cubt0zQ/ZHBGyNCF9d93z10zM9OI083fcT20vj2/sNTWOeSy2c3mNltoPX05AsohBOeATWuLzz77TF936xd+4ZMnbjlsj8M+Y46RmwLJGYybmpos3yEDQl2SMDzsfMa8Gy+GR/csLV27cOYdFPOl3/iSEUkHG194dAvp3QzxQiFFSZyxDKdZLUF+EfY9wnl3yCmsRT9V1hkuI6SYrLQKmRXmI610ppc7TDb58m24c4nsJKTcbAWnEJSVsguZ+Vmy+Z0UP0tKrT4g4O3+r2zNK90HVwXOVBEVf64yja0BhQEBgsKvMk2Z11eJIvHqLH8Ihv1OZLDULhTI8hCX2Ph5cwR+kGIjc+httRglk21zt5yWRK2584lyALVTvPKjYuOrFfByodIi6hgJ7wJQqwabSEW9bIR9lOMnqCqFh4bL+iMTgFDBrc8UQZdk9sjBmVgjZ8gTyGnHSVWuvGlrHxwYsOKi6lgg/ToSEvbnMuUCE2aBW5RTZ/GrZTlZ66hPEDQQFYJ596XaUZdTTw4uUssaD+5ohovt9u6vffs7e0b3HKQioISZnbUfxVTD8SVKjIPHToBnYnHOFiIm/vbp04cPHQCwNqcnixMb/lQNVy0yO1FP4VHaGEmBOFpU53GU2NJCDsUsTGF794512fbB4NY3jxzY56yncsZG+vH3g/vu/9QnPmKc5IrOcFrfmYGsizAT4iGz9gWFKr+GnaZDaKVi7VmfLx7bMlHCNB8vw+5uG+tdX+IhnjrZft6G0/ZKHeUpc25xtL/v2o2rn/zwo1994uuvvfDj4w98tHoKCud14bNiOHvp61teWc8AbOC2VAyj3nsCRnVpbwkiCII1FNfkC4uzb7/9zof3fQiTtRqQbXfU7FJVWWj7brcD01FCbZGlWDBQZjhjBiUIiiqt2yHBxre7JWR4wDNGDitma+YKWRTbuaW92b9fmdVtEXbD8BxLCbGmu1IRwvMz3AWgZT5Qvq1wnZ4R3Nw2uzCvaQ4uUfJU/o4aLdJ8SDvkE/llzuc5KbMCYKPaz1BIWaRDjs43wSN/u3YumfA0zRNQ5CEcEFWWli2E+ZZYcnW0mfjKxasOEsc7d9Omq4dggB/yRx557PyZt2cmrvxX/8PvnTl/9dd+5ZOu0FqYn+QJ2I4lHQuHPLQ7I6MDuokrbJvhtPHLC7PsnXgJvffeO7e377hw4tjkjYneHvuQ67fddoqM4u4Kx1lmJ6/bx6IsjTi26RqplWvXp9gjmUUId+ypqDQ41n3jxWd62pp+84tfuPPk0abNpeZ2VxR35WiEhWp9hgzpEDZ6+voX5jnWXSaxEXquT0584xtP0HuQ/W85ePDipfND/X18xpWN/CJ5IDffhpcXugtJ+Iv+oPa4p07y2BH/8ytTb/6pPCvGLjKkFAHyfzI0XtUMO7nU+l4Ou/u2ZE+dKfjm0kr+0JtgTGCLZb6Iew8EoFtDVBhdcV7pLUrzRNLS9Waoq4ygUGGZ5BQoUmRard4JFSpV3AxeYCmhJOagRpBf1iUKX3U/QwnZv450Eu4fVJoK8qwvw6JTcalaEtgyxMrsKletIlssYqU6OX1S4/KLyG+qM9wEKX7ieHTOERtNPJJqXfmm5M5ZtIARwRytmzSwSydo22l6CkbsoeVQa7tzaD1ZjmXCj81Gdh8UwTaBmYBW7K4AChusZkc7i7Jq5KTqUnsai/lBgaUK+WreJvLS6p5DR1576cXn33i79+HB9rjcm3OQcnh8ZKN5/fKVaw7vDo/swQFxEFaMZ0+/41v1t+Xej6AymGrO4TfosEhJR5YFPsE969Wy8rJ/JKepZnV5zRE7P9yjYvLTupnJa15RuthzHurvWlnbcJLGJrOvMYi0c8PexPKSylS3vdlr+cW28Kbg85RdegUMJkB9QwtV5U3uhvq6x4Z7Oyevk7vmzTlRq7VS0WxGOd7Tu7a6Nswp6fryJx5/5Bvff6pz+NDR2+7r6uavPzoojNGSzLxWZasou3bJXiRD0SN3xcT+ZXs76hrARFna2sVCCji0Z/xMkDRxPTModBXlZNhtgbxMccXMIMDjG0VyFJEBMvt62KvE8M6Mixt6i5kaPMZMJcGaU73w4xmxqWAqknyriy2XaJ/o0x1Qohgh/IyNjTqpgnVBav/Y8Kqtk+1cG5fxZ8FBv5iStqgv1KsxarGqQMoC9c4ll+SEags9A3J35iDKhfU368oyVewOZnCmewpsmgNCHJYpByUm8IgL4roZ/cdl3PoGOKPoW1m2BsU1DObujh5kzq2mfjBP6FmO8nt6Ow8ddFSnaXzfyX0HTrz95vP/+He/RpD/y3/x80cOjs9MXmbnyFJ5z/49MGeBwjAhFyM7q9jcya0JiYQQkPOfLpIc6h8dGWQiDMVXLp8fZoLa1bHWstndNXTt6uXx4b3cpHd1DZ49f22Ka6zOblpQ7hT5al6bWz53+h1bSp//pU8//thDy/MzlvDs+1G78c43BdUzTKXHOSjeWKb5sJs8NTnb0zvoHqqnn32G6ciHHv3ARx979Nr1K0NMVNmrwAWOkc4g8evQcFliEA5TqQUOawfJUhhJTWb+V2aKmo3OLRwpbAaPyb/lbyfre/+pr6KMyydZdHvv/9rF4klV+c4/5d/y0EahvKuZA6HZKcrBhGSSUmd98eR28R+pfyuWx21NUZNyP1oUXOYD9wtphHW2U87MNjf5BAY8nVOlc0XVoBCR+qxV1GdNwSIsIBBJIboyhXhdIFFOQrj5TlHhLyU0BrVC4Kt0QgQ71fgWm62FiytA3+gEYzCvihZLHAMsSo4tslEd5qwMfFV3DoOLlHxTcAuEj3FgfF/1vh8YHuF2FPZ4o3VYBgFIpGA1TRmvWVNkTykecLGCZtdTx1iiJUYdJSi/TAD5IapwESWLl/d5WP/QZN+YvNHR06dMVvmE9n0HDgxdvf7muXOnTp7YNzTQxofq6tJgX+fInvGZpaXX3nj9kUdHYFRHMp+86957XnnpBdfXOUtEy69M/Eine4tDMaeAG2IqPgYAvjM0IfPN0iqc23LEoExqfKOZUXhSss7SYRgaGNcYaNPSYG2d7cQlHBVDsZhWBZqkOtZY1mOYFYZrcjAjmtHLM9v7IMCYTHiedPcGSbHm3J6dn+Vga2i4LzvH2DyeRh6DkmLYpkPYfOJD3UbnZtPtJ2/98TNPjuw9SMQzRGPgaOHB82NBZjCIrFL+ToBetGKwVZqoDM47rE1/uRjy7Nl3xvfsOXny5FtvvWHTdWFzCaJsd8kgW+0a7fITourP0EjR8MhQotGTQpefylesyQAvxuzKYnnH/7I89fNaNTC91UwOZvbuGVta7r12+QrNHjhlOHD4kB1RfnUo6PjIiZI5msSQtWNbjKgcFbTtT9IXVvA/hGpXynzQzPPlYN0cgJmwll3iStuj0M9vwAiaJ44jVRZA1rPcFy9yvWsOu8v8yl2ok8mzWxszNkhxBA5FqE3UlaVPa9OBg/sO7z8KPatLm3zym0nj5Gp73Tk+vuFAaKoy2x8/db/2/sn3nnGk/Dd//bMffPQedxyhjvj0be92WxnLA6Z0+pquy+KEm212LSEUwoSlUiuzzhkGi11toxYNvJYCfWpygihXKGS7b7hv8sZrZlO32QwPum6kb2lu9vql81xcffnXfuUTH350YfYG2wYn5JcoD3P0phn3p6PMtLm8zEmD/r0+MUmngcIhh5Wwqw0++5lPf/ixD85OTrqZwey3sLRgR9pZRRlCBmFPlfVXloU5a0VRT5QJFQWhRsQPybBfEU4oS6dUdl5KSS+UkCJL0E2NuAiqqE8vU2vtuF36LIkpspHeKESKDgVteaXMSISK81OBJUQiNCvo0NqoWpdXfgqo0SuJxddT1tC+bYSM05Kg2EZio3aFpLrdRiWOweXQePYgg5F3t9mCFRTpfT7nXC/ILVZG5XtZk17CzRWZQBQiWWLjrS80CqiegFeXtyJ+EneILNYB8kghK8f7hC+NLU/syU9szQe0korgVYrDEBzTWwObUhWb8jaIcF8lY0TWLwHBCN1mQGCPijjG4Sd6olXB1DjnUbFPAkfRCdbPQaBvOEb0lGLwibhSwzoXaTK/ok/q6OFHaHFqfqG5s90FKM++/NIvfeqTLpCcn17F9PoG+g4cOXx9atG9LocPHqA9wIYUkivR3zkzPEQWizU3gkbv2lW1QPTIWo5u9a3Eir7azdLTrKZWpvFXL13eWt/TO5hLt9ddA1DoLpgJK8pNgT5G1boX+isOWfeQeozZugvmE83NtgxaT/+GECLI6NjCmIL3lmabBObIjeZWm3Lb6y3XNyeXZpesEFpi6Bh5ya2TwTD7hLb2U8dvefvy3FPf+5Of/4XPuOiSNwrePwCPm6laeaGiUEON7xAfBJDurZzkzHS+K85DjolEq+0IMcE0sPFTT2cvKOW9wlB0TW8nlhTqgU8/ERKhh0kk96Cr7Pc7c+VFGg53LdvcdXZ198upKHUx5Od3DEj6F/GhCscpCosJbHgtlTdN/8DgoLoc3NPs7h536XXc/8ADZ06f/eNvf/vIrcdso5OI0RWee/naVR6z+YsN7RYLbad2eXVmggk2FUFdjEYhzO4QPOubmm7joQzF0g8FM2K6L4Sf8aOB+Iw4aclP/czbD+ZAmOdil5uV3jGOQnqylmpaJ6xbo1gN6Bc1UMeZ/clWrNSUYCnACigoae7a4BjMCaOmHmfPqRDfePvcf/8//pO33jr9uc9+srPX5cPLDETHxoeXVuZU2t2Vo3mYgw41C6+toDMa6m52AvYkllcWt4vxRemXXCtNFOscdjfGxlBLKyu4xZnZw7eeuuXIQf75X33h6fvvPPGZT/7SbccPzs/e4NvN+YFVV9T19rhrjLGGE3A0mfqjlRpXV7kqoBCpQfT9H/7wxZde+ewv/MIjDz20MDUVE8AMAau97oU5zlGyx6jzrIgsuZwrKavPsFS0oRVFAokiaCekD7Qo+8QRwA2B8DNf5Q/Wob/mxFdqRDfgM2oR5I5qLxKq4WfUJdRhWzu35Ao2fIuYw2iKlg8rkBIJqTDxUpRb1NwnSPJo5muWnbH8ruSME4H2TlhFt7uQhGOyPbA7wjeX6rDFFNXSIhsjjqgZOvH/kI2vgISqiZjiUiok4PChVxJFpJOPZRMJX9puzjY+LSc/mBgql3IrK1jzHKNdZ1r7+1fsxaMDDVdGCDvI8W0h0lCsMgUR39afQU3xD6hqFUmssPnWh1LgBAYqDJqgQPHkE8un5NoSNJ445hspPjCP1LoNEUvvzLYlEByqIspkZo84Z6JBibvq1CgyDCOsaEfs8kXALHXVJ7BuDum4aMT4LPRhrKysW8S5P+8bHFiamXn2xRcO7x07MD7sbD3TmysT10eGxz7x8z/38kuvT964hnNRH7PVQ6CAxyw8aSLUhX/V2q3Y1I9JqqE2QaNLxG5HrjmVrJN8gZQpe8NUkyE0Wj4Qr4vQHWEyHRP6raXpjWQVsJ5I4qX5yKR+74lHRkujxDJK8ox85HMW2C0dXE0PDDB3X1t2X016RIbC03MUw1cw/KmPPP5P/+XXf/zdP37wscfcdYyacUNWrwGhcH+1p7ychgdFYW8FpPc99DNsJzPLrs5uF7OgNB754U2/6xfPmgGRySYusUaQMSSbUIUpZyPKMguLl6FSmEES4ytcuBAcchcha5oVli9dIWJG2O5IIYQhMS09wGSFKFqcwdFsIdz9Rw5xnfat73zbnAxza06bpEM2HYHpsU00PAyc2F0hMuu54hFAjdVsFCSYhc8gUaLy4bMRdHMNUrL1WganbEVgsrrLJ3aUndYZdE/9wHCPuwFKPyMJaLE3aFHIIwLgqc7MhsdvObm50Wqta+CA3ZiSn22oleHgwIgJ3p11Hd1D+3tJOM2Xb1z6w6//gAfpf+vf/EtsmPeMDVy89A4fCoePHLhw6eJYRx94CQ1Rd0UJbIQHdg1kyaBRJiG7u8xksTxXKbz+xtnRsf28aJx5683jLhw4tP/i229NTl3/4i995sj+0SP7x2zew5uirHiNysyXcbNkqwDZNlMz8UmFcxnnvJtMXJ364fe/e/bs+Y9/7CMPPfyoS2sH2KrZg8mE6K+EuqYMaiPO5IExGbHqgLkkh25LMjJMUhIJgqUXREp/BMkoVijJpbTaU6WvKl/yqvZUrdnYoaALvwvDDAfUHbDst7gh6k+R4ootAHKUGMYHgVK8FVetlRxWq6fkhJz0WmGD+TBqVeMsMi6Njy0TxMuq2RhBy2UxIFcYMe6oyFxyVVIDSOBKEFdjhVxECE5AmAZmNCVTOWEoD3TUb/U1it7JLCkazvys6KpYSiGZOYOWnTLFypZvI0Pg81VBjohQXzXi9WctQbtzChwFGKVeGHg0/EwUQKiIHE8W0tQdzXDpRd9iXVpLA5KZHdqD5aDAgt3kmXlJQAdRekAn1ESc9ZcDsRGTw668r38KC2EAkbEHuoAhIpwbAptnprENTi3aDu658PbpJ77xtd/44q8c3r9neuqGC5T4P5mdu64DwllcsHX4MDCwANxnavKGPrY9qsxgjbZL34dnwGpRJMJtQ+Kg5zEz5xbNKKm1WK/DSfe6GyKhILgO+vJIlzRChTnpcJCwszSW4Is8C/K1zX+KSbOdl6mIKM+ixs5oYT7HPql/ZIglHztuSIiyEs2k/hCTf3UJI9xPffjR3/vqHx4+uO/obbdPTV/n8JvK0q6HOpIzQKL+2lGBKf0XhCMkiTukCSf62luUBjOEGjya9EeMFfGqPjUceg0JIWUV2vUWG5IiP60Xdk+agC40IkNFNT2jDCEnG0TFAqGOE5IJSovmodw7j8TStKaY4lF5oxfAaHApqplOZHZpsZy8ycwtVYm527eDzhqxpbYMiHQKsblgqah4tTloK4Mk+ChZ/VvDTm+WH8CGCntcEgskSRWHkBwyHhhh1hlWHNr0gh2Iqwp58enq6x+GUSctSR6jdqF6R2wWxGzOuXefOErulubWdnhQbBntzOgGB4b2U2ax2f/ej1/davkn/9a/9a8tr02zdl5amrp6bWJoeMTw4XouBFG4oTrzObxCJotbNgLWFG0dTmYtL66cPX95fGTMYHnpuedZ669utV1+5y3753/pS391fNBl2p097eyMlsjZiM68ZsOJi6HmHHbxUdiRCQ37MFLWtlteeenlF599YXx0z2/8+q/ahbp+5eLQYC+dTtFFmWCzQoKrrGgjlVY9PkCD69CWUNBUt3xBXtbCO+l6NsMBIssXgFGIX8FNBkpGSn2V8qKaD6GKa74Q5YkcZiHyLuIoHeqtOuMCAjxlAiiNwv8yYCUHBtgknrbt6IJQV6HD8IRKrrhf5PHdCUATjFA+vpCaYll2GIt+gxTts5WKzFGugZICnHImKqIMIOsYUbUCiThqD+S7oTbHMzSbskK+XhpoYEgjSwrJpTUO4RIKs1FEsCN3mYHrm13aLviRVL8VCTHvJoqktgJDSt+tsWaoP9tcya3xGmAw7wzyYuoAs/Vjb6XLrWh9lP7PUCzFmS7DzXG0QIBDBAl1Jix9QOwwopVTQ9jDbgBE2pNFUsZWiKcIGGZ4VtYaYTiz/yOLL8/PtY8MHT1xok8FKyvfeOLrPV1tH378sTNnTzvlOzezdOLYKYYaMD7IUSrxhO6IpWe5zxNvIqXWdqmodHkmgwpFRVCJBzQ0F0rrwsTZVPCatNLHJMBdZBqMfYbHpMN2v82/jaK88AO9SZNeM+WZBUMaCEU3/Zcc3vqzvLatbpbZ2FrLHYDd7V3Ogy0u8HVgkG1kggwFgAuSjKGNpbnultbf+uLn/9kf/Esn1/pG9+CAtOAEF/J+aVgmobLA2B1CKtoNIKmh9mkZStHqAB8CGYNaAaBIXBtnlAJpFuNooDY8vV4I3YeVMLiR8AndIOtbHypcuuBb8fRukUQ8awny+HbQrc0jQ7i/DuKpgjXB1XNn5cd1VT0zPcce6caNicm5Ga5hcwqgqE2hC50Yz9ymylwaGUGkhnAFIZlSaa1OXTXsIuA9/yrEZrMkAq5sYFYRlOMRxP9sA9jEWiEvUkdAmPkSh28eGh7GLug+qfuPHTseS80zZ44cbh0aGsXmQNjsNBHX/mXdTMcaCmxp2+Dow74un2ydg81bXXfcc/w7P/zx8y+/+h//x//3viFnF9o3nXMccKtiUVyQIk29iKLcEmWZgnbtVCEJ3g3JRkvLC/arRobHmS06Kfmtbzzh0tMTt9318U/83ImTx93xtbIw3cNo2xH9Tb7HraRzlB/3VxQrzsxBIeptvUzdtzA17eal65cv33n7bXfdfoexqEP5JwA8CoQlwRfBahF5DFlTSOKFtjPWARrugA3vjBH9kK+KUBK+XdwwqFEo3F/mZEEdJWMetR9Fal3v68RwpMKFwmuKqCFf/TbdrkGFAurnniAqBRaZLNaLUX7qC6/0Ze0dXyFIQU6JIjhz5ozctWcw+SJqEwixAwQAEQu7SIdL1gUws0WHCU75Gk9lmgDyZVl5NCBUhfwVJP0Y7NdZE0nH5a09q0wuvnKpiBbGJJTSydiPDLrT0kYk2ChBSiOxpqi61JWvauS9MORXASNIa+MtVsszZMscKGkjew9ar5yEFFGsCS126FU5QfN92Fn6iXYFpuIQwfCg3dAvWLBVAKkhzg8zYYuHL2FgZYETuqsRz/pXGFyoSKe5ElJp0chAxtrmigsR5manr1yevXA+Fssb6z/3sY+6Svu5514oPCGX6LpUFvI4+QFtjCMdbmxvx8t0uZWB1rEh1z21h3YEAwCVHqgI8iRyR2tsTaNVpWPSWlc7NMXxi5rLNOBN0JHmFH1LHRy1kLQ2xebtTqjDY+fHThfuvtv5N1CFaUX/III9dHYxwuu28aCPo0xLxfCkZ6xMt5j0sf9fXF/55Ec++M2vffXX/+K/7qKySL+GkgxyZxoI0Wfu8URrCWGKJSJDgb8svUGembLs4WN/LIKuPf8coyYb4JuL2X6s64YUXo7e44O78kBgDp3Elp8hzYhnlevLgCk2Y6U+7awEVpk4ejH2ihEzBGOtjpdHshgeHWGM9Oqbb2RlMGfvdKu/b2DP/n25oyoLbbJqjGsBXCTAUKZe0ThUVlAUugpdl17wVmZVS0jflUnIz4qBxlNKd7mrzpwhIwyQhHg3AiG2aDA6Ect2tMh3Me7FBTrbuvu7B9Hp4tIMS00HF9gaXLhwaeL6VdNxZ3c/FRGgcgt2Zs0tVoRNjDvdHUmtT5VkwbS2cX1yrm+448HHPvXyCz/6a3/j7/x//rP/4PCBcbbnSytswOJwMfNQgRYNOJfr55WJK4P9Q0h7fobJ7Jorg3Tj7NzSj3/w/RdffJmi6q/9td8+sP8IZHbjRavzvW1bDvmgLMuQts4294tm9dTV7Xw/+ogNWg58bbj84PqNq9fOX2xe2fr5T35Ce69cuKS9ri9gntA1MIQXBIVZLoR+CjqTVNFbmCQqJ3MHXv8nW8hPNHn9h43hIiU9iM9Yivk81pCfO6y8NNY3NfiaJkDbhaQUbRUgAgGSrN2KEtRUFROW7SpKyDMjsQxUOVEjnRzP6kzWkRCg6JblMahRnbJkDShgNp9R+bCjzcBpjm0t38HR3ynDyX8Vb85Nz9ktYR1m+4fY7OvBzWylqk6eQGeKKHE0D42efqYFdbhpSKmxEKJmZOaoo4M/iEQ03FG2rDgS5IZEz/p5SUtpNweJtWuS21irsnmdKctWdu2y+pRBfk8/lenDtsootQGv9A6p0RIaCXWLQAqSSsGC5VCx4ROVrj5iaeYHGJdi1sJt8H3335btGk/sxTyWVpoV7GeVUOsm6ctfCd332fmKApcPXt75/Uvc2lyYmlyYnOrvaFuameJs5aF77v65j39seKCfH/6PPf74y6+++sILL1qqW6nz5wP12oO8lIlb9LEun5vDhzSEhC2oF9QV+B1IduGpr5Ip2XJGNE+stPAc+C/LHl9LTKfoRIlVtK8FKkFK6dzU4Ye3RkbBkmeQsxvPsKTNKXsBO9MsRoacy0DioLGlp7d9dsZ8kLkwujG490lYWyida5zF9aW9o8MfePiB3/mHf+8Xf/03e/tHFqgmMp+qMt0hpLFVHBNLqEQV6ASoqtlCd2WFh2GRvvE+sjyLzNKijGfZPH3vKQ8USZGtvlpenNrBfMlTs8lgPMjgaRquIXy/sDPy0cpqXCFBQQErU232MGNFGvJjnYLYqHp0gxo1SYEVnvRQsBuQwOHzSlVBf/LEyjN5yriSosYKqvy1hEY5NaLt5cs0U10hHuogk45jVgFeady92aVAPMFtd1dftAtx6+fKGrW2MK1mG0PVY5t9pCOasTQz/uFiBMFzGuMhK2V+PxjG2fgdZOPb1Hbh6mxHV98nPv35p5789r/9N/79//w//Q9O3XpgbW2O6ii0U8anp5hKkIHLUNnrTM86/+Wi8IMriyvf+c73vvW1rw90d33m079w9Nhxbk+mJme24iqqp3ljia1a03osqhVgj1fP2UtnyxKXae4Ntfmdg5At9Fzkp772ziOjey+/c66rtXOgr9uSDh7YfbpNxB0Ehi5IwKD9lCKwnB5HA5WEKpVnDiDMB406pYYwbj2Fhn1ekne1QxJqj0U4qJ/oIMGHnlIQSY3XrpRNgENXXpWPw7+iiynySPq7TACGR6rMYEH9uHqzJU6vMxUcdeRs0KKXulVR7BJq+Z5eqY6TJau69taucuvEGtMvrGNhwRIoIkutlDra57qev14nCyVWxYmFBbBlQ+q1NFVIKRWpMxgQRNLGQje7iXhomADXAyFUolEN8fcY6SHt2P1WvIaUeFNImUKK1/CdSmsiAHztpVdSSobkrT+B2jbN9gvXa8thh5qq2RbmBAQ/hR2GUSgygC5n9Z1CDQIcR1Lhrcaw9CxbHBwrK4qOtq6N5jUEU+kEKOFPKKGKhD7D962SjMy4zs/6wbPbetW5DEPHKdkbE53Nza79Wlucf/yRR1zzuzQ3v7a07PCLozFOOYKzzlWOC2kVquXKC2zwoW16RRdpjmr1k7dQAMC0vgYoi4gSmqatCoRlVvStdIPE9N+x3RmVYpgOtJFB8oX8pRPTM2lPQuUv2hQ9DNkk3EKqb8qzdEJaGnx6ptXpBxRcwDVLwqeiI6K12dOFj4waBxCSLGeqjiBvE3Jt39jY1dmF/eMjtxw9/M0nnvj5X/qCklLezrCqIOWZRP/vhndfADI9kA0rL6XPz+ccHPo2/iGq0m4lGqQps5zeyswesn7iK5tsEmWQIrNQx6R+gRxfecom3eeenO/IvOwyo4WFqdlcTuJyYOaSdr+xflvLxjSIqtCn3ILXEDHCUo5ZzOeKquBJ3wnpoHSjLgyuqsgPphK8Ko2VISFUWoJ09qNe+QbYCM8ogHBCHyt5bzWN0hh60HBl+py4rS1vshjo7OjZ2FxkK0CBbuKYnzvtbHpnMRlSe/kQc2ru6+6K0yBW5E1bs4sLfLDZPR8c3be4tHbu0kR3b9eDDz9+8ezg/+X//P/4N//Kb370ow9vuUiMnqnMr+CqzYTw6ckZk8iBg4fsOT/5o2e+/rWvw9LHPvnJR++/z84Dt0bEHYZbxhevgq1bm3Q9bm+3gHWc3VRrOnVc3CIAaiuKsCoRNjD9rqUbGTv7yhssuHqcP1hccJSdSxI78qNj+1yJjVtitkVmgZIESN1lVJW8DIKkIQHYReLRpHtT+D3ZBkLyM19GnZEhEWJOdyQ9e1v+tXiTs0S4i1+ODXcJALBf1dQSn6WmP+MhAXKIynoNieWb9GLp1oyUMouERUVSgUPDH69ghVAJAytQslfR7uy6kiUB6zVKWCky1x40f7DV4TvDJ6koDc3YtxwxXjEsM0cMGRwbLiqm2tJK6qoAp2faWIKIDFpeEjKP+qoAtjg/tzhv668pMxaRQRMK5efUr25qFNWIKEd7A0uFqNSlOvKG9taKKjDJVu5TUp3gp/TkLMMZAnPxhSS/K7hyKELfiQgaAWr9DV8K4goKECKCr3wZbGR5YBDlNLNfzjHqq9x2hivRYhi6xWhez6k5mcu8JKuQKlJG0gX1+oP9Jj5xFhYPjgz+6qd/fpNbdO5iHL7Y3nr99Gn7gPsOHWYwaM27ODff5dLgcsTXdLKyMG8oY5l2FB2HRzvTM5Pzi+uMEA08Ep2DkKmk4it8pgBXiAYEkcK9LNZsnBxurnBAiVCrEq5CWIgXHUcgkh70KC159GyYT3qrzHM7c0OdIfDyEHrJupuSz8ljO6PdNi7bT+oD2207fZEaraxsaxeq88uiJPvVLPM211f00wceuf+Jb//gj5/46sc/9dnMPFqXhYQPCuD5ogBcIros/5agB/wZtEw5o+TeWJmcuPb6Gy+ad1ma6239olN8QjpAHH54ogCDBgOuMCtcV+os/IByuYZKdvkWFPIXE1L5Be0iZZlgrlzhTeNahpwTN21ttjT1RMimHtHYWitDOc03tHwlqAX9gIquEasK2QgGilxRQEMcWmyyzekmCsMyUJXZCFSqKI3eGZBFfYcSI3sqTBOK1rC9p6u/p6undXtlrWvdYn+jy7lxpk39qjXrssw31J2f4jcNudNQYsH06gyem5scJ+7iW65/cdHWcUGSc2RqiFO8iCncjfEpAAwKnbZOwtLQ0Mjc7OS1q1MdLaNHj92Fef5//4v/ySbUJz72gGNtsVqjn81UFYLk0e3I3qOLs4tPfufJ73//hwb5Iw/ef8edtzmsMz85aROTqRKT0PXlBSQ10N83NTnf3z82u7BpBc5JNNR0MKjg5q+jZX5xdqjLPRpODjpJsk6VvbawtDzl3tBOt2f0O5DG1nNhwZmYjq0u2zPtnQN2gQsbCLWUtWj4ezhnDuWVsMsQ5DC3+mVMhGVUPpHBkGylC9KnQmO8k3T9LK/Dp+orb7FsP1VSycZRQYPLmOvWB2WgESdJbp4J6k3BBhbeF7VpZqAy3nQBAjC1Kw1JKE0+PwHnZ5kAmHus2vBDln67oqdK8XiFCVXc1eqgKIeB6JYtxW0p21EhasQY3A4QO10969tK+eKCWrRCKNCFv3kbdr0rMfrpE+ze3J37Olx/RPvtRB7jgW3MPYsZ6iC/omtQTs541tYqsmI23KdWVJ8GRVh7GSZQl3y7OSsaVSqEcReuLrHNxePGniEAaOjPZ/E2iYVGLU3eUnk4eUqKbi0+cEsIUZQgWZX2cPHEmKM4aNqZ9rPbgyNzXNgifmQW2QUXbaTC3Y0yAMToM2rNVkiNQ/aWJlebLk5c+9Uv/UrT7BTPbbZdzJzvvP7G7SdPtXX3Xp2a+5ff+jpmOdA3ODc1iS1xxEN0dKPe8vwCJZbiwQ8wbuXZuk3NTa02rQ/0MrLcjBajAI8mTGtBF61rERbc4p7eKz522hz1ogaH/yAj4oSmo64oAGgSoSHyzk5/+pW3qG6n43coYAdFocqdWaemJGtYF4MDCMtB5Ix1vuJz2+zq8pJ7jlFqsKGzsN2Qc/4j9US9jEq6qSAtHjZW77392OnzV5789tc+8OGPN7U4uBgtytzsCvphUw9ud4CHOje2qPZEaFo0Hy1ynaOXOK5ZW1t87bVXaLFP3Hro/BVnac83Nz/G8Jy6GfUTbxf55owinkvyoMG4hzfqbEMLDZlKxLxwPwhoAyITdTzYLFW6QEPZCdlXnJ6bfe7557VaITqdFN1pw7RQhYlHNyA4gkTEvEJ+MM11BrpCQmEsgMZjkBOOu+7QSfQRXsBeASyig1rUXNcfNnKtAo3hmKAU5lK5UCQSIVo3KHTXtrk34m9bU497eFu22mn5+WlQtYOSM3MTHDtxBL0Sd4c9vD909qgWAuiJcgErxTLNzolTtz/1zDNNVy7ucakOCQSMrtlaWe2wlGYEFYErVziEFa4u845yeO/423NT7iJeGtCgltE9d3FD9Z/957/H5+udd+znVmptZd7Z5fmF1SvnL3MW8J2X/8TuHA31Jx98fHz/UE9f68r65MTMost1OApdzTEClnj0102WU6yJ59a2Wty0XFzLdvX22P7ddunZ5urInqGYdS8vsL61ZYH7L64um4lB1jc0uGbFiS7Z1xEktW5zu4PbUsaXrZS0/G1grIZ5ERD5UjRwcpYeUjO4rZyy9b2OCxtdmTTCiLEbJQKr8MMi2yHnMgAJ1Jtb1OQ7XVPyh9rVUfi+/pWF/hY6Qy9IYmO10/X2mWSyWIBkClFlE+XJD+yKM6eHS4aK9HCIqr3FQvP5l54nXuD7jNVQl7Egs8Wr0WGtdfnyVZQacoorOaOazNM00D1oSd7b38vzL7uz1dUlJYzzAOae8y76sfEcrOlomZpaa2kfzPFNbd/eaOt0wH4WC4HScrKdb05Y2LCXEFOr4jXH/GrfyMhSY/QTBmHxzGPB6eBtwIzjyzXdaRnmnI0VlD0zrQ/dkzOhlOazOC+AIZ+bBiUmlOWOgaKHcb+8qmQPD5H3Wk23nhwfwwyzag5v2pw/gm7fyuypaJ1jApAoBYiKS6KIbk0n7QSJ5WV+itdUw0Gip58lEvPQmHuWQW4cSjcPChiHxGrU66cSMDmyrxN3cyuLvR3NE9NTUOcaXitcivz+nt7vfPuPT911n9vev/Ojp5c3mwbG9lpQGOH8JTgRa4HnMAsx1LyCmUJWmpOqSG4WIk6ubLA2GezRhYEQCjQ4gIVQEVXEibAabUxTE9KuoKZk09ygRhb0WA9ehfv8/5n7D3Bds+wu7Dz5nO/keHPdunWrqqu7qrO6W1K3JINEHBA5zYPxjBkeMzzDeAATjAlDsAQm2RaPBGKIEkYYDBgEQoDUGMXuVurcXfnmfHLO8/uv/Z1Tt7pbLQmQH3bdes/7ve9+d1h7pb322muHKbnkn0vgFmTH84Kl3mXg5Ih2H1aVNxEVdVUFVh4/G6hBPdnN1mum3rimxMStAfKHJNNkXxPeykrDYX+cxYb7ey/MzjgU4t/9yI/dfPXFt73w3jsPl+H33NzZmzfu9Q/asbLBw9IZBDaBQUoji5m5snk+uHfLqtPW5pJTzxwkMj83/rGf+kFTYKGW0BQPpJo4O8QwnlSRWDH8Qj0wyLoOMbDfs48qNEYCOWOtj7CZOZxJ0JwA7dqmwNPsxo0brmL0O+orCABkBbQMkJvIv+BGHta1YZSf0MK1ZiNtTLQAQK30pF6I26ROwF5JU+UnmfwKm6lU5TRc6BaCSako6ahXWA9e/0N94mIOccaFpKrALEwkLCFZFDP98A9VGE9Ozu27k2saLHXGHOB8BvHfvnNTiD0oKL7miJXMKHDqCoeIEqd3QYseO3UvnjvPhfT2rXtPP/2084RHOn1PPf3uP/VN3/In/ujv/uBXvnvx/qNP/PiP3L+R2A9idr7lylV77PQrHMrJ2Q4c7t0dG64A+IAG/AM2hmenHuMptTf7s8y9s2evYlVZE7Aq0Hu8KvrQxHhmw2Ty1gbOBKnEstpYXDPxRYIJSBUCsmeAe2h2LWk8RuyJ6QX2X2C3ZJmw3gYHzTa3KxQdRJeXGdNk13M/CzioMUQB/9tcX2vbaOR5TVyVpaJSk6O9N8Ksb42jevJ1PI+EoN/TMs6HXiI+MGWhcgbsSMUd8DDIkfriygUVs/CbndXcp4b1SgKiVj6cDcqgpjDWcL38M2HQ//4wFu7GKkDx6EXBAskAvy/EcVAI7batiabwSm40QGbIw5fBT0ylagyDTlVHR5QqZsYxZqWd3UdLy2YAfsq/sbVG6qVTmBG2GDU90+dDNYOoMahK3PgtKUob8lwKfJI8qeqqn2X58aSl7tuUXzl9JL9ZpsmHb7QAbrkBsnAiB06dbP2XL1W0ahVac6h8rPp63u7lyRPp9KHbYnT1LCW0NaJua+HUY5ndlmDoXXUI1GDWpl69e9sMYmJ+gW+kuCsP1zeuPP/26w/uf/JzL07Nz7/nubf91Kc+yxJy6fLzd66/Zq40MzXFBQgDHhsf21zfMAyBt8bUsrDC6aN2vWTDF+uhjvhTwIDgkLiUV8t9dbpFOAshui9CZ4+FtRiukpRpn2n+7ztOWDHg1uWmngSvknAQ/QqjLywPrWuE2veoRqHJoDesjFCP3AVv0Mb6zeuJbdkgLZFA7wYThHQC/qIZFQBU4ZnWi8q9v22eODg3Ofn+d7/jxz7+6eWl9a/+0Ndv7B05teP8hezaz/aAvn4B8a2DGeSgy/HhlqBfu9v0wmvXX7l1+zprEseqcwsLf/S/+QM/9LGPfvozLy4v3h+0Z7TTz4c/oflFwoCLUUEs1GfyRqbmQBQo6uCyKjYizEmKsAgBdEZwKIcNvPLKKw75Qgyek0OiPRPDTQNI7xrCuHvsvlrYUKNw5mRRV2Zd9taNK0QFB8m9z73yXGoCwEhB4yr4Z7j4HLmbMTT8z3jGdpMIoMvLixQ0th1M0NjQ5KusRkGnilC3fCARo391deXWrZtzc7OgzevTRvovUz3/BdYhvk93793hvG8XMCHyjne8/4/8sT/33/7B3/2etz87MjrzgQ8+wRsCs+63LxXUa9LMjwiqxLlnqF8U55z1W4eVHsVZtBZ1YBm9y3ISFlThrDMumdoe95Vbf+uRB+PTnd2+YaN7MGhndVat2QRjdnNjrpyotEF+MGnJtMeSFZTGA7NJCE3XSr5L6abBUv9Vin7dWFQ4WFSWUIUpbcYQXHwcIdFy+xtC6Q5pVZrhVEPxc/nRlM+0PBMCw12EoSI/wtnJbYRKekjqUXiZDeObkkKYHLI7FUMmg0wyzIYqg1ktXbk+MUvL4kdc8p3+BpLpcqwfYRXhkAyFtY+3jSmRGBJ/LDVsNIkoOR1dkMjTJ61Tkoy64MA4M4DVtQ2xnpivDajFecMJXX1edJB+S2pRwnELORMpV/w0ak0IoVlT0LJio1R6LkN91a4BUelAikqelBclxDBUj/JblkxVNA7ZZPmrOKKrlOae3Lg/TSmmkietlX65P726ac+TIXm6angypBPdhInIoM866ZGqahx7Rsc7pt4bO1tru9trO9s/8vFPPHn+vNWeG3fvo8Yf/ejHbCw4d+nJJ5+5Mjwx9i/+2XevrK+w8AF6OFGC9oiNnnAUdE/wVHRmGYEFWGYw9NfwQHEJSWiDhBPTXopVR3MJSvhHCd463NrdzsJAdQqg4p7kYMI6mko3kwC+hsRt60gy66pfxfpdsX5PmgDI3MwqDz6IpRLrmctGuQaq6F0MK0qML0q+8p9ilFyDm/I1VUs9EX9blkSCO95j9bl66ZJOf/8P/AjTxFd9zTfwO9xYfzTSMbOP9ZyYP3NWBEqbtjayNtPLut1z/fqrr3z+05tbq1efuvwNv+Cr3/bcs9wun37Lld/7+//wnds33vb8u1ivJ89Mb5MyDJGaApLIyGykJBDIpt8mC23RMiHEE3L53l2ehLcEzTYQ2LRPhBsCc91kcDbNahxUX6RA/SS1+3ZtwHTNrKJSQxVvAy5DdjJDNSjG17XdlJjoanllgUhm6aSSL/zrlSq03OftXbBFZA4HFSwvar82KAKJjo2GKXzh9ye/2Z1sP7T5/N69O+LUMqANCO+zv93fE9+KNyeFHNECMQK1zM3PirmmGeKZa+ZQZ/aFd3zVH/rDf+Z3/o7f+ht+1ddfe/lTZ2Y721trvOu29y2gQwrjp8HmZP1He05kS3C3mKWLSUVbNJeiqOKVDTP1q5ptmKyK6Km64B5mlMUygCluCwhWFHAl8wCzBiOuR5pd7DUCQAbcL8cGB4/pphSacAmFKSQjxVwJVrGNwpVQvXfFe9J7xlRmYhgcI3r8QDN7gOQ+lDOqbzKHcOrTfCJ5Gysfs3sGJco4SkYg6D18pf4piiKmtRHhcTkJfjRsCcMDJhgy4JxEPctsxcoK9GH3R99oPJSYOT6yRHiMKHZq4JDhfqq2ZBhf/NomkjUHtI/AjEIYyiE9XAslTS1QpN4yiGbVIS2pyXrDTBlA0Ox5eXHJktK46dX4hACK8YFjAgo5NQUHt9FZAArWWqUYyEqO7wLtlFhJDt1s9+36eDM8qXZl4Npb33qihtPMLf/AwsI8BiFZJPfIBySBZG6iU7rmoYoAtXh1FoRa6SmoWtAKauW2q6zdG+PNfGhMAyLCt/7Uu0bAeVhmpcjg8MMcNrPuiM6+vqeeeRq8vv+HP8Lvc3xs9NWXX7m7+Ohtz1w9T9E6f/Heg3sL586NTXR+6Ed++Bd+zdcJBLS2uMzWialurW6wrxnITDmLf4aBx0ARJMYOM3RmOfrGtgmTdBGmRESHlWhsJgK2OIj5Qk0X5gU+V/JW2pVfKKfGgALoQLZlKFglM6TUV9dMg8Pku0+CzVpVb4PBkdxZIssyjywhrTAswxy7QdrVpHthWIgjxRkIbbZ6SRmXSTtDXDu7Vy+eP/zQV/3rf/tD9P2v+4ZfZn937+AIv4ISb3F02+/dYkZ1SCd587lPf/r+vRvO8XnvO972i3/RL3zyysXdrU1RKt/ytre9911vff3Vz733ve+DZA5qHxoOVAO+Mn3peE4APbSjOwafzd1dDjz+MT1fu3njxq2bXIlEEiZfgZtDp0G1BuMfkjAzwFIbrNKXxzD49L4B07Xd4DxeqdSAuup8ywlFA+fwhS7wFSZLQ3gPZQN41xRUP0/rffxGCXAAYsij8GTN68wktFeNrTq2kdhFuuRzWkD7HWzXL7OIs2cX1taX7ty9JTbR7MIsyclnXDO7H2RMT0ijtgsRAELYGhrLrcvL405oMPd+4sm3f/XXDnzH3/2nLHu/5hu/7rOf+KEnzk4e7K2LeBclFRMf4OLfcbANLi3+OJtFU2Ww+GiEdIj4YAwdYMhWnjtUBZ5MWBvmXOt7FeWUnHAOzMqjpYPNbWqCnWVKhhjpPCTV0mLvmKwS/V8Pqifh1GHWpfuHPSOkzOdBOguzwes0IhPnUIFvJWNBfQgh5omvamxQRs4hiFQwn2hQMgJFDjJSiVzyX/gjCunmSc6MVCle2YGEKre556NfMsocZjsDF5NDNtUbSgXou7NyoBIFiCVnzykKAVaaj53rpTm5J/GwyMrTEeUlvEGjozAltUoJsRQVPdE2HfhWFoBqT6hb5+seJOl5XK/0vWEppi8zGlHa+fMX2LQf3L8v+nacEIaHtzgw6jezlUYYx+Btuku5ckYgQtc1sizEHvZQw9TghY6I1EAmaMZ6YM6nteEc2twWkMNhAnnMLTWAaFGfWgYE44V/EhnQaIyirW9a5XU6Wd13da9iuOVjxZ0yssfvG7PT4MbyWgmptlFVrQH4KalMFQgvJZeGlQYI+LW1NjEt0NnI9NwcLelzn/vc8ubWJ1/+5NzM7PmLlyZm56/fuTN37tzcmYXN9ZVf8kt+0b/4R//kIz/2saevPHXp4kWbuq2sj05NkOnGCZ8Gh9JX8osoYrDu6a8g+ibNe9skcoRyWa4Lo8N3tS3Qz0CmYRoOmT0MCmTzt4k1NaLcNytvul+jng8zCF2WBKclQMy3J67ETWGokcnbDEnc8upvVZrmhoCqoOY1lNuMcEtaC3Mzi+ChmIWLDLFxsUbrROnnn33avtl/w0P8w9/zlR/62ti6ege3LEViB84NH+tEAVl68PlPf/zaay9NjA39yl/69R/6mg9sba69/LlPzc9Okq0CBv/6X/PL/8Sf/B8+86mfeNd7P3TvwZ2zwmkc90dNStfUFpRAF7gE6GDx2wd7d27ef+2112j9wsRSxMSI1droaRIgWH9IoPX9nfWYF1pHALnbpfqjzMd/nt5TRORsmY2AjsjZMmdEKsksQ8jiRCOTwRtg7OYo3D8t8/Eb8IzmqPaQllRiuNRGNiu0gCjiB5Xun47b4wV07/VRHqGaxey0p+H+/TsT0+OKNpz5VySXrGGkGV0CA/cPofX2XbhwTljWV155yWKA81hu3lmeW3jq3KUHf+Wvf5eoP7/2VzqK6yZVEuZGEcTVsBZRFm0Ktk64t1nG87hRHOykMnBnrRgVN1d8qc7wgBPVhgbt7sTeQCNn9pGkOfuomTUMjeLivKvzGS/2vgrlErqIFYJ2DvNLi4g0cMOUiz+UXYeSlHXjIGxEAENQxjHS19YzANG28NYei1XhYW5o422YCAhQiZt9IB8aSdtVGeYVfoF6DaMeN75PxoS/RhnhmRJ3lxjro5eE3ylcqgaz9Irak9NSqZ80/VA+zqlJWHByanAxt9SL10bL0hTCE9swdVJdOTzGTRZuHLOsRaoVW02jojJy4cmoGshSzNtNwwEVScZXgg8eyqPLcElponGeXTgzOTa+vLS0vrKqTgIMkAWoE4gmVssAPNIWGDQtfS9ZUn10CWx9pdGnOFVcJNiLT9Q1DUu2di3SAMb6lJLExGysKGZwYh8CRSNrJiA8RStdPWQDhfrarfWN6mTzHebuxsBkyKsNNViBdl6cPinWKQfrFu6f13mZlJbXVMO1Zl8qgSiBvp6dX1gQ+s0oo6Lx8alLV676ZHhiUoDDzvAQWwdDqbnzmbnZm5trd25f/+DXfM1Hf/RHX71xDbnGI48ZSMzb9Y3oq+oKLiogKg1cAp9yFIDheQqR4uoUv4Ugq5HNapevCrexuzBeT0rR0FpQl+KOxaXMqmDKOOlUQd9Pinm3s9Xl5MgwcP/LHnQfuoYkqrcpzrgUJnleN6Fx/2U2FGbRPsln+eevl21SZbUgB6hpJexOLJtzcwt37t+9evnSr/xlv/h7/u2HP/aRf/fCe97XmVx49OiB0KzcXEiDu86suvnazeuvTk92futv+fUXz889untTyJfzC5NQ8NL5eRPg97//HV/x3rf/1E9+9Oozb7UnOcoZrhhVRENJGlyYm04f31HL1abIH//Mp4QOtv4JZ2bn5mB8gS57edi4yTdMn4VR442ygvQ0nX0MPu3J6VXO4ESBCDbKqcyWTgkeosrmVUu+bRlUcVp4wFVJUe3mi6/ahix9GxfXN/JnyEZHxxs5CEnCRuifUQxKhE2F19R9t0iFoBezBDsrrQQsWYS5P3rp3OXkCacr3DegJwk+qlTvOFRqAvORxQDqod1hZy9c3lxffu/7vw6z++t/8x+PDA98/X/2zp29bUq1cyeBBtbaMBy219831ZkSrUSvI6gcYwB0MSuPuIn2qlmoRm6EbFyMxcCgE6gyAe7rSTRKUbao/8trHIeYSCKdxKyoc559ypiqkgYV4x62lKlnP+doD/0PPRFNKU9hnEYVu2tdpEgbCmwSrWGwBo751CcJS1TDgYPLSZQpyoMMdxhMSlZECi+zkrEJ7kc8ZJU4t0aiNqawzihBzsZGfQG/vMpMSNPwdL+ZwsJCozMFJpYukJ8wqP1ifyknGJlCjFMBFtKSI+lsIlv2DVn6IWNkYWDNKkO0gFCiYhsAfBytMB30v0LS/2Ivua/wiECqjcaa51Ui1Q8OLTmr7tp1h4EKc1vBVrMikY5UgjAKCdIc4Sf91goz1WvheMld4EwqtnpiVUl+0rHNNsKYIlHTIY9jzhbbqPnG8Ms0JhGq6aJxaRU3dDTkboJX8RKxISWequ4b1bnR9XBvPQRI/6S6z8+Mjdd5knY0cRNRoarKn1cBTuMOeLWR2qk15wYpknCgbwhSbqwsT4gJM9yZnJh2CqPDQC5deRqYmFUdgrrY2yPg8/Vrr104f2Zva2N2ev6ZZ5758Pd934/++Me+9qs+2Jkef3D3zvTkVJRuaFVoVG0I1OyvIGDp5q2/rq2PWqJ1Mah4kokc80ZwnUywNJM3XkTpSPMz3qZOfBb1GoTDDFoPg0lWGlxTWiX36vV+Ly89D3iTXa5C0ryupCXhLUy8RkflEL1VF1TwDwEE7cSnxbNYrHsdZEBxA141GsUem9e3RkeG79++MTm/8PW/8Os+/IM/+C+/57t/8a/8DQ8f3X/qyctccu7fvfWxH/0BVsxnn7789f/ZB+M71UviTtPOReaxPLWzsdInEODw6P/jt/+2/+6PffP9uzcvXX3rytqqY93ggJkvi5guQyVUtLaytriy/P0/9MPrjn/o7WXop0YYLP+giu5QPCfHEkrXbJokaDAPFBq2tLuTez0IZApc7lvyrdXUAmQu3nriFYBRSlz9lNy0MuXxs+UsoHbzexIc+FJJv6T6RPmou5tNOarwhaVtAI+6lHprFL+wHJ+oVCRUp0r0YuWsOq++9iKGfv7MeaGAagAVHoTKYFVCa3beYf3EMlrjQQTun/nci69ff422bkfu+vrq+7/qGzTs277975tVfPD9V/e3H+5urVKa8ZGh3pHjvQQ259vDaTlRWtL44BdYIHEGCAzJBCTkBnRQigY0OCR0Cm9gfjSO0naYKy8gDCLfcQA52I16JMyFo5/4upRvu+f6TrDBOP/8haaDx9kQGrQ+wVi4WhRT9FBdZaaEmhmekiBoW9uI6fIZChC80WK2Mwwa7oefFt80mG1AwSv2ASkQxKzaYkMoqAa3O/ph+ERX0bIxYrZFr8yTpccdIxXjqzot8yE4qFe2wTHxArIAIHkVhlXFes3oH4h5iN7MCHMCTOrP3qgw3/SnJFZ14QQJ5deGYpJByKY0q8vgEgCey+AhlYKf+qP7D0xH8DrMRAaMTazX9D5svWqNmAnRm6Bap9ZI+Iexo6niU+mOatKhYkKaVg02TwmTafeaG6SNu4nAYkoUglrxkQUh6J7+/cGssZU0T29DgcZYowlGG0OsrRIA6uYMx2lEVjjB5VuJehiABUpJfirUV771tFFUDUYMcPrkg8oWKspOIvOCJpfaDKNit8WWp6T9vZH+QYtRFDP+J3QOsWt9C4DMdh2HJ87OcoqYvXDGpvv3vvMdH//kZ+yS/7W/4df+6A/98Kc/9xmbYt7y1NNzwOQbYcy3dzRG3UaaLDXyhDGQse9i3/oZZjps92Pz2UrALIHY+Y0ad/E4dvjtighmg0FfAq55pHeZk+p5fBEySrBAf/JcPjvRtuKfXjlkapga+LBZ67UEWsFpdNXIo4xsGevMMdtz0iIA66oEoV/jnEFFPMAR8sZeK+ASIacgEPafwRI+YXpmSnSgWzde42Tw7HMvHOxsjg4NTI6N7O1sfOrjP7a7ufbV73v3r/vV/xe7kEY4CB3tiaY/Nj1NW9rb3Zqen97nvX648653PPdf/Oe/6R/9k39jw50lqrHO0KYd2AL3T06SfLat37xx62Mf+TEWfxH46JvYGbRl6NeSwlGmotgM098g1QkRlq2vep9L4HdCP3rkPtRShoimeWCmoKXj0LswSDeBHSmT48GoEN0Jy86v0kCMAhZmRrj4yAlZcfqqESn3mGB/lzzcGDDjokbVcRbzpBA4tUBm6J7T2x85d2VKpbSwwUPWAGOtDaV76m2lGjcT5REygJXRBiLJogiz2Lve/v61pXj+aQ8HX2MoVihIMmDENh0ekia1Cc3TTz/1qc9/ZmpuYurS09vbO6sb++9419eYj/+5P/+3vvm//z1ve/aMDfsbq4+YUeyY3rLss787PbWwvLZsvR3viQoG9yjhGMoRY/eIscC86H9RONRtRyst9eDYBgWb6oVZtCe7F1YfH3OcQ3EsPTzls9hZtvxMAnZEP83HBjESEY3HLytkHk6RQcMMMyulmxpnPTLu8niM/WQazgRiHrC7Jwa1X7hRK43sCHvBjpMxnC/cLKQVqEKzNi7uw1aNGow6NlsaxtAa0DzWChmiusX/NWF5/OTkyt3ACI50Rnl+R6NThAl/vC/oJQMjOU5OO20fyhXqKgOaQKCqivYIapbYc9BQehoPVEjiOKBxaqqj+kwaO2Oj2g9EPvG91kY3QlLFdg0uZLY7j1u3e4TgCi1xF1XOzEzPTE/tOmFnbV0ffMujVBF2oGLHWSePMCQZHTVREjx28iObWynsIKD9CVKSZmcdA6QD9GIL4QamNZZCeXBMjGne9s721OQEiBH8mppdpcfZNFHSvA60UszjSX81SGrDCzubKuSJclc3t3QyBVU6zdxK8FMevZXZvYHhzp+iam4SHb9sdgo0/EqWxbWAnntNyx9dDxIAq2t4nxLk0kslATBYUYL42JlAOXd9aWWRuPrQ132IH8WHv//fvPjyS5xeOFmHuccZo1zCMSJ1x0F8EJbg9xqsQAcPmpn2DPP6mEJFq9uco63y4q7HoqS3wGQEz8bmOgrRNQ68juRViFmtBkw4OExyhkkdlqLMibFJPYDEUblOOuiBIFIBkUCyBY6oEEm9OuEa1APuaDklKc1BAAoaZIy7ksAAY3psYIgoEpW0pWX5JEjQyxbvfDSTp7H5uc9/+lN3797+Nb/6GydmF4QXIwWP93d+6Id+YPH+nd/8G3/N255+cndrncvfzOQ480KcYGPSje6YJW+T2UEe8ce/+lf80k9++qXv/9ff/Vt+6//91r2HMxOW4gdxrldfv/1D/+5HHJqmNSMCbMSZKsigj1FDGp/ubrZsqAhsEZwt4YPpaE0u4YnUfjY0KJzqWnUbIlm4CQh+1kktANyyu/8y33UbFKw7yRVOV5qXboQtEA9jfX1L6FzDKJet8C9RqtWazAdbiuE4Tj7btqZs3r9/d1oQtwEnTq+HHvoinCC83rVa4YiH3U8H+s6cmb9996bFrCcuXMYWdvb2bQ7QmD//l/7WN//p3/fkhXNWJejoG4y1DpSf56O1rfmmBHg9xQ4yZLrWgSTHbR9GJpPAgDGEjccgYnfcxvauGBy8nM/MzAm+sb68gj0xCaPdBj3jQlpwume4yWfhboa3tTnuO5lplChFq0YQNobNDkDgZEsh7Z9X+UFgpJwUhXolmnhtgNHxOPcU5uhIUUEVGJWVXAntp/lhz3A0DDoSPyaNrCioGjMKAWENPi9+YhEcG8p8K3IrDDpfQe8s6uUTwHdzOgRpQw1qDVDott4m8Ke4QGFGzC4ctxjTaGl9HJotcTlsLVH5LJ4y/ikzXatUdQXx/II2ABuh1Ya7Io5EAWyzGXFdLVIDtXOJ6amUVPGjUpX6A8CUAhjEF1DrLTjCwgo3BGfaaw03thmYfIX3pnhtGBXW31kOXjs7dGqKhZaNFxCNG3gTyYAIQjW6RTOt9am4UpqgBQXQRt7IQN1KV0SqKxqWp3XAVTZvdca9DMV/hy0yZ17QBVAkNlGforlShR9mbCTP89D8S7di5TKYuQOCiNegDYu9LrKHGZIIZN3GseApq6sd7Bj05cuXvvEbf+VLL738Yx/92Odf+hxxbel4bgbvqrOcjoYs5uwySBwf2gLH1KEPHGbMb/TzU5+7xpN9dX1zeX3Zpmy6P1MGc8bs+HSEKjWtJ9vTxf2am5shBqzgr21v3795Ez1rqo7LkJZGD4pfOU7HJu4T2h+BR5kFnyYndFRG2cz/w3JDm7pmiNnZjYrmiIoq0kPypOCiNLJR6bZJ51sCJjbe6EtgBz44gmADC3OzP/6ZT7/86ivv/9BXO9jr7sOlva31K5fP33jt1Ud3b7zjbc+98MzVUduK8KONddyf5LJhl2KUpbkeQX4ORENwXtSaY8c703/yj/yBP/LH//Tf/7t/4x3vft/acv9Lr73+mU9/jkfo0tKqsJcOMuRrEjMDPzkt1qxCjNY76o+Wa5kR9kbKT5uXyrTYcOYEK0InvtJZCYhcQbXlKTNvK+BndW2IFKAVhDNwdd8+9lY6vW9NgmY0v/awGq8b4Xjejk9E2FMKHPYbrC6e0nLWtXhZ7oK9yAoHURrzptgMIkNIN26+Pvm2F7CC3b2tkeExcFIO9IjN5qS0apRvLb/2Xjh3xkrA66+/6iiC6QkhQvenZi4+8eTexz5y+8/9xb/5p/747xkamh4b7Vt6eHNqfpy7i8ArzJF20cOtuJHAH2hBW6dSchPLRDOMISii42VTRinUQ/YH5wJj2kY/lmjbUDkt1eYJAKOLmvlngAowBZaQrRLgpw4rOn7+Ydn0VLiZxYDo2tn5KydlLUzJJ/nKjRxS2E9YuTZRNbJXPHoDxOkOCumhvLT4OMvj6sdPDKHG+z+zPX9SQ0o2rU/JiovJOkawkjyZR2DatKWYfLWY+T6lqqRar/yaQ6gCwAxhvYLCKczUOp/k/+N4LW9n2TmbWbWnv8++aV+ZnSjK/GCASMisLoq/Rmuq5FPtUYffUMhY01ZtmQRMhg+73/UuYxGmYVGJjMsmoXgnIgHDWSwXUWMLuuB0xfS8rGFKwEszRmG2TBlRHXQ/8E7Xs+BeUBJPU8wSGzrHM13r7Z2eGD/Y3SESgDTox4qT/XeZDkT18LU+tNR+uqrMtUshrU38gnhMD4+8odcZmxKnrpgdUkHJ7tXhW1xPXP6V9bWUoqURD3mbWVdJ4HrcVf/VrhnAb0hJdjqGfrVr+mbkMjFiAsHxTfXCHSjsdIjtjXXHAJgBmNJQ7c3qnn/7888++4ytpw/vP3xw997nX3lZRWwXKsU7BROxpc+4EyV0HLM5OwMo17wFHCpgok48GOHO+NTCFGek0b0Nx9Nn6gR2hnJGTN5U17n45NU0g5KEg4qnI9X5yQ74VhFKWnm4uHvrjrcGzBPAAB8y+TQ1wWC5AuWgQPuZO4yzFfwXyoyFroKIRD6poL8l/46HRmKyMNLoMOAvoPkF1kL7XudNcuPG0888I069fVien5md55f54e/9nrc//9xv/LW/KhqV1dssW2n+rgA3RsRgKalm7T3UhvWt7dm52RvX7z79zPO/97/+nf/Ld/1vn/nUx27cvrO5vXNveQsc5ucv7vDeiCIR0mzUmFbVILar9jaBJ4sqQKAxlywLVzaVAqo8khufeyKnG9+6kc23rj+n1ApxVY5iWzmtbR5ig0o7/SnDY4U3QiiFuSDvLSlumGz6ry50tWOfF7MIS61W+4tCi9fwzc9JO8MTAmqPTWysOlHx0fLyko0QJt1hjwmylDr1WjmluoWsq12KoGRMPnHhiZdefP2111597i0dgnlta2ti9twHvuoX/bt/+0//0rf8zT/7TX9wffXW+Mz80eHWwEi24wm+mAZEs9Y7qB2btWMDzLdVpD3FpzORlIEyiT7hj35ZCz0URLbUTxYnpkxEEa0Cg+4V/YbNRpRKUblK/YcnhW16oR/VXb1xc2zqUcMY/S+wKOhEGIBK/SJMtSxfy61N5UmJ+9tdyGSTIBLglpEJN69PwnH8hAfcSJgFcRasH+OFSDWAODrgpUjP/UMj9aMkTT1RFK7RUqindH/Xaktq0VoAIoEqT5Va+9iNu8qBzddoz2xN80pUBZNTIT096NkDhqs9q61kDZNkwOfa4FJi/FRRlZ9+y9B+mlxpPJJwDVyi0UYZb82T1Q2+rrh8LAPgRE0EHZ0K7JGvDtTIhzl26zg+FsTJZzRLu9Dt5MT32bnwRo4MpgRGantrgzegPZs+0tGYgZVdQwb9MgikIjxVqW74pdGmKHEgsBO6sIyOmr2qJX7jWynQVW0hhmH4rxJiyWBB44m1vSEEebpuLDMI2fDWkjPXqSoF6yBNYCSTEcb33WDQQYX0VKNKvPKSIrEDQbgiT4B9wJo2o0v3792xjOZMO/7UiHbIeSNz0w4aYbKwFtdYs2PzlhcfHe0N2+nA9GZOND4yNisO2fwC6eWsJt5HaGZxdeXB8uL2TuLe4N7zswsJHmIxx1H3ZWFkTx2juLBEWRHLdJSnJedEcBjV8PkLFzJaRXhA1zrrRowaCKE92rRY5+V6BSRMVDix9RY7/o2QyTXfBkd7W5KlHUR9SIrkGLKbf3BwOSdMgXcSLSxLMlmi7l3b2ZtcWPiBn/pJ3P3Sk1cAcG5uocrvf+2VF2cmx77h6z400t+7/PDeC88/t79Hk4nSsbvljE+tN4klkwN/jfQbfOZmJ50J9dSls3/sv/09f/s7/+7K5ubw6MSnP//yP/ln37+xubKx17OwMEFechprQ6fLhiYpahdBkp3SXpGyGfri6X7qQmXKRRfaveeFbF169Xkr01v3P6fkE9/CKzBXpoFrn7cCT4tqtcvmeTCv/g9n6qa0TVNlMIcjAJSGcwLY8cAo/niSrf5mvHEVZ/+yESkwdYodNDkxszqyDNS371ynoMzNndnZjgV9aFC8SdtZqxCMrxrgqwKFJbi+qfG5SxcOrl2/+fq1l69evYpNsu1MzM1/8Gt/yb/7we/5J9/94V/6iz9grVNQ57GJ0Z0NeBRSwEKCDeF92R9C4WjEpVzd6zY4ppojvhWU6Ls3bsECR6iKv+uAHeOuVWj/lBZBD1pGALReFoE2uAFOEFxvypmbPZm1tUG+5sGBnm6pOEOcroXLwQtsJYw+rM+iZ1wpvYumE4oOIAKNGjGfhKNnIpEZgMcmuKY2h9TiaLtdNAvQ5Cs31TZ7wNEot/UvnYnilTlHWJKiVMKWnGlavEEpHKlYx8NujaL7NMO6WjHbNDipSk6GhleQmWK3uWV9MUAGU7Y+D109p88BHb7kCeXNPb6nEDk1ViHK132GWcaMo9qRrEosO5t9AxMacESCxVIcc3ioYx4ggzakhSgmf7Q5AFNYwB6WXQs16G5g0GnN4GaWZP3bau+enUuYVaw9MZ6zEtFnTV/CuJikUlqNuWu78aSl9kRbtd59uhoX4YxRS0bXw5aCPUXS7acSPKGJyOFGIcChJy0hrfZt8KN65HmrrtAsPewSY83RvANyzSSaxSKI5MBHODb2Ht++d/ud73wn7k8Fd4iHusYTx3yLHjRkfXO0w5LTMztz/uy5977vKywBLG5vAcq1a9de+vyLpIktY8T45Pg4ucphTivF0Z0bn9kZ2Vs3nmubq0drIgCHbREOgMyvi4K/u0thNy4UBJsP9EzjUQvWKfRN6xpggHCIsaakb33+7YAgAZ0MEqhiu9rMdO/zyYkJ8d0cP0FKimvHLNtL87FMZ97Ihz5WtQy2OGuuAAkKgBbuHxtgSIgsW93YvPvg4Q/+0I9cefoqAQDl7Kh46sK5r//gBy6dO4P7MxQf7G5OjY/1HtnnmaHUkqwrYNChhb6t3b2Z2dkb92/SQwf79h/dvyXY/W//L36zHUeDnbEf+bGPf+SjP37j/urswmWnV+7sZpqvPafDV/fdYnW2TYC8hRUoQV1WXORpyXMJHDQDA/LWT9lc5W/Pk+PnkhTSOgUTFFJwe+P7Vq8MHrlvNb7x+rE73+IdusB+aPTZCclh3bGxt8uAehKzO1pK1oRzxV9yLVOAT5xuNjMzu7pqG/ajxaUZP6tHUDjTcMk3qbAZITK4aMH0RyTk7QtnL1jHunX79bn5SdakjZ1NyzXTZ869530f+kvf8v+7eGn+K97zlCkYow0mTV9XWhDCURKmU85YZnLC9xgXUEroHILocFgyZNo7Ep+6V7+cwAlKWUUoP0Vdjm5P3StprXneFki6QhSfgW2UHorkQV/2DqTbJ1Y7gye/Jy3FGBHVNJocluYN+GBLJBDmZXHV1FjT8n267Z+Znxzep06iG3pSxOE6sqeFl99DmZdw81L3TTKib1JlrHlub6kNJ+faMlj2WxZ8yDXVMYsKwQC+hqlFcg/N9MWTsgoppHhTNSdFRsJUh6y3xEzFV2JwY9MRtAciNWZOHpAznPbxVqe3UTqjplW8k0zkKzp0Q+BWaXoEXP095j2Yf+wFCQm3k3WX6NLpeTVNMzjriDVgBSohZ3gOkQf4kg5Uy5Oh2pohDTQNb+xJSepSmsRcLgi+Kb4WZmYYaWFHcQ508YnZQDb9xpGFEltA0b6W2s+8rNT64BbWukelhj/Dat0vcI0RAJeHMJa8WjY5JfetTZtbi26ILwPtIIVosibDDobdCyts5StQwhtSu1HTed3N8OR5mJtf9kkEkyKkiTinxQrcriJ+Gjwa7t67zcgzOT2xsbUOyslDPek9MiEaGUt0sIkpAcF30Ab7J8Vusn94YXQywTaVsbXPJ9gA9h3YL9g3FieCIbuvd8Z2V0aEr9/hhqTxcV/jEHx4tLG6uXq4dm3ruk0H4k1GDNUhmo3Z2Y1sYQMq6KPUIGlkFpeX3beERaEVXWO0s2GHLodYF84uzE1NU2UMFVSiyGCYdi2CJAEKP9z4nFOKe0FirVNYoWIiREjoF1l9/LOfpXcsnDkneMNnPvO5g/1Pf/VXfuCJZ888fen89OT4zvbmmYX56XGzn5XD+HRh/Fnrpj8OihfPfwN3EGv6eIhMckiIOBArj1bENlhbXiQal9bWpubPvu8r3vVrf92v+st/7TsJHZHddvaOxnhJNdrJ4OAfjcIj8mGLNS5tRg8jwyOgAVNL9dCVJK9cwRYo5G/AqTdBCLgh1c8A4WeXukQOMZSgZCUo9qScN5XhuWzJQEKHprSuW5FXpWOw/m8K9ou0IY/MFoUMWrGGNxWl68ZNY427bKL89g7loJhMT7eXecAIDjHaGZ+dXTDn1tNosk6aZUoIpcCELijIdyE/jTnyOn/+7Pae0HKvHfU+wRS539MvRODFSxygX/r2b/87f/bP/KGJSYosRGH+77U6aSjjuV64h6s2YHY5RWRLQIpd0P2pR6jYdiRnQJNN+oihw0CdppKa3DfQKc8InvazFUiCm7qAq55ml1tmPKV7Fojlkd+TiBookrlgmuB31P+mMDl9ZS/G04xtJrHFv2KoLzthHD1QcFzaNBJ4WplUpXzSc0jGZbaqJwSCj49696rBWQMwTffV4MDQ3ggbi5/K5pMXA24AkNWylIiR1qQhEDtN3RlYsBE3k0NOn2i5yrBfgb9NBHeG+AIwlHGS7IzWHOvd7363JQEp3WwCzIaziiDiwwDiBP1qrCMjG0j1IjhfrBm7o33BAh0vFhfrKgHk5x6wBTOTagjSJq3OMFRy331dPzEFRKisHdEu6riUmEqI38qVeQ0bA6yJeBOF2LxVgfVPHa2aVq7KMmwldjRd0tx0zAwlir9CclWKbuJQuG+4tuM0rWjEvZYrccpDA1iaVMWGwDBKlhC2bvf5IBQQKkWM1q2gQbqc9tKuAj65/FMY/iInERquF8u7g5V6HYUxPTOJR8NhDyG3GjVO29b3YwLyxJotqcOXFSewkmCE6RcT8YAZ0CWzvvGhYXYu25tUt2PCdrBnujRGgxKkcXyCrLKax39XLxpPh8yWBzU+PE7M4EJTSGAYtdCqboKF2Kov6kj2dFCsIGsoVSx4o8rWGjIDF7HVRoYRnDlh1oEgGlsjfs55j4TrDPPKxz15eGCyNQh91qADE1gFp2PDDBF6Rx6QgLdu3dFI6wHkBK1kYWHOdt+9berR2tmF+a31lbv3lp584pL2r68sO1IYVIMxfWIKj7rSHToDo6KjU1EQCaOagdjd23TW4YULZ2/ee3RxcvYdLzxviNIE50BOT3N7Dbqh5WKmuhJ6KY3G1QjmFPesbdTyjyWpMkwHIboo0aVwAxRMqI+98hfanuSBAMHXn8UVOML6FSUB1Ol9uyl0yoxJx1EXlidbNgtRUPJFqqg8UUeoR5aiZ2a4ePEazMTOFtMSF8kKMtWeuoef4XDMRBFyODyMNtrcRZRGoRDicPDRnem5eerCzsZOpzOhgihnEVSUnshNtaMGGOqI+aXVexbZL1968tOf/ZTZ/Dve8Q6ayPTUJCPiO979FT/xYx/+n//q3/lTf+oPDcZldw3aKodWaq4YerJ1lRubqYTZXVwno+Mm+k7GJt1j1DK4AsQab8TC/ri+vIpknL8tGrZsMNl4xV97v3bbBfgM9f4AFAMLOk14GgiNygwZFDLZK+05KoV/jeTddBOoudOO0pwtrlrEi3enhWt2gbzs6uaGpri0U0QyQ2KkdjVcqWXXFuCe0UERucM7FZUpNp5QyMYUjUsHkEYB6lQzlLzumASxzsjwk7JSoERpCtPNfE1RqlCY4sL78yQ7xSJH418TI1aOCdvdnXGMw9Qk4AipCzqc93EGshP2sqSCW6gg+9GIK5SMNRbfVQTUojo45GskdgR+6IfbQ7sYQX8W0+gPo8PO/xNwG387tsEznl7Z3HEsmH6WCYxhpYyAksIYo4hj0OkMCKkiKdzHoQVyYcO4H3iCD4N9gVwgnwTrbaMgtwZaSw7ElauMzDFSmjIzYfETmZuyq4g7sFfs0HqYyjIRDD4BXHHvbKTMlDO/e7FjzEgeQhu/rqblKyWouyVx1avFwd2W9MkIQ0TZZC6EdZNGqEcvSlPWReMbFDNRGmHzjBPikPXJiZlZrnEM8cLhL62w2zgDJjFXYxV17MnWpnNjAHQ6UwHix1y5jxkOZlCvYvrj6e/sVgGWRwaPdu3btvGyl9zgNXw4BO3G1rd6WP3IBs3OUu3QQDSSIAk0CXczcxt2iqM5FtgU00eBZZ0Mq4Du9AOue57QwlQXZwZHj27tjQyPUyBJib1Nu3J2xzuszBkAoksjjaLxi59GJtCl4ZabgbjZagarQM+a/+Dg7sri2clO2tPff2HmsscQglo/kqC+vWurD7Vrdnaa+uWVBT7T84g6o+WwQIuTZiGzC/u9B1NOTegy4qxdW2O3YwjizC7MbGxH3F65fPHewzWTqv6RHiYmjJ5qDGJu4FvQg0VrUiRqfGE/aq5NQFFJzbei4lSG4ENZP/I3KTEa90pONN+JQTyFlpNZcN5C0+DW6RUmha95+fi1lpp0yNDgCExnZmmHtZNL24Al1pAYFfAy5kMOMEKZUgnAG6bHuBi9K0zkeHZ2Du6OjUxtrO7Mz51bWd4ISe/vr29szDjyBdM+8jbOPBgDWeuVSXGsur1HmCMA4iJjoxNPXnnmxRc/w2OKs/KtO69fvnxV2P2NNXNzhwgSF+o0pbC+ZRwt60WoOPeRJQPKzc0MXjy7ZUL22is3nnzyCUahUfHbZ2effv69P/DRj//df/jh/+p3/Oal1Y8vjHUcJzK/cBaXIvjPzJyDkfiYyJ96EyQ46i8mEjnAQyn+MjwObb45GqQmgjPX8e3N9bBCuoe1jpyBnpQBzW7zaNAGAXfMUFjc29oe7YzFTA2no4mzn4YDUMqo0HFGyX/R3qC5McT/qThUoGI05B4t3U4F5yXEbT/lRkKYdUXpDrXHD0Ol4VAKoW0UG86e9IP1zXxhzGj/Rk2LwqkHIvqU2xmBE/w4tAmVJoihhea+AdyD3UMUEcwaeyzKUIn+UcQycQKmNBIPrNA7kAfYqGKsGziShkchAzqOHlZXBVXc2Kq2sdDEr5dkErRYFyJCjvqYnbOrbmSYpatjxdAOEsLs4HC4r2dyaHhniw3IqW37E4lhzRU02xecCNlYIY9ibjI7PLKhKmAYM9gG9aOLw5KAg54BUcFJR3AAsiswkTSzSMQHsF1r6SN0SNU5YQ1IsT5GC/c8/Ti/TM7OoLjG6NWQAUtpYb75GaZWk5oQXqVkACdJDSV7fFSf1HCFuONd5EO6UgI90KPH9L+bWhUAigEBn2JadW7az7qJksUeIU/NgaJr4k0sw2GdGIneh+GmCZZncXmKBHxK98vpyg22hXummeUXFfjpSOwuEN2CFz4bp646ownsaCGZeGp28zcy2HCbQxJEwuYp9D620tU37iAFGB8UpbwICkQJsMZpjl+VkiYjOzZtF2xiT4CfNXggCi7u0+NIA1zCfbi5VyCYKWAX7D7KDwWDGrAY8bxK1vwj7igthh/v9y+vmBeDrNmAZthJB8qTsVQ6s5WxFGBVJEtmTwhPrTi2W8s5OWUZ6xVSuGIYGCMnUa6sLI9McFVE7hFsRlv56kZazkQhHkmCHD/bGevv30GuyGCzTH9qBnzclp0v3CJaQqgpn5f4M9CnY52HP0N640MQU0Qr5Gd1Pc6sqL7Kn8AkWFYF+pkOISTt81zHokYlEwypfLS3sKHgGZiGiZjd1nLAMBrFujB6al2bQXtVjYM39pGlCkjUep5aU799G52Fc+dv3HwNISwuPZyfP4P1QwQoilNgN0G6BNuIjdxHHNuGRyaMheqswj5x6erAwO379+5NWqea6DxaWrrQOXP+iaeW19etBl+6fPFXfMPb11ZuD4x0OMXhO87HxnHN4agOMA4vDgSCeP75P2w3T8LlWSqoTM6DiXKLywEEDl+UWKMFu2gqpRG7jY0IrmXBOSAMiPSw+BHtQb+PyJvSGTGpVAhHyzjUb/JByFF3wslCZZKsIZN4NxrcjIFiga5GLKMUACIYZWTs0uRo7HJZEq4Ri1ZcMK+hTObuxxmFcDAjm2e2cCNwWqlRj4iJYomuQ3K6wOAj4rI+py9UldSES4TuqFVpmgBtzuOxWZeBwaz9aH984oiUiYE5Ku8u6coEV2btA/qh+VoMJCyqA2iNdsUYkVkw8b6/i4cd2bLHEYBhnnKp/8IIhsbDg5jbzAA4CojFRlVFurUof4JJ/spXqQucLkMpflEQK1lR2iUGpSfpfvb22ABhYckpxyrRe6ubmZ8kSuPegOEPYAO90HBLPgYCPYzQKfCfvMksOKNxkgrGXei7bzB1Y4xBAVyspLaH1kjd1OhHc2iavpzdVOOtMlwvUk6LVJ2/4SYkkSvgelg/E1lJsnveooKHLPjpML42Glcc9eLNYWGwr0wT6m2IQjPlCbW1ET0CMatuO2u6u6CjqHG+QPbPjY1htDbxee78HF3RwyynZQnF5vk9xNYfU/CAzQ5QRDRXRWXbcALtpc1pfKV2c/pTM9p9NTZgfAyW7YvuVbMjAGFSlubKsYwghNs+KDjL1y08vLfjh6EAAQAASURBVMdtvaqvfZlsRYMQ2OB6QoQyYGkAEnfVYFfTH8/xASjP+0h/ScVeTuSEtALSWH8yw8j5V30DthR+8rOvO8bXvI6Ss7m1CdRVuJZq6ynr7/ZCM04b45GfXbh03//8/unWfgqowKuLz6cN8wy0NNJNS7g8mITZFUXAR9CAV0ury1NT0yZkcMYGQ9Bzg4f4NsTypQeyj614bnbh1q0bCmcuEPl5bHQ6PvtYffBKJeFEYIslZadfmbAMvfIlJhpa2MrK0uuvX3/hhecYWpeWLMxMPfvs237gB/6P7/yO7/qqd/1hatBoHB82mCecnIHsTA6ppWHDRUvFHNQU5KTN6F8CmgvU02J/lf+PybSxDoEVhw+OhX2nbXQev4I/PWLKBm1OxhTkCgktXdD8eKQWgTetFfJ4h+ioM56HJGWuaKSsJOV8Usp7aAXsgm0tJ76urQX/4HXNPYKFeSpndwjfwJz6vpWQirxQj6vWe6XYMv57o0O5eoz3uUlFRTvgwNcVHevj6FAH6Exl4DJAGhiA0GUPsQP5aJaUTlRpNgtREs2OVKqkOvftqr/ZgFniEygsOe/s2pPP5CUqAyddGDacfWm1CKy1gU/GH0aVZIoQzfyXwIs+GJYSGFUKpbdRSn+gYPVX3d5mWSl5u8BX/kHml1mdgrqaCSBLS0sahvdxMBvgbuhpQNAScVF94CWpOPlc4TjqVrIUpeDNqeXxyg0IqkmBuLNcFn3tmzWjUXbVHY4mg6snrRgdSLGVVAbebltXUzJjnfZAkKF4E0V9oS8dHAj3thw9VWMTTAPL9lYp4OiJAlGsKQ8PfeUbH1cxH0b6nYmaGEdKkFSE6Qvf5hrZfehw7TVKrhZyrnAdGRmNm1b56hksVlUBO0oHSoQmEdsYf0w/UkWNtDJ5cGqzkhtYqlu5yNOenD73pGWTG/2cPq/M1pww63Klx7VLH9f7JhkpVlIbkdMyW2mpqeoyEBIcVYh+YT1+WoJnjgcz7SQcPffQE4vq+gAIuJlxMZ3yPJ2yaynUb2I7uLG+M70wc9Tb+Zt/4zsfLC2Pj7MzgI9Do+LuGfrLyEBLKVfQa23T1LyqVHkCnJ/v1KpWXaB0UvVppZ63Vp02rL1qX/kEFuUJtCszHWiwm997+MAzjACIejspQUejY2Sp+Q3p24o6vfLpLUX+KUH48Aw7tM+dvTQ5MSe4YX8fB5VAh2XC/5BbyeCGUJFIOEhiKO2wI4l29dnPfsbJhc899+zGg421tU0Tgne/630f/8kf+NZv/Rt/8Pf/LqNEVCwu3ZueGRfZ3bdkE0Qo44DVjXClalJ4BFQtHFEnu4WIQdlfCxngCn4BlbvqbYEP9vhWG/2SR5P8hCqetT563r1TqK9ligYtV7i/a+PaVgxhAQoqDhUW7TuStxh0GFg+qKSYE+jV2xIiimnVhASq9WFL6VO0aA99qrenX7aizFF8GC/4RLGB0lmikwnY86Xu8FYvSxfdHn2byOMGqMNA0OS10LeGSG6rjjisTRcmvfT6yfEJ8114rhwTKBMgkMzSSbyBifKYgfFARbkyqAnHgsvySMGtKBeULUe3AjdbfwDY20uoxATXu8e3zLm0UIuZQeGSt+ndG2DOwzaDyUuNC3/Mg/o/Yi4m5r4T212kjDWGEdZ45fhWPKhwzuNe2vnA7Vu3QrOVWjWtJtGV3Ujp/mN1Y3mpvgpKQ04SOLoFZfSQPpdjX8MY8IaRipIh2GEeshdrr5/tYaqppHVtgDNutH5W2lhkuwMri8bgfgrH9DFrFrrdQ+4ZPbtZk08V4VuSTxqGVebT3hly996HL/isze2ZQQYGzp6Nz9/Wzp55tEZGWh5tGV/bv4hiEGYrjNsygheFoiN6d9wSLBv07pPV2QTJsGmabOSMw8+YqpW5QKpmwvuCT/QxzY5GEHRNDUBfVnSo25iULmiqnFUOOKV/Rd5EIBAiMGgXkxWlANFHJbHWLRjNsPiqY4apM54N4wSAbMokQpXGSmDjQ8qMCSmFCy8gmzB6/+Sf//N/8/0/4EDUibkzhOz00Mj2jrlUdKk2mppEmXWvnNMnrXntZ8vp/uc7NbDoVJvxZHpygsZutLL9bO08ba38EnzwxE0rRM6yNBaXPIR723wIlJCxzvDIFmXiC1NxLhAc6BkS12FtZWVjY43B/dbtG1efGqYT009oZmWNiH8zwye+qFLYZ/haG1AKETs7O//kk1euXX9VFba7U4EePlh2+PDlJ579Z//swy+87fn/62/91avr97ArSxKdiWGbTkY70wqDA5FhIbSGGEFVPNAP/DgkIx4RiXZ4vLm6QiHlVgmHvIbDWBgq2RfXOfgH06JpST0CEYn6J6boyViCUlLZhNXj28aIw78BqBJcjvdM/g8N4gLJmEGIMAimI1m6rtZ64vvuYBUxteKKy+H2Yd5FYpolX8BeJFTPw5GbOS5MwL1ofOWGwNweDhvtkCAOihq+xv21HePROFbXjT5BW5h1UTV5nHkAKNEGBYaZHBd+rH9tY6t5so0cWGrKZgaLtcN9bUYY1kEF9gkmp66AUXOy9mAxcYAHJA9Vo+KVQWD30XPDg66RsWcRTwWS9InyLpfWBhgNBG5RFlI2v4kELlCF0+Vx5WG2MiHI9N34ZrEl3BIVW89IcAEsRGSz6GdR1b0acDA0pqsFzYEsym/EWD+dsZqSi8HROH3zAa5X8OpSeFpU7cNTQvqlOep/FPCorsdmEkrzRGpUF3zSgbq2b1NEelDjgFele+kHZt86DjHoFtirBCENg6RBJNjOwTa3ZLVoQN4KfdHpaC2K8jPoWFyyBWaBviOjk+pptTf57FgHzxGBD6lRCBoGiCG1vLLK9UKrLcuAwC69GQIRANBBdEiDdWgSk6A9iDcsUIotOFyjdce1jVxgmDIKI6tLp8/z0JQ4L/2foW2pwUq23GRAsiyiZip5CYNyw/KuJJxsvk8RVYsbg+UVJNfHEcvcHRyn134fSXkIOKNplcZUoMxxUac0vYSMBqQcbXYTYobBAzOz5378pz77F/7it46OzTz31ncurm5t7zBRxoYtV7U516z6RVtMY/LzhNXmd4nkRrqV/+fx8njt7nWTTSv1VRv0SMqvtCmdLSUyakFLQIc7oIUdC9F9QqQx9XXGxybZP9EwwQlDgmZhpPrbLe1L9Mc67D59eYzmc/7cpddefxnkb968Tqm/cO4S2WSgmGjJEXo4g7JJFXDCZEVRRyBwm0hZuLJ4ANtff+0av2ek1HM8uLy0ee7sE7vra3/tr/29Z567+tbnL87YMbD58Ghzt9OxN1P3mN3bErd+8xpDjroeHgPXdDv3eRO00Qwm6ZiGwCRyI29yQSxaxx8x6/xCyZs0YKEYKKNg1CwZAoVK8gcj8ywfY7S4FxVGjRa1UlzMMcmCLQJcxiFMr33dPsoz2drV33yTJ9WawszTt9FOMqDJEj5buZujBBu7WlJIDJpm6SYgVmrDwVTXasTucTNT+cTaqbYowciChm/ljLxyOh8PqijseHEceOp0oy0lG8r9HZEi9i0v06/hhPN+mdodjiRYAA0yHip9DmpO3EkMTX6FCgZHE7G8iJAtHmbKRVW3wMDJKfUBR1oND2UmpBkFT0CRbmqUn9pmENLfQDHAKSBE8JUeEah6ri5h2wEmyiv7QYHKqzySMSVz/JibDzjMOKI/chCP9u6JexXE/BQu8AZnIUE80YKWVCN5wv0Avupwe+shOBKOYLElKN7mJmcGvWKrYYUnHjyR84tTis3Tqjg9zI1LqglnSbEBK1/9tOqANX90dGRlcUmZKEezUaZRnBjLUQymEPVhCknvEt1nRd/hsnszvZRT/rwVqbEm+LUE5FsboOylWlnhFwp7jZcyCkq7rP1aiV/04Micv8AjSoM8GGDCqgR7JB9IGuDe2/bz9Enri5+nOU8zuNEAGdpb/YwubowcQhffq9hbYT84+FY2mRtCNPh70l5h4walkVxG5zg+uA0Om9kw4UgphNPrjGoMDwJESFuzKnmmWW0UjgjYvqGlpY1/+A+/++Hqxvve83UCzh/sO4fEWbVb+t+abTQ0RjJArgE+NhJdREe0U3naFXXv/5ykDdAFHBBU7husGpsowDbYAnHajFPWpDDginNzplYsvXwGQud8pQb7RXNyrj3vMvtO/INmutM6Wz1qUvALOwdbh/uHNzYZzSYvnL+UGMzrG3fv3LDvb2zUfuBRvBDkERrOEK0wUUN4rcRwx7dQFVBLLbwuL1++wgB94/odFHT23IJYhYyXzzzzrk/81A988zf/T9/6V79p/3B7amZC9KFnn312bVWMGkDXv2ARGKB4GqmxYXgBgKABLrW+zpNR6Ei4UcNj9RsDh3BZhWxJGWgCTWFPDUqEU2VGDxH+3aEvIo26kpEG1Ix3VZ284A9YYMwJh2WdEqp1ntoEVZI5C64qkvP0mhLSfh3INQn64HJQqIgrxXpTGBXGqcBMOSjUNsFmZ0MWO1Iz3Z/eFM4KD+gsMUHYo8L1Ovy/4h2FtfRS0smN1MOmAw40HLIqxuDIkIQGMhTacNxrUxgOgk3yDcmKwa5zA/uFk9naEOc19OhZNvknWtzuwdaOid6YLXsUSDBUgfXoyOf0V2a2WrFMrVYX9WRB2nOTBqOleUQ0Ekr309eCbJ4U2DLERVd6plTA9yn+HUjVrr2MZQxz0espzZZ56KyYIcEVjtTrvPXVbtEqr9wZOqlqlDtvNacScFSNLUeu7VvXrgJ+sqMHyNTYmwUPx592mFAVAOdwXksQwjNQZFrBp8W7MQpx9XFXBad8xNGYBm1Fw+GvkKnHiQaak8r3YgtCLYqd3dwi3PhdzR3OxYRXKrBXAKAlWfvt6R2dGD8EZ/JwN66QskEEW+EzzG3iby9MCYBANRBOODBy2aQvQjE+tbYfmC4kQpPWmD6LUu2pftouPNQZ3UTCbYx8HURNT1rfXdt9u2mv6uqDE2orgsqXmaGqJ1NRjmKCr8cbgTczp53ENCodoXQcvZNoMYrVkZbcK9mMxbhE2u1tGwV+bMZFp3mAUU8QSdCrt8cEoY9/1PZ2gGAJJ62Oz4Wmd1ei+oY+/amX//fv/t63PvWOufnzn3v5VQavsXExaRlR8YKMW5Yxi73YClLt715aZ9uPugeEN9Dm8Zz/0e9VVzWm4O7Nl6pZbyV5gA4E5GxPSh+P5LC1Hgfg1G/0vc2oJPS/3RCkcSIT/PQt97XS+KrD3L6nn37m8y9+xt46JpqlpawoTNnBomgaaN+QXfOkMFnpuQZoiY/pSSjIJ0Bt9+gzT7/1pz7+E3oDn7ksMOzZT3nlqRd+9GP/8lu/7a//qW/6fTdvfvbKU1cfPng0ODAGzOpubdNsie5p6V6TsFv7p0S7FfNjb33taGfPLvQsRHDlCX9NAyIVfR7GEmmh7260lmVIY/h0hhgfG8xWRVjLSVJMiYfMsUKHSeZaVbiSMbr2TdWocP11DTZlsZrGWhlCEd2P3HiNuYWQ3EZmmJ+jKwOh6Gx2oH3hp3zRRI4gBHhqs9ay6iscmShZRyj+okBCfqmwPaMsgXlWHJOiZWYAisTk8W1iCuCkOFtlUyNypO3vCSDMClSGpmj09hIJ991P008IWMtw+5sb7BITZxb0HNDC5E66XsWrSCDVwURZACjBBcqkWN6GOlWcRmcLLcPcQV0vi/8Us6w8stWMIXIF7yDVAI1Lkhs6SCB8yF3eKOBU8elgPY/nty2wNbQNswlM1VQjDkbHx6C550CAKbi6l2KIPkmtTW243SsqtdYoytnuWVSMI+alCYYND/LPq8VHi2CKPUUBj89aMSzdKwLwSVTTDHD+SGzQe2Wq9okWIozO1KS1HZFOz509y0Xa3CLjdnT04MEDBi/jhPERCZQmAdeU4K08y0vrQKhr+GH2XdR4a7m3cobthWLJlTj0iPXBCq9PQwO9G4nhnpPt+DmLMrq+umJvBIbq4Jr+EU2MULHl/3BsvE+c0ZpLptkWXWvzhe8U25InkrcSNVqoiSB+rWDHQaGaBInBB6Whe6MywfNyIKtGGkj2pf2jsUiSf3rqExYK9w3/unXpXNyvhYAPgMETWNRLMgfHBaZnSeiLjW5nf4fvk59BE70doMvsaLkJf2d0bHFl29ER3/KX/+ro2Oxbn3/Xazfv2uG0xZcYethzhJc0fqFIw3aCAGrQdrYOTyCDvsBs6aTjrftdIMgjtVfyaK38fvqwLce2DI9fT8p5/FnuyTw6O2u7GWHctfb2zs7Pi4sXg422lVTXNrW4BlczEG4iUEFSkscrqEJTUVSrQH7wET4BSWO+JCiNfmJ0woxSS3iI2CyWnDWsNemhsES8Cj6/vbnNrU+QZg4ZT1959s7dmzBTZCqnPzoCgyNtHEP5G/PBHxziAk7Al0xt3bccjY9kE6Ibu4ufvvrsiy99DnycH7m5vmXKNj4+/453vP+7vuufvu8r3/mNv+oX2PAxODSOGWr85nqcg3moQ4OBWCBs5RnMvnIRLoUQ50I9YRJI/RRLYTc6oUYQKWUuCCEESvY2cIDpqv9kVeYGoXSUTUmNbEC0WG3uzCo214o9RM2lNIFbTA6ZU4ZpeWgbShAn3WlfZFzaELSHmJUblcPzPVvWw+oCitGRoTQcYyldxzfRjeIZqF8MnkedzHHh9S7b99T46PhIBzE9Wl23E0CqiY9tT2mQgdHoGF8ibLriRKWSpSJ++DzhlE9V8pp0CWXROyU0iI4ylUlCjKJqWxvgNMKawgoeQxMIOpkDRCwYrK6aYAmT2TvSEZEMMEf7uX/FVBBMGxjRtn2UdHBgJ8eOZUVCt7Tw0Ep4X8KFlkQK/ML6i0xCc6UYh19zEQwjr+Ew9UkemTPWyawbnOPL5KvZ+h1XVKt5sTLJE7RzqFBM9jRfeOkn3BJCR976NgV5WP0NS4LK6vRKCsAqtZ9ffD3N+cWvGFgUC7LNFoS6cByzLZxUwwluKaQYjYFOnQ2rTJa6qg0SJDOoUJOYN56YLxMlSAE+L12NMgaZcJVCJydGQBiYUxVfy5xa1cpUjvvWztaVqD2FndVmI6WzuTpIS3t4BSv5eHfHONPeiJ8psR9gneBOfYxnvXfg/cnnp90/vfliOLQnVfUbFzjmh4ZBQSxKizYON6yJwK8eMxAneG1nj5Xe6QLfHjf4eMxrZfhqY+ch0Sp4FjTwBBAiT4PvaZ+pN2LIbm7hgSqWH0ud55Nzdr5av7FN8RBHXNtYH5+c++Ef/eSdO4tPPf3cxqbY17ZG0H8pXiwYUeeqC1E7Ct9KZ0yT28y0iyonHc9gntz/fP1VtaJbA9oNUICAbvpZY+GShmEgTcN1T0LK0J77KX8yhRHI6Z+X2fBpk7SRKdTbcSAygUJFgJDoOYhRjnAGL+jXly3ZK8srSiNc4GyME31Ey4RF3T3nKN+8jotOT8+ZRdBK+Zqqg0b6JVNrjFaZDVx+4sqDh/eIkKcuP8mv69Himtjdl5547s/9+W993/vfu7Aw6ywgXWazobJY6dSWwXJOsw6YbotCQZGg5EbLjs0HYPAgPO5x/R0HKh4Q3K+5JdZhRgiGeA86YMuIPvE4nDFocIjkqFO0tJblFCpE748GwPU4HDwPISSoGihcPIWWhKieV5HHZq3W2DAIK6fxIFIiXr+3y5Ethfi/vP7Yedj3+UyxLTDZWOhhxBkb7BvrPx4W9vbwyMbdlc0dAhu127WBn4SjZMUrymXD3ccB3swyCte1xmcaOoHnY9k8C3lCslhYa75ixG18wpFwo8A4m/AIBSZSNZE5VgczjahwGPFs9BLBaOHm7p7A8lQVzbOHKNuOakpUI54WRjlukMm8Iep/+pD7aHXGjvMAxoAUS/7FQJJsUjLWp8I/YJi2cGeDaoCQ7tcbZ/tllyw0UY/22TKUrvb3MdkbS0pEiKdkgB7qs8CUDRANLu36GGjUHZx4/MmXvJdNycoH65Zf+SwtbPKKeKOKk3tP4KlP9Fk7Jbcg3aoLVsHg0rt7K9y5/bQ+kSnYXfQMubnDUNn1FCXrnUJasS2Pa9AswCmayCW4nBbKFwGQD2gIxyKO2MtjNZV6JTf1cGBA7H9K151Hj1p3PJZ8J53etJ+PX2VO/lzUEsKglfipO+4V4FiBKFoHRxYrsPg+Dtsjg5ZzlSnD/j7f4sx1ZmamFMs0wVBgNkqiazyQiiIhJxA0vDltjAkQAKpll0jnb8pGCljUwyhn2XdwwC48NCjqxvhM5/s//AOLy2sf+oVve+21ezQhW9hjROjJ5uEv6f8SVIwip+qqGcYFPx/v98/XfQD5ZgEASobbNcPZlQGBiVR5i9GzilRqzfIqFFqpPZHT+0R4Xlt2T3yCeSsTepCXrjKEtIo1qAgqAa8Zg0gkYjrGpJvXTuqY6Fvos4Huzr27PMqmp2fg9d6hCIDBFnWeXtuN3nioWMRiPujq4KOV1aW7d+/Sojw3Wp2hqYsXn/2hH375f/5Lf/O//+Y/wlgo1Bl12XY/3nnh+9hNPHBsV4+Tj/5jnQTXjrhsWxsHm4lKRjRn1Ir7tF6ENC0AxGoRYqgB1JJI9+j9uQlatf0f8uovIHgRdGvKbAynsod6PWd7sViKwaWoU0aRMiKxIUu6kzc9OSSQ88zRoSh4cZ9nxO7t26DgHQhHRi92JCrlLmG48C6R+zsCZ5G4maP3jg/1jff3jPQfcTvZZwLd59ujYCkty4Qk85iqs5CSEE9zSjzIpF4yEykCtZ8CpbpSrdLGiLMMSDF/2vqRcBj0efql+ROP6whR4DL4pU9YzonzQZlSGHKxa0Qu7CKvOy0BaXJpeXNzaW1jO4uMokEwURfLD+UQHV2iiaZSYCFUjJ2GuICfDcYlAJKRJpslkMzeMrX1vsv78qHhiOYFKxQUHPPeQhcBdv7yJeKHGm7wvCDXLWVgHGa7qoTinoOFEnHMjG7YbMYpcHgspY6TJ4/fP5blTbcUcPxXmTHFnAgYVKTGADhoUENS2K9n2ByKij5zuDeczsZ9qiErzGBWSnjOhDPLrKKpw0owyWXYMW/QI5ODHudNZudWiTpnNG7H/VHt3roGauXxqXAzaMOjI8Yhg5525U/mW8l2nDnTnkP71m3AIZPIm6mxcet6xw8fypkPK7U+u31T59/8Q7FoqaXQn34FBFm6oCdh+namiX/kiss/Wls5f/48zzY91WYABBk2Ze6cnjilqC3qaKRKwpsKDXg5GLtqeXqkBgqpDNUp2jwVwur18Oj4BMxVzoAwAWUoG5sY5w310R/7iZnZM7xZbFAUJ1tiu9Ap5kpHaIakyM1M1YJdWt9KlqHVmN5U0uC8/3lOalHb6VVrUTKNUrWe5xq9Kd2Xp3hCqfelUiRDmh/IUPmrHPkzDzD/MxZeZQ0GDe8RAEgmET6M1PbWXha6+it0R+0vEQzAtixH0gkuQgIpikzXNLuqOyO9M9NzdCxWJhfHOhoOwtsYFQzTgC9IWlpRBzIV5sL71FNPvvbaoUMvzp07G/fEARFAe977nl/49/7e97z3fV/5637dL9naemCi6BA3MbeIeKXp6shAJzZB9k27mol8c8kshmb2PIyLp+cZ1gIMloEb4FMmT6ERz71BoBhAcFVDaxapZFHiC1f1Ls4t0WAgg9xZ9w1Cw+9gTkUATQb6azSrvPIXWZtSqFgTUbrn2HVqoOXbuSqkFhdFnovINtWavGQsoDO6ywBiy8dCQw6J9TIa3b/PDqAxFEpQDA3d3lJtvJ/LajBojzwrvRJIrnyrpZgKsdwQRjt3DxjrCghdpNVBFRUA84nU7gsepjhZE2J8wN0VhSllRmVOIDSO1Yjwi6CdV8C117Nnzky27B8yhZnLb69u7Kw4GNLJzPYfxNQRtNQtJRAjWgV71VgArfYEYoWOVWrcFUr3T+4AL0ArQwWC5o4dLG99AaJAFXQzwpEeRhskBp5/4QUoBRftUeTJ4x5Pcc4htE5TVFC2UTeGxPytaq8XX3RpNTUAnd436f5FeXsEt5ETUKJOFqfAwvQGf5c5fdbESu6BPPzOkofAc2ZZx/HUZL7B3FmA5IJ/iNw8G7xIbCJN8om8/FlpxPLzgifedncOLXcREt7KbPAkN34pxHJMkUDWymsx2Cr/oGp9CHFtmIGp1A+m/YGhDstulgqy+tSDuzh2geQMbnWpRQ+6eNM68mWu6WMhPcTPCFcJZik6gVVhHwTA6efUKGMklgsfAxCw3KEi/WOOcqgAybS6vOKn7rB3UdWCA6ilUgqJcmaKvROPNPHuRHrrDKXSaq2C6Su2RviEsnZ24cL/8e9+8sGjRx/4wC99tLgMJy2FwUeYZb5iy2TxrMLa0/bVTbGILvLp2ptf/jz+AgrVAVqusXJGLYUbVjXU2t66kaHlQbYeutcRV6/yYTxZovSgKd1sXxlL5YCqAlkddBDmQAT53bfnKNcNkoV+lkmks3OzeDCaDCHT8aIZ+tnjxJhz586xIDuupzM2OTwsXKvzmNMA1QFursXgqkMAmOpiri8VR/xzzXjppRd5c9nfONg7zIY0MX7x3Nnn/sKf+/Z3v/Ptl56YODrc3NhcVXPiCsceIaKNmg9MPlaXlmmsI0zaTjZ1dEP/IO+kLnyCfgFKKfLF63Uv2o+Un6UQYsRgS6TFKnBobRhxVh7XrpIaVh15YO8wYyPaQ5h+hmOFgeNtKkzCuihAdZcFzJTMWBH4ZxkTC7QzgqFlXHT3/vG17fW0oZ1ewBWBBklz6QybsE6PDM6Nj06bbnGSMaPCLMiA8IAY5ZmRhUP2LeZb1UWB1CVgNmrqb3AO4dj3CB1gBm1anERrljHh4M/JX58YHNnTD91lawYsY8v4ZfQZFth9cJgEyWSnMvy2oJYTvJ8sqyQYGYDpcyVa3dx2JKFzf8M3So3SIuDXtggNgLG8EZiURDUNDbQy/S4BawYQQQqWpf7LTP0PgEkwwiO2XcWkqBiCA+JixyVdQr+GeOB7/82/np6dERv2yatPXX7qit1V1En7bIFMV32Sa900jmky66FUCFpv2++TayBT+U/znLx5019tMxgSoLSiXJFhrrlJ5sKUgMMdfSqx9X0GxkBca6oBXW9cV/FBHG1YNLbaA4wV4n2ZZLBq1OpCLB58mcllMrIq9W0GqQSsr0hx1zTdYNdExDUkF9gCVKjCnIDWDX8sqK87cF4T4zdGBMSvjCvqumlgmZXS+ErKa8mvdOkLU3euEEC/KTXmErmlDaffar8VSNM10Z2wAF/gIJbRE7PeQRBsaLSMmrGeFqYX7kNLBVNFRfEqkZn7kxS5UxJCNkCiGrZKDfrHPvYxjO/SE5dfeuUeZAtMKIuZe9MFQxVfMgGaElqlKml5cvMlwfAli/j3etiarV51qV8ZGkwoummvqjFeJeVh1LW0U3KTseYBKLhSgNbW36oXxftAyCTAeTiWzaAJ/m7tVzZAdvrnxsYWVqAuk1BERE47eok6iSAZvSFaTc152WaDquWBhfmzbNMJELS8fPYsLT7KlW2gaK61rbW5OuJBr4m6yYQYseLu2dg+PT117vyZB4/ukt9De5YZBJoceuaZ93z0I//qL/2Fv/LNf/b3zc5Nb2zcoTqNdMbD4Pgpbm4PilVowjrSsWxJA8gCgUXJwzjJhJgbU84GzPKqSUsCSVCRQBR8JE8MpMce5md5fPgYo6d54kBeu4c8Ub/pWsSAOG5VjBLDonwY8gaJ4kvBxPSxCo4zj+Yw7jMRZDcTi1B/v5NdgXLn2mpWa+IEHg5JxRZRLXEed/umBgfPTkyemRq3zL2zuSLqzu7BniW6+1GeNBPdMrBrRPSXUzQ00O7zLF3kXmiakZVCV1yFgKECbm1vIwFvWyvdpK1d3Ml4yUzF8gyGFH+qzbA1c8JAElJSudk1Q/rukioEQEz/WyLDOiI1Jq2oB2VSU1rYf+oKZFJo/dRi/QbdyAD0S1/B7mt4vNJ8+SNXi9IJsDDLIHcmJcpKdqObRmaSomRcwNANOMLQHvcXX3wREynP9znywCm7jaWSBJKAgXoFBLB/eyvW55bSzBReDWw/6urtFz987H1uIYdsDV5+giAqQjMWLn2ryOobqVWlV06NBwK4oTFh6xGtQyJsKAoWo8Yg3N4uhcD3mpqR6Hf8VyIqa7wVUaA2AwAZH6q6242if/fdZmSJL7KxpTIGAnmAT3SjZGEAYwVQZ5l9MQtr55alAHZL8MvycVJUK7wV4udPl1q97fp4Hn2xncfaoPkiPd2+c21GpSYZOyY5cUQ7HOqMOMbSYOudiTzjz8bqmg+bR5rS3IslpHDgBSITYSXEDVjQpM4IVkPGoV6nIIAMiIAsEYapqYTeJpzhjZs3P/GpT83MLYAIDkbM6hGoWkTXMEbBkiaPN7x7L5u7x/tV91+IKl/iy/+wR61G3dTldm80IUJrjCcaVkPdbRs0aK/CAQuZ4UE+9L/MxezaTIIlUMfpFqtri3IqH/tmnxOJkFIMvIbJRJx4XlnLqp7lNJllC7cxiwzZGotU54bfSM/IkQxm3nfu3uLTOTU5m6XgoOGXSLAVf62+RFKrDolfvHh+lQRZXZoZHxof1ZLxwf79d779K7/3e//1h772bb/pN389zROeqh0zHBlitDzc21kXuMeJQHEQ2NlzOvzuzpbJsXVUeK9i8PHHtaUuWDypRnnoL8joshst8STMKzqTXVX7Jqbkgwn1Tk4cjfbN7mU5i7KAY/uwFW2GXRI2a+hZJmgsLA9rVSFB47dF2orkJEKsoB4MHu9NDHYGZ8cEl3EAy7iiICnxgsGxDo3OzVn7JQMmBvtzQMKuM3x2KY/x2QT5iIui85IzIGgqolYKcnUzqOJG65DS9uaGqCmEz+62cOw52Ru0myqtjHS/q1BFZah5TqBioJUCDvhaDbciM1KhuDIyoyjlZAmEU9Ph8Y5tBZQIMlAGH8K0NKeg3L1oU9i9Z97kBvYwQMhnqcO0jtiKx0yyeWI02vexO5UdCrYpukDKciFHSk97qhc+0GAh67JWre9La+tLy6t9r74OBDjmM1efnpicPnfugtazLDvadDWn566POdgaM8wkA9MQPIDGpGjMhF5jWJVOcBmUXFNFGYj5F/uvayyuJ3YHl5ZgzPNV4MCSmI0hQSydgkbRVP3LPIt7FrGV6Xw59Ngyk9ALOBTzDJPq0FYYuiGAcK6kV2IQYXnOcqrtr55b2rbw5cQTOQl24gOcYCdOB89i/olgrLVXojvCM8DK2MfuT9PnPen8ZusIh/sD8Z1Lnjio0W5ytpFNAKN94zuWhCoZLX+LOvRBh0Cj25+Woa7ROqUam4jqUImRzLraMT7O6RaYc+VlT4OIN+Gg+A14QaL4AUpP7+bGxrXXX0dIOk4YGDvNhoiukYCJ8ohzRKoZDn1XOFcJbpw52IkliYCE9HQ1NmPubuLHjphoE2lHjNo3bl67c/fRzNxTy2vrIkhsL67pqZKRNLIdIUVoVxlxqV3TCSk0kV7/zKpAZa8L8HaTm2DFyc+fw18VtjqDV9mVrePp9eNFaFtBPStjjWb8DIlpNqSulrtvjZd5oJffdJzK0J81+WAk/Dw83krcxkPOa16trC0vLJyV+ebN+w+XFqlTczOzZgNbG6uxYaM6/1BDUoYb4Pm4TIwL37b66NFDKpcFHic3DA7x3z9lBG+A1OSYEgAbIajZA2hLndHx555760c/+tGZ8XMw7dadO5cuLoggd+bclW//9r/7vve//emrs4BIZUAR0+MzuyPHDx+t0qntbaUI7bBBrG/07rNodswCwM2u+HDyaqXyNbj02nCPWhRvYwp68u3CHv3iO1CGagUAtdW5svyEb8e6m/UzuVlN4y2AoqJ0SAEvACOioHy2RBenihAmENh/WE0mHGKOxoF7f49zglPrxvqHpp64hNzbHqut41XmyPhiDA1P8PNlkLTCyssfqIE8uxqH1td2N8V3Ia4YZmIXYbdK/9Qfu0+akU61dWA3XqEChzGQMdrETEctpns9evCwvW2Yk36Dio/TwegJ8JUOmPZn6qPHIBemhDmbZR05/DHbRfdwfLqU9pgEhJRAzwblUlaCeSmz8CPcA0OvRQWACq/urrZRM+z2gnTFXGVO1kARnIuPYGP4f2bpoJvW6SC0btn01wTLF4bX5WDg/vJ6HTnL848JPtGatvZI76Of+MQn8EgLj7YK+/fk1aetI5Lsd65dozKIlEmoU8QFDvPc5I42TiPOzmpSLbva0yhcyd80KyitIWRAQR9ZtiMJ5YNlBiZv3WbtwncNyrrfNHEl8B62nGLL9crG2tDEkJBMYliaJO5s7gvcBvq4lQ9h5OLiMhMtet5cX2UwQXncwePYVIcxRYevqRkVnuOL9lFlpybG+PHonaFwApsBpbxY3slY4O+C9G9uhBbM1PYPRnuHpvoGZicmNjYJxFXbgkcdAxAH5/24WXGdyVk3mf8CEUZuSGE802AQXy/9i2wxOFENWOpElBgZ4m8Q4eOArbi17u3h4ztr26MDnaUHiwe7RzZUs9fi/nZv0tfIrLVHS8GnoiWqO7Uo1FgJHIIVTA29fRbf/MSDbAaAk+SWRO/JXDjLKrgDSu4fcQgBbd7pxM7F3F53IhpHHy71n/r0a/cfbb7w7mccybq6vkRrgS2MP5kQDYxwIcrE9ItTrGWHYrUCdWrnrGG9FFmmzx7Av4zyF7B4+EuT1EhoA2tHTWtorz+7VCSdrIp2D7tBowEHJLEjWg2tfGBCGA+rouCQwD5gxHI4OT411hmX34c1V8hmqGB1jnsg+GM0rG0Z7ZSV3jPnLlLa48VvmWR/x3kRyGt8asJhCSxyErefC2fPOJrUSTym98Ek/mdGnGWlyNAQUIDEiRMr1FRgerLn3p3XO2M9C3MXyRRTeXv2oJDJBB3A3FUjo7DSQThZct6IlMqcBsbNTp195upzjx7e3xnbhCSbuys2iV568rnPfOoj3/Zt/+zPfvMfGh0WnP7+zFT/6toNOxqnz44ebAHy8HHOHt0a7KXR9eztbNIolIfEMR14A1MHqQmJXmzFO44lpAH0MueDOQyTeDB6N0AJK5xl2BrTgcEYfGoO7S2ZIc5NOcdkjQRvkAJk+K97kINPea3TYAqlHeV51tmOji22TAyOLMyObS4tjnWGLszPdehCCKp3YFpcs421sf6jM5MDnbnJ9ZWVkZGjs+cnV9c2NGa353Bjf9eB6EedkXvL69ceLG0L2NyZEHFj0xFSqjYEmXYAYlKu1Rx/tYIVdWxi0hlQB6trWMb9+w+wfuPFjJDWV/QXQxnVT+7ISMytbmO9iwHPPD2BW0ofykKA4D+lHcdCJjSIORgJg7+QjdFLiipy2GBZPkIvLTBUtY3zE4uICZAvD2O5iQ8gUMbCQ3H3ODABSUm/Ij3s64hwkgeYI7+xM8PQ8C6FFm/I35iT7CDtH8AB6QI4Y+FldigQsGV/OHi4uPxoaeXGrZs4KfRCk2954W2UXgExrBszdNZJkNl1ZRd0yrZ+Yid9IEJbz+FWGEVoHsSLOyGzmhVFlwF4IAw/8jpNLIEcNNPktDDX8IuQtEKA37KnD/3Ueo0naEwCYm2ES05ssJwVgw9LDPQL68G+JcAx8So+vI/sFKuKqC45eDEu2tl/cHzAjJ7jhWzyNbxkD2ULmhjjdoU6YUx4QQ/vz2lawb7RGN7Y71nHYOyXKe1M1B31am3XtwwrabxOYZG56WZKrybAPAvraWc26EWBco2FGAVyC67oPUJPm1VuONvh/iIdcCyHSMR0VomOAR3imBQMCDZ1xScQtSdQIM3xCwjzR8eTE691egaJonvkWO/utgNexsfHAFI28Y4oJiItvfzK9YnxGXtcBF2CsnzFCdTSeDKeUSyqdw3dlarkkwlBbn/uSXEKAYJuuY06f/blaHwwKn0szPKnZE6DjLenRRXpan6JxKIPlaq43Z5mq7GqgcuYck/EsoWCidiDWlZ6Bx0GVXvxbt++hShYdc6fOWdQmOyrBYX34TFRIbogiokDD2Ut6dgSf+v2NZ6MyysPzBvGBs/ZtQqXjCTiV0vseGa3DbZpAvRRmn9uejbXtpzeTN1eXlkcnxy1GoxERjp2Rz79kR/97P/+j7/vt/3WX7mzdW+Ej6Tjvnr2hkcn4k+z07O9sWMo8aQdu7x29gaHi4sZYQgBv9AmGoFQFMZikCqLpSY/Y9RCcbAp/0d/xbHhX2AbSsWVYgdQY/TiQBV+Z1iigVMxK5unGSQjkjzFjVWklqAqrkbDHNpfW1o6MzV5uLk2PTay+vAB4wS86O8dGxvqHaNgm60SU6MDY2PDm6uLOSiQ8OIQNTQkSsPK+trNpdWVbUc72ToAZjUQeEvhg35qRomCUGu1yYP0MF1Kp4RqS2qIyODsCRrViwKIboTDeKvE4lg+TXeSqVZA9MaaHNuXWryKh0lfz/TkdMfy4d6+WFpwgFhSNy1aMYSHrIYcBmLiPgH+hIOoJqN6osVGVIpeLBLVLAw0xyyzSaeAYK7JXdT/Wk0NhabeDEqjUPlTR3eyXq26c+82BiLuscVzSWUOmuXauLreG1OyYMl9fWtbm6ubG3cfPsAqP//S55yLdvH8hbNnz5578kmyDNJbOuZBlMqwhZgsgrixFBMH1VAg1tFAx3hDGwFAGquS7yR56xYmaHb1/uRF/dU2bLbMDxlItGcpFLeamYo1UGm0JAzaTTNhuUGWrQgZSh/Ho3cd15TPw6xLOITn8vTE13o6IiJYrdrZz7TNEXvQwmaoSGYfMaQYlTBqHt3jtJHjPaZGzvkMkMTNtnmnDNXxWK8gUQYuIk5fgAJF6VpsbaWZw32SIJPAxhUKb6BOfRk4+AITMS/gvBGrjglKCYnIv5KvOhhhWiq9/L7Vrxpa18AvRREnmhDA5uqv/6O0KF98K8Juy6LFAKOphRPIw6kp/uOEXKA3cPfu4qc++Zn5+WJnu/SnuHwomAAIyaSS/+RSdTMAlAogEa7+AacnkC9MpsCVoQiJJbWcfp4k3QwOP56ibBnB8vHwSaBZK8xIwCg8sgs8YdadgeqgzGkPzc8grZKTvghYPvcVLcTGrgcP7wjWsfhoebTzaPTsvOdB1/h9ZnuBW5gcKg/PPG2R2vUlE03RxxDj1vYGSjx25NTQCAS5dOnyRz/66v/y9/7BB97//NNX5nZ27lNzYDysZ1jZFsZsaxNnoPOYoCBS7CnRJ4NCxaqhqYSCw/HC8jLwlfKz+AsqofhHLBTfjgoT0ZTOvjnB8uICNSKxwhTodSBEYWIRXGodwyaa9MiEyaR/+2ivb2ZqbGZ6ZnaWJiwI9s2798hEh3uZguBWifdjzWt01OafgdFx5ylus9btH4rqfuvuvfvWYnb7yVIDp83R20EtZKGlGb6QaPpVdJrbjG89CY3IWpdcLc+4NnIuoehXpfSldbkr8fgtyVbCMRFAiBJoF5MItbo4UlYwmSUc670dJxT8QAo+FJTCEYDXYKfBzhfexSEwcQ4/bNZM/8RAzEs4pcTckkBBZoQljQyJTcw+KC27DGx6V7hafemiYUG7ut4zcOHCGayTiXB5ZwOfAtbhgRiRdS4rDrjNiXbJqoKnEVlLd26+etPe+igv586cnZueOX/p4lNPX123OvbgITLY2tzUAozYYoJ5N8AoRAoG4XE1ZZHhBIAF+PbjsSsCMDSnD3zq3leAGEFlc+y60P1rIn7sCJlewUc9bIxeTgMZ3w9zq/KGbOVE+PDaqrAWsQ2X2dIEC1clUlpMFgdngSGU6NuleQlBIdJrb6z8SWHQtI+pseHBwz0oyg/L2WBb1qXx8qhOCBUvRhNyxqRhcIx9G5J0v5JuZUzCTM1OM37RqYu/BzXjJdK7tbsnOoxGqtVAKAQQTfxYYMARHCQg9SkckvxUpLyBc6WgxemNEiP2kyfYUsCsurInbtTBwVzT+9FzlB5uF5jOaGfy+vVP3L17//1X3k51gyRmrxodslXNSWpV/Cd3zRQrvfS/bkq6qZEFqKyz5nnCcgFbINZg5eEp0N7oUVif1K5Z/oeBPlMU1HKD0cO6mzdvlhvFgmlUzfDjV1PlBVLF4hrFdQtGHDiAGgkU1qTFxYONnXULwpOdszOTC2zmVBTBQZTPzhNbwWO8P0VUq5QIyVdX1pxUY3vwZz//OQVevnyZn5Lp3Fve8taXPvcT3/Vd/+CP/dH/F0fz0RGhZBMcpY+DJEvH3s6oXbbUUkeexTZlI6oTLoAN6MIqyc1ApvhM+gCF6L819JAR36Z6UhSiP8ncshGoZUFqv3wuRlX4D37Y9KEU1DSS6kQ8Ego4Xc4UwtBCdTF8oR/LvaK8TF9MrJf1jfW1tRWbMFmPh0yjxfuRw6at48NNWlF8oMZE8X24uWpl+/7i0qPl5cOK0IBB64f6AEfKgljFcqgWKKLqlim/g9h1JUPtOG33YczmAwWXTGIAp7qR/IZFVhZR3fBJdDPFB7XQdCJAoTvEC/1qop64xcaU6MYoiH/iBktLiOZyhlRsWL8GQ80gppBNGDyoctmi/udUyyxdgrKl5KiU2IuKaoNvGs8hl7BI63TspE/5/TgvbV3VWtAYeOH5t/LzCXzX1xG5dXumTAiNv8e+WcJEi7VU7yqsKN/nYbNe22Cu3blz487dUV5mI52z8wsCcM7ML1A9WH44GpsTLD9aZExIMwuPdEhiDdcgHQ6gq9GZgjWWFICHy9bz/Mi8IdSTvXZER6xLtUUbQBGi0mg9wr0iA420FqRY3nj6gkq9NcVSiAY32QtUpCK4Dw1ku0PAX0MOFracNMZZLRQIAT8mEgaNRgYxDJ02FA9Jp8pMcjjt5WZwzK7JMgIHw6utIOimM8gUappsCPwzlgZPTRmN9Cj6gT5RCwp7+LEqWrOZmnf79rId1MipKww7OwPjkekUOUjFBMxIy4BdemjBIVW50WY1umlJkW5SfCbdEZwFz2SGLfUq8HRYz9jEqDULYgbP4rUyQYfa26GorG7vj0wNv/Ty66St3QXkX+CP1lFSZnPKR3rmMzyD/tNKrXfaBMhhJeAcxSPRAw2ELnjVzYMVVgDIILlnxqSQEOSSoToGCeSvAW3dzEgF/wX2yS6w4BjlSVIdxZ9vrm+3N9gvonm0ujKtrzJbvQ3VfYjKaOvEwPTULCcLkoCLHZ8gyDxqz52QPLwNMuOn1kCnkrtalQFFFl2BRJ3c2VkZGRufm5snBhLebW0DV9/fO75w/vLio9v//F9834c+9N6v/dALu7tLlkvHeMRZAY5SqfVahjptcUdizS8fSHJfQNB8yKzq4ExLAWUBEBwqlXz1LLoKbIAhEQ4N+GU00k6/CrRKzufdllexqlNhs7UUhGuGpq+8gBxwNjo8dLyzBVZaubG5tbW5MjM7cXxgd4zMLSxZvzUKy28D46OrO3vXHjy6du+BXbXcK3cE1h4QsdVJzX3N4BMzRMgi/TPkEgGSoUmfIrpckXgDQFpWNJX8dDBfVFtRbxFvMntgnUS+qHr5HfryLytk4fKQj/FAuLAsW4dEj44YfyxOIWXfQqQBSy1VDqLXTbWEeMOmYroJ47WUHVmcGYCzYrD+lJ+WhUlqEpnsvwjuGhr6JAJNJ13lyAgmmQJnUAr4xV/zNu23wDI6MrMwN61xVBnGHCo8fx/b1Hido3yg1zLJSTLKxCSIAfsW1ajRVAAK/fb+3jX7WUQzGRkdG+WlMma14MITT1weempxdcUeXPxFymwWnsQIHlhWQ6t1BYK0UgO1zh8NzyUdycWWVxtw4lLQ1fHlwcGpUePjHXJL4y2+zUxNk1tkA8ChSfD1CpoiRU8kkGXZ15f2E6wwMGzC5xn1/MNeU1eYRrwsBnM8DNhifKU4mBON9A84et2iuT1YyHAzoaPYgRL8CZirsWUozFABWsZJUkWWoQmF6AbpvCG2x4PPQpyQ6qxO6/tZ6rYw0XM0MTpG0Ouv2IBaq80EgL8YsZmK7itQ1zIwlQKwghssD0pAaG1uTzLggbYyVJzW5CiozKJAyeZExsWho2GupQoJY8gO5APzqxdffGl2/tzI6PjaZlcApNn5PzSscKmwLkX+J5LKzqz7xfjL7At6EMD826uG+iCj7xqs/Q16blr7PZdOfharigzxssu2vLJwokzA9xRWr69vQLOLFy/i2x421DI6VQ5SDd9odblphavcOHroE+GVICo1cIhb6NHR4tJ9h1IMsQMNlNSnI/cPchjsGn19g4tJNQT+qlpYOj5dFgyeuvL0teuvWbc8f/4MxEa9b33uHYJFf8d3/P33fcWf5io5LJDO7tbh/gZXAvjMiZJApOiE9xX+a54yC0PDEFsvPOlCKWYEmTGwME4JyiRIr28hJFS3LdbEWiG1mqU0JUT3rxmAP74KcP0OSQU/w1eYsYPOGbLIm1JcJsYnLly4sLO6InQGV/Xpicu4vNkVAyzNfwCSl10hPkjsKlkrH3v06P6N+0v3lteOBzpWsWwe24prUzPppF+N5Rmg3KL2PEhyDS9CJKGRtCgPPdGRAoi7tJZaJpOm18OCgIlIJJ5PFOgJks+yHM6iGPy84jCG+0M5yFFqfj7nKyOrPmS9PauUuFbT+kNRqSeq6kCvCBhlDcroBDI647m2UT18rR4sBeiy6tBalZHUdCV7UoNU6JcGFPbnWnhYvewZEHODJiKpwTLA6BlWnQVDtUIKbG4sLy6vrq0RDER44jOC6RbJCqyirQ6Md8apLWxcjsvxDE7bdy18mHhBZnCdzpiej07JM8Ifi7+hhc2WeOIAFkSOalS0FaSokWBtS/cD6aSMQt0Ytqz81uiAWGuzG05aO9vZxGgSwzMS8XBjNxlnekJXqkvXMpSFeMU3289gXPFQAsA+mDE4pIp9Wn8Mbbi9f9TG8H0MuhrK+0EbpseG56Y5XQ+vWicW9s/GjohruzF5aiIIX6KqrONoenyiyPskXQy6N8RSaV4HojAgQ9fakysxz+N+d0eDgJRBkynWZ9lHgg+Ee0cfUQ4TloUKza7SFaGTHnivpvRSfelIiqc2QNRoAd5LxKf9BPvbh7xiOiNCWed4IEBzuixLsUnAndt3r1+7PTN9DlLsrizpKZSqseqywog2/7oDlTL/U0hAp01IsjEIyMDDKvFWk7JrN7AJF8K5spjZoNda3t4CbOHeSTf1ueGiTAkTHyUR4vnlSmHKqY1jY/DQE+OlfNN3uOev+4bI+VvJTYExwx2jvAPaBoXD2p+dmefO73g1TPnBQ9sCRqamZimjuJ5YoSb9GfaksNkaBffaEOShce1trfMIg/Y2l21v3bAhZH5umoVmfHzqicvPfuozn/3n3/Nvv/Ebv4HxZGdjeWdticqmREtiYT2amT29xUHCyoI+2kvXKiYS+vO7cOwNmIRYgtJBJzDXHT7h6ASOah86g/5u4SK24cTd8Cj5vQHecNKgKeYJpDoUrI/IhOcBPh43O83vZMIxNJbtzKju83NaXDo/Pz0zNTM93uH/hAOmeShvkDo2/mh1876QOqbMA52DOKmzqwxZ3raOXqu5Gfdux0qCngjQ6l2xzDzBWK2Qh+3rnH53Ye4JEaaEdK3Nb1BuMIpRNp9FaOHOdCfzKp4ptLgokVkBCplrwZ4DpWJ6UpQhBNuQbpXvQ1XiA1H5VYB9pApqHGTjocI7MYVrAGBFG2ffDnkH/LEMB4DgqMz0MROx5PWjDVwpIGl40JqEzghIGdSM5oBAef5oSmFrqjab0FDa9Oz0zBPnL1Ex+FdV0JJlJ2RZeOX6wgpqF8aD9Qcawemt6d0goHdIY8+QidSwsREQ3RdufkSIAtLbngoqASLhzCMQuUZRJcJaA/MgRKFCMEACJp2qW3c9m3Y/wmj2l0q6oCZcCVhRC9TnMyfgKosQhaiZd1zb565o1Xeure+eZDSDwa22HCYswJSVX7w1K9egc8QvCLjjNZSpLTwfgFr7k+NDM5OjCzbf9jnpYWdlyxlvYuArm4+YyKvipGegwFkXsF8gcSyzeWDYcTrJfmcd/Ag3glMIiV3LcAflJNp9hjh8jNbh32kLi4Ysn+87DUpfPPeJ7rjxRUY9WgB1IFMcN63vvnIDgG7SCdwsiloPZ1L7JwQvEhiDHPZJllaEmWO/i2li/P6DG7YYXV14WgPjAJRUU3XQiCTIn9Reo9bq+k/rGtjZDpk9t/FzR3uF+hp5ClI3p6lwrYtv3Y4UhQQTk/LK/zCWHkPxh3W6bwoFpxh/ABD86Bvx3ewb5Atk1iGb8uvzN108ZBkARtbXiYlxEF5YOCOulPxmgQK9zcwsW0yGEZbcmOFlCMjflFqr+BeoxY48a/hHTuxSLzPUa6+9NtbpzM9OLS3fmZ45++Dh7b/zHf/bL//lv1zkENEEHWfEW4ECJ5Y1O3XmHnFBhvJGM2SonuIeGfKMdfALzhCcmb5SNmnsELghAPwO3RbK4uIoBhb6HdJWjYKCKTgTm4HHb0A4kI/qD4pB3AxQ6oXV6acjQ0aHB+enpw53B+cvP+Hgmrmz5+ZnuaqNTo+PiV6kvwwKSCtqztDo5z7xydtL6wf2+nQmdjZ3hHQ27IKkoMBUVIOuYJXFCSUR3zIP8ACleZ7+pqVxgsMJ61WuxZnyS8eJhPBdjQ6vD4s3ExQVEPGFy4eis1prXwK+THfMmqIMDprd2jSyKi7CTG3VU59kYoHuIkZi68eEgQoAuOoXVCmD4eXYcq7gpRn5x22FE7sGZVDkT+u1zv8gneamjdV+FWTcZJInFbspeOQbiVOkp1VG6si7OJBmi0f2Vfl4anxidmr2ifMX4Dp+d+uO8ErchOJqGbXE6QeVVMSZEg2ACwHl4idVWvu2VndXVlbBwlulwdFx4azGxrEan25vOl+JD3LOp+Yb7T/DWthgYHFdgxLksDKZ3YSVfKWANQ3oLk6EufOmuLN1W/ubP9KlS5dIGjW25plrU9Y4vJAKkYK1GRino6ntbmWft8U9+m+OdI/qvz8sp831zLLZSInt7oGHs99slaGfW0+zBzbuyWfmd3r6bq3eB8bp0fH17O8QKhlcMgGsccmQGFv0UGA2UkRL3GmCuPZ2OOoSxM1YMRLbjMNQKK2820gbThrh9Rk02ntugkOK97Mq8Ss83ad+mnrW0GYQFeGaMtGnn6MdGYDC6TccfmxfoFqYrTsaxhrDyNjI/MKCIQOBvmEHX+yPjQ/+1E9+0oSVCxCJEzenHIeATAxNOCtcyhjFqNIdFOU/nmRuycOWxc+fLnP7UGsNKBxtNyb2GqyWIBQYVtLfdv94Xe49bE8QS+WJiYZEh2yWNlgzFWLX1f17dxwOYdzlR74wZH5mgWA3bL5iKEwhIUwaWpAHBduupaiqVvtt7Oi7c+eu7bOjox0Gd/POZ595znYhyGnlyWQe32fBhwEIJB/WSkBrW7u2plZvspyANRhn5r6ZaSEhFscmhyDqnft3hjtjs5NnUZVCjC2skfAFHBj+hpQLvYLM5L3qMSBo09NPARIu8PbteyMdBDnO1/S5t777x3/s3/7lb/tbf+D/8zs2H6zaDH92ZmbAJnOBY4ds5tiDgTXDwypy6mEKhrDUUl5xkfU0+fAZdWp8UC44HX7tMVYTy1AMDjFyyFBciAYOmFFzobU5k00hAUfwEVfJYFnS41UQiBduR7NrqISrWw872L//8MHtm9dnJsY7nad825mYunD5ifH+bT7rtDUbtVbXN0SYmJqeu/5g+fa9R1vHQ05odEqvg9Jww5I46DKAazCPMGvqc/hgtgfClqg7A4PjAgeIvM/uvbNDi9cWjQy6difQAXOpPemdV9A0MqC/d7Izvu+MaGIophg64AE2NzWRbSVbG+srzj1E6MkvmDgcHIDSXqkUmGGgG1b2Ybv/8BVwN0/KpEZlER7R9KFQwTyVmk6ZKIRBB8YFQiKiDCPai6/kUbYU6GZgTcBUu01Zq0MFd0zkhNVrmNLi35pnsURFE7QvOJ8Z1TgwBQIiSSt/LCJ16OJXnIfoooPRtXErEEsfSqjCIXpwq0mjWgeE6cjOqJw9EhvRo+UlNCPPpQsXCWiHapjSgRr+EhW+TqxVtw4YtNpWGEOHBEc9q2bG/tO6B6BuYJoCvVUjVq4XKqJbqVQPXWWTIdMCExdWdqIbAze3skU7fnFZ3jQ8cQiJxgINIwslkiAzOdAsZmofTdS//SF70OwMySTXLuCd7ZGBvoXpsZ3BMeEfoYct311oBlUyev5lBhjFAWU1NI+0TsGJNBdfb20wwK7A6FoegNiCcYUB0LmRTb71Vv6UHL0FnGpWlElgaYnwths4LHgAIKDR0M5PrYcxdH+MKSocSxUZ41wBx93xNRIIpagF77r/aHFweGxoeDRyogzWGZfH2X2mM4r8+U1tINLVx6v+6eosgIOPThhi7BX2+bbhJPTQXW8V5aEyjHaBMMVV+d3nfvrEk4Yb8jax69OHDx8BvgwQTIvm52dNbj3ZtbM6OJaDqRVebej6FKb0L5VC0eHr4R3+kRxmKswyRtiRk6try6P2t45MhtQb+1dII42UBi19i5UQOWEODSvUbsTjVvRwiVcC1nbv/t0LF6afvPrCd//z7/var/zA13/lWxZv38S7dve3NBtN2FyC9HRWd4IQ6aupE13DgQ+WX6O6EC9hERJGL0ZodF4HI/kgy+QZmaIYCAw0pyBNeythl/KEkMLZ0tkG/wgPO87zfb3ztMjPD8BkMuHaL6ypcBW4AB+TS+tz5AhKDcfq6R8dmxKr5vUbdz/z2i27Zvyj7sdaGtkUVohAq+DuJcWf1OVGJhRPay//zARtYmvR33hG1XinvzkEkjKetlf7I3tDuOARDisctLi5qVKXog4bCTf4wva26CwBRWEaIYjCPa9FIWUFzuFKqcgn2eja1flj/CEOKKCRMUwLFPsqViMi6kXcEOO38SUZygCsYjUFY007EEH4cQAQzNceqYGg/Wk/Xb0d+PyLL7NgUpRYUUyW5Qu71VwhKxSZ0UqH8HNTXHZN0XYmRkanbQzmer+3u7i8bPV1ZW2VuC65UUZVfj4Z2kQLw1gGehP5OfIgQiHxGCjXn/nc54kTVTP1ibU9kk2R44ZjbW2Vyy0maAnaZE3lesganrlqJfVKRkUeUMCbaDqt2a6w37jgdzzq9Ij4Ilokn8gJnlkMBKP0PV3LEOumBjG2OeEXW+yNHpqVrRCbPgU7IU5QPzNff3gdHOGY6IcOuLm+xkV/alT4cZu+t9OYg8TZtZZhiEO8tCPj05UpkRoKg0ax45kmI4b4D/E9oJMMWGyJkSdHZwj7f2hymIZocFKwLjMChUZYZ7FER4LFdohkkTMs2X3KzbHFR2QvECGVkDplb2SkdjgfWaRXBgDKOTQMusKjck4YcLqZbuJFnFBv3rw9PjbFSrS+c7C9sxdY+EdeBR6NFtq1pI5n/8EpiPbTpHT+Z5cUgidqGR9kq1C4ahQ1rJ95l0ZVghzfAVGAjUSoznjrLoOVitIjqJpxKs0GBmoaosCdS30B5VovcUba7CwxQxjQAYG3aRsxskVgp96GYCdtD7K1pCXqKhmQYUWmI8Nib0+vbjokYMAMA1nxxB0c7mQvMoQx0NqXQSixm7+FXSkkiaoeK3NFEBmYdDzAxVu3bl+4cHZyamF5eWXhzEXHov3t7/wHz1z6f84uXLC7c0j4WrNtTtAQMOMKx5SvFsBLmRAJxEzzqzvdWlrj0zurUUFIIPKvwS0vfVydBNB8gvtAT8q2PbreBho+kCVjHbkSJQIS1/h6JPlKA+SEn/gc5XJpbZP6vbt//PlXXpl5yxPnZmc5rnvo1AvBNtd29lYhaPy7iZ/0pYrRJUJCO3XtDcVF4ZosAx7vHmeD8MS8ExNiA7PnrqrGdNrLwELbKGeFKx5iwfUEkqSkwd4OMkRIGAWTvdepQDS6LfpBFD5JXyCSjuEITgZWFHr0FoL4yhtoaPTAU/biDARwGLfigBHuprEBkY9MKEgTQQEcP8ZQox8FMa9jbmbwzKJ3/E+VGJFUZRbDTI8K6+C///z0e+DBo+W+pdXBew/hLlP+mOjAYxNwmhuPhmLc6oT6uKfpnCSbn+Jl6C7KEsEEDSSP09eWFm/fvm25hljWN7YGWhgWpvfmua6aqkB831XtBLsV4wePHqIcKwQRBB22iDnMC3uVcCUfEgfglZATXHDiHJd9MQCkGQbFK0xMA+R3r82SunRBsaImaHA0weqIDISWptq3lV14eDRSjX7H6CVLZgY4cZbxJQZkQxWxkUR5LFOdqYygQAAsolPmIgZv3HawAWHm9oaDywF5VBs3YdQRxJi1/hpJVaOMhih4TMY3m+UyMYDoWX0xzEXSSo6Fy+swqQyWPtYriNGlzzwNtXjMxMHIEz7ioxqxfOOevU73tZ8+zPo2xM2X6gplzdYT/C0TtKA7wZRZvvZRakZW1rbv3H0wNXvVfHBrh7mvO7eIKlr0xaoV1C5m0SX5/P4PTa1DrVOtLE2SHn/y5euQM/nLIg8BdFB+3S+0CRygDSpOgbGtEwShuS9OMjAPVNU+RzAi8FEktjw37K4UZxunIQx4GqzOUGb9LcX+bbC+VLFfXFFYRxrUN0wATEytbz8kypln+LzHIjTG78VHJgsOSmrcucDeCq9NpCotlDB20QvwIE/On7+IGHl3X336iTt3V0eOh55/x3s/8tEf+F//13/6+3/3f/l5oSwmWFFGd9ZXzWkByqakEENmmwVtyENVYaNkpogfQ2yP9KIB63xiwJhwkElh6cG94ky515GGE8FyUhY7DkRMu+yUMTNWDGWnMcSG6SwdYQVYXKRCS+791zMoDiKSE6taHUqBsa/evD2yuzY28m6cyjmsw+MzBztLD9c37y+vHQ1PGpVgZ4BRjQlL7ZaZGsJA63kjGZzfk/BMW6QPBPR3f7y/R/2PvlUcILm13LUwRncKzsXUq7MMNH5Yw0tHoQmcwpERMnUe1Gr7jq8ByPjpAjOGDbd0ODNqM4tYBvrLRbXWJFJ4gBB1T00+1MKOwwki/rU/GBneUvwKE0W12GAkUjM4xIRzNNgZkxmS4ophuaBPAMZam1QsRJeVnc5I2S7ltUCa8Ni0dmBFeFX+nINmBBjH6Ej2B4dNkDYj9OR+9h+FujE2wKNSFKUEZ9Ke50G0MI+xKurBw4cP7t+nLu31Rz1vn2ChuiQD3wY4pwjNB/Z1xyZtbj5cXCQu5h5OieaQFWPO0CPxq2vhHxxbRvKVVMiCgQIlLdQHN57IKbVXrsSJQlYTtCTzDDm9ZbMi64XkFt9ViAUyLbQtBdqgG8gYtpYKPkYk4jdTYVZNqzyHQ7ymWaajaxjt/v7JibGRnhHH5jrUbWGis4E79PXYJcBmLw6G1VP7F2pYI8jzDz1k3EtxNyQCQEbODudYdkt+saFlgtfQtbXBVftyH/0JVaTLgV513JN0IQgiV5KMlcctnWaP2R+HOtjeEDfYPGB4fMT3e9v7vH9AGEIpKitRpB216/hQluXVR+trm5eenMQt4wPW1aqq9HSmSwPt93+Ua+vjaVHpbKXWtXY9fftlbuQEHqYY01nrOMAddlAqIEyAwcw6iR4ZYIWt1E23vBCYvAVGHF9RfsqDn1NENrbs3t8E8k0n6B0f8zebnaGKOvN11QQaS2rCxnBEQON+sdulgG7p+dPlR/UkzyGvZkQ9dErAIDVocmDJBigrDYNWmlmBxlcmB2fJ6NHs/FFU/ACrwDKeh901sZ0S0lTd0QCJevHc255/7bVXXn7ltSevnN/b3xQwbXru3L/43u//xb/ggxfPXTjaXjWh1YKG8wwhSoh8T6+Vpqk4VDiRLJhMtbaLeBi5qZEn7SGAoWNgKgbV/SbqT3Ayn2i38okXDkH9rJ6FxoqsYfW1iYuS9EtjwsPRYfZG5XTi42h8daSPg3WO9m33H3j11l3QXrhwzqC8evfezYePstQ+wEmuF20GqJlhx/6T8lNckizVom6zgcgTgxTmFiNMJFHW2eyL9rz+5bMAu7SEQCMQljk4Uv2Kvz92Kk+p+umnSsWX3EsDGpnT+aJqCFBqRYZaTKICjOAZ4mhlOQcsWJr5YjfxEb2qzYcCt0QnFZwsqKjBrqqNHSWlxYCEZjNM4XvBunwRv2F94X8a3qU00Eb9xzlpLClFFUyCK8DGJEwnH5uY0iz5WLcp5uvbm3xviQHLnpiEFFsNZcQUYXoy2aKeW4iPN2HT9DNfM2ycggaGx6aH5yemn33iCq32xZdfxe4NlQy4W1T4SnbEYcpKRpbaUXKbynV07fp1Sw14NwMOeiAGeC+7HHZGcDObjfe2NvRTGWpXQrvxREr/KrkPERzxi8gpx25kK2D12P2Uve/UazAqRpAlqBziIRNARiAEv6O759YsjSuuCbKJGgHQ41DlxIbs4f1n6cLIqIsjXexyxwcTIwPH20fmZvJak90+5GzDLxDiZ5uwNmAx+C34F4IFYSxBuBcEGzlUoJRmYE039LAmxzWM1S+ASl+qp+5blz0xykYkenyYjmlQLOAygDZByONE/019nAQyM9aZnZwzP7OEI/wHLqkW5TB/qcG8CO0DFB8MABkfm8wMLDMdVQBvpihpVqi09MMuUlXj/oMvQYMvSm182+PH778oY/eBImAUvELYCkwKDQQBwCSLnMWV6jHK/WlrpNVUzuAA5GUlx/3hEoBIYyNjPH/w/d3dB34GSRNLI6VFXTPILpXaGH1xa9vb9ty9MZSTlY5P5+bWssbb7e5o++WVh1wmwqR6+eoUNytf8OI6xS9NSNK7oFgsVai+Oov7ICIBSj/74qfnz87iPRsb609cvnrjcw//znd+1zf/f//QGut6DlXqtSBkokw9BY7S6sPSUlKJFngZY2JVoQFoXGtBNK/D9P3hCRDcLYSNyom1Fq6E58IX6O4pjZixo/Xat3CsKRWoM3agYFXJGGgGx4/7nEKftpW9wWq1beijHOkmpp554bm7114+Xl3vnDmztLTy4vUb9n91ZuY2E6YqoqXaRmLpQ1rqAWqrNgfYWtTugbTMLGrudko78H0nuJV+lbZ7lcbpXYRACb/qU/oeiZNzYQGJ9dXUW7GgVFpD1o5kqJ5EOVeA2sJOE73Mh0Aay1MoLzo9GYBdtKK7MkblkR82GMVwnp5UiuAxjZD8LIjpnC7muSp0sOVLjuQJONozP+XxQyMzVPrlt68soWLTwnua2XmNdwyLuC1s8kGWRpnH1ja3VtfXeh+VpWKgf2Jqgm2Vky4GzZijIAZ7wkChQouNWBMpiYrXc4CAOl/zwQ+ub++YCkhmDyEk0Xb298cm6ghDZ7nsZIUAvg9is73HU9NTNH15cKveB49gADdT9HxWOMDaX7BX8f01VQ3QCPk58cJPZfipzZKfGuanbrern/gCRg8lWK7co1ifpJlwH2voIQqTwPUUWMpJzgwwTMj2vaGeDok3NDJmkEXQFHhua3NHPaMDgxP20u8f8HNil1SEX+I5iAPL+kmjyDxAI0oqa4ZpmeFAExmV4GQwRu34U6yxfLTjU819FGbEU7aYfsZPHkOpha2RGcM87gUHwjT8Oeag9C5Wi+1du/KMrzNjJvuniDJLLVkaUYZYQFGUTCOhfeQKUJRkSnG3b901KyDujRUvBdLlMVapdT9fqXWndem0DtCRTn9++RtggS04ssHVE1iOnWVvRo919UxhzfOVL1uMGIF02KjeVRVVS90DR2tGAibF682mIiwpJz6CLfW/yRi1AF3L6a0UnoCPRsyEpH+61qZLJ53SEBq8b8HcefEIzs3o6ODiQ64Wi/P8QXsOJ8emGVAx2tMCOenEdO9fUxVU1u1FEAlKc92eP3Pm3Oq5a9duXb5y3h5NVsuFs2d/9GM//m9/8Ic/8K63HOyF1yY6dDBUyf5lJuE+qiZqssGFIoMNmAB3exkQtZarT3ejz1LwC5m8qodYYXovX9pknuFBmCkU65Jn60UmAeoEs8wn1JHC1e2hf1TT/D840LEFntLpILbB3juLi/dXVi9duiDqwGs3bnDCdjrTxvb28dAoHTdz1UjJWLIo0oa3pkZpVbW5yk9Po6EROyrxXJtMM+IRoENhBQFE+hB7u4fpBauXzOYWAXY6WUIgdmHG4xSob9FuywhRvQtzz9hEwbQzIG4nABvFPTMNQE51WeqtkkoBwOr9FwNyakgVKSm1ZyNI9x7S5i20Di8Iv9JQmeWFQhpIVtUQRXFUu9IiXIij9LYRRJ4rRCKQ8JaET+YriHdkfCjOFTMkdashTaIe4qoQ5XBxdbV3bZUXEMOQddtJKwZjAnfjpgn5QM+ndMsb2cUTdlD44i0hLC6cWbh07qyS0Q8DkeudO3cIA/cBEIdLrfP6+ADWUswJy9BSjD67wlAObm1yH2JfGnMAgCVk2hEH24pnv7u9abW9xk/+MDLiV5mUmuNxw5F/mKMlW6DJKZx7O4ijZgVam/UfxMcLH1M2kqqm1Tg6D8CtniINoEkYZSLehCNG0BHHPNGtxgadPU0DoFnvsar0C+M8sDWwsSOQubz8ka2j5vQfynOW/2NdwFFMf2nmemplL3ON47gcgLM7o0ZB0AVjEIdQ85RwEoFgsiOwFIXkzB6TcG8jEzaulCgKlLHEWzaXgrcl0jqDRNux/XmWrPf3p+cmZufnYoRVfvjhweT0BHlMuyfewMuIkBPmAco2YRFS26CYl+yuMw0Hs/ugAJxRG+yksoVAgxJ4UBDz8RTFGp0ERR9//CXu27eVHypWBqUV1ucP42/TYkK3QPQlSmiP3qgIFGFHDrTQVJ+Ap+aiZv+5V15kgbkxvMctwgSqKydFw+E88S9T6rCx7IcnSPd4wUYb8JUtWvZtmQ+CHuCrBfREdR7qLaRVZsl65aT2nyY93h33UthNb6+NTrdvC1xPiid08IazOLZ4lx5aH9YPIgv8wyE1MR43oXlTUgytiBeq1SDVEaEhyoEBLqGf/NQ9FGDzIpe1zsS5g3v3vuPv/+MPvO9P2q+5tbPMGRbTE0aYt0CxSd2OIm+E+5z9nLDYNsCYaJRpPjZoLAhsw2ADJJPBqN4+jvDQBUOQ9nkTQCb5hRVQZ4C19qymnqQMTOVMf8L40oIqZHJ8AtniD1pC1roCAr7++ZdeFbzo8sj4w9W1T332xcXV9fmLT2wsr6stZdVAp00FIqCp0TXKNSvBAqJsJ+WQ4nDecBl82J/C96jDXTEbXNeFPJcF3oRg/S6REgZursxYWycpyWAw0KwcgUK6EBRTV8BhKuMkaBhDT43hniFsYBcJlzUnu47K2VdbTD4KAuox2BkP3CCU6J0vgSqWyWCnMC4RFYaJhqLqssj5Cfk1xnCg2Zq464CPY93RkoAjoA5a5icBL7QZqCkBEgv5TNPxDiBVGmaa2nSp/roNv4GoHFVijl/f2H64+AgsUOr8/BnrG+OdCTuhMHA1Ob7ELgicCSAIGQVmg8zg4PTsrDLfcumSurB7MaWdYStyemw1YDw6xK+tZnNZYtWZLPgMD+7u7L5y+xbwsETt99yesh1rcsb2PyceTY5aJ+tbWl7qcOhycncnLv9GHCI7RjQG9UyPMMc0YaS/Z3Ji5u6jR9gcAbaxZW66v3Owm9WOsUFdOGRQ9OFQ32hCcPZiylwOTLv6nTNqXw9CGeRpa8LRu72/fTxwNDQ2tLvj9KJjEyIDID7omsMpCY2B4Ufl8GriJ9q6TsFB3an9MMHP6AW9Q4cHW+aFUMQIhrM7v97ka2/PAghglxOtqZ35Bo8IsYh118YD08COHRzs2RZIwNYE3yh1RgbuiSY2Nf6BD36A2PnsZz979sK5kfHRkZ7j9d2t4aMJTrfElVDrCf1zYCrFqhbMEBMAMsU+zn9AWLy9vpu371g0dgSyI1ZfuXVz0MFSzmqO4iJqcDHJIn6V6hHkKTQppPI7Twy3CRlUN/7BopZNTk/kC36fpmAkwg0FYWR5Vy9dfeXzIkA3wUkvtTc3GlCqt6FVvF6oxb1ztYyy6bWvEFDcXiV4YxJ2sHv2/LmXXv68BSZARvJoFG4rVFFuwgWQonhPAU5nZX1lYnL8/u1rtgKMjovE3nfz2q2F6bNn559wRIyx0En7TFg2/YtHRyZVYXJUH/uJIBauF6Gbfn1hKlL3JmzSzCS9zuIqfUO4g+mHj+4IQ3Lm3DzquH3v5pUnnhHYeHx0ziQ7nj6Z0oFy+ckckcyhZ803RQjLynDQgiyzZa/ZzNSEOF23btweGXpGEJOe0cHLbxv50Y/9q7//T7/3t/yar+HFgvn3841wvrH4Jj3W/Hmg6U7caUSMywQns8N4NgegZWgGfl5m0SPiRc1QH+BnMTLaqeMKSpRlImH4w9Ag1t62s4bCpWWjk0XrLsSgc0UkFD4gj4ChYLG1ue5z1uD0xXmPIQ1tAdeB82fP0Pg/+9nXdvf6RoYnV5c2CHwTNLQTDcooYiR0UOOJozptHXKbgUNgfq1uKQMJD+PkYGpKNPqIDfnw6ME+XuSdXtshYzcm77Ul098yb/gyCK1PxkBMMObuoZHJ0RGNKhXTge+IPtuVfJLOFhi0yNLbeEdX7DE6ZNAWrsl2g5gjo+M7SUU7rbQlCgt1FZYqJxoMSO7auDOOf3IkpKv6C6tj6LCW4HSgA+xII60eDYlVClwaTBHRGPFlUAi80AtYyojiocSai0ao18GSBv84D0YaEM+RZjWbyW8kq126IWtGDZSKcjNZCsKBnME2opGLMl+7eQO6615sJlaP7dMY5dQzND8+lmlYNHGOrg4r0B6XpDg5X7p45dJFIRwYiOD68ub6/a0sthH2SkOEru65maZaSw59/RvWHgSg3rAcZwvD3pWFqYd+xaoUrxkGq7Q2M0dqFDQQrHOAYVUhGRWFRMG2NZ0ltcimbEdqiZTUq+BCmVwKRcnb3Rzitkfv9qDAURuyjRQSO9p1zk/OisrEEeOAYKK5jXRCVfz3Bs/szW8dPNhY23TIB6eomkWAbUDa8KNUlTTDz1SPPjzSAvuJNF9PjEJ++7+I8CBjlCe6UAjP4OZb+TNF3tsnF+X+xCc+ztET9Hh0jU2PJ2o2C1//cWI/HB90hP/oH+YGlGpTaTE+07uMaXbQCz/BVsc0bNK0axtUlkOMfwAkr/Y9xtHcd8GopMcShOo+d6OB7dXpw8dyus3Inlzrti4p4qSQeitbGGVLJ2UakwgJP1Ef2x7uH00Dafm/Pi9cDoR96Inn+I2+tE6FQkpBCZjBkXSLRmNJf5tYvXfvjk/YaKH0g4f34iU3Ni16lobUckJQG11ROHIcGLwr44+CUvVjHT9p9c/wNxR+zLlo2mHuvCUUguDNP5ZXl+zNHh4+yBH0ykBMxCH9u3CpCgVtb6pb9Zs9kIKVyWt/v2DR5uU3btx68qnLO8KmTZyZW3jyH333v/q6r37hwtT03uYipSMkAAI5cQWiU+4BS9SdkcMNqmp5l8ftLR4/+YPASvhb7OLvDGAi0qtWg+M2jy9ESUhLQVuT/cKcGny9p+ehx/yEcsrKCCZzELK4ljvjlO6HWjwrQqkR2tk7WF7fEqadyGdgzShAzPwfqZJ2F52yXpmGUFeH2W2pAjn5QMWJJ59FWI2KmAIvlVQVJcA4m2P5E6Oka4URO3CC/EFOHItzedzzqWigUSoDuWI7caST+bldhSklZkOe5nSp7HkiJpM/QSoHHVcZk2TOuo8mnmm3H0SKyVbaIMg8g15Bg5DxRMzHYDTNUJeUWs1EAFSPqClm8VlzLQ4PVsdB/ExW5CTJ6F8ZjICxm6C0lmiuRRughjnJ7H3UtIavboyWFLAni4sRiZ7VaNwgyBmoGZFi+yUW0gppxIFGPT02bmwIFmSITdyIAmsGnWGR4WYmZ6xGsuXrG9lKmqW9pmPAxcqfkN9T8xfO8cx5tLzi+AEzA2n94aIacXDYaRU6tR+IvrC73btubYCMGR0adOjPyoa5i/NqJqc6ozuZRBz2d8xtdzu8tjfFRlzbdcyS1W3n2ebAL3HFBf5MMGeiXFQpbMPR3VnP0dmgZdZ7aZB2Rh0IndvgYSC1NxwyAljitkPEGObhzpbTxAT8E37wcOtw5eF9qw29/fY4OkuhTGz8VqMLgxpQSu7ch6cSR8ayAdaQAJo3AWdxEDfJ2bISAI6UO7RxP+vVFmVx59jtMKLkOQIf82V2A9+vLS7PTk2fOX9OkD6JPLJ+PzbGlOo42EhA3xln0EjhsMpsL3SP0QmUOrK8ama2Mjk5q6LsAKiUfP++Sdd+xk+/IE/76ZrOtVYWNrf7unqZYlFmULT8EeBSDU4ugFliI4TgX/vQJ02loAe59yHDV2gGMRmOlJMBMFK2Yil5dXUZDwVbbwRcO3fmwsTEJGFAKCo/IqSOBCAAlJ8ai5e5T9tOKv0Z+/5YhmzsmhqfXFsfW1vfwWNsK9nc2BYrdGx0Jigv7o0oftgGSYUKyyO5Pq+BfKwgt61JesFRmzD4/MsvaafVi83NR0899ewnPvZ9f/s7/tE3/ZHf83BpnUI4PDjMgoHR2CkPRZxmQMsIPyluAVx6pkcxZ3qSa3dM9bT6m+kUhDYtCFYVPCkLbrHiArBcRGSxYbhMu2k/C+zld9FK1jlv6NpqBsaMHa7tkZ8q5S2u204kjMannJCMiEG7JgipqqhLteGesSoispxe5z/KP7VKk2LEiHSIcPJNRg3Z9x4TUAJuxO1l2Hd4AwdzK6TBE1M0yiM5l+gO2FYKYYyt9VmSOFMP7QxvT5lBvJ51BtXBBIaDbwmLLzeOG9iQpr1mjvYbmT/nKBdA74+dQ/TlAxMCJfGyTdBf9BqjENIsaajZyg+1+pkprB+1jog1UbpVoF4ipbJVZvbeWpPQNl8ZRBncRE5UUkKYvqeSm9OnbnDpvCrF1Ns8qaHKthQgBNgiS9eWgpHaV8bpTJF4zmUzF1P8Zt9q3+2Hj7BIpnNywCIk7XSIVcH0MfYXUoO0TOvtZX/y0hMKtxEcsj4U1WFp0ck+0BFTA0oUbmFBRTIL4eDoGuYWrRzf3ps/OuIJYC8XSJhu8f3sTE0M2u/iMEcoYEZlB+MRg4Bu4P45GIbhk0QeGQA807NoujwJIBW2TVv3mWt8gPYdfpnV40hoEzwoh92wr8YR9piPk3hVVnOOSYCjowcP7k3PLzg5eHVjcXPP5oAdIBGJYbNsiEFo8IJDdv+mQKYkoxHqDbTxlAIjaNTIhRelDaGCJF9ZGvBF3M8SedFOE1+Hm1sg315bhqSjY8E3PUKy5qYj4yPCfRHFIOerdqyR8mLTCqWiVfjGOqlqsxrnH4wsX7PMtvqWS8+okXqrvVV5XYIFb/z6eb3TLql4zZvqeVN7ihl5AmLQw1qUm4bJ7ZvKXJwBMwmGc6kcSYACWzbCjAxgmIskf/iMBY9Y4HJkN0cpE1r+bqMd4ZqXpqfm5mYXRgZGwz4yTJkMQQzV0S2wI1DPaEQVTWVdQd/lk2/qwpf5wXLr0LHOyNjK6kOUiS9oze6ejcGLUHuyg3YGSX7KZpMyby4qPLQlX/mW2oL1G3pHdyyuLD98sDg7P+PslEsLM29567v/5ff95Nd+4GO/6EPvXX94kwWWbwqERl/mSIKXMUZAGN2IF2SYe9xhMUvlo7hmz8wUNaw0arEbwxUMP2lD++tnASRYnnsML/wzDyVjYojxOx/72Z67d9NoIRCuV+2nWW1WWzGItMQQ+BwF7hvWsLeqnMVJu6nxMWnAap7ZsXCy4JRBKXxHZIFRQgKyyFNUCahO+usZRzm95fVwtAedMrjlxRjzbtglwtGFXFhbGAYUq3mSM3UYcbBs95o6uJsTgdnDsSLR6N1HyYj0MP0YSOgvM6pwgCzwIk/22N4dFnNcVy/i2KlIHjX64iYGQ6MQPpx/6XSddN2gp2GxSPLcYefY4XnTcvruDdz2bSONupaogMdN669yqxOGo60s1pILDhmjXhWnjrTZuFcDjJ6/7ZXPJVCVR4lUZDQBV8y7PEd83HTE8l5e3+B7KMA3vKS/00T02VKPnwSgjROgZp42ak5nQtpzfHZ6+vzCPId9R2wvrThZYDF0KXbQTo7RSNPZrO1UjAPC8dL2ijCwjjicFCuKZ/5o58KZuTmrpyPD1t0jyUmNwd7Ntc3OxOThcQX2ifEr1G9OwJyns5mPYQ3BYQKdz7+l5sCUKpRIhri/HFAuTPOIVyUvyv6Rgc44jpBFZn5oBilWr7kZi6arK+s7G1sQm/E4IjM7FIs+oxZlDEEHNw264DzgXEtRutYEtdVvuVEdXCsEoAZEcDtoO0vmfeYBET4812CJjXHo3HEImf3xCNrYevXzLz2cvj99dvbClUsb4qeTHE5r7c4SM6ciDNOnYBtECVJBToTO5/bu/Yd8/+1K8g5puaal2pvxrPv2V/Ngw8n9F/8tlMp7nTq9/+JsX/DkFKnaJ4QUxAhepY1vpFam3+2mKQeu+cr4aKoXNFLJh6WwRFI6TXsw4aGMizdBuSK4iNuMg7pEJdnc3Fr3fHtzbXLyPNjyVbAz68yZhbGRCR62KTOlBl4aJlki5rJJAFhz8qqaVBkq58/pkhHnlj0ywZhrGzs5rth9vs8bKwTD9oSA5zzOBszLott1YdIdmMcr0gYNQ5W4f12Hn776zE9+/Cdv3LixMD8lONmZc0+vP1r9C9/yHe955/vHxi7srt4zMx6kkIY9M27EionIOIVj2SgDfMg2MMMJoKjjagLqJNw/nc5trBBuwVXCI2oYSswGVQAsfK0yoqO8ZCSh7dp8n7arAd+oXoWHGpQmzHXEffvQ0YRyolPWKC3FVjWG+0rDRIUqGJum7CAS3BmLZisn1E176XwI2aApm4oHA9TNCQpuKcrq1mh/r8P+RgeHrDlwEgj/5AnC2GstZGTUHMPj8H/ll2of3U4oPRsVLJ3x2cfXcJtsVxK4Io7INFFe8tHxwKj4IXHGDk98+4f4IGAECedTzdMiGQPAQNI/H1LjpOQsUvM0gApvx2zRb7iGEGoc9v3NCtROI9iCs89MAmKc8xc+GB2NMqfJ+m6qelwAKFHKU4UXvfnpk9BRBHVXEsgQBFek/uQmt1Iz0SSSQXP1qslOe2eChDflQ1PLg72NpWUGazvFWNbKUt1xpAwbBTPO1PBoBAmABoGsugqWO3jx3HlGTFMeWwcePHhAL4vLSm0PFixWoIJYyoRe2jna2O7lPLqy5piw/sXFhw6Ot/LD7Wd5c9NIYHPQy7mozAYMqNkBW5BlJeQfyv0HrPk5eY1Pnib98ET5SRmUnoREGh1mi8KhYVhnohPV0UHbB0cTvVPbB7uTCbQwvLa5aSnNGaZr+z0rO3tBTUHHihUqkL6kqKC+J3mYZulyAzUDrqUOKIN2CMbUXMCOeEIkUTJNbTOBSEQD5sXIL7In6yW6bF61vrViZWp8anzZAW1Orxwdy7zVioFlSUuWRSeR9WoNONIYbWir5Xfu3jNk4tLEAahGM9AIHDIHqi/C+r988sVphsfvTx9+wc0X5Gk/dRzxydkw7vST+pny3cgZFpBDWmL/aXla/je+it6i/SEbfI2trFumnmck9N8imwmVnR3mrFbxYz23l8CUcHR04vq1W2fPngcQvAVDrvFSrbVY07OYZQ+360je8XGLtJ4Xo4zpoBrThVhr2M90zWIStxHbYKYnphfXtk1W0q8BewS3nfO1su7YSMv641VLa8iXLtJXFCbJZoXt40036OvsuYXXrr189tysWFbbu32Xr77zsz/1o//jt37nH/69v2NgfLfXlpW9dbxSZDiKJ9ZKnfAsYIYZ2QkZv+SYsgeir3kRjT+YkzbUX/yoid2wC7w2mGayC8oN17BCOB19Jxmk09Ybmug7lS29O3nlidRIQ2brmEYZQdSeOFUDPzoklbUla0TmKDHhJ4i2NYy+ydFhS4obW9mby0SjHeyzZosl7qPRmxRkruC0hME+xz1PdYanJ8f5By72HGzx4tvLaqqDuE2DUm81zNAyCjmcO04RnN3t6dLZcu60bmT40YqNsfIzgzMvl14RBdcrFEinYnnmdZ5OiOkwxMfFkQ+7IBIjUXZOoEeCIPZE0qGBSCGACdRBufQgm420B/cTcsE1lIBPG7So4hTKWKtrmKK2Y6qaCJMwASPCemZIrRyQMWH6ElGsP/7lhmat5IhGZpBgMBrTNOPjnbHJfXGr8K8af4zbc02UuWZC3WK9Z2bNnqmcocjEbH3YCQFchEwMDhaXlvf279HLyA/hiATUnB7qTNuWNjMNKrRqS7A6wzQEoU1jRV2nujL+MA7dv3fv0coq/V1Qc9XGzXagl9XJiudu/7EjTynFYxbL+Q4/WLSHYG5upn9sAlvlAGZhIWiLX7CKJF7FkFA+FB0uCpC5bnSFK385nERuakUUdYy6Fhp9YwvVPkfRobFIkJ4BMY/MBnq3djYdqgU/zs7PC1a1vn9035rG/UeZ1MUUWtAMu8+NP4AQAMauprZAFagbLyvREx4nYf25FLRxf0wcood9l3bhL00kSgVQxABqJsuLZHBnY/3+7Vs9Y/aHj4JnzJZD/eYu2XFhqIPPZXTKWIaUs7DY03vv3oOsZHNCMKDVpBIQJ4wM6SQ12VG3/5EuDZFOC/NTqt532UT7eZqh3XhoBAmAqP8GFXvBDMgrsKocKFNvdSG6nxmA2Y/Yjca5ZKquYwje8r7Y2bXVy5ajXa5AAhuKOIvHb6yu0VQIALwi2hGKSPSRdD+ut1U7QlxZWYafU+NTJZXSao35gqb+bH7CL8v5TEAzM/PL64ucxBgRzEKszG9uZV+Y1RxETA8Jy+2mNiJvMNN6bGSjuJjDxW5hzrqzI0Tu6sbDO3duzc+eNXmkr7/1XV/9r37ww+9699u/4Wuetw2tv3fHwj+ZCDUS1DB+JinE9xCGOEQ7vELt/zIy/ve0/dNfMMnD/PHDW0/8rGlXGhiYJFexiG7D66mxMjTtG3UpIf8YXdFC5E0YEdrIilUtGcYoBV9jlO8KDKWZo2RsUnt0f6zfzmwuf45Vghoj/R1cQvS7HXKAxTzEgkfGMCzWEkOPY5THeUF1+mfFwhkd4cC9zkDMaIQNh9ETE9Ee0k5MORZXRx3mpUlNlkeCTcE6Crd5hrnH+MSYlkdO1PGeexQ5TjBZv43801asNOSmj+HjwlFgj6HmLEplnpqZv7fh8SRKisc9wocxw+jnA9m/FdOW2YMF9rJwK583sq8gqJr8F8THuY2CAoIHVPq4QtveYdXHvi3zgcA8gqT++aHmfFvqkopqruy7QgFdYtCQUEYan4gwPja+cXEvoRxRiHFoRDnbN5pRcba06Qh9kzCwFzcOJ/0s9RO942ZkMj8SPWL/rvj0MnNBsWAwZWF3MpuBBy14EvIGgQjtFU+jc+XSE5fOnaezXb9/9869e0y0cBNGlIecc407QlbfXF/HSfl3bmzFoeKZp64QlZaK44Ovg+aedmzZmR5jUli81WHD6x8Tr6ayoJs+mRuEW+IeeYshaju3v72Jyc42XnG0PzJkbhhRmwnEcZ8Noqur65gwf8TORP/w1h77Syx5PBayxACHjQp4FQlQqeLJEBMHYIJaI5EsL3ArMl8ujTuvCN0Su842YUzKJgG+gPSSGjwfcvSmPtiapnEb66umogOjnbWl5ScvzR+PDPHH4suWw8cMbBYw+I1xqjY40bjiIFEMC4bohNNXTSlJAogTiBT+VJMbo6mWR8tJUT/fqQHki2vR9vbQDaKAHkCRKVWeBx8l34YlBXVz3/LLlh5V8pC+APj6Stlg/Dk4tK0vB0ztbzo0NDbkmzduPfvc20Wt5QwiRhUhS59p+qsykKJsEm3DmpdyUlfNlrwtjtSq+tletS3aeocGOWk4iCo4LOHj+/tCp6+ub60hGhN+qlqV//igvFGLxRutMpU0b2ZlJcMWVxbPnJ+/evXKR37sIxMTM2NT88cO7tjZv/rse/7K3/jO55//w9Mjuyxcjb0M66GAypnl6kXwEdhoHjaICm9yMh2E8MXiC9yoBoy5FoBqXEJrFFCk72FKAOe2lBzsKAy8yNmT7sBUIelAhi5jitZ8bnQysiUqCk0LuLHLcimMzhoOg92kmkAk9isrGeV6P4LY2LUG+ghURjPhzg8PtxELgW/UcPMSAH2jfcRA38RI/1hnYEpgF17zVIG9bTv8OfNpZjTMRPPX5KTSkmnTxbhFdAhRwzO9R7H2pfEOZtWJeoVAyc5MD7KT0p80zwNV4KgAUvMon8YCia9HKgEv8V6KnWXuYG7ETGnxAJFJelkvnOPseCpIEBNSvI0BGGcZGMI3uBhB+xq3qClmHvnZYAtOGQioa/FztENgDMJ7Uag21iP2xem37RHGEIMisgkLw5vHZlfSA0ux6WpotCOMjr4bGB3DDeGrJQgclJKPj2Mn6WdNNfBNwNHfVn38ToxhzB5oVTMysgWNmn8MjBxQMgZFTj7igv1wc+3g9g2anZ0sqrt0/gI3fxYhMzhXf0kUcene+dxbXnjLVXua7Cy7e/cu+8/ezvbi5gbJIbyiRoLhvQfLhk2AMyvQc3NzRMv87DwBPjw1u7vzgKGGqj/Od3t7w9Ay5BFNw/22/FK0wvGRH2xVVK2JWNhxKGbP1j4Dy6Rh21inWOwPWQmw3ry8binZ7OzChXOTs2dv3r5nZkdZGB/trNtSiyoQNEc/Z44ZxoztEXt82A/1viyeQ357QMuw/MCHBwoYv1Jv4YcU4qrhBAXjBeA2BphSjjL17h8s3r8nTr3dDPEK3edQ3D86NNyZnkItRB6Fzj5Y8cVWVpYIkqx8c8qyJcZYBD+ifTgH7tVr16nUEBUD4voSjLfcXfQrkxHLLKmwCXrqhc/9alQKXO61088uzrWshX+t5fXgCy+66VE6q8zi0brmxic4XyvQE28LCB6nzcAYSJae640RI7O0JlxHCiKSvfkt0vhI/wigwUfBkeyuYhtBhfxc8drbd27Zwmi6eLiTxoeV13mNt285XvH8hbMXsH6ymIczFNZXY2RpFqlzYoAe5IiVd8ewPHX56q4zbHtiknIsSTrdNUp9YX+1rj16M0wodqh/yLnWzKP21rx+bZmapl5Utsd+2Xd85+4N1ohnnn6emxK/kcxwTxIFQ2np7gmUfISWPQFDgVVsvZydm7546fyrr78+/e4FU3Xs6sKVp+49ePWb/sK3/Jk/8V+PzYwv335trjNi9ru+vZHosAYlQ0CgZOuUbqJtp0NQmwTHQMnw2FJh9rtzIQ3AIwL8px9+wAZeyKSsc9nIgFgfq3l8M5s8aLkxuDC5jKn3hoj3wY6xz1gTzcgmhRsu/qZZuDJzp9mz4MMYrES18A910eG0x+6ZLF+Uvobhzs5M0KhR3dbNW5Q1xMYewFFF74Zw5d1Nhwh0nGo+Ozk7N6l6UXA2V1d8DhHtOoHeQanDo9HxcXwGYSLcuFdMTtilGqafKAMC4AzzOc0cc4h/YJ/ZBwWX/YdKxYNIQ/E63zJdp5/RInJ+AwkNq9PZSDL9Bdf4yyIyHHZsiPtZfCYBh1jR56xrM2YP9QnsKEADSHGypCzGQIT9Cm+2b4maBSzmUOUY9+xNsaOi01GR0iCtTbtIBuFQawfMldgxCmScliJprbwAX7TWZA4Ze5JhTgfCcRqV1nJjZLszUk2pTDBlLReCfJK65cymmsb+PUvSfkI90jBZEghfaYbcYx3W+xwlBnI2TlQsTxh8b/HhzuaWGEEir5+1n3V6ho8jotABX1geM7mYn5w4M/PCO9/2Nq4O167dcGoNOy83JIU6hkyC6yLGOjXu1r0H1p+dFjM3M8+KLhYeD1Nuo7tOHjL3MM5WjO2AMkXsPeZJxOEeS9Fr42xUYn8S9vPAvsopIZiNKzufY3vNk3AIMzswuvzUFYbr69df33MQGJD1Hl84d/7BytqQ3lsHKYUURkfZjiQOIytuWbgPCfKzx+RnczMnGzeCCVnkuV2QeGR2RRoQeMGdwB0ms3u0ZT5nFxHuj1ydU5B5TP/A6vKyI+XJJ4vjVmIyTeqLXyNUBX+KmJ/aRcUpwhx6tLi1vrk1Oj5vrqDTQSB1wSktCPc3WCcpEz/psSf1u8a5Za/f/74X5XyZT4M9SY2camZmEhbHiZGoFAVQ13ZjCNzUzDhD1lroY7iHaa6sPlIV6Rip1dfH/QxP51cs9D9dm87AHCQcG9dbXCNz4jc367Q0iCJyw8jwuNogjPK1IurbzyFhthqbGSG+a8OBbQfIOkouu/bwkNVpAboFr1xafjA5Np/pSInMBqtWV2sPrvSlqz3uu3Tx8sbawevXr1998uro5NSD5YcXnnzmzo2f+pa/+jf/u9/7X02dubRud+eOWIFjPCY2Hj2C7di3zTQMI7ZEQ1BeHOGOSfQa1hl9hS/xhTQ51gC+jeHUsEu+HCyT7vgN4fUEKkeH8FHUmTcA5ENP2hUEIJ6fIKkj7l29j2mkpCrBjnU15RIhBUuDzO1ALg6gMJpc3reIvTV4PHg4ggQmx2JN61nf7DHPY+GIxzwN4cimSmu2k+PDjnhi6XKaODsHzAfcVBqGlYjx8EftRmaE1T5RyKKeZ/aoDBrd8AABwI8KGLBf9sLociamONy2CYsNFjFlYyIGLc581f8goGbW5AA3B9AMW1OpQlpA4NBWSBvsjVswK9WgENlxQqEs6A5IxqBvRlOnupJM5KFW40iKiv2G2EDAI8M9WELJ1GBXbAuCAhwzuPQ7OYnJKf8wfa0hzSxlEFlOf6yZSP5UqtkGrhsZRSBpPQ+1NJj/UgRzEV74v4HEe5m7HJ7VySBhqG3Aa4boE12NuY7nVSZy3WStaW/AQlMElwyWvXj8AiMRqBAxhTau38DfbQY+f8Yu1/OzCSAN2N6Cj+ERc+KMfY/vOXwPGeA84wdiViwu3r173yAJYZTtUWNTi8tiUH/Kqet8kOYdoefIQzxxhFvYPm8OTZ2wh3LYGWFiSHA2s1wRPOCap+csp2MONZuZNeQx49vNS13iuJRBsNtr+MITl5YfWqheHe1MzC3MHzxa7V3dpMGDiU5mjGNNMsSGp6aNNSfUPFAEVSBVl8zkH5a0u0sbTYLf3vgHQYLtMfRTfpBZNmhGg6dT0RB4NJGMCSIAJGwGh+YEw/tbPGIpJgrlrhTPLiRkik2hjleydhvqqNtDwyOLi7dWVjcvXH4O5VKEpdYkrTpJvn6DNWvzyfPuX43P4P7HSIr68sWovWkkrlwvCICDwdr6W23QDEkheoxaqaPIWzgE1j02TdcY2PbiKGmAQNgCYxlbDscSf2r8/r2lp68+MTuzgKaQB8u3ZHqvuNOGpXDDmCGNXfzevbtPPfUM3SgbpzOMP1cBgEjwOwZPDjx7zgOYnV249/CW6W6U2oHeh2sPkenW1trDh/fGRqeoftFYUksSaKjRTa7dYTkdiPodyXQ0PzN/6dL+Sy+9cv/R2JNPXNzZGxjrzEzPXfixT7z8P/yP3/7Nf/wPbjxYYSe+eunSjVdfOTs7u7K67GNMR8OE6DWHNUFhx4XOtfk9XIo+EX0PQANxlO1hbZiNQQaBZwtLCYBqF4jF+qHBaXbxvEyC8yP8Nh1Ay6BsvpV/+lVCXUFhblkziMcgGRC2kx4bXxwjHIVyK1Os80RjFIMgMa15fHBibnYSpZjobm44hS0uQMojEbD+qSkh6flrkjooKfZwsqo7G1Vb1WHDv0VTjSIGOOMKrqhh4ZBwgkIqElfH3M8MwBKAkAw5GH0Yb9lO/HnUizajdMOV2mZc7ctuHmAIwUjFBSMaeXIQCZnrgBlPEjo/PmBeOTgyMSqz5aq944OBHO7HVczignmPpjl4he4KBoGIZFKA0P0iJ/B63DVkAbDGI3w4ZnuTgVigzQOGRTpzr/aYz2Ja0lDiIWwrTk7hX7arFYzF0mHoGKAZYT7EnG7hPnHcMlhZZclIsdIkBOwev5sYEav7ZFZKjP29ZICWhWvpUlhfZnobcWLB+OLnxuSJB2Uy52s1+MTEbG9/1Ulkt27ef/gI83/bM0+NjQ6P1TnAVBV4p3zFPv3U1YsX9teeWMtx0vcfLi4t8R1ysqjCM3scHlbdvQf3H9y7u/To3r37C2emxq6cXzgzO82yoktb+z3bKNGOAiDoi2cV5sicYNKnfdkpbv88syAuTltgiiFeM2Ea2l/j/HPszEvCg1XK4Rv9I+M/+OM/ESRWXpgvVQKu40ieZKGVCDDqXsijVTU2cLuraLaHcKjYzDE2kAygAxrxF+Y5HOYGCQ+g+sEOWROh2DfBMrKx77Qy29CtB/N5yoiwqupPOGHADW+SiDoLM+Z9kPb+g0e28o1PTuniDnUvLIXCgDq10aClqZKm+3GawnFChaHhwrJTvnOa5We+8aESpFaaq+TnF3zpoSeFxF7B66QGN/Y3fBOMy0iQK06QuQ68tmxFa3E0m5MtQK0WXdCIDYICL5ObpHs008Mex+DgreJP8lLGgrmqHewlDig8zIz2pD3tBvTgm2Yqyq3dwk8+ecXec5VQAr01x/qC9n/Zn1HLcB7hrszmnZI0NTlHqDACJDDf3qa6LFavba0B0sbm0tTkQmOoDVA1Ml+2eMwP6zs6vnjxCXv9rt94fXJq1Pr2vTuvn7v0rNNZX3rt4e//w9/83/y/f+fUzPDrDxaHxqdYzcvF0Co07Nof5wJXcQVooLhF9pTHok5v27dnkATVZTonrNyrUEURDmQtUzzbRDG1sCesJxiVgZO7AagNa2u9++ISNPwyGhdKKJlMqOzZpoWxDWVeR5kN04HRBEZJ5ixQhrTC7fjUxu6H84rFwBGCYGEzXXZC8a4jRtjxe80KzI2dgcKWRmZtbSBxDvlW62Cy4iMOlIM1MZVzZzTW1AUOv8DleayQeC87b9z+uYXahcRG3xdXd/L52Nnp8REy2SA4sccwZM3XkcxeTkYPUyTzYVg23IU0Kdf5iCDsJOIIokPg9gtokRKMCGeeRmkRpceHAqZZNI+tCXuPNplCQBhEtMLkAM6jK1XQXF2QggzgHDmLf+FyrgXfBILCpWMN2beYoWV8viI7NG9/f3Bjb49sMIbEoCWHvQFRZ5namYbCuRAkAAG7J1mudpAko2HU05wzCV7ep90sgLHFodtjWzqsRDm3hBEJY11cXSkyxoT7MCDWDOYVITcBmG47UjHs1ROjpA0BmwerH/+k5Qon83EVreOZOtGWbQO2vaDnyJaAmenJ556+Yl5vhcCxZQJOmFhsQ8tErRgBzQcrNps9mh4ZuH5r5uLZMxfPX7h8+fLQ1Hz/+Pra3vF0wpjDr2NH6OLK8IqRTvj8kCkuDARWkoGCtSlyum+nbxuSma0fHu0QLPFSFV6VDer+YintYaHhIcY5MzN6vJmmiXKIoSii+QUJJ5IJlqGKiTkaJoBFUrpBT75u3Dh/ij+z+IObKe/eLpxJVFsISJskzwTss+bFPmhjPxsd+MfjMbSSEcmfqhw+quDOnXt0EpJgTRCMHVbsIM2bmQqChWFdbpNmvzm1Yt/87Gf+1Vpxms9PKQhTciW9rvR4hrrP09OHoBEvjwAU7+BowGPnjXuIgZRpsrGKOrnTIhqU3d/jZrOzZ5bG3OeQ6j27vczVlx8sXbzwJMWKVgIaVJIxYbOqrowcAqgUaiNjGhh7ex0QR80YnhjXpLAmMP1C8DzW2C91y6Aeta8mykyzhJAtS3sHG/DZqRmWrwzK1tY6DebR4v2sBvdl50EbDoDwpR/tWs/ffGHY7RulJ9Adn7z81P37d69fv+bs+JHOOA+oS5fffufaS6/f2fqL3/adv/23/ebpifGZqdHlGy/xju84yIpp0SaJPYskfeMTI9CfNIzWbzsTHIzPfe/QQb/FALOAqLtIJfMrZB5NhwILlWJGAxFwiQ4EimkyfpVMJ8PoRcBZsgHKJ1ONfnpydEhVJT4QHPYq4ivIWwWzPAFNKQMyU6cQvs8gc1wp7KsYHK5ysKze0bGh/ekxqwecICB23DSHBfAdZgLi3rWzt2NyE/Uat8YRE48F2yru18MyEvc8deL+MT/TeSsxgWMJUZ9JAlZ/pwQNJ4p+lDj+6sg9zpe2C/RmGmQFxfgoFQfX+Yg004bw6HDN2qCOgUnBL+GGJse3alN6Tu4bGrAOBP3UolObO9tML2qnASo5nwTrgCQEW8uN+L/ukwDsA8EKjcaVtZr2h/+narqiDdKucuU+NoH8JHZYfnJIokVRmn3WHgaOOkJd9lgH3tnCYUUdohqHUxuuJy6cpwlTgSMYYjQjXup64seNnZmqUDb30RnrxIE9AfwubJayr5vQjWYtD9ezgDZhf0BKKyxyjBlsCRGubwuNGI0BrNDAyODo+soKmURrff3ufVad+bm5C+d4YM4btRhFCtnoYuNnZ8/MTR7sZbn45u1br9+847xmZEaWRgjtH6ztHTx89dVXrt88u3DzmQfLY+PTu32dfRFS4yca64xKISbPKXYkXocUcdgbsEah0dxa9DruG52c2FzbspN2enLu6rMTP/Wpz969/+rs+YvBVCMQQw6wYG3AhEOgmgyEN66UjWbtNDwesfyoFjSaAIiSI2lKVIfEEIkNshDIY/qZgcKO0INNSfI53A2qOUgnsc3MVtgQOx1+HIjTchGB2ubeQK606A02YDth49VXwVWvLV8bk+p0pE6qfhMzy5N0PKSbhrlWUbnR5mT/D0tVbHhhK6ZuPPuCur6wjkyx0jBNY+IBADOpTJ8sFKWsiNqa5ibqFt/arPTgEjx39QQkDAOewEQA3+dmz2ET+3sJ7ra3t5WvCeDqr1a0hmmPh2lWuE/AwR90rDNJdfOzAeQLm/hlfrM6xJAd36SImcSoHeJO9nBpG/L5xzZJ8fHWKK+sPJqanJmZPCs8jJrTBh2v9NPVoMChgQmG+u31DbLkmWeeeenlz7388ssvPP/WtcWB1cVH0wtPHR9sXrtz78/8T3/19//e39Xbt3nl8pW91Uf0MwtIls0trVn99m0tg+8DlIVozcV9TT0rUi0egmG0pSxkaotkqB7jLCNSPEAMaVh1DRPE8VPb87SwqDXeVK4Btj2szmVEhWelbOquCJFTVu/6ejY2j/YcxofDGnp8y1BkyTSKr7VMZ+qylSMvKmMEwoCjosTXCH+H81gh3R1UZTEXxJc0QwmeZw8Zjpd5oaGNRcvDcIxsNuwhhUN8rCZkyCg3u+Fe24jFwTTZHrXIiocKVHZAJY9+h31ZO49tL6okysUoI6DSoXAz0MDpYpypaA3wKRKMjOzr6UyO7qxhmYwR4YJUZCLJDXaB5QNZ2K3SSgRGz3Y2Ju07QIaXOhGeb+Y70OMUEx8pmXIB9TUlc4I0lWQEgXjF8GrIi7i4mmkIZ2QGQAb0HgxpNynGZmQ9ndfEWu8Gj0MkgwtVbYcP7t+t9itPhwwF2gtTibOElhhM0+FsBYsfMUVglXknq9Y5/ZEw0F52DEPiGHKatGbUSqwtHn0z49PmDeRyaKA2pgGZKfmGKfHu3uTUdOZUxz2k9/L9Bzfv3rt26+aZ2an5udl5m/enJskzgkerjJwJ3PyF+bdcubR1cMSE9OK167fu3efnopMbO9uGhX3/3trmaz/4EWHzz567+PxTVztH+1OYZXyOjIcxMRPcFaHiiStnIUlsBvZqgaNqTHUPTGi2584uAPr25s7w0PjTTz/NZf/6rVtqZxpDCcGBEtMlIKM8wouG5YpwE9NpjGFZ1vfTcOu3+9h6QyhRSox8sbNgp97rfmxCkfd+KDOUlJWZ7C3Xgxws3S8IHJcDcoimYgnrMAuVu3u7meJaA0qI7IONlZWXX36Vw4B6jQipXG1QfFj9l0mNPluGauWXz/5lSnrjVZX5JcoJDE6kwhu5q8EuNcWMSPMKurvK7CZSM+gDLm6MAepJ5E6jtrOzYbxiKT7un56es0y+ubFz/swF8gDhuvpnsmhvNq6RoUoC4iSNCR1HRCbREHkkL8ydhy/eBnqhh59DKpnEqYblU4QelDM0P39uZX3JDNkchaDPKkWOSt847vSwOI2NzDCjxHKgZ/7TEkIkPPWLKo25Rc9N31Hkngn+ExcuLi8+uHnz5pNPXOkfGJ+cGdpYWbIHanTyYm/vxh/9pj//u/5vv37q+Sen1ZjV1J0cstc3trW5qZYyRji02mERVXGYPlOEVQHxStWU9kDNDJYz8bgsZ6tlhYwrO5rGJUNhcZsmpf2V/NSPmCek9CQJmfhl9yMqNB6UWMao2Uluq57tb2xm6zKODZXDaOKJE2OzhVj7YYzFweEWYcwXO4sWzpXvP85uJA3M8JEDqolGgCOhLspwNiFE/6bEQ5f0wuc0Tr9ctYU/lYEIS2GnG3dSTad3pO+QXOkMqljHYrqyBKF5ulVGG8Yk+h9bsUKwZbweMkYL0UVEjoOUeVxnozfg2SrWE8Qp4kBc5iGporMvDNHTzzgra4y6lEGv155A0pQnGkSCBaqciIOAiguSxmCRuiJwKZ+Bk30DIBZ/pCwDGCPrmqz6cTDMHCX/cPTMuITP5CtiZr3HDK0xIhUPeK5VTq1kq0hT2hCm61H/Jd+bLgS62bu0b3rMdcwcGZJ5n6GkaGUBJV3KJ0c94mxRsLVSHfQOmvDUxJi3MbRqeYRx7rIwWoeLbWxv8aBUF++X6blR08GNnZ21G7deuXadKXdmeoIMODM/Ozc74yDEvWPbYfZ6YqUZPH924cKlixaWWeoFfbx397ZtxqxRTIU9Jr19/bxK7aJaGB665KjLc2em5sQBY4IaEG/IoZSOuwGvDJaFHN5LfRbGLarszyxMLd574JAEE6oH95ZtMbn05OVlzoar61QAWQyB9lfSlyAuXEMOsEZCMnYfRIEybg35IRDKieLpy7gikAS0lEwEjPdp8oLT9jEUn1hYmMnmwJ7j5Y018FlbXeZHOU7tOXJ6wQ4EHB2bQFNq4eWpJWNj8VuD/atrO7fu3RscmoI5hsN2a7DV15i3w8eioIaJhFSLSMNT0gbXx5MyH//5s7n3yePltJ+tnMefp14p6BIwdn9WG6qASOiCW5rUPgdV92Aq5T5dSPI2WN7Xu76+MTU1s7O9TwtiRVxfS2RyFkUhUWemZmPlODyE3nFJoEj5HmlWCotICkLKw7RGY1rfWGWmh9VsUBwnkVLL/LO8BsUphkI42JpY2iiHZhNrszphIARgNx2BAkJs2R+zvPzw0vnL8aiMO4rNSuoieKrvsCpTndPURgTjiG8x5Wh17T6rAtZ/7/aD11+7dvXKs/2mwyNjNOVtWnP/0Oz5p//St33nnW/44G/8Fd9w8fxTfCmsB/AOUU80tOj4nB7ias8RCHelLthDV2gLL2FKaBavO6SxJ2JuhqVcqCKefYWZwKSjY+4Kp2OSQTGqRpxF3FjhoAIvQzmUlt/iNmbQDq1sTU905ifHDSiH/c0N21bwHAwSa43B2cwc58NypyadbnVsfSJ7frR4KDQLrsw2qYq4jGEii8WmVf6ZEAIZOVlEiT/5kX/sKHAgK/NjGJqtxUeCblEcezq2kJlWjcT5lFke2fF40gUsL0LM1AhlczfMgVo6Rhqi3fBahoUsCgYzw9+s21XKgJFwjaZsMmfv6lDBq1VZW44DjjHUXB5BNniwo7gXJ0qPFGUQ1RoRQtHLsl8sFTR+rFjMnBROiKio8B/2h4eZ2tjzzp9GSRYLxVcLN9J2vlSgfyRMeEJgM1fLGLa7uz0G53e3O0wioqdmC37sSpqiI1b9Oa1EZHPjgWt2D8QDXpv6t01fhieY5R31y9qgMxg9YtOq3NPr9/YJEwtzZrh97C+jw+OWL0ykNJKk39kWSmhyYlqxQIArOg1mYEQMZgt7e3w5ONPqms+alW51d/vRvcVX7j4cGb7BoHn2zJkTF1LK1fH+xrZ5hXnb287OvePiwt7uW2/fvnnt+s2HNifH2e14SOCtqamVzaOHtx/233swPdu5cHHhqStnrp652DMxCfw272ko7Bi2F4yHJXPB0d5Yp390su/+nSUzywuXzt4WrXR7x9ueXkHvNrPFKOsqtIEe+xVoMcccihPFIL4luq8nUM/Ahc03GU1GGq9Y7bAFK9hGVA7YZkUkscSJBxGgSOeRYdGrWHh5ae+y/6BkwZOUvLy4eO7K5XNzC/RRs1Mx39fWtsZGJ9mc5hdmTOrJqo3tnem52ZduvGLP3OzCPJbvtFsu7TaCGJBiwQ0lQxGN/xUbjNeHtwaRKuQqYVjywEJXyduW2v3p83r5xkUerx5/2+7RCVShr8nK9UCUO6bnhr3VoNaWLqejmZblWdVVe3tZV/woPgl4a3zbgmX4OmByBeYgxtLm24tPXFp1FvvK2hNXLgmNRrPDyo2vHNDeHDkURAja1lMs3q6xvd3jyYnZ/b1XDWw6aAvRwcHDpQeCVlJfzCMrTHJXBjzeO/096XwXUPlp1ya5TtmqAD5ktAbv7+48cenSi59bHOjtMOORWJamDw5WBCAiGD770k9+1fu/1vwADQpxS1/MFBPrj1FAHSEuQqVUQHcInn7Xt7WxTrvDeSdGZ5579q1Wg1GHJo1Njh72j1FcxoYnxKSfPvfO7/qXn7y71PdbftMve8vVp9aXXzvo2ZmeHdlcXrUJemx4EksQaCHczA4JiyiDG6zrTCn7OS/VHRvKsY1VLOBbIuXa58Q6n6YMmZPDa5oqRZdAxQODAAEJfhUEI6gxQmhksLCiKDwU2MyJhdQfPjMzd0lEi/Fx2iTXmwmBd+nG5rVRbw/JFnWPDQ7wGRf4y8nm9nIIFoeExBbTfWFnsBDKbpxyaFVqQm+ORNo+GKRiEzoVJJjLE4BuOdNqZ1trmJEmJq07QOm+6blpVDs8NdEz3RFg/WA0S5ToGutXS/pELYh5x7ZhwfuOsz4Yl20rz8PWVNWJYeqy7metKsw2e0dIOZhG20K23m7v75AxZgmU6nC2+HzVjoxa47QWTd8VJQqGChAixDVL5vDoBECSPVEIjrIGoy5Lf53JmbWNLab8vYOju7ce3Lh1++HDhytrGwQALGPeiWoUqRvmFFOMFjiJiyAwgzKhMIhIhHK1Zwi9kt1QmEkxc9RSqubGQBfszcghMzNBy7qrZo8xUGRnEzatkznDy2oyM5ZTDHxUixFcHkOTbBUDg1zojCBCIy2pziBFbo/mbJfMrARrcbpDXFQZ5x0QBtMi7wf502gl9NFYiEN34ORv6co7eR6tbi+uXhvouzkxOj43NXXh/MK5uZlphWZyY3XmwPEr73zr8+95xzuFl3j1+o3Xbty8/4j/0J2RsTlzH225t7h0f/Heq9c7T9+8dOXJC297/tmL589YfNZb/crRGdh2loNsuD2wR2Nve216fOHRo5VbdxZfv3m3b2QcjhG3CAD3p5VYyc9JNnYCAx2fjygjoIgPhpVEmBu6dBKXh/ls0XTR/ZxJEaRNTtyWWhRjc6xnZHxclgQ1EMvSUodSpSl1TIwD/oN793boGYzGJinjndQVqZwJI+3BiU9urMcwyvltswGFTjOCz8V13EsZ2zcnzXj8weM87vHn/973X1xgSYovVd4bCu8XtfIk+2lrW7F+Zl/EwJCZkC3cSt6w+ymnUGQIwoC6qTh4dR6XguXdx9G4sSSFxcoM4PgFb9GEAxFtp5+rOHykZp5k/2mbflIP7MD9UlGcSjPOpDTv77injpAtOR4xE4OMmsGlhbE/v37jpWeeemFna5+CGGE50mFYjeEQG0tL9UJBdS3+65Gmho3xbh2gkU0tzJ+19vPWtz6n2Sqfmjuzvr7qdOvB0ZmLz33Fh3/8s59+7ZX/8j//xm/8Jf9/5v4DzLL0PAwzK9etm+pW7urc1XlyThgMBoNIEIkUSZGUGJeW5LW9u9Zjee3Hfmzv2vJalr2PFSiRYk4gCRAgMjBEnIRJmJw7h6qurlw3V659v3O6Cz3AAJgBKGvP1Nw+99xz/vOH7/9yuKVlaWZhbmKAG/R6a3mePa6rt1Ro0nuuLBmcrio5wd82YdZhwDB8wbI4FokSQzXgraaEAs4cBvsPd4EwU2SSIE+0NpmsFMTjjkQbEqYahA8K6txYXgLqkFKO22L4+degEVWfqG5gq5jtCL+1qeMeZZ16iuJ1gnln6vdbiI7QXWubDWprOZFRcVloq4TSKpQUCqtNddgjThPWSdCxZBhQjcCron6jdBh8XQwNDocoqXbz3Zvq6GQiz0ow+5F5IYIeyBWhTeIa2BX2PHguykWGHjfwHR7djgtkZcFD/8+GjIJpAXcRnJDBWCaMd7lRCdrGugAoKbkSo+BGJkMHtVwNoyklJsoX5qylFRmPVjeaVlqDPbQQuV6N15tUL0vHXjx27NTZ8+OTKqa4EsGfQQxW2Z8DUJIFi/Uw1HAJ5X/A+aeLO6i6zFE8wYjDwMjQD2WYNzomAKRQBtRioVsIWaHfIQTA+5zNQ9PR0iLp4HKwM7hj0cI9OHZRsUgWn31xET7MVAgPabgm6AR96+KqQi8RAhxjJZswzWqmfale2VhphsjiK4V1rGTEsW3Q50FYSvUhOQQW0lyAF+NnJA21qOHHFTsWdHgmQva5D83OTh/v6pT3Y6i/b9tgXx9BMdNTXwlFppC+I1dfd+jqa+cWFi9OT584eUzlSggCjFkDSd+OPX/61eeOv/TM8f0H9hy96tDu3dsHBku5vPArbqZLtdlaR2uxVNw22yxPTS6eOzPZXN3kWzQ1v2iejTQgmeU8ALaNwrBVDSI0DLjEjgiPY24UIMXNJsMCx5Hge/MZOzk+THhsDbKriUrIdqL7j9+odtdrLNpSerWrWaZo+exgR9dqSyU2a6k3C3F4jk8xrzd0OqSrpEZElDpbwRSgzTCgDqQxaBr0IrshevF9Dn3wS+zsBBemX7/PvW/5shX0jLc70XLylnjdj3Ncbif6DAhhBxngCC5onqOIuQtt75s9tObQQ3g51A/U57Wa/QmmEmYwOEYX0+a8cev8DV9w5a+xCag96Gm7uwm+AtbYJBAA2aGBIq4DKGhwfPz8zh1jsCI/YOBufZPVsBzAxEsSmAlalf7FMqWHZ7WD8sE/zzz71MWLF0dGh0lyxoJ/xFyrfmoLHbru2omzr/3m73xs4vz5j77v7uHintpSuS10iTTpIZHaULIIIXi1Va+MpFqhKgPNtnDQqbD+0dp24MxovIPViLIzoSdKSWygvMAXyeQEdo5JMJ0BTrFpA9yTkGMMKi09HMUDBXsOCyF1eCPzg/2DRwPnioPFMrUofIcgdhYH+qJ2MmQROiU985Ig1mwEuG7TQ9nUshoeoMGKb7bLLxkbE3LvjBAcVjBzxd5J4eMGo4WvYHAEqyuXZftdl52bGB7mQGhHK7ZJDAW9gYnCRUoKmw2SQWzwwO4mIIUBw0ILaIwc7KykfOojHU34P5jCe1HEQqakWRuAkISX9g+IJQRLn0mb7QqaRqLgA4ie9RRzy2tKs+QtIjXJ+TMXTp05c+bshJJZs/ML4Gh42/bDY0eznOa7I2d8CCK6br3jvd4MmwhqoygTCtDaHro3KJNlMtgeoBh02qS5Yg0ND3aVCI0W2yIzyMAmmE9SyUqTQTWgVwKBhjS5+Vxrg75ltW2Zi2JrZnOpM9MZ6o71SKCfcPYJfkEMQjdlsOE81rWZCdVcU7FIckc9k8vnw6xD28YqAY+HRiUmIgrRWHKBKoH9U5cDKqdCf05vLGHYXVJypacd7c36MjkCc8sJSLGY2fmyhA2UMGP79ogQdmC4gz1qbbXl5BHav2e4Ua0IKLsQNoI5aQVhbglBT7167uyJ80899vTuvTuOXj22/9De0e1Dvbk8kalRbp4++erKkvlo7SsNL83MQ8qgD0QyhVlOGkZbwtYgAIUcznWYX2nC7vBHMnywbypMjv5bb2kcQpMMaENXFwACjFKfIquGbAUgs1BHukMxhiQugr+ohGBEiFNRjQ8NyXQN9LOFDGAWKGuDF/R6M2gDcedaQlzb0EUNcVr1Tvtf4756l88feqS3acQBHn7o/W/yBq2588o+OE879iZb2Lrtyka2hhZYW8y90Oi2tij/kigz+d5sPZWcBFMVJxbr8pG2FlCeHKEyjv0S3JxiMmhAb+8ARJPefmWfr+zG5ca2/o2deLnlOIm5t+7t7YwTon8RmOTiJksV8LZMKJbte+7cmbF9RymkerNZFejs/8AajsD7gUfjCCyaItn4hjtKWudZhCto4xWqWGbfQL+cjIsLFX4+PKfRsVJfb2V1advug7OT5//4L/8GT/OrP//B3du2t3TMyba2slzjZsaCCKIFRmEYpRyHRoPrD1MJDQdUTLiNLkAveB+qn7DBJ31BAByxwmFk9ERoQ9wDT+q/yQ6UnqjOQRRJPeT+cIaBx6PcCuyEiQ+vEeERAliVwIQaOtsEvniLheGQQ1LQrPcBc7Ae6g5H8HlMKVQN61w3c4U8PYPUHVzRgxYFR8ysqOazb+R/3riEObEjEcrbxWEUew4xCoLo6YrIYyREzghTG6MJztiUs6MSdxRLC12XroSB4BI9dE/cm3QjHPLp7xEw0kEycl31OFuET3uUrleuFr9hwqT79SjQai43KnNlOWm6c30ehpsDRpCsru5mpTE+MSuby/FjJycmRZBsFkt9xVJ/fijHczRXGlzZ7FiYmed4qX1dgM6DclksQzX7dBS00UwQWCCucLpkgPpkXBaQfMuDmJ0hkQmCKRNaK0Q2gcUwXhIBVcZGeXXfwLzgmv077S6SAF7DyHluWmoJeZAJpb2sgeveC9PpjlEshISyjJ133ZqBQuuir61yrkorsrLaQtuZyXKyja2aJbzT4upm4isDyhAeIMUNIOyycmSG3GfpOSN5xXLi5oW6htwSgNVSXVmvNCtefWJ8UoDxtlFxANuQASUFsISDfcWl6vRgvgfE1/cvz0wvTF6cmZpR2qDOkc6CrjQ3Th4/8/JLL+SL2dvvuPmuO+7cPbrHG5eW25U4m51a5Dl3bmKWJITSEvdMJvxrT5gF/ZJ0EmeCoDoMmWQm9wK0jXlPlyeYiVim4CtiBycYiOyGEluR0BNpJYm8t4eSOQxxx9Bis9k/sV5ZGYBWZbhUxJw/eWUxgqC6cXlCOJKdBnZD57aWsjx0DcAxpZ0G4tU+deKHHu50T2zKN3f/D20wvUGDTtLGL5+8qf78gPa1GZswadbMe4Pcy5RmgG3byKjrbzQEmyBBpvEzwmpa4g3udESD4X1nO4c/AsRcq1ctB62wXRz3xbvi083xz/c/3BD6gmTafYbSwNEqNYhKAD2MTMxjXgjxORCA+hJRY0CCT6xGf68cn1GUggyctKDDyeOX2X8vT3oekrEbgJUWQJM+79q1a+LC+bPyQ4zthf2BhNctlJuiZETGLMwtduW3XXvL4QeffPqVV3/zn/zffuWaQ8OF3q6lubqN3J8rRFm+Sr1X1PQ6VwvYEUsttRQ+B1cWiDGANmhOZCAJQTd81vRT6tGQ+60BPsgNsHwwzJGKdC1y6WTZtTL0dNgRMGkmuO2HlCvmLKmbHclaDJlyXJ1FuD72UhvzuH8NXtk+bHUEB2OPVkJeMHJE1FJxoqRZ1xXYwz8c88JbP6mowQcrpiaRjJl2rC4CoF2O8Dg1OdTYvsM04aLzwEQGBiYCSYaHSgIUEkmHU5TwJ/dAQvGLPrHJ8loKzYY3hAIIASDCo5wmJNluriQSRqygE+brmDe8dKuEw22Wv77S2lxrG5Kfio49zFBRxImy/dRrcP7Z8am5KvoAAfH76N8RxrO2jprlXF+RQfnF4+dTBUN4ySblIkK9TmS8xMckZoAk1Swkzq+JNMbPJzTgcFWICwzQUeCwna8+op4QJaFZnHhWC0EI1LXZXejNQ82QUGB2bqDNun9ShALspCFDC5lvGtXaBg+C0KbF4hukCaKBGt7oMypfNW6noclh3ZULt9ZcrFYX5ssbkjehiABtU1KOiDl0d+jWon8WI8QXP3pOM+aUriOUJBR78siBtTbEFvBETSETjNfrkBss0t93L7KWHjt14eLs8KBMPMahJHj30f27VjSlFHxH11gc+xfL1dmFeTvn5KlTkxcnyHB9xWEL8ciDTz3+8LNHDx299urrir0De/ftn5x4vFZd4OhKZ0UyItaCyiDW3HsTQZJspbfWnQdPcOGWUddxCypl20AJZjEPYNhEhQEg1IfmJtiHoBOxv30LCcyzDPZ8HOg94/6IJQwmg314vX05Uypw7hSUuDi/0CXZfI8ap9bQjSHzoUjeYi/pCebRU/abx4GI8/RTB77foZ9bP1nMWM8U221d/TFOtOZpDTrSFzn50dq78sGY9OQIRiA5qL8MGRjEG2NqDcpnvP11xyVlenrNr5CHTe9meyUWwqxqT9AWT82uQkym3m9Nka9b569r9jtfLhGM9IIGnYBrhBkNmF2YiVeEnsnGRcXVrSTwAZa18+NnhgdHqpWyfMbA+xIySZDRlQNJBh1XDdN4w78MctJce+eNN9z8zQe/AQCuuuqqycmJpHRTz3LL6vT8fH9xKNOWmV8o9w6Nra6W/6d//u8+8J4bP/oTd47tGKvMjhP6eRN2K6XbFlljzEnIsQDbFsXCmOmE8oXzC9k0LtvsmA/ORgR3PDhU4bGYPRwrvVnwcPZIV0dJTtTePFCvVkN5C9fjP5lSjW51DYhGyczW9kIo3ij58z0IgA1mCNG+YXdyd121IWJ9cIlYeKvNH4i2IAla1jEbuUl3vhS2RjxfJGUkRNuH5HdO7wK7mHexveqK6z0tDfUSU5sAYibibrVjA8ugWkGskzVLcSkzkA6ABdiZUkyboWUKtX73WovY4PgvFCweEX2lt4nSP0AlUVNFS86hNAI/6qIiKcWtWCla+myxvzhQX5GsKS+C9qWXj7/62vGFckU3hHVh8JdbM2iCfbu02d2UtFLQlrrSSTUtrcKIlAeiM3xAGh0gC1IJjZjJMUUOWFF8ABWQoUQ8eyjtdAfeCt2XTCoQZ7Ckgc6EDtDIUOlBT2wYpWJ2YGgAvrUt4N1QeeUFRBA3MnCK+W1WZgGIqLjaMkdaiSgYTFh4IudteIN2tk/OLkjMGSwwTNnW3ttTWCv0yOjUe3CsXKnyzAxb9nrLzOy8OvKihDPAPeqbc3qyuHodLmCGWOrtJUlEeFmE2uqHcDe4GqEW+GO4UdwD1eCPasVFEi7Uy6oX98n6u7E+OTU3NSnZVgYNmLs4PzI0wCmQ2gewgk5FXgYGQ2ru67+qWt0zO1eWNaxSDsW8hh/45iPHXjvBxjw3Mzc1PemVQJY5oYczKxesZOclogs/n1BOmqTYhybBfOLsIm4eVMD+AQF2UCx+wlYnMjRQieu0iymj4ZcE9PAbMlcbe5iZYxMEEeWLZafAx62Qgmwv6yRWWY7yEUEZRgKsEBhPpArnCA/3IXsRtabCTjCFLkf8RIqGnP+Aw/0Glx4/4La3+pN53upJ+qyvb7WR77pfJ11JmwUMYI9Y7ZAk2c4Xexk3vMFLLqHm9MG0F+l4U2RK5cBxCkshqBO0s6MW831oa/qu9KXpuc+tr86vPNLG/RptXu6Ec3iqv3+wXKvQL0EK+hnrshHZTxW+4IdWqVcmpy5IYgHdie/ovFy5LIgZ1gqPmuxiL06H7qUgCj+awBWNIs9XmU93LC6URcvDhoAyly00Fqcb0uRtZldRxo6e3uFix3rf7IXVT3/5UWr3n3zXbaN9efml8Nr5gQwtSpjPA7WBvXgBxpFRAqIIzRDQFj8QohR9TsLfMKu2bmg4bJxhFBRQD1UmOtsWtVpbCz1dA72xHBQqYYtsWe9RaQtv2y01MPdTniOr3ZmEheMBV+xBdfRK5401mG73sHd6JeSL48Gz4uTDRWgV208EwBhTQiQVw2hr9DiUToGK1joa9TCxoiWUzCJ7mRNCAuS4xF2E7U6Keojd5k3FBUJKogBK+NnY5QrBaDkwDnoXjH4sckx4uNJEYiXLEBjXz3Cdf1KOJAEMt8W21BmvZPfWfesnvL8tFMUyky2tb5w4P37q7FPHTpycL9e61Mks9EIVVCdduV4owBaWF7lSmaM+0ZoJUUpCB4A61A3vO2e+BWzIYVdYkJlyqESSTgXZCYwTnUsP/afAil9DD2QKQ2wmvkH9EYygCtpq8PGm1B0roCD8UBpGBTvxkeWmSyizEoODJWoYpClZOcp0CwX/Bl4NsknAWJcBUdY2slbEDYBOogoa47+2DZW2ujp3DEeccme39D7qlmBcx6dmycXhUBQGmohMMNl6Ygq7pJWjiwrlUOjTAzOi4cE9sxjDipHZLYYazcfa6EAkbpJOJ83Ftrp+ASmYq588O9WTPTE40Ltz18jo9sEswAyP2/VCKWdcXMh379y9VF+5MDF1buK8VKAXLpyTgm1yYrynMzMyOLJ95y6AGxpN5nNbAcQzs5PpgnOIsBxgEjNhAjq62ACWeRTRjLXLdZ0YfOJV4bnoBtsE4obZ0bFYkNjTVsXgOBsE2GNghTVGbHjiPR0sj8pQq6vkLfEvm5iGjhIvq2q5THUIrqIl1EKEhDSnK2quVb0F9IQ8kcCsT6utAyDmzRwpwLyZO9/kPRp0Z9qZN/nIW7pN+2B4Rj2JtTW6SgPvGlQhFAEIdPAmjhixm/XQiUacWAkUtLnUCBpsghPMkt7wQxt0W3pn0m6AZULDg6LQzASejM3XxosxghMhe7U+1cWm/ujoPHH6+J233UUYNWEhHHrvZeyfvDeQEIhJkZFzrwB0cLMTME/nf8MNNz366CMnjp+89rpr1NQTgqRKE7Yg6uO0Qu5djSRysDiye3Mp/5ef/ub4henf+Psf3jE40qjOtslIaz9Tr+MGI5Q1dNpYQX/hmwalrHclnj4IAJ1D2Lz0AVq1HXL2bpKiKgRl+D8Q9priiVxjuOTo88oq5yepAdoHhvrlWcl1ZLDu1LBceHo6eyJfJm1F2AawdOhIeD8FuoLyMuJ/MEwMmuGC4XXhYrG8At8Zl3qBXhzmYjqq1bV6pdqdTSpL43aXgyJFaEQ+/P35gRgG/Xio/iUF4YKJZQuiEtBJpEjknJhJGNJBgbYsXTbNC0MwBQW3crJmkhDCdgMs+pcupdHBtrZwuvRmKkAPNBH06I03Y2+iBwLUUTTV+p597iXR2zPzNZi4p1DatnuMEZBOn5NhplBUQl02X8xxpV4jThFBOC55f2/fwFKjprMcu0VWmUMEi89zR75/GLBC2J3MytUqVXT/8Ei1vKgkrEAD/YeIw8cQN4+5jrMlqgxIGWVNPIDa2A/DIV0MZHlecO7F4+dyxYLxMNOq5zJ9Yc77xqcmKdY7ZmeFXas3LUEbXUR/cY2rVm+hSB6DSXWTxKHQLoWVXM3GAA74DZhN1puBUgFyZLDoiPJWBTR4ZKiv1D947uJFTkfnxseNuxnuj/PIQyErV8lqT29Xo0mM6VgsV7QPr5I5ejMFRYbRvaWVDdyEkLRMT1FGCosZSTKsq0xQ9XplucEPKtOTXdlk5+mZrdcvls+em57Mvdo+NFDau2eHqFraSV504ZDQ3c69ZrB/6PCRsVfOvJArtlfnFgATsxgrXaW+2N2Tk8fagpmW8MBiMGrbyPXkZB+1DOHzBygSgm/NaTpDJ7QaVhp7HViEGS2EzED5QQlwc8FQ0T2GZANwYm9lcmxOEATss9ysETvy2Rw3L4318W9ZW5ucuFAcHezpL+J8whiNllAiBUuCmhBAOZhk6+LCQvsUWaCJjcEvMDJLRL+FM/Tp9YfV8atP0Az9xQZICIZP5+5Nb0hbcP76p3/4N414yuHk8nmg2h/+5PfcceUonGtEJ2Eeyh/oFfZ3EZI1dvXTQj8M4hPcHdgk3hgIy2KkPUo5tlRHbzLbopBiOFC5jX7R6GmBKDyH+3fY6+nMIM/m1rn7r+zMlT1NO+aKOwNLxHsTf199bW/v6+u3aWl4hDwlGxPWDF8WeND9SlRfmDw7OrwrlEJgx+KKBxLBw49QNO+G4JtmxPgntGGrAwGAxIh6gw6QtmNoaGR2lvvbNFpjm+A6GZ6JR3QInSXihTzJOMaOrtzQnqN3PX/s9P/8Lz72d3/q3W+75fD6WmV1c65rbRl6ESkF8ynQvVihg6j2ZAs1+y1QnBnFkMH9kneG9VQXYUYSgF4tL0VWB/rwsOqFoka4EyAU1dPFA7a1U1KYHM9vEN7V1rWiDAcja7hcrs3Pzw7tHOUvkkQXhEoL7fE/9CVTgxnwYicUxFTHMv4IiVqYmQH3slfwG+HpH9xTS2utUm3rLHQn4QHkBhFYdAKdPRkoAcuPZ+7I96iPAv2FdTc2LWFLbG+C5YOT6CZJg49QSa/bqtJD2+6BwG3T8Ia3TNyKNhAD0Tw2daD9xIWjVTYLvJptZDXsp/iB6zwJhmtShO6rYNH89lPf/sZDD83NVxQuyPcNlfoHsvleTOr8YhkXu1gpS2SkngdZJBxYeoJdYG21urYwajXYX1pfbrzz3nf0l3p1hYuXtCUdf/LxT15z1dVje/dSL2V6B5YbjXOTU0cO7F/Vowi57soXsph9EABB9yibluw9cBmSDfUU8hUkj226Am8MDe3s7e9FXpA8/WBK7T5yUI56/FBvn1q5hdNnTi7MzZtsuj0CRPjMhzpvXSErmrL20IRgxUWrsccgNv5CtdO5jHCAk9ASQnGMDeHAqgBWpm33jkE0ecf2IfsBAZiZmTMFjvmFCqpKCODRxaUoOA4EIBElMDtGpH6rapVR8WG56s5SMfKKhC2vI9tKu4e4m4vlZU5VMXlhkOiWM6KxUKfzmZic7s3nB/pL24dG+vv68j0KCrUL0LdU1153FeBmi59SZOTMeHl+cXVhuauZUaS3f2Cor2+A2TxKSapG1NGl2lmlMW/BzSZcb69HlhMCEYEhRGa/RBpx1ncCMsxjk7CsJZTY3GMVdDiETPvIAhmR6QohQKx2sBRx5PUfu4hCCFZsVblwsVMpm/5S+NNqA25IYkPc0llRNU8DiXSTsPyxypbb7knQ5ZV46gefu/8H3/CWfo0+JMeP2ax2tlpI2/RpiiLqkKyeGDzMJVxg93nh1s3p+eVepPMBNSe0OelYtEylQdmDObosazpBV3xii9PXbTW4dZI8/aY+LIynLC4aU5fJBGcYyCL8NYX2kJfD3tjWNl+ZpbIoFQaTFFxBfaNvSUGYsA8nTPcbvY8LfC/BT9lJyUuQronxC9dcK7agjh/PSoDRhWGiiAWdNCD0y13YrVJ+eHh3fvzcS//uTz47X7v3ne+4qaWLW5AosLo+YBGnL86gsduGBuYWK7AlvOj95E1KIN98kisjOkAAE+hn/IUEpKpIjI54Pj1PTLNRr12GtUCpMveHYjnU4mx9kcdG/md4M3xlIU2eHiQwVxJX8URoDifAy0fof0Pts7reXJbMixuKlwfzHibEDe0U8nnkBPYwb5rEE8FH9MzoSlRuTJz9ZTUi1IQSHJDjWUOXQzMkTU68Rp9t2CBy6TmgigwKrZweQ/cQJg5cW7IqqEcCZXrl9dTjF6dnqBMk+KPeVnymJ5uVsqwzG3VyT54986X7/+aVV0+o0DCyfddSkODuE6fPcUpkH0VfMbjwNbPw4QMHKQOBCQwMkgv5LHs5dI97FzixJDRPxaroPpcqmeWWOl49M3Fhptz7zPN3337nzpEhnObIvsEL84t7d42uVYkTlfpKo7eQZ4CifEBjY6so8BYaFOOAQJLvbS0RPrq5dv1NN+LPl8OvkDttWIlROSCrE4VSHt87W8UTCA1e6R0cis3SXLaIG+t1aiwkXoNLtQXLofcxld5EKEgIDH4kJrorCrypy92x3N4V8ZJtyl3bFcUCnKcoltD2bbzjKtWqyKqLM7MnT51BFJuhOVW5KTMwImiTJhzUtRQjgGVF9RD6OHHY83NzfaVSNouDEZC8FKmsc/3F1k0ePCstzRVeNDAyzQ1fphWyXXtFUYGLtTNdF0VZDfX1qk0wMjyUL2WFMNAvAeLeYl5K6vLCIrvF/PwCa/6p08daTrVt37Zj/56xvnyvNHjqBiyvq78WqXiCNeGHhrnr6OjLZRHzBJXEpOBSY3vEfwQBNAKV9IejgIxCP2gmo7BDV+QKRrPQdjsHYCV56zguAOVW5a6zAyUuch2FrLpo8wuLfQMjVcm8ltcHhncgXovS41XJW8Fa4lJT3JHCsc/vd2zhMiexYy3h61Hn93vwTV7X5pV3br3uyotv5lw7Vz7ra3pgKfBHkd9V3bewPVL2spCH9laz6aASljmmOo7AofGTx32mNyAewYDj/sKzlsks1KhQSaW6uDbM2yoAW+NoTdIHLQTX/ZYOHYMneH+qVIOu0NiJEcRWJohQTLqiMVAmJ4uFbFe+vy8IgA5Egkr+xIH3VgAJHcnrX5oIZMm4sKtUSRhXrsLbtm0/fvwVvAIhUgJ0rBi+a3lF8i2eb2hBVPbO9Q5Ejbu1roEdR9aXZz55/6PnZud+/sPv2rGjtDhxHu8ofXo238OYKo8yoMX2h7NyogE3FipavcJc8EYhH1H8BzQnDEgCQYn2its2b3QySK4r254VY6y6nXthbboBvcYa4ovIroF1E9gLR0XUgU0Y7rBrTDslDcW103giWQRKGbpyAacbS9C43AeBlkNbRePSKYSZrdUD9g6uf41kYrW9iOOhkcsmJskK2h+ZK0NDARF6E8wW4mKAlPmmwRZfi73yNfCjaYJXDTLEyhh1ciMoIarY1OElsFFrNNlgaHI4pktOXRdC2yjv2ntwsb76iU997hsPfBNjPDgygobPLlbltxvMFkdGd90+tr+31Edzy+44dXHOBO7Yvq1rxhtCr6Qr5oD40rKGSPQYIG0UG7qi2KF1MAvNascHPvpzf/XxT4xP869pHty398arj6qQMcDfoN40//lSH/UC5CPKCypPuNHY4wn2v+zAGIJyFEMXTudE9s5mRcFZy8D1JTIEhEeCWuRoMeU2CLA3WjqWwE5MM8TdsTxfZrBVzDKwWUgWQD1MJT5jbtYk6os1inn0FS9POgqqHfeTCMH4iqjpcLUU/dFBo0dHtZnniJk/vH8M0Fycnn38yW+fOnO2PD9DMmpn/VHkqFXS6LqsKzzrulrzhe7NUq4zx6GqfbPRIrMCvpuRYGNoqFhTQ8Q6RqUIQR1U9iA5drgeSWRNj4hMXpy50KM0m3iCI0ew4D1IE1FvXU2xwpEjfWTDickLVA3iCebmZ2qL5VKud/uw+gNDrW2lelMErup6VE2CIpQapsKpG5a9GgCVsuC4EOBCzESBrB8OPSApQbgJVGN3/AT7SK6Xk5kwjo1MLnPi5KnewX6mleWVSk6qou5tLWsd9jZeY7FS7eQm3ZM7Nz7d1z9S6hvFawEbCHGLAGhbQ5fx4Ouxxxt9S94bbPUb/fijX9MBh/lIm0i79KM1px2PX36WABg6GboPs+cNsX0j+URU0Ezvifsv3335Cgh0GmQgdn4IDUE8olmTHkIbfBMZ8Gu1ahgV2uVMSU39l6bl9X1IW/0hn/CbBoPXKRZp53mtxMspISBJiepkJeE5LaJ8dalWX5QpqLMtZ8OEs0CCHI3L7YDWYONNr7NwxEitORwo00a5XGELJg2cOX3q2muuNjbr73EEEiLBX0AD7R3Z+lIl31NYthnaVA0YnZ5pPPDYy83a8s/e9/Y9/Ts2ltWlnutRdLNWXZxblPKkoRCRzATRi/AqDIFFs+viqCRNom43oXTsgUmCPPCTxtHIr0C7ioHJ0lBmbCcBODa6UsbB82ANOV3QoARrGMm9pTRUyomLTjCnfFzo/SEakgJUG5uXziZc6/xEwgbnRh1cf6FgTmpcjBKdG6xtI4XJN+H0uaVEiC/Bo5D16Q8StK/jgIF8BrKNsE6TSKQ2UygSmuS3gBBcst5gHWHioHic80ICQO0IQTBcdFU/yDGd3bzLDVN6udrSaiZXZJN4/JkX/vqz98/MzikEMzQybKvCEnsPjuwb2x++JYzfPbkzp88++fgTJ0+exmffcP21kBLlBSYy6BBkG8SVDGNxLTnVEnpM58KFUlyZ7Of1jjvf8Z5rbrrjk5/4+Kljr7xw/NTx02fuu+dtg0ra5rOV2YtKqxetAaOTRDubLYKxltarZBegHmKM/w08NHqBvJpIjfnO9WRbNjjZuAJcbIyYJakldWVjrSB3QqghW6OyhLzWyshgN6N+IV4lNomMrLAbt0z1mFF45CCm2RgwMJBwSAZhNTUaYORL7AAlfK3WpuotjPRhw3T/sJLxQXHNg8Q/64OlQsvunWNjBxbnFrId7To2WOhpW1PcUS2LTdXAkgKvNVy55VBoDN1qUg1WFttXWqFVkeSYqYi4C304BKddCwA2QRJd+nJ1ubnYYPTbPHF+bmhoeO/OnaoTME5FchhVWpar/KxHto+SLmenZs+fPjs5PVGtLM7N9+3ctR3z2d+fN0xUkMsrwKJQSnQKAVdhJ2eIWV91sSdJto0HMpXuoO8PF+dwfeDYurRGkAiosGejIhVbS1ujLWebFnItue5m2xpjRfwKuDs7p2Zmdu7aX66xd6zg+XD8Dz70xLPPvZItbrPLLYS9YXZjtN9Bl+bmuw832GA+HX5z7tPj333fj/r9yrenr7jyyo/Q6tbjaWvEHY1AcHoOhzuB3gBc/BpGl3jDpffaAMnhazLWGKMz28F+S3/a0rGYBovEkoIGZLsLEPelm73+B89qbKbAJZcavPyPF5lVqoYevFwUhwnlkh9td5EbAGFpuRalW9tlrl6enr64e8cBOyf4JmINdgYCiM5eGsLlVpMXxfpG7nGjcMZxrljMcXtTLUBs8KiqdvAl1U9PXopMoWH2RXtbU2m95bVGVyhjV+cW66X+XXbBg48fX5yq/MKH33PVgZ02fKO+aPvRAAfK21hWioEzeTBwGEJCiUFGEpqE6QuUAtjAOMUFUtcGVnn1ZHvzHWFxNTBTHP6JZPC1djlugWWw99EYXLdp7zTtRmQcLuBnz/plwkIjL2clLVzIw8HjR4xygrVgkpgE6JoBmdCwwrsGdYDAOjIFqaa7YE2cq10gjaINKbggjNqx4oFEk7nXXAgH0LdPg6ENp69AAARYuyVAA+9scxBUaK4JguH8uaor+P5gIqARw7Z9jF21lcQ5NZPlWtLLFf6xp5//q7/+LLawU7YdYkprR1Eptz178vJVbPBy7OfkiKc8cfy4lDUyuQ0ODvQV8gvzc7AB3yVEKKyNIcuGLihZekM298ahZ5YEe7DaQf/DRf5DP/1z93/5888//TRe+7Nf/dqzLz330x94X4FfvxLwQK1tUwqdsDWtiMLCiQYrai5izaIxRCwEIaKVxGc5aRVDwnU1HDBJWMFO8jFo1nSi1N/X21cK7iqpr8Lfc6kssI3aZZW23Q1hhPRkot+OpQIS2mI9l7pA10MBZIcGTU6yZ7TLfwGbA1+MG+SmWxIfaX+5LvORjR1FOIkFtoJ+8yAbHhjooWSk9O8rDhSz2AQvNVnnzo0DFOElUhuyPTHCIiz9hV54uYP+JxGnDFBdyMjKu9nGyG5cBFxjD++yNr71ffa56MnZ6fr0+PMM7dsGB0Yj0USRbQ2pwRtS1R0+fPDg2L7pianTx1QfODM7P8NQw7uIgcQ2ls8KLwAZ0Q5heUxkwGko7DhqRR45QQkuRPQA4huLwHKS0gkaYYphvq2bkSFVXkY842aQLnqhFjlce8PVot6oUaL29uT5FM4tLMiju3f/VerW/M//y//+8KNPZjJF72QPMCdAXzewRQGjyXJ72Q84POLX5N4gGz/gzh/tp6TNGLDDW97qK7a6l56kOzhBfOEAnmD/0KcDbz/FeBMU7OatsV96Y/LqrfGlNwTqTKYo+RpU0Elwea0d4stKhcjhHBcuE8j0PBnKm/sInjEU5vCOd2FaBRnwXfcmvYXLOHu0WORkF4DSqamp0eE9pHE3+x1riyDpT2LtSCwV6Wu/Q2bAt0kQwBi+2nwgjPvqq699/Ilv9ZbESEOUfhXvo6KmMCnBOUvQOtcaNI5dMF8YopWiW969/+ZjZ1/8+Be/+YH73nbd/h2R/6amGH2+UV7EdbFZBEgGbsDDKd8eMxSybHKYQPNmIjHBqIRMjIn2u6i8EVehBHnTAHcydptHfyGihVrM6CJDgmQtLV1LUQgJfxvza1Pj2yXJQVEhKPg/5LNA0zaAzAH2BgqC1IdSKUzmiSYpbuHcIQYh/BXtMoZfVTDpqYIFTBhQWpiYz1SBE87xYu7twGCFU4enKEIDK4aTpZHh1KxZ6AzgebqJ8LmE/kPflVyKYZMRYPyM+DupNLu6L8wtfu5L9z/x5FM9OZmMd3RncjTw6styriH1wP7m6oGHHjTnAvROHT8B++3ZtUcuhibf1eUlrCF4MxJZAdAhfXC/zkAI4AGEe2FiYIQ5WqTwxGG2Foq9f+fnf+nAkaOnj7+2udY49epLf/7JT9550/V33HCNdtfqHFqC4yD2GOslF/SYzUD+DsrpsFMitpA+mkyPbGWAB14wsEl45uIcTDRTMFCzaupLhGaKnCIZC638Bhu/iI+NWtMA+WCAlJDvAlgsX1BX4lMyszHjZswg4lNxAurLwHBy8dPVh8ekpaDTKSQSQCy/dxEWQwQLraWcgmtCxBW67Cv0KP1m+5vBnSNSKGf5/ShGOTNXmVlYZBIT7DFaGq22VOFuOr/NzQakG65um5uKPikVJeMIFxpuchijSl2o17LI20Ku1F1kYmnOTFWsUC99f0mydUnz2olp67IHdnaN7tg2UOpdal5FeUcVM/38S7ykdu7ZixiwZPHgZXexwOiR6TXJYQhJt/DKqoS0MhdZ19DVJOUWBN65yMeVmxMLPI0wKBNDadpNYChJYXNbA7cSMkXkHqFt7O4pySjymc9+8Z/+f/5Fo7lxw813vHbiLI8JswFiENQAX/xjAsfO3/DQPdfdn37aGE489YY3/wgX05bTB9N3/QiNeESXNJUe2nEk8Awn8v7kFhCOOjKMmR0gFKOIYcXhzktkJ/2eXAmwvHx4NtlUKdK3UkEx4ynovyuM85bp8r2XtuLW17d0olfRt/Y2OJovEE/riBHEn0gHn+SSZKSLSCrZ6Jo1vvyl3qGeTNZqhtt7ZJu1VLDtZWHl9e/W23TdNYX/8RZKQtC4UF0o9ffDgtxZhOhyxWBdoCY/dfK1g4fGRBnNzc4rm0w+rjZWMnINjB544czx1a881Kxff3iUgUy6wyZEE0VXbOnIXxWTEB70Zsg2X0sih0O6iiUye5AXNpwKPi+bUjHHKzOc9iGtEHi7OTRrwkiCBeIfSAQKJW4oLTGCm0IiWnow9aBXU6BdmyFxeCWe1zPE7Qz52eZZDu9++R7CdrIuWtjNpoTFQFPCiqhzI3Ny6H+CBuCD0AMtIiihjKBy82LnwZvHwTKMDMOBTlwJfS2sFQgMLHmfEcam2GhjrUG6gmsLHbErCTYWVjY9t1DsG56aL//xn3/82Rdf2bd//649+yFGfIkunT0/geWnJFBwYm5hXooB3KQBCJTzOTI0CEM0KxW6gHgLvBvZXOQERIfAtlhUok+IudHVEAZTzfJmB98gMFor13L5jOBVuv5Gdf5X/qN/+ODXvvzg499+9dXXPnDfO645eIC9El/QXxpYqZbNUwr+TmInJQemgLuTjgaM0sIH7g8RDPcK40eCnYgiFrQdsyxPMY8sBICvF/4lDOmo6yZtiQpnit2ActQ9AMXhJ4vj8YTWhOotfaNPFFwar8TYouC5UK1uSNODrsiTGjx3SHegVkU7OwBqW44g2FVVsKOmnQhga0XC4LFKHVYo5vbu3SFfEo+3E6fPnD1zXm2vC+eOqzvDYZQihS43HBA6aAyXeIEmNh2viiAVcJAJCLOoy8YJZK0K4sSVrVxtzpcXN89t9PaXIu1cPtsbNn7BipEF6OBVR8qLVaKcOvKvvfaKXbdt27b+gT4LaB1rwhET1W3IbDR5Mj11dJR68n39vea5sjDPEZoEiwRurEk/iZDnSBz1WkUKW3CjtDKYLPUWBa1UBBAsr3SJAmvPkI6kmVpvLf727/zZn/35ZzLZvjtuvCk4kvbupQhCSB0w+GSFwe2NEYZV/D5HLNnf5pHw48nmSTg/TbsSG8emet17QmND/kk+X/fDG38Bn7hj/8MrcDjEZAt5GICR2OMN33O4Bmm5HLAXR+yA0EAnWytAFN3AFUE7gWPCTUURO475ymFE3wKYccFhzkofThqJBreOy/xwXIRykmEmPwZweTLC92iBUpFCdzM831eXRYCLxWWlbVklDaip0To7P53pKWTyvWxXXqwz4QIfZO2ScBOdp8u8PIeWmju1RED1Wg2OzGa75xdmDx0+8vTzT/YPDntdU95NDh1dqpBnVlRK6C8qSUYbZV/Y+xwke4slSXCl3y0M73j57NnZ6akP33vrXdceQhvCzx9XuF7rsiODEvvwF7K9FIXmHmOMj0e8rCyGTHw8JM4AENG2EIJR8cKhOu5CqhsADB7DifJ88DysA8Fbkki+gKFLeBc8vsHi2uCiWCvLabhYw7AhRqo4BXH4dwqegeg5A/KWtXw0CZK48cQwSbzDFZMx3fhdGpjwkLPBUJVQgQT/TocRayz7HmY3UYknIQ8hC2oL9scIhAwRHGxgKlK83qIZFjUGoBM46GBE6ITaOMfs3HPg1eNn/+TPP3Fm4uJtd929e89+ypSLF2aOH3+Jc2OuoNhgCT5DlY8ePWrONS1gR/ryBCWirnoTanFSYigzFHtaW+WvH2CTsDsBUbqUnofcGJZsNcAIdUrkrrX2yKzTee1VVz/x5OPPvvDq3/37v/74o48+++Rjv/mxT73ttlt+8r3vbS8MTFcXBop9jcVZfH2R2zBPme4MxqF/cNCwZufnJFjgY1JdCt4EWkJZkHOKEtWBc7l8dXoamSDAKsIU2kqlLdgrhAIM9E5NTPZF8m6+wDXIWjbPvOqd9JI2FxA3iWsBKYCYX6OCCLRiAB8Jof+k+gnVFv38ihRRsoWoVSnFSHjRWiJzIbjK4I3ckJck612r9vORJzOa+82WxXlRUR28XeWbKPVzs1vKy4XeWTo8ls1nSxfOVM+dnTx//myjsYhiC6EmKIz29a+ELY0Rqx0V0z3KR3mVQFq5Xm1rZ3LRG0kYQpdinDJIYQ8UZ6yUZcJYyGfDU5Pj6dBgvzb7h/pGtg/Xqg0qV7XGjp88hok8jL/av5vN4MLE+XJ5ESIoFgq0qJ2rrYX2jmFFrDOdc+2t02xdGyvMGWQ7OgHuTYSGRk32JBE0hRCwxSLIDrrMhTCqxZO92zuKG+395Wb7//u/++df+9pje8aOHDp4dGZ+Ec/UaIoQtzc3S8Xe7p5MtVyxTKAq2ULG+waH5UH1MVxGCrzwj1YtRh1WRxOcIDI//KhUIfHBs7pC/FSsZP4ziLAtee93ehOwf+lIHAcunevG5csRz+wpiMwV3la+2tV0YJYCxga3oSmlBmAzxEJHstpLhE/PA0ocsatDboBzZJykd7C/7WNccE9Xj51nj5O48DX4GIAnNT/UTOZM/Gfk3w5fxUuMYOBB7cWGDJKQTJ0TWIoIEgxOIm37BeKIuTNA6d6FSXbn5NyB6zGAF6bO0yoI6pPxXH6UzaVaz/oSp3l5WrKZQrk61VMr9o5sW5XP2MbpyDZF/9lx0OslAh18aUJg4gpbU4YjELuRLdTSLoZJondbZ3Ro59SFmUOH+jynC2Tc9fW6PJjcvo1B7LTdHXGLXS1Ly5VMLlJeUUIM7zxQX5j52JceX2y0/eS9d3Vl6tMXzzGJZXojU0t5YR7ikCm9J9eL7NCNMwUvLlQF4Cg7KZ956EjaukuDffo036zB1NQB5drKRrd9TY/CSkBfZ2NlZIkR1YXgyg/cXA5sk5OdXg0S+XUT3YskPpCGCYYr4Eb+1+wGK1wl1peLpSjpwqXPlsFUWD/+LlNzi9hDB0kKDxfV8eScD1NzVKmyZGSNSM3OYR3Lz5+FKS5qsYarVcTSsrcQAxJs4wqBzOJ5PyKIlLjMsik1hTcSzBST5MDTVxrkWT44tOf0manf+u0/5Gr4jnvemy/195YG73/8K68ce83+Uotq547dw8MjhApfbXovDlBUy7ZS2bNnD0pJ2Qj4y0vL/FywtToD9GiBMNOsOAQOIgsdtV3Q0T6A3hsy8t0hobb8DSBNUlm0haZp/9ghrOiTT794yx13HTx8+NlvP/HQgw+8eOzUr/79v7drcGj2whklduTmBPwYDTtqfXnDu+URpHvROSp5UoRJybRlaYUigsm74BW8CYzJZ3mdjaQb3AQzRSGDCCR+n+g/EcE8BQMV/JgZjblLeCxbxXeaw9jqPhPtU6AYABH7JV6CbJuV2Fn+IMTYTtSmGrCFkjBaIKM4HDszQUlXsR0YeCVawmxKNRaSo8hkIM6MVGX/72htXn3d7qNX79vYuMP9PKXOyZh1emJmblEDOiZhUgSid0hdKgwq2mWgY8qVK45NLBzBQEPEGdMs62ww/QYu98hSw85dZKyTj7qW4YrQC+YUox8aiAg4hPOlF547deLY0NDAoYMHDPDMmVPh2rG22Z8vNSrVufa2HTu3iYTbWK1LOWAKcDMgLECU4xvmP7JiREl05ZFrzXJbl8o3Rs9+0TszU1VB9df+0X+1vN4zdugWlS9F2UicyIGE+s5/HgcuxgtudDoQ0I+Kvj3+t3fEDCZKjOTfaNeV76D+uAA8Aru5mCC3uPS6A2ClwwnYSlihRPfNROa50HNbseCWsWgJzg/Z9PIR50FGQzMG/hC7hCSgTcis/RTbHYoJ4R7bFXV6UQMFBkQolqVZ7mVPCrHY0zThsSMC7UbjGHNPazwwBC5G2whNiMphXGTsCq9GW9hyVGpLHFYZMgeGhsfWxl576blBZv+VlX27tx09sn99demZ5587PX5xs9OSFhYXp+uNCo9N8MbYJq0OZRRcFIZYmyKaT6dJn2Imw/SmT8m1IHmx11rlNKxXufJUBWyKa4vUYEhBSrE22+ZmI92hTrJJgC2yjp0lM0SmmB3cuX9h8sKXH352bqFy783XHNy2K7NRnzl3spTPCIqkabDtTBkznS0KN9mrcm9J8rxG69HT2TfUJ9sazTtdLc2Pu3i9sgCHHgFWE3G6tgR7cJ3m10/FQT+ExY7b8WGxjjBgOr90mG3+jwVieAYBEENXR6ZdapY2gce6a0v6sSsMtd0DIwWuSna2uC04gf9eZyZLEbQMPcX6XzoC3ZtCKCyYSLcnWh0LY7kkxHZj8mfhwnAQP0fWWR/rzVD5UDl4LSy1e8/ep5968eprb3jxlZO//wd/2pMt7d13EEOm7u5fffKvT545g+kZHhnZsX27+Te1XqvF2JPRAymSOPKJZ1IhZd1YAKBe0ytxPPFHax34IG78znbwJUAwOBH/tYmSrcoVwMhgsCBXlGyh1HvdjTd88fOfgwdFhL3trrfv2bX7m1+9/0/+5M9++ifff/f1h8dPvOY1xXyRYYDU1SOVbmRuWE7zAgn+Ik+QiXA0+JmszLSRtLmn0cN6CX66pJ706kKuAM8T2YR+5HvyjSismeUukwhIoWQHhwYGddovkbHPoIPA+hrzG3o0F8OuRJHmfrNLnRM0AMb3E9Trda6gM4AnMShYB3sp9OQYvXCJJVARRLoQy/baikhI7GGH2ODYGHR+bR2RhG5moqcnrPD4lJGdpV37RzbfdqPrEj/w6TxLWrs43WwqhWajZXrapbDuym4Uezd6zB56hqXiNeH+kE5CiA2vHiwJTVfIiJtr1YXFeltLxQbr7SXiEV9E76m9Otw/ICHX6VOnymrMogMD/R0dg5Onzlp6CjRKQA5Apd6CiWWvxvcTA6OoM5dY/FQunBpFn5Qbi6ub3flivhKJuHNrrd0yg75y7Nx//8/+i+XW0o69B4eGdtUboVW09xYW58gQKCVVGhoQLEoS2Rs46j/oEQCcQG3aiyvP31K/Ytcknv5ONGKA8DaRxWBtEsvhALF+DSIQ2ySOeJ2vl4/A9bj6uDlx/mNRBFTwBJd59colOQhFkgaJhvxI1vuGBkSVTy3MyddOJndR+uWwUOKZU/wfvEwQ2uTY6Cm4DjXYASFtkO9CM7Kp6t16Jse9LiSTSrVCpSpk97Rt2NF+9623HBzbtb5SF4qw6957j58bf+y5VxaaKw318C6e27PnsCpgS+v1UjFTj0QOIaiC8HQag4eKsQaCQJUCM6QEAO3yt9kCM8zN9WAzqSXNi/kJ0NrgLKs+4lrECigQnxQP4PEsuQItZ6PRiYdZ7Tb2Ucqpl46dmZu88J7brrvz+kPiVwUfCdmndx8oDbHcctQIRQhWrLODjCvgi/aiIHHVyDBXHNpNGeZMNtY10ghx9jYFoQ7YYAKBCBKjcXeLTMSIpcDecAhCiKGEyDpH4x44KLCBKY4fvArnjj21PURsyzkapFxOSenrjA5iSNIfGHkgE2sspTHGCt0OX8cgAbQUyUkycTGN2vaKcE6BMUILZOYug2vMmP8CL4UWyr9tXXKurBZ6S6BvqbYyPTs/duDgM88+/5ef+DTie+vttx256jri+Be+8IVnn312eHTUG3ZsH905yqdRgF09YDTJBKVXMlTOzy/2ZMJwxRoY3oYSOqQpZKwEXz5dtpwp0xEwHefpujvXN0cHjxGaJMPLy9/Q0jKnxe7M6Pbtb3v7PY888IAqjNdde/X27Ts/+OGf/vZjj/7Vpz87NX7dB9/7LsM8ffJEkS9YsatRr8iDj6Sjb1wbm/UqEY/KTJtWolrm/KPqbG5BDGqmUxgwLAN0ECC2fbbZ3myOpRT3CSgtllR7EeVh7dAnnU55shCiYqJjGWI6YwOiq+nkm9XkpzD+YiX8hrx5vznSQrB8IV2Ht6b30p5KliPT4arq6AhAMilrSxvChzOFHCgwg4Rg88y1VALCHXt3mzKzL72oVF/ka3105cDRnWOHt99657VSr1Lfj49fOCcV60xFvg2JaUPYDEBYVfarJ5OXv2iZHjiomQzQOI7wh8ZLBSpBp9uU6t1YqTfLXYsmqqCcYzZLKqIDqg4NTl68cO7U6Vz34T2HD3SubDQkyysoqbk6PTXVqFe5fjEb4L/EGiFRBBljpBSKrYzT6GgpDA4u1uqt2cJy5EXKPPC1R//VH358o6P36mtuamnPLxGf29r4ZRXyPadOvkLVYnhcYKFF1hTgYh5M0X/Aw+qZbYc+bJ3Hkr7FQwvp4wblxKc11cbWAF0M6IstHW9L709f8rpzgJXsHWw7vXWSwCaMMI3lwP78G0I4iKdJ/wFbiGm5PF+v57bvGA0eGYEQ+LKELQn8GjASdwd/410ukOfsm2B7kiP6E/DGHSWCYHs6OB2stFGEkDW7Oq85fODOvaN7BwrZ9pZGaHWFX/X07NszWBr4+mPPzdTWp8+fGBkc6i0Wq9VmXbrxlpXQqSaEJ4YaR4IjkhOccfCLCdZwPaEK4ToifJ1LaHmxQrq1v7AYKCaMbHfrI1Qj3U6iWzOp0svU0AzKjQqdTmNVUSoy5XR59otff6Bemb/t6P5iJteo1clHXBVtQIQNoK60RlpKaQoVZMTT9Q4P5HpLKzyYTA/Eap9bfxUbDaNaIwebXnCBO8dfmjh706ayuext1xNXGyp7GlOunNj5oAAwX2jpvIywgGvG6LHLRKXfLoEFkbeHloKakamMvQKCKHKgziEJqLHkZt4UQLMFh2S86FboPDXoL5Y9ME3yF78kC+rfMBLF0gbPLZQvm6uuli0TMVA8n1hUytq/+MRf4Qnve/d7duzZh8A8/u0nn/j2k0JrEZYD+8ZscW+mWTFsr9MSztJgMYIiXrft2I7Ddc5yGdl3BDQxZvAFxvMJXU5yisT7dSQ5kkHEXkjgXQLI5aXB4SFP0iLzIyv2lZbqjVOnT3OZZ199+YUXmMgO7N1TLPa9693vfzKf/+ojD8vAf+/b79pz6Gh1frZanmVfxv4XiwXy5oVz59QpPjNxviZcPYHvnBw14ou6uxcq5d27d+orzML6QM8GRSPHa2qkwINwj9UGmjBQIHqzFvCYEgA4HT1B6EIT6p6Y5RAF3B8WPLxY+GLBgQi9FSajCiqjfUPso4JKPJgiehQ/tHa4tJgOc+E6rxtWW9yZlsO/n/Epx0S8pqKaEiHCHWUUcRsvOK3AvNYSCM0uXLAY4D5T6NxZGty5b/D2u6/ldfnKy5NnTk8eP/4aNQ6HXm42JOJGbbmQ7RGYSQCSV7pWXRVRlhE+ylwjKJFUjUmj9lpeFtgs7ng10zAmWS8k2S6OHRClHCJ8d8/A4cMnV14UZagGUx3jL0NXkleEMs9+jpRYLS0osS7TY/d09xT6e2eqjY5ciRNGT+/AJz7/lT/4+Gf6dx7cc+iG5ZYeAY+0YEgO0bRckVB2Pl+0wyM6xlzrTwIlAfaa/Q94pICrM/qQnv8InTEKgwreMKEEToILCYi5tDHSDaFldxoxIIx3JTvn0nsTuZMCBINvu2qJ4wlxO9QSiW2ACtRSwq90EF4iUARELlWmlxbmFa5tzOUxFe7OFga5m61I6gklJHIqCA0OJg5MpIzDoeEMfBHoGcuph/rTWm8u+lQTVc4P8Lo4M3dg5+h1Y7vXFy5ulJslxovNlsrcDA7m0NBQ5eDYscmF50+cm5o4eejqG+hPqs0FQUahW01xfgzu0oFxcpbObcreemW8NcCpCaFzOmKg2n9gDKvhIsCXNNYJ1SU4h2sIqWloggp95flaT1aqlyHEjMhT7Clyv56dPPGXn/5CrvNDb7/pmlKpn8eeWLZIAByhyqFWIkdFDJeaLjLtl4qtmU7lnZJFCXUcbn2pWlfXqjG/ICQ3xC6KJxqfBOYFtvDXIQQQkrTGSGMSY8qEHzHVgGXzho7E4uCTEm1B4BqcHVSYUAfxgIQE7So4EDsn31MqdOYiAoAgB5FY/PQv7g+9XHixmCtT6uUBWsgvuHGbRbzMSdiegcRibgO/0cTATywfwn2144Qw9K/+7W/RpX/oQx/u7R0q9g18+jNf+OY3v2k+1XSE40aGB0GB7Y5hCQSHpCXcCehlByY5irj2QtgfFgtZERYNk3Y443RHyfaAZ9MYJ8FVRxeduxIdRcCmZ2d6B/rdrSoWciR5npHAeuMTkwcOH5mbnT15+uzu0R3EAvqmu+97z+D2HV/7ypdOT0z+3Z/+0K5tg4yMreJkO1oxy94EP46OyFLUh2DiswEKW5n36dC58+flGY/0RqurFiks17h1NlWjWl2fn50JA8WKglnWJByqIB690sXYcIlrXXQ6Ocykiw7fQAJsnibRd8EMhOtRyPSWmlM8uHKbBpIDkIFQP0TAhmfjnqAX+kiJkyA+Xl8hPUaqcW65XGTNV+ACxZz9I50T7iMcAmShDSVj1NWUYklXE4m5c9/Y6IEDY2+/55bxiXPHjx+fOH+B5k64bXWxrHpdW643m+FNJPlDW7EA28ID1XSRwrct9nxEEC3VayJx7LrqwgJ5QOklVI7Gk5sTsiSQWPI+ufpyvNOWFIiIVDZmvqsjL/SXvnRZCl46OXRLobHuDHtad6b47/744399/4M7D10ztOPgYmUt35c3grB4hCtpbX7uAiEySph4VeITaUSmzPkWAOnnf5AjRUzpq688f0udiRXEuCaHB43OacK3BuJz7qLBfm+bfk248/jFOfuuz7B5w9LhEhZaBx4nkDL2nwd7VDFlrCbB4Q7bW3tWVdfaHOpZ62zOViqNSq05I69BB71cPzBHEsJVKHR3dEnkYcuvH8GtOmKnBjXgekgKwM2ssHBaJZa05dpiS7M8NrIXHejD9coHWatSOQ1ksqx+5cXFa/bswVGrX7QwOV7Ztk1i+1VhKN35zUZwRGFVpvK5fKTDjtddPlJ0B6cJ/SHmowEc1excWykMQ6xayZ6igUQAYCIKTL9CpcVc39ziIidJeSC6cwWxTyvLmIuy1CpKrrZns/LA4M54+dtI3hYhliqsqKuyyj2NcZ2BUY2urOyMif9PWHW8bY1hbbGyVKkwvHB9xYEhlD7o/aPLSb1fxgT6LVbI8MIztXaFKTRzgSRogQG2ObTtg7kUnu2Fa5FAIJClNJPMvN6Y45chjl+WsUwXL5EAE0ugeoe5sP7BnGo4lA8EJqiSYY2MYs2sWECKN4YMEDMamMOZU0JAikZaW2B8Gm/4S1LL5bX1z3/hy5PT8x/+8E8NDW83z8++8OLXH/im7M6cwiXku+Wmmyh4CZMoGcxp5tFajKoBwbdCkdiow1wnQTQuViLVsPSGstxn9C0R32NdEukEUCVgpZ8BAnoUcCOF5+zcNANRti1nP1AuW1S5RKDXcqV25113f+PrX73/K1//ife9t1DsF7qE8f+7O3d+/lOf+Je/8we//gs/c/WB3XMXz/dSn691wCCaBgqFwKYdbDPUl8qwOHiz8E1sNmqqltp7iI0uBpwHGxZrFvlaw2YQ7lWhJY/FRLPAWpAvcRgWM7aHmUwoWYAwBY+LaK7hgBKzYuTJqHQ+ELzLpoFVk1AgbowXjP/D3ERa0FQ45GE9wm6k7fVW7INQ5+58RqiL7A5sIcLX/bXDumoC2eGtilouVcqYZcUDZBIFEhEYwR8htCZ+bpUNa1MmOus0PNK7Y/sdlYXKiWNnzp4839szOHVhTiBIxijEXyDdAblSEpWCbIaztikJGEo4v5aZ8XH2285cgX4fJ7W4vDJbLLT297GwrzYbTMnmVepW9mZSuc2gDdotnlndMqW2dFaXKnJCCGIe3D22uNz2z/7Fbz787EtHjt5UGNq5tNYlpHBusdZJexghiliuzPRUVIDi2mGVozOhR9pItL3Rq/Qk6e9/mA9w5cUgIZmiEGDfaj/SUXgwbSod4BYBSBtPWYor8WD6ltgwl9/IdAcpiJYDOWTm0PYz9NQWVxuVqMSp8q2qVZuBxwS3ZDvWB4eKI/0qze0gC5arjcmL01My+ZabC1PH2HkZDIOMcGzxgjB0tWVzvbAD9wPkIFjLQHVdAByHa6FwdZE3slkXlXv91fuv2bd9bercJo+D1SU8hd0AldFu92dyS23tewcHbjx88JljpybPntl+4BBHfBtNCY8QpiGlQEnfdfAEdj3mNjRByU6DnQEzzz21ISO2ALgmnBmgp610nuzuquwU7lGfXABjX28J7yCA1P6srzbWaosolgClG26/6cjRo6vN8vJyI9ehlCAvKQEKXdgpXv9MvzYq6OXHj+8W15PtzIXrCM83UbJcFCo1CR8oSO3DCHmXQ4jTIGUIASJDkyFTncp3YfqEDCl2IssQc29EwGgAGVV1y4zHuO0z/8mmgJWD/mF/jq85xl4pQ0u9wr5oQgk4bMz6ljCbYVoIJjHoHttdoBrGVm8M2SyuExHSmYuVjMtmOGbXT/B1zKomEgd3aX+WB4ZHeZQ89K1Hn3zm+Y/89M/s339E7rLxyYt/8ecfX1ws3/32d8hoybjipchZ8rQ2w6ExrH2Ygk2at6bK0xJDhUwbTp/27CW9XArh3q0nFEosHZQ00StdSg+nCZ4MZhmk8Q1Y6aLIXuiTsnipFScOXRukT/yk3nzza19/9vkX7rv3XjRKybGh0cGf+KmfefArX/iDj/35+995z3vuvn19qQqIxX3xF3DgjmFLR/RA1p2uHnnvSS+osMmPExDu/6CvMTlQGPzlM9B9CFxhl/ND2CATQE06H3x4ghxjYmNak6sWOSEDGAHXL+EFPyW/xkLHO1BGxea5+YjaWGmG5IaV58eTCOxMDjTx9htP20hlms8sLK43ZlcabLsUrsH6t1ebKzSaYArUtndmzVl3tmBo3GEBAwzqMwxKSTRKyLU0pFjwVYbljltvvu7uW+/46v3fKF+cWSPKeanYN60EKOFK1lmPwZ3GTDiNKgFD5zmxEvqAtTcOlPoi0wMYkdCHkUae6myG8FCrR44i0M3UDXztWpkkmD8EqDEqMDR35UoXFmr/27/5o5ePnTp46MZs34711lxru0Qua5YStcE1OJaXyxcuqCUSyMaWdgVEoNMg4RLApAtg3v9PP0zFFkD/OC/XSMDE5YGkbRrv1pXkx+SG5CO9/3veGMpMCBFXEWroKKOyUq9ML05NtDfL8sQUutsGiwU5nrYNKX7RW+xRGmYuo2y61V2WDrZ4dOdR0MccBadzoMC4Ce0RI4kx1Cyfvfn5Bp8UKabUvOYpIpMXNORudmMIgA8zXWKxu4P2/5bDu7Pkz57Af1T7y/WadgPPKH1Yry9vLitqd92B/WfGL1ycubh7bD/YXSjXc1IWY/4DR8Ftxpdw0HBK8E62V5g44m2X+Kzg0BvNugp5HBFOnTrlxMwggHYotqBcLkceyqVIQI82IIoYGducqEOcpFGEVeanzu8azONR9h/Ymytm1jYqhY7iUr0irSg0rfAFVYrEy9g8CYF7egsKBRIl+LRIsas6OGxto/AWkTiSqJ7NREQRoDBUuFuaLuSgoyNPjw9TG1NI0pT5oenB12HeRUEGMqIVTnBPbH1oVMJKvCmlUyudrBk0DG4p8EOmi20Q3jYDGLqgGKHgaTMc7UL2qGewlzZ86AWgl9ACgtH0kRA7roDYgC4kALbVFRwn1Jbr4jxSKGXOjL/y2c9/+W13v+PgoaukFON78aX7vzJfLh+96hq+4BCB6oN2vae9E79iV4IZTAchBGOtdqCA7MGRbcGpJcFryCGUIkpOFbrgnh1mI1RBfGYNKQ49djiJVhMU2oExz3TuoXPoybcCwWxP9/nz57dv325yzYncZaMjw0eOXv3otx7+1mNP3Pa2O89PX1RzQE2p2+9+54m+0me//BV+vx94zzslVe7OFbnGLKkoUJRPkff9BqcuGZ7wAgsLc2LHF+an5ZmC48JjPSFkpp7MzBaLglK1M2/y8DZGFDa2SAgKdDAbeuUrD7PI7RwcNL+9dclCjD0JdIjkzYbsz0j9GSQlUqVc5XEhMBe1NG3yMIuWgpWHhwbwNxSImqSUw1tw4OQDmpPLc3N1aHBUXtXBtUF7j3pkvYXltQq4V5aXhoeHI086DE58W2mxQVVXXJKEpDuyfYXMgb6sC8CriNXlEkfDQ6pcapal5t65bfjsq6dsK8mPaI+71RXj4bXSzBcyOTV5CNd8z4PBa83kcxZbSjtQZo8BH0sI6eP6VxoNgWwmApIGfgA/EiphIZMVrVdte/EpnbKX9A5vr6uHttnx//23v39qUtmH4UzvSK40UmnYRy0Zcfy4p7UlijqdkDkg3JwCupjHJHyPSGDnyICWneiAkzc83OnBAMLkTl8Bq/OAsLdypHD5PU8A1gBZffCTF/mkcGC3AGDfc3NcuNxOQPkVXy/FAbgCF0hqq5PJ3IZI4aJt6hXaN1KInb8W3B7PpwNJtnRwjVAAPnJzo6ezk/VrqD8nycH4sZff+fbbsjcf6mpZy3W1FXs6xKbzNUehW1brClj1FWVfHcjJN86lhcDoV3/0k3YgYLVLU5wbVIXbdNasN3h8rDRYPMtqilYjV+DC7KIqk4vTs+uNxp7t22654dCOUjsnsM7hvRcvTIi8CX8mEgMfT2E3ONjWTorcXFvHu+688y+++JVjL7xw7e13ZjoyibdL6FUS1GS6bLRUqdXOYy3F4KaADgQ5IWyILq5W5icunOUIBDC4ihmLDWX+8Ss2tXPLYaLwEIJXGGDPnjs+smOnSLGXXn2ZdlTC9oULp95923XvvOf2WnW+bbVelGmHjapoEdcx7yC4ub6MkenKZpUt6pCDUz3I9o6yOpAtm7m2zmaturLUFDu5sdweXGlGtH3R1K3V1xhx2WmFcYaKPxS0UcjIOlpf2KyVftxtgaZZdsE01AAXA+lI3YO2ht1XMRPRX6Ln5FKk2qELiCVO0GRgFHxqGBZtDr2NGBCFabivEAASrU8SaBbI1Esp5wOcvIjNvrsbK6xOJXAVa4JaKudZzBVxi1I7cPz/3d/7o917xt5x77vn5ssDQ6OPPPzo177+4J49u/ft2/ftbz8tdZg+8R+kaaAFQtCChnkphMgMIAiUA2h3l5hw6jVzYv75btiwME86fODg1brhJ6PRMfkD6itN5l6IfXF2Bt0jHnUM9PeOnz27b/9Yo1oxa5l8YdvIEMIuw1QQ+e7uCxenBvoGbrzplleef/GFF1/ee+gAhqI4NKCpPWOH4akvfv0bKhL84s/+1EZ7nd6uXF8aGOGxhRJjYlSPiYKStg3pDEZD0L1Un+yAMAMkDj84fqJurGiyG3XXDFpGMBqkIWxplF+rtsoWYkl3f7pMVjTdQ75CC6RXq+dWE4SMBxwwvHR3L3U07HkM/cSFC7t27mTcL+RzpkPBz6XWtYyUXb1FXNf4xLhmJG4zd9x7eCzpwvadI4LxZhdmI+v1ymqlViXwmh8usJGIKFEIBpLCgBF1WBmwHdJ6rKFUBBnhu608M0u8dzo25YGQGBUbI0uRHbvKITqcOTMUmeJsaus1QK/35BJCOC82e9JSmUGkACj0D5QUfahxWljmu4Wv4k4QjAV0JfLTmwWKitifXlyib/2t3/nTZ16a6N91ePfO/T3Zvloz5GkeqPaDna3OBl6wWlmgVrIiYD2Z/uT0x/hIF+XHaOCNH02hIv3tR3jF1iNbJ7FNfyCVijsT1G9jp+91fxJ3s+vsqVe3DRWXqzMnX3n23jtu3D/S1wN1bDR5iigU2LqmimKDurFYym7n/94tcwfn/XBeRPvZ+jG0gBTOChNTsEKhDY3XoemtQt5UvFgfKGSUf21pw+IFVEd1cycYmKZor9YsebZFIuv6GnPCUD/759zF2WbVT/BpJ8ZYxpYIT9lsHcxnrz908IWz44L5OzMlvjKB9EnfIR6HGTz8kSmX6EcippxOO3zSJPedUxxyYWZu+jxpxMBBuw+cnCnhDqS3rnjcTz4dyIP01/Bsb29+bb05PTWb7269ODs9s3xxW2/PvXfd1NO51lypdvMgMkercjCsyr5LwXGJa6N4EXoTsfmh5CX7mnPcdUNhtWp9pVaXvNfeNo0SpCi+0dNB0xb1v0gQEb+TEG8YLFA1UsjjWoHABF/YEmHR11F40MYK7nJDERFJY6K+oq1FI2zzhsSghmWIR9bdHvRI8kmBH0QlWaD4yTOhRIiJTCAj7v9uoOVaDb1Cu5F0a5qBs2VoZBujHn1hvtD3v/6v/xuc8ZMf/KjAS+n+jx0/+eX7vwrJ33rr7S+++DIEzQSIEZc3AH31NuMCN4l/Yys5MVjo9VWOHdyTvBiiN2R3emNMWiD86Jsj+pywFy6mvI7P+DXWLRau49ojRx599FFq5Ux3pry4AEUWtm2TnGCNl6SDuMFbrr1t5649PB1ZNUsqpheKXAJkOsN+t+zct//IzFMvHtto+cw7335X78gOOqLd+w4knPU61oAnPZ0ZnZClgqcwIMZJxSD+Sk90LpG1eDd3JhoiijluAXoXshcwNQ53BVUNXtjagTn9Ru6JcSH0UYcYCSAI9sqJvnaE4sK6codHEvU/8L50S/QdwiXMHczLZb+7OVcu23szC3P1tZVbr7tqaHSbjHUIA4hQBQDjxdd4YHgAkZi4cAaBpeGt1mwAiXc6yrV5YqDksxESHsJihxUKM7x+A+LUYcuta5uRcQTnYcH4iq0rKgfEg/qx6gZhW+ESuoZCRCexJKLHghQSBhIaGvn0AqANDNfiUWkANhMP8w1WduSGrxsF6+qK+jQ1kwuuO3PrEEdP5l/89u8+e2q8f8fhoR37C73D9SZFhOJKPegZ318kQJ6WZqM5Py88u2G6bTtg/QawHID0Zo8U4N7s3W/6vq1mzahdvPX1TTfwnRs969BOQHdyxJAD1cfxnfuSM3f6NyUA1tgp9mXq4vhQX6G5OHP8xSf3bStdf2B3ZpP3wjJI7WITCvcikfCrg/2qROzMFUY2OGPQFtGuRHQRJgjcBiaiFYgjVP+uJGdEwI6kSrWaQdjTuObgZ9S63KBakWeBpb8DAGysNaIMqp7D2LmeQuvgynpreXOuWV+WFLozw8tIjhBNrcnPc83h/S8dPzl99vyuoyVsPlKCfPCZx/oHZqF+5Y2hBoZSuMJ8mzUF+6ZmhMQuLNUWudVAlxIcczmALpaWBB5GHDLTr32a4pQU01Elohj08DnqSE5tq7X1Znm4t1vtrQ//nXcf3TPSvlLtEipBel0zEt7efBTCKxXeDwjH5lCWYX9iggIOxWWFlUu6Rxxu+MDET2FctJc2EdowNDo1BcwkVjP0bLGqEkY4jM+CyfIQuCQRHSmTguqZUETSofcyaJtj+MT/dnEQgICFWAxYPtB/LECyNgm8WCnCk32IIoMKN/s5WkwhJ4GWeKalJUslG6qbwN2Qm53K7xSUcdr+q098+uWXXvvpn/n5XXvGzp2f5Ej4hS/9zXMvnXrXO+9WBQQ7L+5KbTLuSJjXiJRSa48yQYVhegyaw7Vg/+Eaug2eV1QtKHRnNsuTMSInEqSfQnh0AJHnHJwYzzziSoKkQkUWsA1tCfWaOHuGE/vRa68TwUupXZO6LxeiYqD+jc2+gcGF8iJ92U033/zQww888a1HfuIn3if2ibqZpUttuLve8V5xa19/+CERRPv37Sz1t6rPC1A031B9OAgphr/b+Ol69J4riwAw6wtRwqHmrr1b5u+Vju5cEGpekzqXTqjNHt2MWQarLpIlQmZGFQQRA5N1RjdXZFKFL0OEt2mkxoJ/G40mKIjAGfb+fJ67b7vkZwMj51+e3LFjVNa4znDK3rj2huuffvaZYssmCjewfWfL7MVlSqfk7fB2fyFfrS5iJS5OXdg/dnDv2Nj5s2fDfznBHVA2EZjFOHC39JtJHiU0D18eqQBC7QdvGyVI4QlaC4NBcBId7AjyXbkcWQ5xXIT2lWZ4jCgsSNcjhttwNmXxjEilADAh0OEyYktEReScJBL5LI0QbgLlpmzAni1ZaEatTu4m2Uxp9H/7zd966dxccWT/wWtuaW60V+rERqRFLpbwU9EmaZhDYbkyU6ssWCJ7gIAb+xBcW683fSQrFLvo39+x9YpL28zmDM+2FH2+tddqyrPJ4xqLI30+Pd/66jbnW++NKUnu9NnTtVkvV9gPX3n2iVL35gfuvTvDC261iVFCyPFqqy3LGMreUu/wtsHewZI8+MEYBD5hlYFFQqdnEaAdaESD4dJ2yfBPPRVCHoWmgP8QAmOL8hcgMeNmWJUAOb7YEtk+60oodeaKC7h1smB7+9DoCMb34tkJZZvIu0xc7H+2O1/KIaUeBnvPXDg7dvio7JZL60JaYFHGVYq+UMTzkUB6wO+p42cuzExW6ypNLds++V4gSaWY+ChvLCFTnE9gNATA5HBhgiJMpjtBDhKihXJlbveu7UsN5EcdPhmjKx+445oP3H37RnVG1v3BfI/op2az2jc4FKAYqZgjFz4NCWtwuOenqJqLhMNGoLON6hQbELxd5l2UPqYLNyT2FTr3Xio11/XHp0mF7m05zqTQfHCK8edIuOJYbHeELQCKIGfENghcb4/FdGOAxCaFai5d70BOliskkuQsWgLr8WCsWkIkEiqRQtGVn4R6LLmZkexBrFaqMZPz5dmnX/jkJz/13vd/8Pbb7jp9Zpx645FHn3j00SeuvfrIkSNX3f/FL9EzkwDYTphbmnWV6ZMsDhEuHgCJGGMZEQmj07hmrQi0Kf17jDKZPfMQAwnQgnlMUoCZZ7cIgBN3mi+f8mu3XXPkyJf+5m9mL0729g9QHC8uLBSKJWQVHJAN0R94htq5r3/g4MGDDz/wtZdeeBY25BYmN0WhNCwi6dBVN8t28cATT548c37g746QSmkZ2tkplxSoDJVZyMfw8oZy8NAjvY5cIkmenAST1mTnaa52ZaP8YShpg7OHGuHPYK2j98ha7JwgtgEiPi05hVgw0hl0lRyYGFRbSZTkjXhQgtHgpVEMHgUdc7WlmcXaYINnJC4qPzm9IGpisL+ff2Qn20VvQTlHOSAAPrRtZlE+E42NYh9anF8cKI3Mzy5KKYQ8qT62uFARgWJKzQuunTMydTzlnor0YIp1a5XcGmsQUhTAdt+SagG805hE6DelsxGKGPnGyd3q84QVAs8inQMPKavMLkEDCN0bMuRgCenKCLUuSeoZmn8QvLxUXZhfXV5v78Gd5dXgyfb3Vza6VroLv/V7f/bcmamu0q59192yWA+pROfUN4b5GWC8lOqYg2ujPr84P0MjgQcxrURM1OhKIH6r54DMIz7Tk7f6+Bven7a21WBMSPKK5N83fOKNL2oh4OcyAXCTpUlb85lucBedBi5xc7BxccSXEIziBNGk2xnuyz3z+AMM7R9+z3uG8t2NmXmJ/ag+cNXhh93SlevtGdoxmOnL1iGZLujJwxqG8eEOrVlP4nxoI/zgf7/F+wBrbFybUsfCaIl7SCiHf8O0LyzYSeSYCJvkJhOPTdUq8FwCFZSJR+DggCCeygxfgUboqTdZNL0sSi1de+TA8dNfrSxOdQ0Mhxs7iMUFx3iwEJV6uXHhwgTe//i5EyQVEemxddr5GDfFQLZTvnOoX5ZuAcsHjywvLM7KYINcIQB2QcKAh5VFGWzIhZNzeW62Zane10UXv/yf/8av5VpI1EubS/U89X+2W5SoSCgZazndh6s2Vj2cYCOPQsy2aSbwY8mhf44YSyFahbpJZ9EzLBAGikaXbM/J0LZp78I3x3OxWWImw5K9JvAegxl5mGOOYw1jUd2AfJjF0P+btYgICvSS3hErEcjdksSpfiQ/BX3251rIBwmQB5AkKxeXL/1FI9FScvCOdQtdmexnlk0PFfy6MD71W7/121cdve6+d77nwoWLfuI5+alPfra32P/Od9738ssvYy4dcLpMQAodowSRTsDz+mSHEkDoMDDXS02WmOgsXRnlDVE+qH7GFKFKgS5iMnQs+H1fgborzl0MmS+JgEFAfe1YqlX37NiugMm5M6dvGhqq8SkMvXkzfKSiAG8X1bd+oMepcfi2W2567OGHRgeHFXznJ5rPF9szeX5Xh6+9SZnQE689/81HHn/nO99RymYqC7NDw4PeDzJ0YmhkZy7fj9hTwNCJSIasfT2ztGBM4N1AaYAiUrhVbBIDgeQBPUycfEYeK1gqobyWxh2GZqUjM5Tvy6sKI8V4ojB3DjGXfzDgIJqJKckUpP/f6CkOFhvNjkyxrz23sDkzun3vYqV+w023H73uqsVG7dTpc9968rHhbSMm1xwV84W9e/eePH7ygQe+9bM/+7NmIC4WskmpGx4ehdCcMGCRH/VLLhFBmNl8pdxQuCcAh8sdwCZkbfAQqckI4R6jcWu4qIW/RIg6yXgtmFzE0G/nykokU4PzGVahepUybVNcAMccozP68lJDrHCuWOzczKAUkQVbsz0d8vEtcp7I5P6P3/v9swvLA3uO5gZHGy25xmpVdRv4HxslwWhwTEIsJENsWS0vzvFYJXnoDMY1WYuUAMS8/WhHdObf22EGYhISJB7T/lYOT3nWE1vbw3gdsWUAyeXju5pMH/Gz61oAdJwPX37uueXq3E+97559O4YWps4PMKBrPHR2cHwk0uwdHMgODGx0t0jLrH44fB36tThMDmimZSSZBu+pSTjJP8EJJ1coImx25AQeotyzR/AYmqfqDKkyXKKZPeXI4e8RoiouRW0lbMfaahQ2GN2+jTfo9Pg4mmRYuPvEn2tpz46RYr57/OyJI8q+Kgarchw/mya7wBx9D5vffG2umC20tnDQ5MK3psI4SwWQCfALtTmsgIDJYwFE1z3FB5RSVAfsX6OAlaKr0tUxMHqW0oZFonPzP/3lX9pezJUnL44WcnP1ubVaPZOUnqcNkX+Pw33UfhcXYLcGWMbsmCpIAfqO4Ca+Fqk0EFvbRGyoN6U4lw20tlHDBUNNiC/0F2E4lpNSOnHiNL9IRdAVuZ6tG80AimsM9lUIXZEaKJB8aImCJluGWB40OJY6zuPw72WkHqvvvuRX2zW9KT6/z2EtQJo8UNh/ChwG1+5s/s/+9P+Yn1v8T/7h/52qpxKOnqUvffpzmNGPfPADsmLIDH/kkDI+AUgcXgDLUqPJJ9IyeHUIKJEAY5nA54STqOm2+j6JSuQkiTQgzJBLkiMdwda5bjoHV5BYPEJZEj6uiV0cdB45eGBmFiRMZ4rFwKxB2P0W5DGkPCudGNM9rMjiyZdffPXlF6+/+TYcstrru/ftHZ+YKDcat77tHrFfrx5/7c//4hM7hkvLjfLY3j1qHGIwvfvihcnJyUV0vF5rAl+wcsk829NTUSd4SeXh3sjrbbgwt/UMcxmAoEULXSXql9pFkwQXMUw9dCNOCQ5mbkYAgGg4vapIdnkWgjVvaxeRe+bkOfdnLs7mcn2JR0D70mrLS6+eEGx16x23dRUmpuem5+tVHph7xw6ywHBrC2NvWW7nzPlT8//yf/89oMYxn/C7Z8+u/Qf2LSxG0IP8GcUSoFD9dWG9toRI6ACHsshcBafGcoSfidYsFe4kiRXAeUS0OZZJ3R5+Cra8g7MpOA3Hr7a2fC5rcPCGdYfp+IwSah1hNwitJ/dm2VVznWIKuja5iFAuKGIpjcW//cM/mJhfyg7u7du1vy3XPz0zP9Q7yDYt4F7Ga/sDstIjmWJXKRIr8zSURA3TSEQjWPhEo74PSL/x5ehWuh/e+Pe/havpK3wmeDga/HHemLZmktMdstWmZmPLJ0fafvI1yIbt7gqbKQX3wtSFi+Mn3/32W6+/6lB15lyX6kuiu+uwZYdgFur44uBwfnBAzdmllpUNsUWrtQgaC8QCp/s/kiDjzkMcCNRviUnqNiZmwH/tZRZXQVNJdDvkCjF2K9MZOcWiEgiloDh81i/0BLZiB8Yr0M1Tj+KIcbzZQr5tqG9zpVGZnU57jo2NqIX2ziOH9z/92sny/GRZ8pL5uYqKFw3e3qxFXQPFzFUHb2Q5eOa5p8sNVbQFNq5yycuXBnmI1dgVhKpxNl1JA8Fst1VGzpQAwHRQROojFLPa3j4zPZdr29zW33f3NUd+6ed+5vhTDw/3bHaurpWIvUgdyLZN8IA0+Ar/qQhpehPOPSY5xKUgKnjzyCi2IfuesmNtWEhgzLm8JZuzccJMx5/VPxRAbCNRbyeWCd5n040IPC6eHVSpljNU/ZoNLUQoiUF48hazkxy6A37RXROKHDhicQLWUvwfHKQDbvXp5tiunoifEzqR7HG/xE1XHBh5+A1lSsSmDrv1q/ff/8gjj3z0J3+a6+Crx0709Q8/9e1nH37oW9dedWTf3v1+4lcCwXJVByyQsYgHzibU4/gADaN2xsFzMBhE5pJsj/QVIoRwkMtRJApVC0nBnVdA7+uJQXQ7gicQAP4j5iQIbaG7tVye6S9ld20fPHbq+FXX3xwqoIF++n8sLeyrsoqydnD93t27Lpw7vbS5ctdddz3y6JOnT54aO3RELtVzp0+P7twxPzsNx1173Q30Pv/q3/yuQg47Rob0zGsM3pDINdaJ4Em9BSMbKkqgu8VSX0qUjJ/rfeQIjCAwwGwdLG5Magwp8TXUWnIe6xAnzG4RJdbajJrvQQCoDBXBMBNuSERjGTFXJTcmGsPgZycnmUqADGZ4oL8fUuV0NbJ7f6W5KgTl4M59Hao1np2anFzYPzbWN1ycvjA9vG3XL/y9X/3X/+rfUIkVS0PPPvPCo996gh6Hhm5wqHTHHbcNivPJZ5YarSIKu3k2rC6XCniOMK/hPUDgWnNlOgslAAEAAElEQVS9Mr8AfFVpk91cflpJIDKiPllOSjlmkUhRGwJpCzmR94Xw+lwxj9BzL1pdarKXEKFClwUmO9pK+V6KyyQAob0t294zUMQMrLf2NFvz/+Zf//7p+eX+3Vd19Y02giGrmVI6n6itE4ltu6AahQOZsgnyzaoXRFJlu40THQTELoH6ek/M+P9fHjbsj9kv65Ie2klaSzz8IiWUb2AG4NlsNjc8xOYedyVby5Ynlq11ri8de+nRd996y21XH16tLqo8V+C3zqi5IUAph2NQTXBgqJ+DY2W1vrS5jFPt2Fhh5EnelajyYg/GEeAbIr32oSQvdROA3gSl1pciKtS3WL/gI2wCPBBWgMk0mIUER4YtjEBMcQJMcEjh9RLy25ok5jt373itOmdA9i/KEoEIjaUbD40dP/bqy48+qFo7v+p9+e7c0Igck30DfdneAiXL7OLCt9dkF1grFfs3amUwOXVhUkqcaqWup/qsQxhz8ecoFJfuvj5CgELY8iAt1xo1WBvhop/o6dzoWF7eNTD63/zj/2y5PK9+3mq9sbBSGRnq7cx0qRwGTXdy96QZF9TbHmna8P6c7RIJAIZG2DqYPDnHr0QArMj8ljBhEdcorfA68grHAoWHXU1EgtQ3ZKLoXgQTYflJExA6O7p4eNpWcwCHRkAwT20Ab79tKPtukoM/C8LuSAEg7IiB+4FCLFICEwmiST4CQoJDChCKG2KneD4hFD7iYnog9FEaoSvTW1JtRR4QhK/9j//oY/39AzfddMv5iUlep2jDF+//srW74YYbdEZOSY7/BCkEb0nOsTa5ykMVrzqrcSGQAo71B/r2Tml9pftt0qnVI1EHnx2uLyiUCfRz0AFH4IuAFhAXsk8ccSnhraPLFJAGwyC5sriwuH1kR8s1B5579umJc6cOHL1eVWlpBcIDv621LuteRGtvzs1exCws11f7S/033Xrbl7/8ZVSOyYJrQktzsdQjdZred1919FotP/3tp5qtpaEdu2cunJuamvdm8CT9D8xr4mqNyMPVxW1xfXNmoWGlaHgam7zNOE0mBvZ0IKw1Vhz2iiD+1DZrEjQWU50uQCjVrayAg9Ac8raMZCAesaYRLI45iHxP3aO7dvGZFT8F+CPrK7hiG5BWs1z+t3/+VwgpbDg7O+tZ083GcuTgoX/8j/9xb+8gPmXvobF/8t/+Px955KHbbr7lqsNHnn/6mQe/8Y3J8Qk1dr/wqS/Z/FwyDx498hMf+dDSSjnTWZmam+jP5bnyNabn7TKmCknEswgA4Vd3+Su1rue5QXR01mvlza6N/ECRUmChXi2qFzMyYlG5KhF0kqgIAMClT4aMcB0Sjincu6eYnZ4619FdUkmt1rras3Pn2enVf/5v/nKykW8Z3N3Rt18Bo42KVAGLmc6iKBq4LFCF6klhueKIEnvt4tQU6xvpiX2HHSI0bNiFxNps+QJa3twBVZltk2byMYMeAtPOA+6A2+XDV6c+Yxu/0XHlzVf+rk/4X1sAr8eaAXz11eZh8NRUwjJCr9YtFBFBdBMsGBszOdKm4r2Jy4pHkqeiG3qb6JQzTCvsksEh2l9ylbd3h84tNMnhLEK10iLPfvvaQL7765//4ruuPnTbge3bejrYOy0rlRCsvd7RMttchPqHd5S6c9TmFS7A9IBU4JGQTy6HBDcE25gwmXapLoHXJBuh3RmidjJbsmQ1I5QFqgpTJakuxhVaC7uV60Rs4mR5YpcjGQZKp6pZs4pBjOQwuKaufGZk756pyemlMq95icK5E7OebvxfP/qTC/UQMbNiX4PFIlDiT9YVE1hpy1yULy60sl1Lcuuvdyjs0cYQRiDpzNtNylsAIsrDpXrQM44Jq6t1lgZOPkn4YlOoovz6PW3iohtjI73/7L/7L0byXS88/1JPy3LivJCt4Ca7JPXsbqwvc4PIF/LLJPuwHkutoSJAkilvs02gm01KVZItZjPeHDXqWHyBJyhY75Syl8MFVz6e1jn7qRvjtdK6TDTXyR4zEtghTCyUVxw96EvQU3AJ9ZkxIrbb2RTaJEjJY0OpmIBuRNxyoLPseDO6D4g0SHNMcdBcJAr8xAKZa7DkH0gnzI2hJguZIlYlEJP79cCF7ui6DA1IJu+/3J/+6Z8df+3kr/zyr3F9Z1tV//WTf/1ZKpFrrrv+0JFDf/wnH0t80MXl9HDxRMd0WRqwsHJQX2eyUlWaaoojqYWXl1Z37dlN3OQLni/0lyv11vZAa0vMmMHFdYrG5b+vi/YOy43f9ASXQhUjpo9rKWERVAi7EKFFfFgUqSG3wWCp+Lbbb33smZdGd+6lUsCwqzwEM4BFYmZAntlobc2XSlVyTU/Ptu2j586doZFDBqrl+ujI9lplkaqtsyu7e/eBhcry2bNnb7v97jtuva0BvTakAAl/fKsAHTsg30i+Ec6dkumKwqP2KPBJpo4EmCkS91PsbAGzIQsHAYztG/Qg/deExxVTD8M5DzSXPOKiQkXOA3CTTKn6L5cDDYiavZqj93APVCVYo7IYkRRA2zk9mnj382fPvfLKK//d//BP//APf79WX5B1+UB/6czE2Y/95V9cf/U1N1577fvf977nn3rmME3Q/gPPvfD8Z7/8xeefe+W6m++8+rr958afw1+x3HDwpKcDZ+XyHCBGso2dxYttgJZPCZl8TgKOrspaldBDSS/fhCoQ9nUjME4oZNTPoPeqiwfdWKUWQPVZtvEvpG8s3vT85EhhFHRcrC7/yae//OrEQnH4aLF/L1lmtbGaeJ6zHPLcyCS4z3ZV954FnhCwWq5UTE5As7kLrGT+kpPvMDF+erOHpqI1GCjlVt6oETcEyvsRDtvte470dVdeThv/3uvfe48rbksP54EVElYffgnEET+74KUKOnapwdCb4+S5Igrooa994ciebbdfd2Rbb7ZjbRn7z0qDFDEjRBjHxmq21JMtdK3LHoIuhC9vsJZBc7eOpPX0GxyxdRly8tUMBgKhfQi5IObzijuiV+n98UNyBPaPA9D7TH+NS76yVRZ7+5ogSfw4xLAmQIG3TxSl6Fb/MuBQxogVnDcSGPlSYkogveCxAnEEojczMQnR+Ov64WvYBGgjWCnX56ZppVmVeUzgpIUZt6w2dve3/o//zX++czD78jOP7h4dmL9wLpyPIcvOtnok8F+RC6t3aIC8u9oq+3rLyPYxwbHPPPlKvbkGT9SqTVa0mZl5lbmUIrA30XWsPwzA6xAtJO4k8dGusJpRDkVtVNnT7GiukzwYuV24lzqap7RkCfydGFf71VBUYKB1M0moVTKyWqUiYbw29WT32C7YYPLilJLwWzMcNMDMxmI4M8PpZzLbMd/AxLqF8BDmYmYg39OFRG+jYiuS2dFX6jtx7NSnPvnpw4euvuWW26cuTCnY8sRTT584caJ/YOj2229/5tlnWRNL20p8bZMdJMOjFbA2sTrmNuWojBGTSkQITgglpF0IT8igdZYMHxBbMKFA0emAFrAHsIIiUsDEygYrITxRYuMl1TuZVDA63P6oELJMlxzIb7/1lqdfeOXC+PntBw7XG41IMpAgyhhriKghMtDI8Z4E93Df888/d2Z84qojR8kgEudksnkme8IXb6Lb77hzsVx59sWX7rpZpMFV4o0p0NkYzBDs73GfFgzN0jgtt/pT4mVsG1lC6bpNhGEbs6xnInL1HG/iiAuOZWEi4aQDMtAGWD9R7kFhwdm54lNyElQOcaIacsDFyijmCoXrb7yBsVVlO4c7vcgrvCvyyno+iW8kH7z00ksf+9jHnnr627fdceurrx0XwHz32+55+YUXH3r4YYUd77n9zt5s4bFvPSooQxWXD37wgw8/+fgf/8Hvf+in33/r7Ueri1PChjGWyS5S4UdunjZ1KwQEiBnGkEtsYioVHrU48g6mLhBd2Uxvf19CwYQ+1tWoEoVH/c9SFhY41gORE90dLCWFlqKCYIPixjp72rqzX/7cN77xjcczA4dL/YP5vmJNvqXlyBXMUUiFr7YucxJrb65onUyPqUPkUoAAw1Y1pa8gOFmNgJ83f2jZbDvMpFeYSSfp437yliub+q6vV/70Js/TFnx6y4/TWvps9BCjHXLF5YMzmKuRe6uz3qwjuKJxZdg9c/xYrqP9bbfePDzY28FpNwmdo6pID/imJ9NDGKftFJVqZ9nMMSfsp9/n2Op88raYqMQsGfLuVt/89H2efuPLKcKySR16wpfBRlmYKVsUtmk8FIlF1b/QrasTFgpyuCHkgHCZpAm8HMKdrqD1DA44MEhYtxEE/2jZksJPcDRRNcn5wgmnan/ZZYuz4we3df2nv/6Lt9909cr8XL06u7BBNcSouBJcESJJs2NTZksdnQWei53ZUmd3359//Gsf//hfXZye27lrn1RUlDzFQj+uh3rfnhgY3qlxaic9hIcWq4uYFvsU8gopjjiNh08wg25LYW7rLDVET5e5x0CirXigYD0x8GGphu7G9u4+dOjgve++R/Wr+cVZbkTDQ4XXXj2BljDpBf30XwK3Pq9YgiCHXpWsV0C115lBkx1mZfPzXaDO2mHW2toh28985jML8/P/l1/+DfmVTaK8yN/61rcuXpy6713vkXPhc5//olfz4dGygB5jIdPFTgx0HWoMWv+QelFyEsH6en9/H3hzYr2SwGS0Jjp86QjqjQHQV8xkwrUnKwbxxmzw+Vviwd9QE1eeEUscypAyZVMuR/FQKAxcf901T714fMeBg5wO0Q09iHa1dYmKtHL1KRZ7p2ZmS30Dw9u2TUxe3LdvPxfM6YUFAIeDEvOLaKsQesvtd3ztK1+uLc69+OKLP/WRjx47ebagiGRbx/jkJBhFAzSOU06GjKdAwWjoSJhNixUUFfUyPgSWWJ7MPfwU2WrozwileTmhgssKWeY7xyVZwYX+/lKC+SMywhE0QBYV7jOSPeEm4h2xunhWvwJsGjdFV7DGCC2SsGfv7ve9732f/OQn3/6Ou9mEdVV/brvjLoThTz/2Z5/760//1//4nyje+0//6T9957vuu+Put119+IgmP//pz7e0Lh8+uFcyv0Z5HkaMCvRcFyQX7Am3ZLE2jGD0ORxK25abchliB8JIhf9cbcturBVKJTl8Kl2d5BL9zOQKpewg8KoTsMVqdncVBpGeggTR/SO7GqutLz777S/9zaOd2cGxQ1ettYXrsZUn6xhalC3RJ15IsZPDkc5IsbSOhADHPen6Qjp+DRYmCRWJ+XorRwp5WkuBMn3U1wCcKw5fXbziwps63Wpk69n0dXqe4sqtGzQXr/iBrWpkq524P/hn7BMxwHaDHMIkYCsHwAWXFY5YRjV17lxlZuLD77tvz+hQQzU2mmvTK5mMcPnubloAWUy2D20L9X3ggaCIuhes4/c/0m5vdSZOkvlJl8nXuJIcVw7w+7f33b9Qq2bzOQX+4I3lujo/sEFq/WNQSEYbOD1QFOYJUwlScFWg3KUgRQmJTRoN/BKIzqY0RWEkMUVRTtasKXdkBoq5LCl/raNj13D/f/IbH/31X/zo5MnTm9XK8EB+tbqwY3CIpgX5WZJKOqNK8SDthsoZnZlirdn25x/7xCc/8zfW4Z3v/pmh4dG2DnrzAUFC1B04aBAFL9AtCnyQ6EgXCO8Uu5YZCrRkpkuIJNEtciezrgN3qxNlyUIzxNa3uSqhxqLlUC4brpuZmTpz6uRzz3762Rde+OhHP3T3PW87c/5EbrMbIoniXx09W7Odnvg0WVreuh5zcWlp7J/AtMlHEI7kCChy0cT6yqH2lZde/fxnv3DrLbcfPnz4+edfGt226/77vzZ1cUayh2uvvRY+qVYqY/sP2KQ6aU6/45cWvsWh+ob38YKoF4yvGwx7sGB4h6YPmIXoXWwu85CorqIjABsE25R+jalxTrkeTEkEbFBsyiPpsrhFZIkLUbil1yvlG66+5tTZyanx8f6du6IvjC9JdAUFjFyrBiY+lqDb3pmpLa2qXian3WsnTh86uD+0VF3dOre0Kpi2dXpufnh0+73vfvcXP/2ZrkzPv/3d3//gT37g1LmJvTt2sRuT1Gip7DGZfRh9o/dwVQKFy+I/qGq4KYuIsuLEviANsLUxmdTQtYW0c/ncXKT4K0Ah7P+hz3bWqNeQSBjOFUcgXzaq0CPZ7tzrkDSkhbSbALIMLNnIhYkqyLUgA4tJuvGmG775wNf+6q/+6n3vfz9tXaO5fO0NN77zXe/51J//pUpov/cHf3jf29/xD/7BP/jc5z43tzj/9375lwqF/Ge+OP5vfvP3/uE//I07br6hu7tEWFpSs6dZ7yhkBneOkAnRVKZCljZYgv06dkUU4eKZo7zDMqkrK9lW22ZtqS76h2eUTCnFwX76nxZqtBaxP9lliud6RTns2erqzMLKx//6G9Vm577D13X1lORalXox6j5y9QkuIMKCrYV5sNKmRZ0AGjYeyuZnC3qcE6X92VD0U7HVf6QjbTDWIIFFbaT7xNet9q4837r4Vk80YsWhhnTd08e964c2Hjsk2bppCz59YxAkk9ko2qEajr4ihHzum82+Ql7OMmA6N376No70O4aWyvPZEK4DlkCksdpgQJFWIbgf1YBDHxLKClZ62bhDJg14e90QU0yRTgpcsfVjeiVdmrSraW9f9/D3+RI4x5G0FfzoZqg3s91Zdq9qoSZBFVQaLvEJ66zTIXuHlTBQefQx1iiCvCwioPTeZHICoST4CHEKM4aeJ6TDm2JHSq61sDCrDqXcAMLMh4r5//I/+49+5afvrs+f31yaX2lwBi3vHO5XgJ3nA4KEYiuz3hYVFvO873YODX/roSf/9C++0JHru+++d992+1085uWRZvU+e/4CCyrbAJjkE2O14yxdYhs/XCIwK+Zek1wbAa5ikJHrFL6Kq4HemkF1hAM0F3OhZm69WJmHKUzIrTffLVLvy/d/4V/9y98q9Q3u3LNtdu5iId9XqZUz3XKIxSwls3npIxQfCXgk3wOtJ+ogn+GsEvgk+fTdv/EZk4kARCI2KqpvfO0bFHE3XHuD6OrhwZGJicnHHn0cD33vvffR9RMFqEayPbxImh7UQ80GX4Zb10hkSkZnabyWVWJAEWFDt8BOFC22gPvijZA9Xh3USjJG1QzpRyf0C4qDxeObmy1eMDTBu4SYDlajMegAW039TVdCss3neviinjl1Yi0SEfIyD0kDzkrULYgUeG+dXVikYaxUa8TAXXv2njlzBnKUL4Hhm5KBF7Dg4UJv3+z8vCxy19544/jFmQvTcw88/K0Dh46+9Nqx0e07aU4sWjoAnQP0cHb4xfBKoryXAJP2IxRqmCtryZlI5rsljDm1j2l13a/JU0Eq7DcP+mrSTUfM3sYGeVxTmDJaIFJCNJiIkKYyEZ3CnkaEcF3GukSA7QjMSCW2uTkoij9iHdf3ju17/oUXpInuyecojgjKN992e6Gv38q8euy1hx/9Fieia665ZuLc+d//nd9VFu1nfupn+ovDH//Lz9x//wNd2WJ7d16get/ISK6vt6e/kBsqlkb6+7cNFof7M7097UIVxP0ySdP3e0M+awr0rUmCLS8aJEa9xr/VrHMZlUS81Jsp8euvl5drbAS1pdY//YvPv3xsqn/4UKYwonQNKUoMjvhS65UINloLLAyYArkpK7HU4K4HeshDhu9IJz8VlZL5SS+/tc/kFcFdpjPva3pc2YoXXfn1zZ978Mpn068+vctb0q9brV1559bFrZPL/bq0vd0MwjBsYdyC2MLSCpeEBcCduIhN9V6a1VeefXL3tv67bri2Y7XRLUtakh5ZCH7CeCihFBbO7TtHu/i+mOHVSEaGMNiS5n3r1d97knZm63ra8+jSFSqgrV/dvHX+Zk5iKEl0CruRRO8cDtA4ntWdmQjZdeAGMEWx4okay1SiEEyMcs9rP1FrJ9J/vBZKStYODYgsJqmFIOYHIElNuLnBqXTm6n3b/+v//B/9wk+/f60625yf2WzWVCzolrkk01EuLwDs2nK9iw4+X+DuJnJoZPteyqBnXzh24KrrPvjRn9l/6OrpuercYh2P+PUHH370iac+8anPfOlvvvbtZ549c35yvlIlDgBiofBJwHAXnbFwhYhYIIEFh9gK/9i/yg4S5eVHq3KOliE/0u4qGdYtXn5xQcUECuW1Srk5MT7zjnverer9/+u//59ov/v7RLPOSb+H6iTjTZH4pU9ToP0rlwDGciU9wvwLti9/TX7ya8x+Nps/c/LsX/7lX9560y379o3NzS3Qcj/80CMc8/aPHR7bd+C5556T8mFkaBhm00DyIptYY7Fnod3wyutog8EMxOEGmj09Sb/acWmvLvUEwopLdnqYBHyGNiiVUi5jRdAVHmM446QRFunwhPE8Uc4ORjrEhe3dtZ3X1dz0lKT4KCq1EYoRincSov2R1KSFYHQFNhkYivIvZ8+fi4qUy6vKCdiZwCsYovX1mbmFW++4U4aO0uDwy8dOfvvp5/fsO3Ds5CmOaAmfHnrSOEBYsOUYFcmQAaoveGRYHu8blhzp9EJCYwcFuhHeh4MJGcf44iQhgVpwDuGlf0JIQrkvkISrqEwmAmFh+kxGtxP64tX2RHAKddlNqmV5rJiPXFH97uzZ0zgU5+9617tOnjwpPRNzzfxC+fz4hbGDh97z/p+YnV8wj3/6px9Tt/PO225/x9vvaVTKn/jYx4ipv/gLvyLU96GHn/j2Uy8w0GeVWBse7i4VWrMyURR7tw2URgdzA/mObBd51Z/V1UPjGujrQ32xLbpkC4YRLkIf6dPkJGri0ul/ZIJf3lgmFiBck7OV+7/xZL5vd653x9p6jxgvDjApVkpCKJIEL1JGpT45LdSjMU7LnQK0T0fiCwP/s5vJrRKcUnr9zX96BDBZa+vuqbSFFC6/qxE/pb9+1/W3+jVtJyUA6bNbr/sB7ac/pXemLaTP4mxRTDTA19gtIRgG1ZRAXiRjZfbCUnn29muvLtDcLdVLMKkJTBwHUzbK3BVLBVIj8weIAss6ZjYCuSY6tytHFxz05Qn2ivRwQ9q3tFeecuKnKx/84ef4PH9XHHqSogw8L2ZIP706BY8ExVzuh1GjVtJziTBIwqkCo6VdijlJzHSRMIGHKUXCpbdg3mr1Sr2+0N6yrIbxnm2ZX/+lj/zsR9652ZydnzjHt3SjWS90RwZcexkDxumGMI7P6uYWkcmui/vsLT38+FPHz55HgXoHSsM7RvN9hfpy/aXXXn7xtZfLtYVMTrKg1dmF6ROnX3v+xWdfePm5U2ePXZwZTyp0RJ0O3sxKSdK4rm8qgVdRjFKu0qXl2UZ9ul6bbtRnGvW5uvSp09OEsVKht6crMzs9/9orJ86eHq9Xm+XF+l133nPy5NSnPvXXiItJkoohmLzLW2BrUS5Narp4l1gOP2Ke8eu8u2PVL/2FZBJaihShiez85te+MXOx5eYbb1bwnDfOY4898fLLrx44dOTw4aPnzo2/9tpx4cGMEFj8KBdObJfAI8nUEhzEJVY2Mm1AvwlebWfIDIQZDiyh4wJpupJeCWwYBw0e+k86Sf/oxyS5k2FKQqG4QgER/DdLJIAJt5COrpAFOjoY3CEczLbA0eH+voWZaRhDb7AIPmHSJDNN7HNe/KgsB1AEAOeuztf4+DnelhjMifFzI5FMdEGRmeGRQYDCMvwzP/ezp8+e8YrHnnwChdi1e4+0TWw4/rQWc5k4+SR4SDStRCaUqzC/KQkpNV2AdJDf++nXoASkp0Qm4NiItDgw9ZpK29GUV5gbW4IGnKhrQtMN7GLaZjrFUtp6RGsQpSu2xOjoDgWa7QrFEvyJVLjnnfcePHoVb8q73va2hx95VM3evt7CNUePcFZ76oknRwZGfu3XfoMzwl/8xV8tVBp9I9vnqlX4mm6nuzffjsaonkbtxve+Y0MKUksQnVGRIYlZY6MBDVlRzRvygoVIpJ86o5O6KqAMDaBxlrziqedf3hRfUhphSZPilF7OHjY6qgmOf8brEVZwIMK8Apho//3B1WlTxpgOPJ18ThPxCC3f6/HIJej/gf/omHV0OHnDG7cW8Q1/fZMXv6vx7/r6VhtJu2Re8P6X+IZoIvWowY9sLtXKstFPnT/9jjtu2j3St96orlQWLDElSrFXbEwOj4ZPKfTmfcX7862AuvHF5iHmPMldEy2/uUN/LnXp8okB/mhjTF+oGUooPFG+mC8NcMAPT+JgD5PF0sPofQgpYfr359wWDzLoCKVQ/Otm7pRyVkUZrpQAuMjJyIPrS/3FbLO5snN74X/8b//xL/3cT641JtfrM73dXdPnJrxbNdPF+QUxpZyVZxSqlHmcCZAxN9sjE9HF+fInP/PZcxcu3HTrLQxmeiu1zNNPP03XSnDvti+SyQy1vJSda02udNNTFy5Mng1XV1mJItd6o1Weow0ZbmtrK9WF2YnFhclaWWbDxc3NZmfHeranrZDv5lkNIYrIpUGA9ZrNKHwyMzvPBnv+/MQ977jt1KkzM8re57Kwacoexch/wJFQglilhPMMNd/rjoRMBkJqhx6feOLbN9ywa3BwWOIHzuePPvY4YgP779ix45lnnrFbVVmA5+Eruw9EBVpfV2IkLHaB/No2gyonjun6ptGwMyWCL1TmegohgG2rC4kTPbhLsH/CHofQFvREtjusS7tZUMkqtGbAHPaRH7pWZTgPewumUeJqjkLvesc989MXWVSojlSjAgyQMbzp0BKfThhK6lDVH6PPK0uHDh449uqrWIddO3a89uoruWw3l/fwtI9sl00r+qEPfYiuffzi+KlTJxilTK+L+HGoOVhUUYGys/JXT7L6+dV4bCSDdAN64Dy9mI4zHbZz05Qq+r2Kus0Vg0AIkQFULeYIxBsmo0Ii/HrQkSK+GG6iC0t3rM4EPUtqXHhWU25zMzp39sy58fEJGWbx5At0ZYXC2995L0t0aWhA6AARgRC3e9euq686cuK1V597+plCNvf3f/GXpIX4F//6X4sr23306lW5KlraSiPbyktL1eXm0PZtQztl589DONaVfIPvvyhRyOREeXFefZqh/r4uoZ/hglLBn4r1Z7FRoQaRGOgv6ZWAsWqjWW0u9w/tUGV2bbNdaC8KiHL6NRk45aGyMPKQ4EZbgRrnUdeNK/mEmRRnDu8IMf2pO/qV8m8KUuZca+bHpwcdrmwdLjpMowXSJjKG4loRJz79tHWnFtLjyotbv/7gEw+6wbqkJ1q2aoh0euLtaVf1Daj84Pbd7J6YnOTEzZ4iThKznGsHtPiJclUJ2o215smXn93Wl7/+8Jhi5DJwDhTEM4rw7WxUaxrRlLklT/b1lYASUKf3B7NmO5oiEpF8sYTmMGH8fca5GcNQhcIpdLRGEd1me4n3tpJSwYPGf/BAoqE3OrSz9Wc/A2kcFmaH/ExMx1PFYm4Kx4llMp9mlUENGuGXg70DJEKoLLaepAP0EoIn2WaFeVhESYSwYHo311fq+Z6OWqVx750H/vd/9t/+xHvuWF+ebV1dLPA2Jf2stee65CzFhElOEBSGq7hUu7xSI6ypvW1o544nn3nqtZOn7r3v3Tu271E4nlH0hRdeOn923CtsB0YLchBO0F7G/tCnmEKq4asPH4pszcoCtKzI9dWBT1tCGiZnLp5tVGcrCxeb1YWNVZFLi4tzF+u1efbsam1RjiPsTU++Bz7EHsIGLGE2u2WKKCp+521ttrkTE5LOq/k3PxYx1jE50nO/pksm8Mri+iXudFXTVhsQmTu4dXWzp6vn/BmpI8/v3TOW6clRkuP3cZ7DQ9t2795z/NXXFufm9+zaQdajqIBFlxp1CoBdO0YPjo3deN1177qX/fTdd9999y233IQfpgVHCw8cOAADg1istv4ki2ihpNmPnsBaDKs6Aw9AVlA84y4ljy90SbwzGyurNGmZnLjRNmGgcCKkYT/E+KyxCJ7IPCyRmorOWQqBlumLE7uEfkWWJvtcwqlIz4QoULKQFQyczQJv3ceFqLt9c3VpYebirtHhXHdHvTxP22haRULS3FO77N+/d7V5y/NPP/XKqy/3dLVfc9VRvPbO7aNT1Qr6j7owGOzdtZcWz5TGfIYSNg4ntoSmnDj8ZNNuEbx0PXyaDhspCdaI7WdrUa7zEoabbAP4gsXAU0ZqPcNAk4gLaYOJtjYmwYOxG70lljVBfOsbCkTLfY1c89maX1xgG2D5uPraax/f9a1yeXEM5Tt2TMaL0W2DI8P9p06fHT9zmtbn4MH9v/Yrv/ov/uU//+tPf/bv/txP9Q2Njtcq8+V61ChQxokblnCMmmq+kcib6EdXH5x+U5x/DIS7AsldN1aXy2gAydSG4MpqGF1yDmR7yC+86figWBwWaeEw6czodsxU4AGqjMRYIqdKwvtbZL8kiDLUFM7BjZlJeX/QHGSee9lq6IiijcuHRy6fvvG/6c3pGr3xHf8eruqV96avTpu/9PX7dPbKO92/NShTAVQAjAMeD1MUV4r15YvnTnS1rl531VVKw/R0yPMs+76oLgsQwauxYq2idolYVCu4LvxU4IG3emz1Sn9M4Nagtq6nDW719s23rzU0INoJnCRzALVrj5Iy3oMRhKjS1xl4osVuacoWYtkvrzXJADfKdqwAqRIt5FHNcC6oKX65riqR9CGrf+9n7/vln//Q4f3b1A6Q/xliXZ2vCEiVHh37jlJGCFdIIeJuMtXm0sDO3VNVysye868d+8rXH5BLZtfu/W2t3Uu11clxqVjKHa3CKdqX6pJCslHIVV6TVYU9XrmqsX27Dx0+CNklgj7HaXR2s15hbphWIjvSoWd7NjMCTWNokCLlaaNWn2/hDNKEMPlT8H/nSRnPQQKRna0hy1mPsLK2jgceenjf/r2IAT2esIA3PCzBFauwpW0LfVkw05chygwm57GDjr12nLSxa9dunJYEZY89fr8W9h3YTxM7MTER+LqjlbIkn81tGx0WxyABXKnUi8enpvZpgWxzfoS3La/dcvaMeCNjcR1mmJ6ZMVIYI0WStq3DeTAda1ISWIANaDasIyquKRsvlT3mZi2SrqaWap2EM7UQKcnkCINkfXcVgwLdF7PZg/v20mvLOcwVmnvqKsU0BVG96o8ji9aLOXHv3QpT0Ejz7hwd7F+cmZSEpJDtrFfm/DWq8yvNCgZLBWu+7IcOju3ZvWNm7sKrr74oz/7OndtRMziaakkiBxFKbMvcJXUjmerYD6k2xhXLlm6J9Kf0U28dbvMTtB6YHaRftms5gf0TjX9WbURQHlyEz0CP1i/+rBb+kuYE18VbTnyDiwlhTxN5BwswOrKNivTpJ5+mK6P353hGdt61Z9+NN92kbid8jmiIsNccw/E1Vx+eGD/z6ovPra82WRSkkHvuhZc++7kvMmAV+0bqIrAib0+HmBnk12YT+BaoBy5LhGqsKGWbhaJzIxzxTYv0QDK4c4kTJNOUmtH5EkulNIkjwwO5fEYZgrXNYDwJeTG+wP8JZtQsghdy3ibWBmU1cIdXgRXQ4zC9IAPcGBpOMCaca1aC/dObnW9NeMz1Gx1uiP2WkE+/J6+IPfDv+9Bbr/C69EVbHf6h770SeNxsso0d3g99CGiIyV2uVcJdcKgvc+NVY+2bS5AddBMGp+D7Loka3t+rxE+2J8Wn0Rl3JH9YpK2/79cf7cTbE7h1YjgOF/Vha1BpV9M7v187QDbozxVHuLYBK9JKyCDB1mghX8j19hUD0IJBDXGH9A8Peo4cgpdL01WFt00kDomtB9eIVRweHMafRSW+9ZVKeUZQ9EhvlhLhP/71n/2Pfvnn7rnzxqFSlrFXzPDGSgOK8E752ASW89YOqxI3PpboniyHduGlkqNi7j//5a+ePDt+1dU3CAhQ3Priherx1y7MTjfa2/LtrXlIuL0lp3KrIq2VBX4Lq7t3ju3fcyTHktZT6uTRjRK1dnGlK8+Upydm5qcXUYLxsxOzF+cFPcxPV/wtLtTnZivnxy8K8pqrzE/NTs0szPIkkQSUhAXp0YPPzS9yNjXKhx58mDqokO+FENP5T8Fpa/6TOQzTrj97yHKlf+nS2HTp1/gpQMDcx53PPPPcQP+Q9rP5IpPghalpJlRhQ+Pj46+++qpX0BzsGN1+6MCBG669biffmJ07du7cSRYJH3eoOvzdw/xLYrvtttve//73Dwz2T05ekJTTIiXKxkg2HHg/qadrZREVOoAQmNA4Sj7Sk4ofIuvkmKlX0VGGcieGGRBv43OIF1NtGHouz4hVB7ocbzq7l0lbJ86cFiyXL7WxpJKb6VXYiuXYXKWGq7fUhWUrgJfn4VLIEI+JAR1rVx8Zg1+QOIKnV8Bui1XIh5KpLAXm2L5dE+dOXJwcf/CbX3vXO+8D6nzzZ2XTzWT527Dbzy8sSBgl9ajZCUhMBHN9TSc6gDVhlBKQdhpbKP5Jvjt3P1tTpAjxk22NKuJwQUtijgss5aZkD4N47YeLPn1JYildJi7FPg+fYu4DpsRywmw0JNtHR199+TUqlP7+fnlPaw2p2DoOXnXVU489hok4tG/fiVdePHJorJDv2bN71+jps2TPb37jq7fefossH0vL9T/6oz8QR/bOe+40y5MzC+o0yQnEu9bi8UBC/6IOoDwzskQogbkpAQdtKylPMbVN4SFCNqSzwJarXxmVQNeEt7D3dh3Yt0uZg+bSYmdXYVVuk8iDFRs6nTSTkrj+4I3Y8pNQoK4uZDxIQKIoMxcAC4QFz5tqKiSWSdRoZk8j6dz6dKRf0/Pv/QRPbrBMfjLH2v/ee/7Wr3iLl6bHj9y4x3UYFMizJsNAbNvNDWULL06c7mpZ3b97WyHTVi3DGCGXyaQHlwnfS7iIDcRSIh2cNVCNvoTx+LsOeCFYiuTzu3669FUHnBmL2QMPzvXHkV7feiYd7NbX15/EU47AS9HYpUNrcIdG8QNAvFtemt7eMqvUQpQQCTYhnUAMYWKhVZc4VD8t7ctUCpFlkaI2yNlMfUr1CXJ4ptNIlCXZ2LO9/9d++T/+4PvfWSp01RdnN1dqBWLQ0hrmRvY1wIChAEfRl8hAVaD3V6G+K1+cXqj29I68enr8gQcfP3DgOjqe6ZkqjHni+NkLEzOqzii3A25VMDcQMryIJSiLnuTI4WuK+QwnnnyhB4amiqAqh+vFD1NDAXEerlBMSLOUIeHEZCQyMNE/Yx6hEXQNw5ss0Vrk7OMGThBS8rKje2UgW1hYqD7y8GM7du/iO53M/HeA3ywZR/L5BlCd6HyscbDOkI5uW7owArR1REKB8+d37twlHQXi+sCDD+/YsUsfJqcuHj9+jGRw7XVXX3fdNQODfX3FXnZyyhXcmPWi9KeLg8qDFq23KFZ/5vS5XLGwY9fOd7zjHXI/nTx5KsX7W8CDP/csfjf0h1LL0yuYx6i20OH/bE+XBZKaQM8iF/P6WldbiwKF3JiX2tb4oYccwbkc5sEJAqJV3uTu4Hu01JyZvIAqULSi5IQv3HK1XunvKwwODQ4N9A0PDjADDA71QVJ6fPP1R9Auqgk9m10ItC6GjZUfC1tWZ50Gql7nUcf1VQmBl19+cffuvWyqg8NDDOLPfu6F66+/kTOM9fMqC0k+EKEbZKqji4Y0mPfkL2GZTTFCGwBrr5gOVMevmGcb2Lkj3GYYpgXEyr4D1pPlC8jAnIGEcDqy+fXUTLm3CwII/VYgfT8F4wyA2EqatcqO0Z3fevypJx7/9gd/6iPTszMr/ANXmgODg/sPH3r+McHAQqC7jx17jYjDd/bOW2/86sMPnDk5v29sB+eQu+9++/MvvHj/Vx4oFfuuv+ZwT7bXHkMLN5brpMIIbimqqrHWGSm/zL8tthkpBAH+Uj2EbhojyYu65euX5SYS5irwJEiyp7dz987+vt7MzMy5kZ1XcW01mOBP1xVTAL4h4du09mMNAqNFDV0z9Wzoph0J6LRaWROVIgzz4C/mjVnlMgIC944UztLbvvfTDSnfFFCUkIrkoR/y1Pe281av6Gf63nQsPu2XH9BIOoq0bz7TO80U1EtTgRfWf35mq83a4vzUzPz5q4eHDu4ZrS3MkHGV4OODR14Sup3+B+RoFu1bs8pHGgwGz3/puNQ4a1nAanJsnVz6nuDq9AEdA6L+IOIU9bvi2OqkR3zdevANT1LwjjsvvzERAiLEizIkVrxLNGI3FcNKFb8TKY/c6HWg339IBT4MYow8SJzYlJeSCJq30MZaqVdWhkk3w2vC0j/y3tv+0W/8yp23Xa8YRbaNKRZTsdQifqo907YRShuMVY/ctZGXV7TLhsyGLTx/KP8l1ujKiGb89Oe+ymx0cP+15QW+KG30NKfOnMMvZvMFiW7ALV/JeqMK8tGkPXv23HzjtRgVCySEEzvF49tSE2rpkFngvM5ECd6kDgW9ziOHtu1rMvnD0IxLxse5IQw7prRjSSgyhIHPozKgJq80bIL+vpGHHnz8bW97++j2/pVNlaw4b18iq6YUdfbpmWQV4vql1YlFT0AOz+M08H944viddHXi+EmW59HtYySAv/nK16g6oFCuPo8//jiPxBtvvPGWW2/aP7avR1KajnCfcVGYDssE2rCwKLcy7IcoRPVHGEMK6NxLeREDAC9ScwrkTmon4I1BYFoLS8fMgAo+qudElgAEbjNMgJ0bqy0KFrGoCiaFupaac+3rk5JiJFq+DrkbZHewBSSe9HxgW2h0nRv+prRB1VoF+gxXAbwylLm6unfn6Oi2ob3QT7/kFawCyxfOnIKx5MfHIF84Nx1q91xeASx5O/DYuIBSId9fCHeUXKYHfvw7P/2R6ekZu/XkidNnz49by7Pnzx8/eQo07Ni+jQOS50CqDQkTmmsUIEVhBr+1Ky6tQSxPHMiMw+YkDYQyDMMTacflUQ6YcFj8uDVItDUzZbFYrrnd1nXWlYti6HRJDMCrcq2HbB7yLP5wdHjEsj/04IP3vufdkUyHnN6ySeU/NDLMeeDcxPg9t9368De/PjNzC5xLWbVz28D0/IKMGixvBK1f/MVf/uM//IMvfPErue7M6ODA5jJtDJZZUo1OBni+m1R2VPwx9dmo9II8xa5aEqbBxL0pLIDHEZ6NYcAoB/sGqvVGuJp3dxw4sPPEw88O7tjd3qZ4A+sAGAB+QUUkI1leQ0qoOhtmBpT4xUmMKyEAuDT5NwLd20KRbDoeDWkgygvbOK9DpluzHTe9/jAbwNQNmvLLD7jz9c/9uN+817u2+unc8YMb/a4b4isNuQg4Y6WNEwW0yVt8TpkEFTHGdm8fKPY056dR+tV1RJqRNuGWuuyHdVgDr2PJNOJpUJKw796fUIIf0pHo5pWdMZZ09my977qe3umie+KxH3hsYX93eQQCNyKwijcyURgdPkvV+dpSpR42DKOPZmNP4Ru55wk1BwnwgivupzEXNSqJC/XPyvLmzu353/iVX/joh94/3JfnlaOe0PpSO41BR2ePJHV0k4xHDIXynegpvEOrKhYxILGtXd5hbvkjBw598W8e+vL9D9x334f4uEmYJGPa+WMvVuoLAZrs7JEqgqKIpwqF/dLYgT0iTIv9BSWUxbawUUTxgI1VSo3p2SlGg6VmncIg5JJ1TnQRfAdssUJhT/fi2KeR+Vz4ARcm9AAziLdD7xlEADnzhJBYYQF7xnadOPnySy++tv/A+6L85Bsdl+f/dZwNvHOJBphJ8qONTR+XHJyaaD6I/idPnRJLNDK6a3J6mvoeOb7plhvvuOXW7du3cb+R9jls6isr08JDeYhQ1dTr4p3s0QCFTZkXart37SUNibLCZC/Wqj7lIJienQN+UB3IofeFuzzOh7NbHayNSACMdKxL8Uc5rN5nfVkyDSQj0gKKTqLB2FzFcoTWZnp2niaYfEuOAOUREbKhcBdlSKv8zy++dhJG4qOi4sRqlI/e3DYySKBYadbmZ5YRNDpwXFC2FNVRquUIDd9Ykb0sQo30yuKsrInEDjxOszSnjgHVeCY7um2EX/51110n9ceff+zjX/vGA5CIFBksISdPnyKBHjp0iKcU0QEVFH9ldoNFCnkWeAIvIA1R2raB+mP/6jMm13xIsp9IQ1RSoaAP146AdJAd8G5D4OJCRQch+pY8CtOrOcf6k0TQgUR4UH/tajOCaFkeHRO0feqUDNgHoVShiFDHnt17X+3vP3f8WMhu7e2PPvrIe95737MvPXP9tUcef+rZpWZ1/Nx55cZ27d773vd+4BN/8eff+ObDP/WB90o5BBZhCi/VPYoawY6hujdAzEBne2atxwQy2UMjho8KcqLm2NSVy0vDK1ZXBmxxLuttXW+/+5avPfbtZqPckRnE4mgN1IfcGB5+EVBWqVeAeTgaJ7Z0jImwSsouXy0QUh0dIO6EjBT4xShc0T2He9KN4GTr/I22BskpCIAH/fqD73zDx3+0i2/4unj798GTWx1LR5p+ejVYAiGRNLaThbM2Pn5+s7pY7OjZtWuEZog/LdcVsyIRMiwWzhKtCtstiSeRWoDdxUyb04AxMAhK3wj1fy/7nw45nWSfxuLQQ8R466etaXHdsdXhrevf7wRMO2BwuIE7jUettYug2YrzvltvygkEOcdWij3V0hIGsIgzirmDMUmL2GPndLywfz7b+ZM/8d5f+6WfP3pg78ZSba1ZUYmU4ne5XEZfYN4VG7WBw8a1IwkKbIuGM5J1mSvXF+bzLFndPSgsb4WvfeORru789u37V9ek8uytNZvjF+S1DZ1MbWlBnTJnK+uVfC+7ZddV1+3vLeRrzdl8TnzWqhoqNMblysL0DLeMC42VRVXcI+QF7FE2R7b8qBcWeAA2C/QQ1ueVapNzIRWfGaDDsG0TsZ8CRD47Lhi0C3BKe3/ftocefOzW227M9toMQR23DpPvPJEDYiHiOh7rMpyZMn+yrQJ/vbH1MMtunr44AzdJN/TXn/48hhTWhleN6r777rvpxusp+l2hJiLHiLPCNVCbW33IN3lFKGO7E5dIWTJZTPmuh8KWu11L+PgREnwGjk38zVACo/a1N9fTulqnMMhmcuSW1pKqISJM82C8r1hAGYuiTVtbpOI2sdLoCz7tGJ+40NfXz5hFbAIFegnr0SczvA6WekUgE4rFfMhWKb8YlyBlxzguVWfrcZs6Vh0KxoXTLsQ+PXmBnlGfVtcjL5DEcDDLwLZhpWbgFaoMYybcwacINW984890z77v/e9W4ex3f+8PIL3nnn+G5YiQoh25MozKI2ZEm47YKhbCEsQymOUQu10P27dN1sqtLezd8L4ZCeymhEKyE4JgxJLG4oR0aL08aoskR4SMsYEr5MsmnvA+wce5BzeBMHS2Vio12t7x46+pfHDttdcszs9xqJi4cP7q6695+vFHzpw4/swLL+8/fPTpJx7/wAd/MkO/v7R83VVHv/HQI3v2Hjh14pipGBoevvr6Gx765lffftedOwaKEcoWDEidO/+SIUjQHDg0jN2wPnffdYJDTxad8hVr7Q7DJG9hPImI8mir3Inrv/X66/qy3TZkV3cRYooBhpEKRgsDkG4QAQgsIMM0Gh0BUWNucCTsA2AIXi+Bb7N7CRMFJnv94f7XX/jON08FyQlMcokApCffuePHPLNisPSlI91u8elwLRlKAhAJP3v5Nv/qzCVkGhdTydz9yR22RmCCBI6C1dpokTHVxPBeW1i80NmyvHOgf1tvqW1pudCTZwYrZIuB3KOED0HeFuF1JQoVF2lnYU0irTRG5FLrgQCEFrPDpt3e6nzy7td/xDAuH8aSrkV6i8tO0pn/AfN/xeTEdgi0d8UrQrwLAOBsTZ+w0snBHvtXpsvFMHiBaRAi1La0uSa8XHZQ9K43175nz9A2xt/BgVIpO7Z3x1133nz4wL5Qjs2cs/0jRr+9pb4wbzNSPCOQUnaSJou53qagX9luxbJEpjac+XJ5bnlD3uGhrNwBx0+de/6FV2+4+Q5mRzGRdNST587MLM4PjfRDf836ko3SvqqyTVPc5TXXHrVF8X49uQxdUDZDfzU4Pzcl5bDitYtz0wJCUW2KZX4S1sXUGSw8T4aBUsOBCWMjuTM/rQ7+jpFWwhaKNB+oNj5XXoUVHszqe7cLChscGHnssW+98vKJm+84ajviLOHymNDAM8m0BhDGiiTYPyAqzk1hilripyggERIPc2pr26kzZ+X1khYBiu8fEOu71N/Xp8rIve94u3l77bVXJPsih4lcRpjNqO0ZaxfICe+F86Ou5T0e2jlRQogaLSE7BxYO4MmMADJs+PYgHptyGPfm5RXo3TbUP8BDS67vjg6eNWvLK8iG+0kG9jtgZc7xSeIgYMn0YDKUii3MzC62DysrnyVoqT7Es0feCeRz58hQsbt9ZuLsoSNXj1+Y5gQkPmO5vMgYZhOYb6wlBrtZrdnzWgRqlY1aGoU0OzmDuiLpEHFogpIsDmF2TvB1AGVnx2IlNH3zc5NYZg0Zz6GjRyfOjy+yWQGs1ahJJGp3YS6sr9aMAHXh/DgWxglmrVgU+pQouYRLJeZeOhL3K5huzAENdqT3xZHuJZ+h8RQgrDUzSisXwrvCch1Z6NJFtIaIIJtm0ITl0GBNlxeoxDKcdlbXnnzk0Xfd+w6ZFDvbMtJMSIJ4+Oprvv3kkxOzC0evunbHnvLHP/GFD/7EfafPHBvZNnrVwcMvv/DswSNXC32A6O951zsnJsd/70//7L//r/6JrD8rjdVCR6f4Pvz5ckglVKQZyZTC7MDEmwnHTlnPwZh+IBfyp6xUq9JplavNvuFtXFaoIoh4v/jRn/r9j312aGB3HeWO3AXhgkdKKM+XbZVslJ9psbVMeD6XA0zkCTCLZhcLObpgznbszMli2jmh0DDz1GDeG7OWkEMXQY/PgPgQVeJwGvSivWVptekaAA3Nk60S7jLhR+mWQLIhozkuISX0Jr690ZG2+d2/hDasCZXgMFAZW7e7q1sTULA+B2TLbdhskPYw6XAct5NUua0dSNjWjX4k2F/yLOqJMLmbOi4WUWe8HZIA9/OV8kB/Z3lh5tjLz0GNROrSQLHY1tUDL4b5NE9GMhuMjYwsJGpVf4r9JUpYSFWWBYiVy0wAUtr7wBrQBgQROCJE1GTmnAeXkqD1uOHSHAbhtP89BGIdiTB2aZa27oHIPPLGR4KJ0gdiwG4KM2S0b5aM1LlYHAuHaMGubYXNwnDPjLw3Xfn11Y7aMj6xcO7k8Uri//vh99/x67/2S7u3D8sihVukeIFiKILWFy7gsKPCgZHhQjFcITFvNGSUNJ8F/pctjfWG6iI0LEq2bDZbaDQ2Gk0IaPrM2Z25/p6+zi/f//UTZyd2X31npzC6zo3lRvXMxMlcX99inZpbJGN3Zb6Ke9+7e8/+/fvsaUIL5hcb1NWpxkJbtbrWupS5cHJcUHuujb5O3oJQ1UKa7Jk4fNFE0TNqjNb2bkbgZM4wU7wdidika0JQ5JvJUE6vwLGl3rxdTtbeiIJRawfGjv72b/3R/3Lof+gptOUL3SurUFk7FRNlTn//IPCrVWv03OaTDmCwvzQ1dYFEru4yd0iwiQVfsSHDrNJVW9mYq9Qktnv+uRcx+3Tvi7ML73vfrXfeecfx144tzs9GyAWeI6wX4cLDx9bjFIAcMk2xEGNSS1AqgidXeCFgLcLKamwA9q8IIHKn2R8c6BVrPdzP+wQYtucj+XGo7pOhCsVTFZROITWNlICW7Q/T2M0KpzM2ILoXJuYg6B4cMN1TZNEDyytL7BKsYbVqwwbbMTIyOT3nekmF3N78IhOoHJaxYC3eJt0VKY/HL19+PTM1XiOuwUscyDJOme6FoygI3lD4HMYxo+G3ZDuuFHJZCRiUAYgY2/4+pmAFUgCxtHmqz8NEfvVgSgw8u7Cyagrsdh6+4EzoMnsWSTxh/vAzXH5CraH92FSJRSihyaHOSZ38gClXG/gIZtBbiCpO4Kn2yKDZvpJgNxAVuzSYRBJDIr6Vhd9mM9kzJ07OTE0WSoVAytrf3FBAOFsobi6vLtaXcr1MIKfn58qlfN/cjLCG3RdnZs+cPjnGqak9Aonvevvdv/tbL7z06mv7tw325YvqJLFZh74vspOSTCWWCQVmKIiII8srnmIvNpAwZpNs4DiBaaPbpFE1vVaaafi2G677wv0Pzk5d6OnbacsYgAA4BB8bRhaAkkLfFO5roCmYfQ+aHJ33GcMM9BEcR3wkU4GR9ZO58d0Ncc/3P9yjTb9rP0U+yfkPeuT7N/b9f0nQWrQc1Z80DgsFWtfH6J4RRlcDt8KwCV5FdaJXDiNJz0KF6Grot9Jfgr3zAJKAn6A/rS3ORrZ5+XvXlwmRXarBbMg2EMV6UwIW+jXNq4ubVckznA5i6KGMbA9oCqWiw6Ut3j+w8ffD3NHbsNuHysKnHeFrDOcytUhae8sflwf3PQ8m0xVkScfVYcxm1hTTSnR/cNZCtVJda7n+xh3/6D/+1RuvOdSxvry4MFNdmOMdLAULDSkf0HShzXKYzwwydEfJhMc8xLS4aPCyWlFI1GiBWtpy2fzcYpmjZq01e+Lh5/7m/m8OjuwYGtmB7nIIURWXrJvgg85GmYdio69U4hO5fcdwVK1oVjI9DAqI/XomipV2zk8unD7+il2/xhGOqSAymeGVLDG4IL+F5UqXrFe4q6SMBxoSKqJYt9jnATTxX2wGSLCpA5F/rVyvKbIkWm3u4rkHHnz0Ax9+V6O+LI5I4iCMJu8dKhdeSUT5eo0kvZbP5y5OTkMxpb6R9pb8+Pgk5kP+ru07d0eC666eqamZsxPTvcW+6fnF8YmLFDI333wzf8Lnn3+xWl6gLQc5Bk7VHCgILe0MGR2hwxAbhUQJbLIGCA5JMjE8t3Z2SiwpUQ3zIIUNBTvsf2DPdtr8Vk7nwoTaw50fcPJmgLrxxLEiokGV6mk22XigdGg/cTESt2h1CmHHKg30z4rDm5mhSxe9G26IMEtbJEWiBWfEOHV2nMot39sHayAanucXIRieZ1JMHz27naWvKlMniMBuRGocgR1aNpurS72D/bA2bl0cIA8hGtOgE8vreHkLOTM9vWfvfoURTpw4FS8qlJj7bcs1BLfe9GDfQL/xB8av8/Tq4o5Zq1ZYCOB6bqOxZ5IZ8hW74XCP4Tn0x09WO46QDhO+EaUIOKHf8RM/BR5OUW4NXiQeBgwls4+UhWIyHDxUUBEkv1bs7T0/MaHKzR077xACxhoMoIa2jaDwE2cnzk1cGO7t5/t0/OSJo0f2NxeXdGfb0PDTL700MLJNTqTBgeGD+/cdPXLoi1/6/K/+3E/3ZopCiqBqU6EuMHkIG+g87GiyQGe6FBRmd1kPH1/1U8NLBMABc+RHJW/mWwRIrr5rrz166MC+Lz7w5N6+4Y521vvWpgDhRm1tfTkoWGxJMxSTZAOni4KgsNNTGcXVZHqSaYrZMk8pbXCe4qMr7kluiOKp/rtEIUxp2ma8ITnipr/VQ5e0lzaenF5q3fVLFy+v8KUfAtO5FB9BOOChBCOb3gQpkAtj/W27AIQkfLc3m1ugVpgaF4ZEiNxYUoY3gNlbg1rEJCWoOS5FT2hO3eAkuRCo0MLBRG/p8Hg6tHTCybtmMtq8cpBvqcU3d7PekjVJ0XOVRZyy3nv11OxMtrNFOZAbrr+O03xX4gLEjz+KB0jbLjaFkgtwJsNPB27Xp/1PL6Yvp/1akfuzp3Oti9wpE1ymsjyrhtvsQu2xx1+4ODX7/p/9ZWnRpOzntbw4PS8zvWmbnZqCng/s3bdrx04sbMtKQwZHRetJnaaYL+jF6vnqYmN2al7V8shaa+kwwMHghNt3IP7VYD0DsccRJCHB+YHnoY4Q+5P+he3Lz3opRU1nlxpV0nBiwubqi6WW/kJ/vmcu++9++3dZ8nh+CyHOZjsmJ8eFFEgWDUGbOpxkELt2eLKjr3dofHz+G1/7wsPfeuLUmdPz5cWPfPinfuMf/EPJjy/OVWvL6+1La2fPX6Sq7czKgb3twsxcWEeC3WeBU2WdtwVddJgt8PvZQiT84bHtCgZNt+18XCBXFjFYHoRv10LDtCbRgAjRHaMjhCQCDT/MLN/8FUFCBPcQi7F2kb8zgahqtSYbkjx0/Ar5I1Gl7N61U1p8ABwBCkbIoOytoumU3kF/Mt0Ehzb4l3+LSSv19kHTCkNDrogxr9W5hdmOgX6DoJgDCkFD2klnVWyUryHVJG7moUFJ6te0rndk5DAIgS7CRDDvK5J7K3HZuYHlHx7eJl+HmRUB4X6Vg06dPcMkwMh5cGy/xgPuqMMSplWbSDFpQ/EwlNlLGUqgdhjNSNwM+6fsvz6k2ykgKOHf4HcXUftNha1dCrgJ5gI2wGdDjzFdhDH56PgYc3oItjIIVdRnZIcIN9iQ0V5+9djNt9/GVEJRAAJz+eLesbFTJ06fHx+H7klJLx87Prp9WG4p4R779oydPH22MrfIonv21Ons0cPvue9dv/vb//rFV17e9vbbtS4awRqyAXN9htxBRvADAbTtwny9nQgs14ndF1XEgHJHm5wzjJHZQi8Jd5341d163fVHPvvVb26sKeDTQ3mFs2JDNiS2NyOgqAnTSWj+4ohJSA0kqQQQQsKlI9kbIR94u9vSq76iBCkxiBtef7hinl1z29Yjr7/lx/3mFQ6taD/w+RV9SF+aknW9/q43GUBKAFyH+y14aKiSg4yHmbfwQSvaNhvN8L4Li0/LGpYyLlLbxICI0zF9lycjfToyMgKzYG+CvsSUxjy/Ma9/aRovPXnFP8lT0R+zbSDp6liaK27593QqhgRGys+2lQ2e7m5ptaG2F1bRjsP9yDsscy6DIz9O2cBEl0oJHFmBYS6E04Qkaw0k0v5tzU4sDb6UsIAHz/VssBxKINHRtW3X6PhCHQ685eY77n37u6orm5kOBszu5Wo1DH7LjcP7dg2UBlgFWCapb/EuYkgHerOSPMDC9C1qW06OX+DPQvkL1eu2lYwVDPkz1h8JiGlMOM4A96SHATfJIlkfAK234SWewJAWCDXEOH4tdv0Sr6baQrEvP3ZgTH2of/L/+C/vfec9N998w+Ej+0eG94opTrxaMtJHeAvGbnGxUiwNL8w1/+iPP/mlv3mAPx02XdG/Bx996l3vn6pUT7z88ivsqOXGCjIwMtjf2VM8d3F6dnqG6zyGmVIGTYqyCnrjL6laaJhwN5Ovfoa9LjEJoAMGV+otgjUqlmPHjnNS4JAyMjw63C+HnoBhcYhRhNUAB8US95d4DfEMkidGipoTx0/Bk729JXhf7QEKUgc8Zs48UquXw60WdktB0CbA88pyJe7Iz9KOYnuhKBTiuRdeXFhgmM/295Vqs1MQdFcTlCTKFjUUMtaMS20QYWBi9olgSFPYM5eW0Ro6aCABR/skv/BoJNpQNdBceWl5sTK/GP4/t995xysvv8r8a0InL7Iom8pF3NotN5GfbsbVMgszw54/f049d2PQVZDg0BNUCgGgA4plTiRrcb0paKY0wPU4QopHYsNeRN3l09ZNaFYrixBpkfEUHUZpPIu7JauEH5KFam2p1Gtym7z00ishpuSzbjBS1w8fverhBx6ZK8/Is3HgyNFnv/3Q2fHJq686Onl2amzfoUP7Dx07eZKpQErD0aFB+s13vfO+5559/Nabri4pzhcGRGWs16n5TBwgRQOSESTKDZyBqpk6IFUMM1Hg8pb6SlOZ4oyatCvrmZ6MDLg33Hh1b4ker0ZKbdZZ4CqwV9SPTLz+o0k7JSFmZsZak5BSISnmIzaE4xKe8hU2cg9M5Obkp9d9uMHAyRbJ4ZaIrnPBIz7tRYdped0zP94XDWog3dJpS8krYu9ERzBl1jA5rnxPopCAjqKjgaSDtIbqwvoH20XhhjwipJEab2NqeopvgrkNN+eEl6eVDT8InOSVuD/oRTASVBMQSzpw7V/Rt++asUuzemXHrjz34OV5C4CMrv77P9IOt2P0JBRpALC2uiqpjWpvsfWG668VOzoktVGjJk8JkAnUan5DgYpdCvE47JRoHXIbuougo1ce1CxdhQwQ7Czmelb7FqcWOgt9XdnS6edO0IzzH+cdfurshNznQWBXl5VZzvRLk9ir/rCOrdEKSeXGp3S1furiiQuT5+bmpl3HS6o5iNSur9UlNggPn+DjLwGAGxxAMFHyJEt2JQcT1boQjOAPEv2a5wKcbHMOq1ATFjAy1tQrldnpHaPbrjp0+KUXXvzKF7759GPP/cLf+/nb7rpZyDylsmLG5eqijaMmN95XDolPfuozn/7s17P5PvpZSKdnM7e02vHIY88oGuiA0Pr7lXMaKDe5T67REAlBmC1XqbW6w0grcEGe40zErgUGX5MGAtqBr40F9pT5J2Bv0+pUab8lEaLZBaLbRoYgOoQ5MzokSUGpkFmu8wFp3za6jYVDgDHnXZoS1AI5uV0Bu+Fh2iNJ5TUeCfUbNYAWsBu2E7u8owNPbVR9A8qJ1BcXI2RUSgobx06gqqMSxZtz0l/itDM7LahssVJRbdEO2b9/v5BWkVwU8VhpISQ2Ja2Jg3RjiuFlSxJqVobC1oab6THIehYP5aXPEhX96rHj5ADo3s1XX331zNw87A+fWB4GCwooZEO07f3331/IZxHJJx591BzdeMMNqnTRk3A/G9k+giNzG6JiyoIhvYQXgjNNYAP5TP8NuOEtD8rNRYPnmpJDgR54EQVbYVLY8M2A70ilqLpmolNrKzMtkhxWS4MDZ86eHb8wedNNN9CrQdkmemTHdjEBFFOT01M3XHNN9yvFianZ0dEKGWtubn778I4Xnnvl4N4Dzz370qnXTg4PDN56q7qgZx9/6hnm4qXKKt0WyShqkIcLdhA0fdVzxIicSOujyClXgNhmQJynU4AgVBTmTZ5XjaX6nt3b9+7ZeX6monJwo4lmi54jBoZNNp4KtBVDsy5JG4HcHfETDHkJ6XwH9biSEgAzmc5acud3f6T9jBlLSEK8LiFcPi+3+d2P/Gjft1qL/fD6xr00vagbfoouXfGO9Mt3PgNh6WQyw7raGqmvWKVMZK086wKxuFmnnJUwpRUzoDn3JuTDv4wPAbfoCuuorRUDF7zRERObSr1auOLlP/zUuMyzw8kW9nf+eoz6w9t5a3eEwHcJDHDTzZUagyFfYazP7ffcdvTwQUk1e7NdXGQoJ8PtTyLihbJ5YjwMJwP4QK9NoxCxZM4twRYN0HkHwim1ZL4zK+FzrbrKq2G+3JicmquQC1bannv6iYszC7QFIkPz8qPn2nZvGy7jqOcx1x3w1vTMVL1eDvfTnrZ8pqu0d6cBatYKQFmRsU7MY+hqw6TppxQOYwITBtRFHUv0/klvqDQTD00oJZYsgegwGre3biv1Ua6SsJUzE9SK+jN4yL/DF2eQONI7IIToU5/4/MmTp//hP/rVielTheCc2kXQqfoDWZcXa5/+9Jc7O/LtUjGutfT29tWbU+IdvvDF+wU2jW7fZb9BMsgeYzINDz/bEBRElK8FzMTXpbZcz7oMCgFE6+sUNSYz9AEq4LRG9kbMMQfMYjaHJ1bfc2Z2CuJis6R7U+iN2w/gMQOeIvfT4ks2JsUQ3Txbxf79A7C62aCzt5jmxwygAYHc4m1RHdNX1zs4/EAHIRooglpfR0BEnflqfTWtK/wuUDOMsO2GWsCzFEyS9ij6aD9oxcOh0AnHAObrOMElQme8FrPtIv14cUTdaW8MAgD7J2FHlEvf/MYDj3/7KVUx+/sHpIHlFGTM8lyO7tyFNkD0nFglSeLMZArk26Fel2eNKfXIwUMQrh0oUFC1Fr6fbPugEzaCFgEMVOAkPWLACZ7y1W4Hr9w5+NUi4/GNi7cQjJXIixmzKcdIWI2ctMvQYCTGgfc3XyH4d3ddnJ0kAZix5YSd4GqVkTfp0CHOXucvTCoOM7xt1+zM9NnxaRFtF8dRgtF8T+/46YnRwdGnnniuv394z97Rm2+56wtf+tR11107VMptLDeVsEPqg3o6iU5ET8SetipOhEfkuxZmljC0+FASL0YpqCVSuQQwMfdIrvfqF77equo3B1JgBGNhbhOFT7JDQoz3Z1UQFH9OtJTOj3dZrsCuMJznosIVA1j3aqT+Q4aS65d3mkeiJwmV0g1vj/4mhxNf/ZQ0eImMOf8xj1i15O3f1c7rexJDcZd7UufLMA0mHY+HdTDQt0mButzjp2CCREWKvRRhgwPzG74A2cWUJ1giFiKG6f9oSTNGGtYPrEZYaGgTmI46O3naJoM2d8mr4nVv6tDh2HSJpJXiMrO4NYo31cSPdJO30HraBQpQT89XVcNRCQt+PXL4oAyrUXeljc6hd6WmHlENKsB8sJNZZ2TA4sf0Aq9wlhPjGZMZs5RoG3XeXeF9yKE8UHYHN4bm6ursXFnV2K899Ph845yNxuuhMddOs78qjrpl81vHnu7rVSK4h4Gwt9R3y03XUIkuLMydPXMslEI2CKOoTgnYbAP5rdnOnP1txmCeFPzAuXPjiouWNGFcLs2NRV0WUa9r8Qgp31nsqKiM3WThld+1j/59RX7ZNurjlmq1hK0sFsfPT+wdO0RI+vr937zt9puuum6stnyhXeK4UHlG6dyJ8xenLs7u3XfUjCkhOzM1K+Hc6PAoLhC/C4NwkA1HzyQ6l1YZp2i5Mfw6ExpnOBgaVQfGnQwtChcmbKvbJiZmpY4AY7v27jl66KCs2lOTF9UR40yo57Jbe1iFKhwzOWB9qbVRWZiaHBcqIJPo0aNXRynN1Y1z56fMibcjEl5hiqBWVxyxSUNqDQYdK9ORphbSrxhZo+4HuNUnnAv5aMCUCfRtShDU2Tm5OK41VmwQwQCrOc6FIyPDdD4s+KKZeRx71q+RTSGwTiARqnn9iHcvi6cnCYSy6N/9zu8w5H7gAx+A+hcWK7olBKzRYIfI0l5NXZg0BTQ/+JTHHn1U3J9cqffcc89tt93KMCJkrCBtXrcS6z25fAGSBogwnAGHF2DARZzDCTC/jZugqeDmAl45O9JVhKcAw0Ro9sPQ2qbeZmxphMSWhB/D5iFwJresvNDF6SlheNiCFNRkD+eZG7sX3CtS1NG5d//Y888/T2cl0XnvwNC5sxPzCzU+sF6Qy9YH+4Ye+Pojd739nq9/46Fnn3pevYRS37AqxY8++czPfuj9dK6JvjlQeUhnQQpwWHgBzcuflVR/RhOYgCPBVhSsM7MdXTk6awH0askQjA6Mja0ufUn4vfwqBgC5m3bUBH7RXGLtCFbdZrUQFshIk/lxzb8pAXAlsJjDr+lt6T3JvXFbevelZ+KC4xI9CCyQqEU0nv7wt/6Z9jleeRnXO98ayA99Xdzpf0tslA4Air4Ln6yWM0Fw5VmSDBl3AmcFJIAUkAOawJN/Ib6EeLDPR7EKObbsrGRz6U7S4A/twetv8JS5clgpcBVvRIQ0tTXdr7//b+ubN4JvYCblLy2AYYIi79yzZxetQzHbXV+YKfHz5gGztESKRCUTo3nsJN2DTiQXiCq8uqqVhES67kh7aK/l1MJba28KFq2vzIXHRuP2W27Fap27OHXr7bd5CELsLeZhnLmZ2eBzm0s1waMcIFo7pua5jzva9u0/1KxXFhbNs4kWphoiV3i2rNEno5T2sHUBySAwQFp4KZqeScJ85P+KMKrQ8dMrcYcLlJD6dntIg17AM7FWXVD6T74DRGKgv2/76BBta0cmNz23+MSTz09c5Fu3imKxtTIM2o2cJSXJEMe0LAMXHC0cB7+6ujy6Y9vs9Jy07RfOnZXdExIoFvOGT5AyLZxfLlbK4dLT2VHd2MQ+cOeDFrnBQJhmmH+ldag0yJ9V2HV4ePCaa66SCsG+npudfer4SVXDDBGcMH+yByAS24YGRWhPV8uCb6HuUr5naGCQ6HD67ARlEY0diErmJBIhE4hUNmEHtkAugrRgNU1MKG5aOv7O3/k7mk4Mtg3xE24yO+aIq1MApTMog7tSTHL4jdAMEZx9OAgU3OeXlpuQ8oXJSQw8UmE8tEZUNEwErBnhlEvRxH4iUKG3F82ZnVt46JFHdu3a85GPfORjf/kXLMzWUYfkgfjFX/xFXMc3vvmg0hBqmpJojp94TdTDnXffSXlCVgAFZLy+AX7aRX3IqY/MTS12DlCNDW7H+hfhQd+QnHDaSlUZfkuQ1HLrBrEowLTYb5p0hjHZT+aCTJCUog4DgGfFqTlkY9ZD48oVc/Az0cxTGl+cmzXp5UadA8/uvXv6hwb7hvtfO378yIHDh6669rknn+y/ayjT1X3i+LlcLk9ekpFz184xgTBHrrlqbP+uW269+8lvf+vC1Hy/EiJwDcXN+no+V8SjK05mBeAnuccsEF2/GUc3V1s2KhLRtbUx6UxcmC+V+g2O110mVyQ/Gj/RkbiW5FMxKxkmKCwD1zAgaESW1RjNv6gRowsKEPsn4W/NfrKBA98FJgr5IAQJprJk0lyC3kGAPRZQg89OTP1g1ORr009aACoaTXZm0k6CrN3pcD15SRCMePP3HGkHvvey1jTucJLQpsT0kvTWymoNUYzZi7RRiR9awgdEa8GQ2lnxOqiCmy/vKKCbenNKghqh6bPTHS3LEc0CBRsCiXizpVs15lo1HQXehUaCvBQlGeqNYj4PhpWQS3iOEH+ti/d4nce3On/lGPUtve5iek86D7grg4q+JeKpk/RrwPHfxnFlH66cW9ueU7HoqspCPVcqzjUbc4tzhd6u66+9amrywlCP1IL5xvycgFNeCRAHBgSB0kkNmmpAQYymIGJJBi2WOYaTJB4PcCKSrm5w6a/X6gLcM9nia68+vXPHblmrbr7hmhtbjuYKkJ6NKaHhmnjNw2MDbIjl6tKxsxOf+tyXdo0dgpybS6vTE9Pkftwj3EdiaO/sUvGCZpneXCmvATVeqKTUv+0SYAxn0i5EUk/TGYShRdlOFo5uw0Rr8u3tvZQE3T206AC1J5MF9MPDQ4SP/r6jotb4HbHT0sNIm0jNUa4vPvLg14rF4cG+wtT0/PDu7bnuLnJiSybUwvNzMyPbdi3V1/tKkHwGeh/sZSxtSLZTnr0IWiRIpmQe6s2TERuNUFU5pH2X6b1bdnxa3a5OaN2cDfaVeCLh7svdC8MDzJr9e/fswuDzQ0MUX3rxBZsaalJoVvojsDE0SE+1uVRvYANlp8f0kifUZZH1TPTB+mLVqR6ShSIVK1+qlZXFcrO1lakDYhBnlGM8oO8KPIAqkoAoWxhCbrrppljChH1DGkyil9nJdlRs1cD/FoV0yIIb/Yha11sbOyGtVGm2ouo/qssrBMb75fzEOHWN6fDKvXvHpNHfs3efDtGOSab22vGTHD1vvfXW3/zN3+Q7RY0zdmD/9ddfS34hk4jmvuGmGz/+8Y9/5StfOXvuNFSbEPxNTqtzoubW1qhiVFe4MDllDLpNN4Vua9xXB6FVNzjSBvuBzjJ+JOQOBDtClA1KHsnR2I3pOqAwTp6+yixI4wnnGQyaGeyIA8WWy5YfV2Eoxr66TAPw8ovPs4KUCsV6oj2L6epsl9KucK4g+Y8yF3353p5CaXJmtrB7rzJ4AJo1ZXp2cWR0x8X5WXUx2S1uvvXOZ555+tjxs++98+by/BSE253NrQn9XQkeBDRfYBiZnyxXanRo4CbfW/LJILfUlPlvXqo4esglWUvbuvJ9Q5yEmDWKAxkUoqO7gEOh5+HnS8UpIMY4DMhcAT/LDyJd+X4aC7fZ1SkMuM3XuHJ5xZ246EivJF8vIaz0tvQn1//PP5KOfjf2DCSVHCLPxRVistg8c+pxSl9QqWSlL7B8hFqEzRiF3UkKawtcUhYlxCx4pmApXFVXJDSFhp/SxZieHzJQz7opnZatE88AOZ/R5+RIb/ghbf1t/AwJhlehDCvdDLTFk1Sas1OK94khIgDB7PLQiiXBMdvcuFrqFbMQ1DQs58kBdkxAkGNTEZ/pHBiHDuY6c4uz5UynBBAtr7x8/JWXXzt86CiXD6lJqNooUdRmXOtspxORUdG+qK9XCv3blIiFsh/79pOZArZmg5VYrHJnRyZflNNAmAy2ZoXPCv60OLqjtlRfrJXhlrlqOVwB28NOeXZqypSmzOvGRn1jPjord42AGi4U3Bv1DRmAc10fnh4YGeibWSRQr8meNjc3IUEmagG9wF1vv/PWXH7gqWdfKi8s7Nu7S82Pufkzm0urA6MlOHZxdnF9LdsvDXK2e36uUsy2NRfro4O9o4PX0FprPMFFTRaF8xdn+ntzkFCpJ0NjMTY2BjMdP34yQ7gXRK2SSm9xbM8urK0qTzomy8X5s6dpmKvVCmQrS+iAWgKNhoBgQ3PQGkFiFF1URv0qkwfQMCesrFZlAMXZhjDU2UHvnkQASDDcKeQuD7EQWku9sv+GQEDWddDxwg9a63jltVeTVU04QXKxxf7/MfcfcJZl933YWTnnqq6uzrmnJ2KAwSADgwFAACQIEhQpi7K0siyvaK9Wq7Xkj+2V1vZnvcn2rndXS8valbm2aVGkxCCKJEAkBhAgAA6AATA59fRMp+qunF/Vq7zf37lVNY0hGAACtO70vLrvvnNP+J9/Pv/zP6GEbZzOTfWT9ivIxg4QjM5BXp6QLQrEPt7dFa3PpdU/1H/3vfeqi/h67rnnXn755YmZaWdGjk/c0vYio2t+XhDTM8888/GPf3zs2NG/+e/9TWl/EhQUG2d7YWFOdqCHH3rowrlzoyMjv/Irv2Lx2QEJn//85yXspolARLNUmTOMABAnAKoL/ul8UDX7UGNYxaFS0PSA/ICI8aP/xl/fzFo0WJQh78jZDZUtdzFY7PttY6ghUfsxaivGDrW5quSPleGchLNOnp3MaytSG5kPxteFuy688sqVqdmZhZmlkeFDnX09Tz3/LHWK7lMTmrOzzcYlw9o6u8YFN9y4fe7c2bc8/PZnvvm1Rx5+c0t7DyG0MCMZyG5vfx9958ataQkB61mzsWenH66LN003dpv7BpMru3dnu7evx8+yZ3X1DXzgfe978ZVbn/it3z9x5u755bpQb4X9aHaYmoZfMX0iGU64hyLfTtHM1INgcM0KSAzBwIexGNpG54WRBe2SyAIuBh2tKvieAndc5es+673j+ffw9qDRdKc0pdFQ8X4bmc3yJRzKwo/cyCxY9kTDVleTQ0iWG1ZWTo8Mnz5+SKgXRHJiyMzcrF068nlR9sP2d+I4BkP1M3cNFJcMwtsIH6NCZRGH+w1WfwNDP1Vfqs+8Ui7dqQDlLSBOC/vqf57vy4k73/2e3xe2zSloz3azfP80sPnFpfve9gYu1sYdGQLWnJ4i5HBru16C3xCATUlBgGx8sWSuz4ZT9i0GvFldMfvVALNEQJ6KaOjp791o2Xnm2edErydapL15a0O6/21b6Lusse/u2m1newGjwqI6nkbnlebMoTE9hySr6HB4gcOrNCOXkZS26N4BqgnA7O9c21waOX6mr3L07+xe7O3lsmaXH3/gvixsRnTtUOOAF8PhDxVM7Vxg0XQuCl/4lhiKro7LE7c6WndJI6cZ1DbbL5w5deHMXQP9vSuLS0a1uLx+z4VTduY07ay/8MTXL95/bruxdfLGlCkbGBju6Bxu2Go/e2qstjB778UTOA5nAEUWyXzpS1/C4t/x0Jup12++7x7cmQp69erVvsHeKy88K0xcup7+o2MUfgxKRL/hU1LnZqZkQIhzhVHbsNvf16ebNHpbg7ncjKggYZKbIupCcE7QnA0m+r+QoT+GjDFL65SE/QWvBEzZS4Tf2U8mxtYxENRAzFHsiyXCChXj1amu6rs30bb7ufrcAfJFISyXBtFSJQC0VwmASgPApIg+dhQWg9H0Dw+99Z3vEDL/iU998utPPeEdrqulxWUjpA/T4j/84Q//jb/x180cPZrEQ5zaFczJwfbi80+fOXPmb/w7f5019Gv/6jfm5+cOHRq9/PLLdPbkTODjtuSbKA6xtM0wzIsuPddhY6kGomL3HiRw2UdAFY+n3R8BrT3cibQBnGh03k2IMV9JfU0/1ME/sOI0Lgknejogpg7zS3YItJdkE6eYnnKYpx3TEN9RSg72PXPm1NFjY5984jPyCwqc7eiRzHZlrjbf7dzUnfWV9dr6/M7xfhlR+mtSp6ysECcsnq995cu/9bnfP3/uNIXdiRWSpOrD4bGjgrd2HcLhnN8+vsysq9fsLrdDqcn5bHHwsfE2Nxexa0Kuvi3h0sm/+Tf/nW88/fz6mgN5uldWN4UT2LNnHYVISzEanx2KnXZpygwuzwTIFO54MMffemNyzaPOaKv6pYIqiBaoRtb6yUN4UZ586/t/Xt90QOt65caVGS5NV8MLrhonSSBhbjtrryYniZi/hs06L8/hvu43Xjh7YmyIOCNrWX7Xbt965daNl2bmmVBxfJfAkjg9pKPcStBtV3cnfNnT50tDGv3jh1/96rN0MHW6d0FjTyq8rSr5E6sqDf5ZP5BhlDhRDOvbq1vbE9MTJtjWe0rMjoU+axsEQDJHra2zABAHlQgodNUBvMgFGfl/t+yWiOc20tXFE5ihFaHoED0C7uXLL79w+eW/8GM/YYVsrb40MCgLzQaHJa1cDMzmmsNqBDu2iyJcWZqBSto5NHZMLlAq7yuvvtDlpAo7sV2o1C6izo5Dx46eOH92eX0hefzR3dqaLCYORhmROqK/H5O1HCiHMCS3OkjCOZd8bmpyqLuzZv1BMD/xtR0Lvnljx+aCISfS9nYeOXY4PsCGLc4RGzOdsiqdjszYh4f7ePMPDXU3dnR85pOOBP/g8Khw+sPJrrW08eqLz3z1K9989eXnLl04OdjfZqkWy12Yn8S1fvhD73/14ln8ymkzUjoY16c+89m/+pM/efXG9Qtnzp48dWppKdun0OlSjq0cJ7S4uYg/q7ooCdHZC4X60LVtVDiqoLNIhaIxwBaXyQttOkjSNiJTss/KOcP4hSrdjoIST//2jiNvxLBwe2Kw8ikBDQGYqQrqZc9TsnSbUE1qI1OY606cDldN1pyKzjHSVmbcnkTYfyUVkuGcTASah5m2RDHacdj9k3/1Jx977LHnn31h6qVJp9EI77n//geclEJgqse2BXKLaaL9Qg8bEhthtZyzvX0DP/Xv/A3JOP/7//F/AogEtLa1cokIORgcSeaJZdsIeXKzExCWGlBcsXpSfXZ297pxRTD4JAngbQgvC78BcfGEeJhFHn665SU0aQ2bN6XSI5hBMsHx3/Mb0KPJTIc7S/EvocfRscN8R+Q3lxxwQXsu5nvuuSQO95vfeOrlqy9wBdY2lm9OXhsY6ekd6d9q3pmYme3oFcK8ef3m9VdeGXnjA3fZY/exH/7R/+Yf/bSDgXSAYWSCXnzxxdHRyQ996EO20MTNiXPbhpL4LZni+EAdvZnTfBgn9RXewDjn/MwAPHP61N/7u/+b/+N/+dNSgoizSJSx/TasxUAgTDy4FSSTWpRCV+g181aJgUpvzXeXVziBiAAAMZNEQHCiKlgwpOL+emfge4ixB3YFU3Op4aCJUun3+qN0Kd3OtGbmc1WNmJDqKqwfgyqqAcVTwBXcBlF5Zzs77pGsY3h4t7ZiluXHbe7tg0brm+uTS/N2t9MAxCMbKQ+kvxigfS/Sn2SAaWC/DS2VIe81ufenEkN7XyqYHBTwVZ9doZKiqR0UMITvL9TK9NEAstbR1DQ9N/HilZe7elou3XMpuoRFy/1/lih5QlGovVqmM/8QGtVoi90ck6iY/dEFVQkCibEiL4W4lPUhGPnxT36SQDl++mTC9m2l7epaFeQ/v0jSQtgaKSOP2+5S/yD/e36X1uvlW9eaOmSNOzwwfEg8IgO6h6khsghcWlv7hwftKRveHh4eFWI/xA/uFC03eOirr746cujoiExokgvEHpEJJ4O0/py0+rK/OKraUWQNTc6b59eysPfKqzccB+lAm67m7ZNHhvt677Evdmtt5fbNGw4kGGJ1d8pkJkWRXECbdmCuLm2Nnj76zOc//8RTT/I8ff3rXx/s7vihD73nxPEjNsxZkEuUYHObXP7XX9mSHJ7JvrSyxrH81BMvvvvd78avBbZINmjSeUqwLwiG56JKTHOw9xhMkLzNRQazOvFciGcREbeybS7fwLqccmIhw1vWcgC8cnCUSJe9GcEIK0LAtAEiAc0xEbZkuCdrGhbhbUw4s1p0cZpiOQQKOsJClxu82Oc+fywOATNUSQhhkh1J71OVr3C6erU6sJhvWiVhNFYRbD1YX5+Zn3nTm988Onb0B37ww1zbHFunTp0WesQX+ZJDVC5evH7jqoWRnNZWzrW5fXv86NHjen/71k0S9a/8lb/Mrf9rv/6JlbXVI4PHRw4fvT05rWinlUyowX9LzCXoz2k3/lbdJOJwceYPhMS5EpMWjIW6TtaVwsc3AaCAl6wUxbnLq9eenHkLyzyNaxZW+vptluwjDyxaXRw8a5lX+N+Zs6cGhvsvXbq4vLJoXrQCsvbBmTpYaCx/6S/9RQeBUfCl4u8f7KCAjE/daJmbHL81yezaelKwF4nb8tTT3/yJH/shIkdqo0v3PmjCAGTdgTztrXNLa7X1iSeffvH8+YuZyBzFLZyIw1FzSWSzsrHhTDGQr3hF0KOBM2Nx49aN9z767udfvvYz/8PPDw2P8d0GY5BPWSA1X9VSrRcpE/oduv12l5LaVcA8qtxFUai+Vojl0+WJSwV7iPGtVSnwbbjit5b5M37TPeBxudGWzpR+vcZAg+lmHVfKQBPKznQUS7i2uty5s33m6NjF48fbpUMTKs6UdF7q9qYNvoOWKa21ELhC9OTmw/fC8A2HLy5ZRlRVNZq2/xSXXimVLu7LRfeAVn1FZa/96u77f6HBhfmlTTt2m9quXr/+yqvj59545vRp59auSWpqHRwyCxCJVlUcDhYUoVrYfdR7/J/gAMUE1JKNBRrhGsBfxogcOVXDmJ578YUH3/yQ871uTU7ITcA7Mzfv8N7Nvl4uceHzfdtrdSF2N669dOTUqd6uoXe9830zv/15eQPsnhnoHRDVB92xSPKjJoxSyrmFThH2dOqZ6YUL5893NHfeHp/60uf/AGLffffdV158tWW7pb6cs6f4mbMcuCpGZr7HbDoHxRb6+kb4qbRb5FFjy6kTpxcnb87cmmrero31dkYfrNVoV8MDg2ZneurW8GDf0qHB6xMy+bStLa0dGjn+mV/8xBe+8AWUzvt/78V73v3Ot506dcyBOb1HDnMmPP/NJ+W7Pnz4iINvb42Py9zJo7a0MPcD73v73Mzs2OgY2UDZF//KTcIVJTSE/yyKLGHYkPNZgyqNDbwTNmcAqa9JdJFss7w++Qo7CkVmkyal0Fcwx7BFCIYjlyAdHooqXiuV5RU2+i5XSmK2cZMde90d+NMpk2a3fMMowqUWV5llCO+v1nJ6uSrZaymBH1dF7Edlj+C7+xaDTiQAorHJ4glZgru5oreW6DEjkS7N4V8ifCmg1nb4wZ9+9tn4i5zvzI/e0sJ0aO7vU48dbCaN7+vZZ58WBWVgBDt/iDiluy7d+3/5L/4r4aEPvukhmxJmnRzZ3WVdCFdFlpyE1vCisGB30XfJQNYrxcLQRH22JUghm9iLVM3ROMFSA9Ko4dIVMBA7PkDRlsRL58/ce8+le+656+jYGKVPXDOjEpI1tuxY+OekEshFtFGRkYrlWtCxoSKz1txy/xvuO3PxDAFLd7AKNDM1xcqihly7ITB0+ebN8VUnfa0vXXnhuS9/+Ysf/fAHVfuX/8pfnZlfuvzSSyb16pWrcog0NrW/fOX6kaOn6BQOXdZHP2Vler2+Ul8nC4hv4isMPfHWO+ISpf534DCa/os/8bEvPvZVwXO+leQRMaxIVu5Tl6lVnutOhcCb4d95Je4xeASeyrkxyy43voIkGik36c/+fcGLb2X2ytxZ6/f7vvQgjaRvSKI0XskBt5EBmWccSedtcV22QHbu5PELJ0/1tbbtrm0MCsJr2rG9CMfrbGrpy+khLRurHHvrTW2SH4cuvA8OAXgr0G0QxJXYARO/VgXSg293+XUP0/Z/DYihSPEvlYnI11JLVVVBy/3C3/O/2kB0hLtMW9b/1jYanDcro6KzzzotG5rZLY5cu1yy6SsHJDvUr8AWFGgOfMAOGnCwtJ7TEQJgsgCICgPxgI+0s6P/yvWrjqA9f/eFrv5emeYI3Y3agggF4YICxwT1tLZ1s8dWVho2V3dvXZuYqG3OLGCOm3JIMELkL2sUtS8mpXHXalwYNqHTJmNK44Y9OQu1K6vP4zY22Zx489u//OUv/85vfIqy2LXb0t/WPTAim2e75GY7guSbu+jA7Q0ONBZS3Uqnb1zn/6t3WSTb3OlsbDk6euTocPfD9999uHeA6DD5S7PzXMTZpiAlWmfrwGDf7NWJX/qlX3nvez/86U9/Ti4A+Sp2t9fOnDx1/uyZ7Z213kODmwszsv8vzM9I1fvUN5+ws9VxVFYo1+rS3XfZIeS089sTk4ePHKXz9Xd1kGuZaeNraKTbt3UJoguCoSkMDbXKC5CQbdBke2Je/lq3IGOTyxL+5rxYBG1ePEzceFZGYThFbQvHsPnBG2aFchuOnz3vrRC8v7ezv1+O/76BgT6eDLo4TV2Iq7MGg4Law/fTWKHnPEq/RIJm9R8hlL6IhciV3u1NeYjOZam24InwI17n0EwpJ4PC6gNvfJNe4mHcUXY2y2Aqw/NKOe5RnOWZU6eluMOojo4dpTv32vvhoJrObrLR/gC+oLb2zjc9+OB//X/7L//uf/AfvvLy5dGxI8uLSyKIl1fqgk2law80Q2Z4Fh6eLusR70cEEwjG1ZUrSo19dE2k7ipYEz9YdvUugfvBd7/r3NnT9957t2As4pHjVw18ZFYdvMa7NnLkUGK4WlunJyeOHOYC4ryyIjRgDYOg6e3rmpmY6pAEi1ekuUn+peH+Pgkb+kaGTp5sv3j3RZnwcOHZqWnbQ1bmZ772B182fYY/OHLk13/917/y2Ne4xYhP8QxW5xGndIPw23QSV+YbMIXV9re3LdLU6ghxy4ln5CxfKq3AWUBNHT2TE+OHj7b9vb/zt/6j//g/EUwl+6At4CBgsF7Xc4M1R2ZbnQecpfBH/IgKF66k83uLfpm/fUlP9yvUnilWElJGqIa1VZf3iJbX6ixM8+Drn+UGB3+t3ria6aKmN4xeg1ovDB4z0rPC/KtA/7IeDBEsjtFOleaatMK5ujxzonfggbsuHh7otUuyr9NOrhrao0+xzWTk6+c6bOuQ9LE43XB/DUQZxqKFABGaRK6WOcKRS1ovVwHstx+ln1wHJRXag1h5HnDqZOgc4uT+jzDM8suf/ioVvVb8jq947kq7TAyNbdM3x69cu46NvPEND1oc5HJOSm/Mg3K0xVrKWmOSUm5suanq4mqDI03iJIIE0akC8sDDlXGVMUmQ1fm1rzw2L+fxcg7SmK45lXrl2pVXs/pnaW1ldXHJaRZSlfeIRsIXbLJZaWi6Nb/E3USROn1ijC90+vZtXC25p7G8xi3n5E7cvNbN/9DU09okj5A81g1ffvEl620Ggh6l1b159ertxiaKjhEsz83J8GTqKGwAi1E2b7dQ1racjb682N3Xubmy1b67PTbQd0Y2td7e+qJzyRbG7jqPBb/8ypUumdeiQLVwK12/MdXb2eFAp8Njx++5eP6bT3xdtsc3veGBjdUaXtWwufPJT3xqYnyCVmk7WIsE0o60NOSVeQlxbtyecDxif6tEbxvLS7Xurm6mZUjFgp74ArwVj5LJzYIIzEJdhf0KVQw9esZ02ly3/E7dhOD0cBzIKwgfUcOVkOietza4ytvD1qXjl4BN38LDsvGvYeeN952zbFklUPAuC4k0cipnzOKs8Qh7DD3F4RDdr6iB8c1lB4CdUyjPT0mmhhlxH0a1hgs6pRfZj5oVB69DAu9ytbjceFGyuIjA6Zljh8e62joIHzUcGx3Dke3Ewp1tABnsGyxcpaGve4CNZuke91fD0SOHOfelMMUo3/jg/f/ff/TTf/fv/j2m+gMXL3z18cfHBgecRokFU82y/G9Bg6DbcM5BQkUNHRInlIe207DTw2JsZ8y1jw4OY16kk7xLJJ8NHZJRP/zQm9/60EM5YiK2TszgSAhJynWltblHdlKrpz3domp0+9jJ02ZssH+EZBHX1N3jfIb15fm5wb52G0tZYJIH8SkCPnvY2Y60HlaO2GQCcKC749jIqe3No1K53p6aluoNhb3jofuuvviMg9zGjh533svRYyeBSH7Bi5fuErxopaE1SaxoZInBJ46tZFoaDk02Euzrm0srztZbmV/sHRyeuX3j6MiRH/nw+z7z2d9tEXiXpQsKVFZ6SHv566Amuxp8csptsAzOhXNDHmKbBmArpVBHj+EowveiJOrcltVsAw4IZYgEmmCyhG+RK6UvRX4URhAy9ggMK2aXmJGwiGBW4dcp/20v5avnFStRscMbrFwxZ6CcpoWOJG/eVqoStY1GLFUkqaUI2u1tgr2zRfbEDSwDVgj7kNEsWeC5ERbm12pTF4dG3vbAfYf6Ohp31lhE6xvLcNzKD5d3JMluQ29751Bzx/rO3EZzw4qNdfSAbeehN8FbJ5KbcSG/RhVlOPSqs0H5PNjveR4VgOwNsNjK1XCAl+2flPTNLdIhx95PzmmQQnoRA3uvfCd/1OlKJelOwJ6b/ZoC9dLNqgNaskgIpN39vY8/9+wL1ydOnhu7dNddW+IFEPAa/6KYY+tK+FScyfDfGdWW16KGJv7CPvJslGwUGhrfWbTDNJrcDBGVdAcx55Pjt29cefW973jz8994sru5i/ejtlS/fWvm7LnT3DIOJzvc3TcxOXv75u2WxCW3has1NvftsBy62LgLi/MdQyOEsnxtFvaWVu26aOlobt9d3bzy7PNkhoOppEpE2X6emrhG/Fy9Ol/pN0Ue7UG/TIz17F191iuugO21RTyp326x9QUBccPD3UO97UcPS6gvA2YCzWV5cSCGs3dDLK1tdJypmZlHH3n3P/knP9PV0frB9z8sdqO7ffPB+887l6x1oH/y5vInfuNTtis5fsOmhN7OQfKDF5mWgK3NiowXe9rSZpOXlMAcOmRAOT0L0CjUOegvsE1ETpaaKu5vvvQcLP0xNLyUT5KCgon39Pfs7mxI5B9nhgyg0e8Rr5qyvTlIifJS9VbD5vqOOKud1f6e9kuS/J07PTzYKy6mtWmd+LFp2YRya9h9h6wS2RyLQ28qNCoCiksDjfk16nzBo/AgAYg9/aXbGs+11107UItJ4qsrq5f5iTySDpq/JOmCZCnebFh18gDhgzjLRpIIOZfpMX5iDn9wOkqCFLLdMjyOALQyZ1vK7OSte+++8C9+4ef/5v/yp+6+dOmn/sa//Xu/94X7Ll20rhIWmS0qwje9EiGURYgAMGFffvLcE17+FCsDxZBohoK0aCkA0dvdcu3VF/GXVjicLe+7yLTTLueO9iNDYz39XSAnOy2TSo2SbROKm6t1oRSNEvO0thgmwd7GSbJRtzHY68QllWrebrGthDzB1w5WBkhinNlGHVkLDtPTk3DvvrsvvOnB+2wUuHDm9BNPPPWF3/scRefBNz6kt7amlThstpyouBaTDVPpocQrApDJSE2QAy/kZFtZWtzYblxpav3wB977wrPPXL9+C4HaIyMczgW4wkO7eloh4uKKwy5yoNXrLtORiNew8vimo0A7HalcAOa7W6PLxEssYcsyKOfa5zfly/f2Q5fScC5/0zOIDsndmGEqafWbT7fsZXLJcdB6acmX2AB22vVmbXGntnC2f+Se06fH+nodUSTinSeHoEJFisWvHV4mVVTzQHvXZIOkeyIPBynEFBnJoRw+Zej+hVUHLN/BBWJVadBz42v1pOLdd376taKI76D2P1T0ACSqAqnI9VKte6plmzTIq+vXxsdfeOWV5c2Gt7ztrRDTaU44MXc7iseN2HfFkWy4aDkAhH+lGhGzYFVc0w3tWZMqi7/YmAkxEDPCgrw+/uqDD9x3/tw9//Sf/eLtm+P3Xbqfy5cOdGhkVD41eR0wbg6IHMLc0Dy3YKPLKueFYw+5/TXZJtxxU/4GkAcwFrtZwhzLqsnO7tBAH8wnhsCQ1PFPu8rRjUDCGz593btE7KIcBzxETaZT2yO0Rh9EjfInSqw2emTEwVr2EzgUN1HyHe217Z3ZxeVuftbsxdz90he/4uh5QR/vfuQ9lObrVy//mz/5E9evX8f0i7K3e/PWBDs5qxqNLeK9CQDsI/yBI2drW94oOwed5SJWtae9W4MLizPUub3uoZ+qwwUlDlAZulQYA57ZNkyRIiFkDE6cSwwyQ+eatvkZm4zyDQhBKyf3bDrGZ2XBkQm1w6ODly5cOnVirLebCSXSeYGeTieVeY47rb6zQwCP35600TRegj1KjsruSmXcBhUok4O46PIMAhcx4ue9n8pMlFE4wMGus1xVVW4yKHs/1tfwrKw40BblYqPfW/JnpmHq9P84k7PLG1fDwckCuCJ33OL8LN3cLih1YFXi765duyqE69Spk//gf//3/+H/6/998gePQzIKxbkTx+AsnEjcU8lXgdfjDMUIYAYkLjgdcQBjLayXaDFHLAZZ7exQs1aBwr/2dWtGa/ZLWJGnOGKXsuOxLjnKhnusuTbLvhFTlEW6sVXfXt0pC0qwjoHCWKGww9S+vv42aqPdxDmJ1/7YlsGB3qwTdGf02L35kwrFCQDsCrqViCwiI4x4d5e3h3/v53/+5yWSk0r6DQ8+ODg8iNGThSVmr4WRaPZBzBqJ8VgYt9e8EHaWj6y9WLSsLS939mSDygsvvmxv4aQdJYu1tvZeqX2Qr+BTFjD/EpG4TrcJFys83R0SJxD3eIWZK6yj6APhdsURxMI1p14yZQCIIXhMfYMJ378rraMmbCZdigBNz6hMRS+JUxKLy+y6duztpElhFJJ6IgXUbieo7tZFH69OHesZvOf82btOHpO+nOPZq3IpUQ1xBShojNDPxjqBVWzKxusNNhIWERuKUKCSoCD1Zxmsqlzpa9Gc/ixVHbwLIK+7cO3qCgGT0YFaFDzg0X14hJm+evX6Sy+91NnW8Oijjxqdixlk55UikDxwjAkYlmolWNoMXyBLcmpS1pJTitUvlCBagQkI9HDh/EcRTGJ2W39Gho9yxK/WNlCZ/T184uzFs4fOi35O8N7WjkVRZzHKHHRj/JajEyccojS/bDcGf5T1Akgdf1OcbWyoVF8RspgEd1LyVN3O5GvdonoBaTX2Cs4+dwUk7lDGhdFIWkxHZs8JT2xu6e0aODI6cmSse3TISoMNzyLDu6Nh7fT0DeHnV67cFF/0xBNPPPtMFud+/C/8pDw/v//7v3/PXfffujH5zcefwnkoXkMjw1gYNz68W7MFwRfHh9TXF+VoEW9tbHEfbrGHxZRQRldXlqKzRNeP96fqJyBHehYs3sPlav7KJxqznTPOCbZ4OGYSj5sanhtVEZX8dUijtUN9ImKaFmen+3vbjxw+d+rkkZMnRvv7pIjnpa6RokKkVutbEw4nWazxeMnQZ1lesGD2yFUXBSp9Kt4bVmrkKeQhXwoPpW4qhj2BSFSDYqX4La7y7S3elap8xmCCvBMuwYoUSuO48w4BqKYiLpqsdThqqXmTGpY90pYweULYJuSJE0HXERv2HbZfUvwTob4+/+JLTz75hJZ+8C/+uJiZX/rFX/7gBz+8g+2tLkpyqnUuXPDIKRatDbKfvvTMlYylRC3DELdBZsTQJKX+BvCzLVp3eHK6nJNZX1sdG75o2ZYCZI3eRuKdtdrk9asLt29sTk33OtDm2NEjly50Dw6tNUR+CkqDmxHHCXmAVTkS1gohUYfvWLDhr3e4QisJYTtjdP+t7naeeqfgZCOB3OG65CQ368wmEWLxCly6dOnLX/qKveAnTpwmwwgM7lqwgmqkgM6LTaJp8UHZ1UIDipOWyNtI9lepnnT5zLnzQPh7v/vbX/naN97/vh8QJPfxz3yWa7W5c7dtoK+XC2sr4spedfCEvkWTLXpTGCkpHPBkuQMU9jARe/EVbxRRmi0q/oMOBu33Qnd/aCV5H5e+R3+tl0VShcuFdAw5nqkIBCyocDgUBht5sAiGogwGxJw/7V2tfG4OcBYxN9bV86a7z589OtZt3ldXLLrJVEgaQ2HUSJwxOePSTKrABm5rrQE+voN9JJIAX+vuigeqsO/vbmippbwOdN9DAfDHdUbnyS8lMq3uE0WGw7Z29Tl1Y2p28w0PXTh/9hwK4inNEiLWlP84GKJLR2jIlkQ64mvEv4kw6eRsuaJNAjkSZzkVuWuGYAseJ5uNVTaKs/HiHBBY/PT1m9duP/8S2SCfY8zxrm6FRU/eHL8tKBLH4ORpbV4Tj8P3IIpUOLzJUHG5yqppgVvhgMWM8mvoogFzhIrwuOCsj4zWkF3ye3TTtjDLpsZOKjrHUWdLT7ul/o656RlrzYszk0R+FrXD67LpzBbd6Rn6+pw6X3jueZk1f+qnfsr63M/8zM8ggfvvf8OnP/1pTdDDAAM9O/aLpi8mmx84+qDcC/jLer17oBMnoV3gfigXn7SeLurdhoPwz31EMhy1aasa58HzAmMfcUXsrO0I4sZeNiX7FYYbH0Pyr3AvWwwg4Q3BgSa4kSFwZlw8f+qui+dsYHJa89Tkgp+wqJUVOqSjL+jBtkLJ2Uc87dpo1EIprhoLUhYnfmhamLnUuBwCEKIsKJSepeT85pySifYyObhXWEJcPfI2+QzGUFVFtGJItnvsbM8tzRlGR9T73bYm65a2/0HLBhv/bMTgiDcSvg7r7xZ/5dkHPewJ0ycGoCCgc8IuLGzaxbDZ07m8vHDlicd/6j/431595cpvffZTH/7A+xvEXtUTgQNl7d+Rl0MSVeefbddXbfx2jqP6ST/aHAjG/YqqnbNjOaBE+wnuHOjpttYFvwkAPLz4bMMBDdO14FC7qanVpp2Rk8daBR1H+bV2nzhxrAFnJHI2Nzpg+ezMvFCHxoZ6F2dTW+tqbeXWzZurtXo8SR0dUhsuLyxbAU58ajF8wMHr3/z6N8S9vf8DH6Tt//BHf+hnf+6fLyysXNhYv/uee3ljnXlQxICIe/RnRYikcVhogsAQZquo1nIx2IhLuVxuTUw+/pXHHn3k0Xe+7WHLEfIS/YP/8/91eWmahDwyekgqc1nq5MHuaO82Bap0peLyGX2auhI2WjirX6GmThafdT30bXqhsRUSOqJ8pJzv318BEIaue1Ez01VXlZItayJQr1zYj7+V+o/ekg+1tZE+JM3qyrwMuitnx46+8dKFY4ODffZMJP583WYhG5ksvMWVEGMim6Wr2qAbQ9NSPlwy+5pRfbyIyXcUvP2uL01UdK4GNX/X9bzuxX3A5PGet2xv+tJZE2YWTSiO6F4f5Bxh6Dzz7PMWUR99zyNIY9kpsF1MTEe5xJWQcLao924TQk5/i6UFsLhbMCK2ATEcUEe6uI0KHklQNFupwZJpo7kpFmqTLAuzwmBs4rF7nx1g784Lly/PzS4MDAmSGBQWMZ4AuUUwxz1MCn+swGtt6GSZ40xB1qew+yLOLGdlFOWqQAE3fEMHKZnxKrkHFc9Z5yFpEm27oaddxL1Tzmw63TpyaIjo72xpHSy7l3g8sC3SvqnLku3g+Yv3/vIv/7Jl6s4uyXj6/+nP/YL09QKNPvHrn1I5PgJPcJe5ufkd9xxYTnPlG1iV3EKAU9w+mLpGY+h3StlfE8iBK8igTGxGzwo1pad0+XQ79/4vf6ovewM0OGvRsYK8kz1PDGK4AyQhCm4rwWlMDWvkS0Iq+3s63/nmtwz2i1RsWl9bSibU5l1SDxFrxXIkp/+gXNJt3U2tk9M5a2clyXDMU/hjruBodZHVYELfNFRqO75sJdAXdOeeTWHt3io/pZb01h+phbIGEU9Odgi758CiM/QO9etZHx/0zm4SG7l3dhgPe19Pm5PfolglSNuktbdw1rfbjq+vuJ59m1g2wqMvYLP86Txx0qJyJlrL/vv/4D/+N//yX718+cVTo8OWRbNkLhKpoy3mQmfXyeNHpW+DE94lxvh5jEIn6XTtlu/aY+kzBE3ctrRVK8uwK3OW8JcgfhbqfKp1d+f00aPTygCdpNA1EcnrDLqsjpPDOUO2dD1zmFkFMWHGDtNYJ+tVvLDkh62m9Rp0riUVEsdC7MSEoToUqY2ok+EOkTz55JPnzl145zvfKcfR7/7eF6WfMyOAYLucmbHIoYVIpg0rol0wiPliaorDOIDGUFT42U9/cmpmzgE1d507ze6zMHV8dPBjH37/737xS69cf3ajvnLs5IWO9l7mhx2fdtbrc0zsokEbkymo0LDgYXwvbnzAB64eH4Vx6blRxmleicoKa734/blCDcVijjdAh+l0HhE/Zpx2EgMVZDL7ZFUMA6k97WJdnF0U7OHYkbMnj9939szpw0Py/1pQbveWuQ9D4w/B/1vNOAhiY/4hbHTMF9zX1UftAFKAxRX7+uwDjyM6Ck+hz+9isIWi82EqXd9FDX/6V0xq1UCmr6j/1RPC1GrUM8+98Nxz1w71NjrWovLQRtSx8LKjxnSTVJZMiyK002SxdbvOEhJOKdIavm80c2lQmJEBMRa7USMxwRIn0mgNtRUMedOZsEhV2hFo//tf/LLcMPLpnjh+orb64uLyih2/iwurWCcsMq7Cfxo7Nc4xYOWmJL7Vq3ihcqpdWZ8p40fCYOi2+gwoQ6e4m1xDwVzPM4IMI0VEuPIOQBVkImOxEERJePgMhgcHMDSWhVhASh21jKIrYdp2U1v/4IgKxfM4fvVt73jHN77xxEsvvXzxwrnFxaXbtyd4a6l6GItVXwDABWviYjgPJUXxH3VF/mq7eLdWOb2p19YBBZVePHd+qG/I4sHimkyUYVZF9yh9LPfVw4Nxpeu5dshBJgzXSJblI+p0ma2aI3JhpCVNbhSSp71l59iR4XP2Gp8cFS++Yb/yxipJR9qpBM3y3Kigw3pAc9vC8iZnG2vASnXiQ0DfldY4YpK6DGPcuXk9Ti7yk9OAjeasBunjrJo6xouKlY3LLS20aw5TZxrwmvf39po+rg810q5TL7Drt8AJSVRa2xZm5uKEa2jAvls627P2gKvYZmIM0SeiF9scoCcGj+sBkIsfPP1f37H5b2ZmlmgTOfDkE19/+9vf+Z/9p3////Cf/KenDw06XF6HSTKqsT3WVutsDmjczYa1VAWFzIypKWghvFjviQQGmo09FlkatzfpPBv8wpQZuEhOyBvDYCgBG9J9BA2bO+zQw1oSoNrWo65IFBaoqJQiI3WVm6+/o0WkwcTtcYGqcLmnk8CTHNAcUdi3WnbtLWx3ADFcgWFh4nbK1SMJ8HqIxe/56KOPEBakuzRKXKgzM9NywB4eO6Q8gJrC5VVnkwq/MGJ6MAm9vuJEz5UVWxNt8FHYSsbX/uAPHnrLw2b91auX3/fON3Z37j7+9acn55aXZ2/2DR/p7ByGXcV4ay4yAPliiaahwrlw0iBDsQhMBrXICgsCSpOGYeBwsAAz0/n9voScZ2UaB2vJgDXMEIk6mHO+DADuVF2o2LpDntaX5sj10d6Ou0+fuOvEsZGuzub1mhRINKgsQTVZoGNR2VfdKocWYxfKRZu1AtySeCfRAiPDwwAEVbRqvOR0dGi2hkqsIX63V+n7ni/7u63jD78XuVhmzE8BBaTMV/pygJQ5zbdMqSeNK/XNLz/2teWdhne95aFE2W1uGHV4OajGHYZK8g4kKMH3opRi00NgdWG1SAzwI05Kjfn0f7mvZIx3MSpiA/ewNHVk+Ih9nZwqOKxtXxIdzMwtrW/uiutCqqiGWyPd8+lAO4mqROjQsQT6tHNNG0gYd1w46XxpiPFZDSakndG5PLGd1k0FYe+4oh80sSRYAGH/2rJAZi9AMds7plcWcTtXjirnDSmSoKVtcXVdWEfrzes3OHbySk/P4199DIgwRk6tB+67F5/ZXO9E9QQburO2gIclRsPGXYvL3W2rTrRdqXHH2KvUibFti0RoZn/3dfa+/NILCEpkOcZUOqWHEQaJR4/CdSdUy7jsq9is55zInaYNWzYinrMcZjS03vje8JCd9c625iNHD184d+rY0cOrK7MQl2nR6aRZZ6utJalflh0a1hqTI7t9cWXdLujJqZn2Tue627AUrBZPLkh6TfoLg7T6apBoDWGQc5YOaMdy9ycENVmt29GDC9vKhMQdlu3E1T0ecXABrpxP1uNMgCC92elplpdihES3w2TwSgtMtttEcEapFhCK2FQLIpVBkm6zYmOJZ+GUTWCrmSSoC6srzz//7JsefMPx48ekHT1/+hT55mSAOIIaGuR9FTnLZAuyQtcy9yWvASg3cqpwBa3Ip7m42CDbjkOoUXWr8F3OIZjNDrbnioBALInYg/S98sn29XWRbbCQeK+tTC0uw4xWgBe/xmXJQCsSW8dlDm2WjYrh1SSAcscCJKKJIDIU9EOVonLaKN24y7k0fvt2R08vTCKOv/rVxx599P2WcJkv84vLf+dv/6//4CtfZRw4CUiaQGVanSDX3iVayuxI4SUtSX8vA2LMmTnE8Bvuf4AdrXYHgXrrF//5zyUwdmv9Rz/64R9671s++sFHv/TVJz7zO1+enbnZNGyD+4Ad8pxeoT3CIMgWqBc+srdFwL2fqh/KljpfMIiANM6EyNOK/DJHKfd9uXAVlUPlQDj9RChpN8q431yYV0CqF450d2bg/Hzj9urxwcGH7r107vgRaV6a11edgMMYRypFcJKMO0K5IImdO/x1WEzcG45WaGtbbRBi2wpJYC+6ABGKL61W7cbLUI1h/2e+UME+9P5MdVXTd2cVKKZM4h4r8VORnWWaAYhPZm7pyWefBTqHbSCltdW1HDwBhlA9Lj4BZWWHb7wO/oUDsaFjcqkycxHeysNDR6mkS/h+dFLognr2GFshu2w+tylXKPN9b3hAwPTN8XHn/Hnx0Ohh9UxPTchGV+C6uyJDKeebr5sNcliJlp2em8bfw1vY2rpS8QHLuZWrp/jNMSidwUkNc7G+CqqVSNCLvSturCSUI+AUnpjEMgnG8NxwPYd2SSxs57+cNb3diHRNcEdn/9pqXXYeuZLPnDt77do1Jy/Ozk3bGyRn8+3xG0WcNMihxIUFJriFHMByh3CB7CREqglnwCWztryxLjEXE//WjZuOBHe0C8MJDochvmajBJ981T03iEsPXXs3ImUEW0t4LqbI2MFD3EjJDQfgYtaBkd1y7MjI+fMnBvo6lxemO5Kzbx208DTNoOGmqOR8XZ3MLbLD+qjz34WBmGvhSS28+ZMz09MTTmKTxSEhN0dGD/O/Hx4dAWtfNZ85x0bVl2SnJX7cHricnxeSrAbjxlX1242HLmhDa8TdFxaXn/jGN4+PyaaUsJwTZ073tvTnB+6hrOGknIa0KOofI9Nzxkdffw+xZAmF+wkhnjh+nFEJ5IhZ/rwrjQ3//t/52/+f/+a/PXryFO+Umlulv9va4mJSz9iR5FTSE6fHkC6QGzszN+h8Y3Vzu759Wyjccs3RaluWgMUa891Ed4kk1hbQJtNS0Ti32ptvb67/W//+3+4cGjZ6DlKNTTilobVxcMy+Q2lOOjh3IOvW6q49j/Xa1mZ9VxBDi/OfBZznlM5VHVuYnwXYB++/z2Cdty0bLuttcvm2lK0IkD/N/riRQ4dPHz/2wnO/ffP69Q+871FxCPKDUgHoGqiO1UmG800MDw7CYwRsksXPHTk8SuEilbViK5lRT01P//RP/6OdzdWrLz313rc+IJfhX/+LH3n03e/8pV/95O986fHG1sWxY2cF4DGWVCjFNExyiIZNCRQkxgk4BHkK1UFJU4kCWTGeWzyCeKbNpgcxZ05PKQqZNjPpPo2uvL6H08jMV8Dxk3uKUor+oQuCKebyS1DHfBUySPx21H/T4tOz2Gl+gTisYJd6eakF8jO0t1eXj3R13HX63PnTJwa6O6X8b9vNvhjqEkpCft7GxEmDBLfHIuZPs9spHi3tQiGYYyLOnzkrzk/wLjWB1KYAAayfqu79ob7nwZ0/6fxBmfS4UHs1wAo4PivkPCj2Xd+UtmJEqyEcWXvl4jGADyWXeIe1SqyD3tA/evixT/2uPGVjw+0P3HuPqWLJ0lvhMzLkbMYggMclVIr3gERcWJlG8qaQiIgp7vQ0fkiBdmRAIarCTrOabo6CJjGUMmT+fX8FBd2+7cCPtqXlmlS4njgKELtbXlkdHjnEDVC8cVlEFKi5tFoDZ61bwxO+DGfUiEEZHaeQr5VsI+KinRRU8RktsVyBc8EdoHafK30pPvQE2uTaK9rQ4BRio0NQiJB+Wg6Qae0UJNDUhmXbJPX1x79Kg6YivvDMMxcvnsc22OMrazkcEOpY6A7JiK9o5Up1wItdyjQJzQU9sU3xHxIkI0Nog7Nxot9eWMRPM4zoXbmUtfCdmx1rufEKgD6LVu8N3XN06F2owkaBM3hU7qOtbJOKHLmd7Q3HjoyeOj4qmTc2I7yxs8XqOncWpTpeCkOmxLN3+RWsvM8vrV+7Pj41txA+xs6yD+Mrf/CYGzxo7Nw5pxxkBaz0mFdZD/bACLESTRXXkJ54WHofMeVGGwEzPbpc7v2typg+m17wU3VKoO+hEAsS2xObp6VIg0YcsWklAo0l0YbwYl8wumX/SOTTVkzUMgw8Ts02V2kikndzi0w+d+H8b37ms/z+/FEMx2zvbWiMmVZ2GhMwEkbokc47WQJUkvhlpdZOy19ebLdM3dXOsUNjp+ZA3RJiT24oWHxGjY2La8vrbU2OEaG/c1fRjlCLNRddZiLEL5rzfI3DCHLGmyX3zta+pfW15y9fkTjaEnWEtgszam6xGe/aqzcxSWYit5p0hqfOnmnpaH/xuRd4hOhELC1Wo9PdXnjuWbYXa+naq1ePHj9GYJMB9M+jx05Y3Gaw2V8hxqjsgbC9y5kTckg01FZWnZMGaP0Dvf/hf/R3hUT+/m/9+uzta4fGTmwszx0b6v1bf/OvvPfRR/6fP/3fPf/0V05fuFeCWIZfT+8wHrFSqw3Z8ra2ZP6wEvIy/+c+F8xDjuSwzfxS/vXKtp1jGOq7jY5hqYqUcvtTv/flz/zHWEhNraMA1IEaVInzb6ytS9sAgAyy5dk5rhvpHQ8dGnnrXRfH+nuEeTjhgy1sdZKRmzkqrhv4GnaStYR4joyPS1WFhYGaUfNPC85zY4RlMBwFhhMVzf9ODvKdjkxtQfNyHdx8p5V8u/KUcX6sXJB0j7WU+aJ5eEijb+0iA3bw31sTU8+98PzSesP7Hn1YFDzXJEhs1lcwxkK/dLHYwVCd58Ql86n/Yhbkb85CwFNlMuBCkzNJ6Ixdm9GuypXlAJeQqjDraHM5pKXZWS47Iv0dIqs8qsUuLf0NjBwWiRAW1GlnWNiInuPFXM3oK/WInkygG8rMYo8wTRORAWa+8kcJ99UneVBNDcAq43PvEhwcqbjHsgKjXEVEGU/BJYzC2FXlE3PTJcR87erLx48fdXjf7Rs3pAXr7eucnpyiHyjFE4stI/u0TvGPRxTmWGTGuwOsoKmDJSS3q0WLZQNhXKhVl7TN11JZkVUPPalu4Ll7dbrcVPc24GHfxqiT1bh0ALzjt060ZAv/t7MEuGakBIhP1KsMhWTY3tG0mu1s4JS34gLTRSpNyUqxtEKCJEEqlr653TLmdHVh7wMDTjoG5QCU9zOHZCYTpNiAqkM+o68mqXpyBFWdrn6q7oGvutF1N2UIPjQkdmVTfD03BYNraKCXqaiwddBINVyzIZaEV6ySy5NhAwB13hotpAS1MsXgGdcXerboIXU+cqQyLC7MSab2lne8/b/9J/8d7m4IAjucL8qEj91QXEncl9lAAUmDCM32mnfutKzOzI52dY91D/R2NHbIo920JZED0MXrHTvYdjARl41tDiFq2jl8aGShcdP285NHTxw5cpTNwmqWcMqiFtlmeaYYWlR9biAp4GorM6vXXrYp/eri/JKT7R0M6ZQuHGhuaapr0OkyHbXl2uBQX7OMTNlQlrXLrt5ecgvjEXnFZlyYmbZqtTQ3+/zTT508fVqRGDeCSltbhRGhuEOHBrHeZZsZNuubi3WTdWVuDjMsCVYbnHbEbn3xxRd++Id/2H6R9q1Hx6+/Yk39wYfeAnd0/U33nf0//Wd/7xd/9RNf++YLdgIOjx6rrc5hdJY6paXlzAsjJOqiTWYaK8Vb6C56d7QS9V98DddxUU3wCpOYKL1qxisc8JnH+wh98GtV5jv6TJSehpP0QpL6bVEiGDLeLC3nxtzc4srilj29Dc3nxsYunDt75vDoqKUpU0lOyW2wQ3sIsoZ5WT2DlTDT1/IvvdOVorfo8N4AYIEXGqQ2kVMFvsONBLBTIeBqgjH2y/0pR1EBpCr8Z4HDn6Y59WMQhfgwJA5XhO8QoWRs4IulzL701LMvvny5u73h0fc94nTB+uJst5Sx9bUSREf7pB1Fc2RQ4eP5b2fbiRe4Rbttky2oIYPn37B8XjTv+ATCehE5xl4gw/UOTEhb0LNMJIi2oXFZdoTxm7cA0LK6EE+aU2EjEbHiQWAYaiUh0BLWZPJUGd+D76grkycvJnGgbw51kaS1kkRZ4ivKYybPwwpEBxPpK8oX+BzWUaatKlNZAWZ2O4eDhMGQYIU3m+8kVsGfbt68fveli9K9T06O84XQMRiYERXiTaIEQy+MnzerVZb2kAg+55t6iAA8De0k5UzSmBIAWCoHTpXDMZ0sYCSXyLF0qXScTrzX/2+lmi7JYGh6Yscp00qW/Tpu7D3gGpAXVYYfSCyykeYrbwG+z8/B9ZLQfBE0TsLJOg5/Z/vizPT4xOS8FfjYW8nYZi5aRgaHQJmzWySTNV4dNZdFRu2t+BnwHnDzwy6J78rEVIi2TxB+8iTIsD8TniA4cMa/JPGg1Ds589BIBLf1JtFmOZ/ASEpiqTAXWTME/ncww0SFSgSbHwM7i6IxPoGa9yyZLO0tkNqDp7u755ZUVj/24x974htPnj5+goChHOom5RoBmzBaLfHthmCHuNSbHWv2Bb2YO92UI06P3ZauVotScWbgepGiVV45dh1JvrM1h1Aad69eeWVJ5Z0d2xuJpg+OsvrKlmPmSFH/t0V5Tk8uPPfci7fHbw0NjRwaimcmOlFT28jIYdkkzeDKyvLpk0ecFkzhsJ+Lcyzz1NJaX6uDLSHnlDi6W2dHOyNAlw+Njoq+ghxIcXnVCUiLIyODAo1DevDN3uzeXgN0kBBWFWW5taV/cKBWXyMjzec9D73FPs8v/sGX+X8v3XufKLjt9fkH7z555u/+1C/92id/6Vd+88arzx49fg5yrdSmqWwIIyhakNKN+lGIB5ykk1O3aquLwopZid2dslWbExm5+yqvTkruIwMc+FY0SD0HTypE/9N9Zplod7O5QzRdd0cW3O2km1+RtzVSvWFzoKXl6NiJMyeOHj0y1iPgTsdlYUy3ty0xUWiLgzgiAIuI7p/prThAoduw+6Tm8qUwjrixCzPZ5f8BCsKVaYnzmHlaC+zeH+Kfrvt/RKnvChTftq4os5FquQwiVzUNyATCA7qny/zjTS2LtdUnnnl2fmX74bfce9f5c0vzczbEWQMTBGGxCgA4YjAxN9xB1HeiEy+WgB1PyfEsuEhh8TLo0eUHWzrsCLYqgplrX6P5VWsqSaxyDibk01+usY8brSKaOnJUZrcded6K21C1/Ox8L0njmFbj0EfzWmdxCTrRfongNyl5Qh54EiePUoXVKO9iH1Tw9Hkn9/fNylC/nJeZ3lzKKg8lUo//y4KW52GA1BmPWluWlhdkfPSV0x9TRpsCKxbm5wwQxzcKAZ9iIrFKqTGk0eFbAvIgDc9NQQ6NYXH2AUlqYNWOm4tqSx4jTERAhoFTZq18mqbqJv0plxsPK306DqnWjvXlHKMSVZMrc3OL/0Qdww6lcoJzB+RlibPQ4ilRBEhb7HOKnBZlmU2g9P1wtq3teTl1FhbW1dDSaYEXyzKPLTNT014zTnxEvFRgonEfTk/NfAS3womTTSzBNL4egDuotk8Q1c3B17xVgcNqXTawJRUa5T3ZMITo8ElBSvsJI9cTLMTYE19kmZN5qP0YPkknkb5wAiYedX3DQ+276eA0odpsbExNTh4+PvuDP/Shp554Emc03+JTSVrK9ezkpNdZlAMcuBh08LAh9lpzw3LT1rJsIOIP1uqW6R0pu7K51CK3GmO6CDCL3e3hr8EowIEoEJddQutvkf6zIUuCNlJ09Qo3L3FAGzmSjULOif/yi68sLa7Y/SvtLQSqrTDNrD1Q0GXgCgJRIniXeno7tjcFHa6x4NCQSKppoZ9NDRR/Pg0Q6263QaFn/Mb1kZEhji1mqUbtTMb64agFGEAh6mBG4+CgtWzp/VYdlbc0bxQCigaG+m27F/NsraF78HBH7+DTzzznPIpjJ447aWz61uWevuG//W//Gw/df/c//v/9028+8WR3/0jf4ChzjFJTvCUZO24Z5anM5LolC9EPtnM3dTvfY2lxVpSbI3Kte1EnFAZtVzXpebdcvlZX9fXgefX1T/zEWJzXu7o4XV+Mo99E4C42ZNMOZDU8NNh3Qhqw0RGnL1AONutLEqpb200MMlUdhhd9uHSL6A+DDI8SWIIX0NSQbPSpdDVf93tT0D4IHwGw7cxYOwBMHXVRXni6197Q9ov/CX8Phqwzf0LR7/bnfQjv1e+PJ0Zth4rA9BanpVMGOzuffeKZx77+NY28+93vkq9tcvx6b2sDnz7bOOZCQyJwcFqh0wRndNNsHNtpa++GEu0teIWTBveYFEeoYATUQtGt9nxC9SgjIkfa8K+G7pbmgf4hoRkTk9eXl+r9w/Q+rlZ7yNdxKE4kGyt4fLGCeHmyt7fgGUKFcKK1opJS7jUAteJSScowHtp4m1/zSWjPcCq2GzrNfbhTdeVrY+P49GSl1bnXlGI+IUNF13i1OrE1v2aWLV20tNozjxnalcRuxhjRLBerHgYd0k3uBF4FBqWQGJty7JaAmgLpirDVaHodLyUdvK2ja3VDpBmffBvDCM1CzXQ7Kkl6X01WWi9Pqhu/mgr3DCU1i43xifCAl9umuKd3BgalCg73p7MrhPkLdqRtcuuTT0ZHmW5t79Q13JdgEyDO+yNpQVZDKDQF4dMAymDq2S3MsNEctdFQwU6eCawZg9aPmAzlKhOgM+mcz+qmmobqs3r34FeAASe9oQjbN+ESHU8RKPMNSUEhc2/auJpWtpdleqKIi6EXwQLgpGpkeqQAn1F8gibDNPh0z6Rwuzg/J0H/YH/39Wuv9DiKaHvHaWS+vuHeeyRluDE+fuTYUQlahc0biYG0yqzPGR9VAJE35IisBozYuv+cUBJSnELR2tjCUddKK2br2he602iNxHkR0uAZJg7uZX0wzOIyxkS4GlncG3ae0sRVqbxREzdWpOk9GrI0j4BsNOO1NzTPpJvfbXBYvLFuKqPqBMvOzWNJCJChcPLEicsyYl955fjpM0iF32lkbGT06PDAUK8uAYnwXHtq4uyjKbS3s9ss21lAo3mZwsnp6XsuXZq6MWFb+v1vfNtjj33hmeeedUjSmx5+SNRra/vOzVeffvDS8X/4X/wn/+M/+5Vf/JVfH39lqmvgcMfAsWhctMBCD2XGdS3+PVnFkYqTuq1cjQz10Tect4GWgcqvpSTwhCZfd+Xpd2UBUFycaUFrdGCLQAvWzUBn5+jA0Ehf75FDIwK4suDDObVUQ3F2eHb0ddhvsU9N2T5EG42OaK9nDPaKeWfDsF9K4BAM9Tw8BG8rpq5CkLvQZ9Y+s6BnOHlWPM8w+nWj+9N8Vc9eJaV0avseX+l+oHwAf57Nra2on7SDjg5s6Gvf/MbV2fqlC0fF/9DlcA34XpMas8OKrghjCkU4WkP2DQk1oWlhLhsOjm9u76TpymYoUdLeKDiheUkpMrhSUf/zHIdjZcnYLAC0tW+9bWdwYLi7e9aGRPqQPMok6FY9TiYtIZ+NooHLAYANImdsAQplnZ1LEZrR/AwIB8BwyWpfszRK2cAqYff+Zxb1UQzKzmeZneq+8B5eoI7QgguACtiLwdS4Ky07pkm602M8B6v4gsoNE1wO0e6O7oTw1+pzO/P6gOlQSIPFOTWqSD0gSsB2hSuQg5ss/NMdPcoaHbpuk4qU46uANvK1eL9Ld/Y+tOjyJeMuHfA1s1joBViSqcoKM6sIP9nkzoKQ4sstDqZgNgBH2+EgS2aOjdV6/9CAiMGsh7YbuCh8Nq5t/DvOGLf9Ij4NyYXQc4GvibaXqYSqYrw5QjbJZyjiPAnkbdUzs1JYgdzgDJCNiI8ikz3NIHReuVz5FgHpOkD30Iw3klV/wNFYIyNTE5OsAWuVnRJ/x/9qtNHsyFbnmtOydYy85WOJcM45CYyS9BZOABAHAN+zr5AMR16pSxk9g7H+2F/42G996jNJ4+7f2qpMrTyb3HaOfmU2WQaU2e3wkTGDnxUfKgzE6bs2WAneF+ra5ADsTUv2cRHAIqbdjsPcHDBDNWlaLnaitrIu7deWVovQxoov8FsGBjZTYOatzazCublZQm57I13VQz+yJc0lbi5k1DSwohxct1Z3xFhnQukadhw3JogRBMQ5WP6anZ4SZ2OtmjtrcW62t6trdmaGVjZ4aKQg247tlFu7wm/6AEHrDjrf23OvG+0cTSNIg0FbZADvadvkog16XW09Eip2Pfn0s50dD8qI1bDpPLXFk6Njs4sTq+sNP/Vv/UUHYf/sz/3S737x67utPdstljyy8llpRoVF7gwNDS5xIk44mXntXe96+Md//GO3b13/Z//8l+X2Yxsqu4cBmf69q6Dx3sf+s+/wL5tprXb3xTN3X7joqJa2nd2ubGCjnG92YAPYidaxfnn4olgxAuzobqYimkgsHUFX0Y1UvqBZcDMMBV6hy2IShOaQ6EG3CiJnkQBHKIfLliAK7AMNePU7v1QIBNV7blL/95T7p/JvrXBft2u20YfewM9LoXjm+ee+8dQTvW0NP/SRj0hyJVx29NBIy2atdXc9lBWMZg7h78glVIDfJoJ7a/v2xDQ0lebFslzCoLExvLe1JW4lCiNY+lqUa04ajmRbhiC/COP1+g5lyK3AcU1gL8IieXtQBF5fdkOGnuAOvqIG/AZb1duKD3KvmhZgt1WnmL9uYVn2MKa9YnQWXoQRkli4JxhTJffFQBEJhkWHrXroh/LPLIbumnahUGufherOLqPaSILTbZyKJrUwt9jfP8gLfX3+ipUMxnt/T//8zmK2KdE/w3Sxfv8oGHYFqzC+s4grQIu5QgvNhBt1dVFrbYzaXs9eM8xM6xU+vO6TXpiBURZLXdWAbf4HGQu5JhkMBST39XcP9HSSdgw1Q4IAYY8YZGDCs7KJe8qlI/jTecRACPkmpmYkNOCKL6DTPXk8dFo00a4ENVziSRaPsRelO2WglInRTajjefQC3nDoQJQFBdTK9tvDZrpi6bcHQfR8+jF9C8lgW3YyczzxwjuGIKk/tndgT68kx7ADOdJGDFqdmUkLq21eCzb4F8yGH5FRohRBmE7WV/LYEBJsHHPJMpq+dev9j773+WeefvWlV7QuBGhrYFBz/qXz/GKrK5srixaxTZ8Yr4gp3n+KuvUeQbXS3sL7wKrIc4Mpf1MszBR3UVZkg8MwrV201ncEA+zw7gF5/GglYXrzVmN9xeHOCy08XXVisqm3uwPsZaMjHjr6e2wzYGgxBHv7u2hJRbChByn92kgoSI+SZmbmCRVkwgC1OP/q9WtvevjNs4tLqxLqNTcfO3m016a3Pv5EuwzalxaTgfbQ4UHs3lBQjhhZ5l53ZzcgEGOce1+rffXa5ZuHhod5zt7xlnf8zmc/Tvx96UtffsfbHjbKjbUVXkQSaqM+d/eFo3/7f/Vvvvmtb/yH/90vNrT0NraxpXhTLK8aZPS+V29ftz1z5PCoRBtnTh/72Ec/WKvJpzLxi7/xBSqI85ILDw63M2c+UYS7OB/LmmtgqRbo8a1ctFBj+aH86Pf8DTtww0e43d/efGp06PTosJRdsiNZU7eYs+XYvFTIGZojSoTL4eiACTX5Xqu20ylLPhYRwmw2YTiY/KEr5FF1tWo5RYoNwHOpTmDHdTwLNQblv00Vf6jOP78HoAfUCE0H/Suudc+IhIQS8r1KZjg5O7+xu/XNJ566dmvlrntOvfeRR3Ah5HN0qG933eqrExFYkmsQ3XoXLx948P5mBTk4iesDW2KD8JedFCixHhg3FxBCjyWKXZGjlgi4U8L8xBPbu1ffrTMZu7u7aqvri86LZa9bmq87BzEBHQWk8VN73wT5SXMeQjWRQSbLSgBotzkFNctsiRs0Fyrc3rbGv3fdOaHVNIGG3w6myU3Rk9L5TGVMW4CKDNi0Pm7PjoOek+fKS1nJpkIJkI8209S0vLp2/dYkv748u2ubu22t3ZIBFDsganRKKIa1NcWCAW0QAHIoojJ8C69vs7jY1rwhRGdDyERz3Xk7Fg2K4zEdM0k4W3WBMDpEN8gy8swVxdmIzUhmN4zeULYSCc42GUjwOm1drz114pkiDD2OBBkTzGZg1SK8e0MdQn1I8SRhja+WoqYucM5OHh4lwVVpj6mFTEIJ1nXs/t1MojuGgBzZWJIpJny4QhXWnj75qmhoLF2LLacH8LCskmcUwOlRBX1bii0ALK1t7DS3HT59yq/y8Bq/3vsHCJuBXSxJCIXPslsESapVB+o8UyJBHbG7lpg2k8hBBHCUCKdLCDVjE0C/udnZj/zQR18+d/nEsZO/8HO/YOV9amlFIiD5emZtfZMGpKfXYaNquDUpeqeNK25FnmmnJUR5b3USWSx9oV06QWgBTWMzLi6M1tTNrayeGx7jlF9ZXaI4WNhuaG9a3V7p7DvGIy9wobu5Y1bemauzTTutbJgmZ3YmrpyM4cqEu1uQeW19tW9A9ouWQS6MgV5Q7O3ulSmIBbckFwU+09pp00xjo7Q9Pc73olSwwyhNI6PDjkq6/OpL5+6+C6+/em382PEjPKENYpraY9oTqydOnHr22WdHRsd4MNHz4UPDTy89Zcf10vTs7CuX6+PXBO0df/ODHW2E09bS0sbM/KrAWfwR9NheloBsWR8dbf2RH374/IXD/+KXPvE7v/sl6tHo2DlJuuqUNttjBg/dvn1teKDTQTtvf8sbNutT3a2b//b/4qO/9tnfHp98dbBn0Abptoa2vs6e2ka9oTCMLT5kmFVUhQTbc+NSyOWEzeU+V7AnBBNuBZewm2AUkoKPW7uOtG/YWB+1Irm5YcNzN70EL99YJ7XiaUYXmI/CJLZKmrmVMTFYXNXARxfRlUOwEzASqV6uoi3G85xvmi6IqJKKLxFaqU2A18zc9LHjY0CniHC48AVKKo3m212p5o7rzq933iti8D5f9/COV//I2ztfKTCMCGwrWeU3G9o2dxwOytYNwjlng8ZoG3ptdtoJB1958sUvfPkP5EF79/s+NDTYh8IZiCsZUQflEo34ZH4bcskmD7m4Z2T2x0Ya5RUoq3g5fA5Yi+adda/wcAOptIMwQMPPMjElanlpvrdvaGVhXv6u27cmrSI7KRYVmy874S22GmGcQSXvoGDERC4Un08pgzckN0HkAUnc4HArTI9HI9lQPBzo6VMMYzkAUyUGGNwmCPfwvPoVInmSrS0ttoev2uxGv+Qp7+hMpsX2pA8QWiJYgmeJ2ha/NLbW0987tzB9+sKZmeXF7db2ucXFtpmlMydOyrdD6+vv5n7IHmDqMw1TsAlpqiFQpyoDjnmNW6C5yX7gQ8PZoXn60LCaiy4Ic4WUs2rjxIZHQTlJLHwtyos4bsdDtvZ0CnOrJdu8+WjdXF9GOkrQNC3FDI+N2EVrXR4QHVODz0jsKcHMpphFa7jtiQjnGNcuHugMeELi9g3OnzUngGahh65EWgiRKKgisU92HwAZnMf4wv5CT/lrDsAlY/O86MKxbqzfs3p468TXu+pltyRp09oavSOXN6JVlTmAFYWoshAh09MuLb6rrx+iSOfAnvBznLzFgMirZekJbWdLhUKWVaz58aWY7GRHQMfBiWCdPgWLgnXFW51AIxzccQ2XL19hYbR1dS8mNH7LPj9dJJGsfNbHx4VROmMS0xQblYPQOjqg0oZggbYuO7XUSHHSBuMKO1H/JtXBaT471HbZNPsFdTpDVu4PQokotQRrQZhVwktXX6pT/x3DINY0kjCYoMcBZWpq3nG6/dpm7eTR86xgwT8jQwMLs7MyIy6s2iZjOCX1cw5XMUI9AZYwFLRh8UEowMyiII7lwc7hpWTKjaeUx8mQzRuAVQaWHUyztdWzZ89KbW0AEzfGRwcGpMB0Bro8FlzeImXlaTEVN8cnzp46DfLhwDL+O/RDu4kj3nzw0rF7/nf/7gceecs/+4WPP/n88/3DJ7r7Di8tzxvP2OHh2zcvHx/re/Ob7u+OC2bzwQcuvu/Rt/6LX/70Zt1Oz+QunUGuTV2DoyO2LlLgWeDM6iTcEOoHBYvOEhQzQlpjEEvDYalkZMhRqrr1dVvMwgtszd2uj7EhV1Z21lYty0sLRVsJLRS+HyW3sHjwVaErFcHyworLR1Esyk+lzf278lsZe17wP1L0STMs9/kQDrdUWzmbuIMwo2A1k8BU/mt2EUl6HYCENKAe6ssw2MFsUGdxdfa2ffazn7UP6OzFez74gx+2pBiwA78DSRS27EfWsm7aEvwpP8rOuqxwymQnKa8Oz6U5AhmfLjWjuoAh96WmCiDmEcbzgexsC9CQOMFRFkuLC1zpi7UkrIXkIEkBh7TUe6avKQbVLPSVuv1m97wmBLoQ8lypKo5zFd7QJ2LLFdfUlqQLcRQo6YlPKKGero4en8bvyYGEgKL2DiS+p7PsaS0pWGixyddbDIu84SpmYkBioM1NKAsfQHj1hp3x6RnT3ts36Kg4CyUWTiSeGeztiV1LpDTuSE5TRGExO8GEFCgCwNl/dqXIKa1L2D3OGQ1+c6uno7NilYrSN/nGV2r0wLX5pZoIdzas15lEYCsHoz1M2AXe4GLm27XOZKFWoe7WxtaF2UVTRsGSRIOC76SVTAFZ1NSkRjo3X4LU+hzqjACdxAh10MzSskxo/P0gXAjRi2GqocXiDoRCajFfleDyHmW2AEo8TOSnjpmF3t4ESKjXCPW4MP1IDsAg1dJpm5gLi69mBTvN6kK4m8oLteGixbbJEPVdD7aSfYUVw4fFEWs+/ABFTLY+4qelZIZRtI6kuU900Ob2iRNHZXf5wpe+6DheCEe/lg+Zm0h/EIOeUJxPn79wc2KCLoPdS/bYRdJGmbBHNL4eNcenwMOyz1lslyN8Nxp3uODB2XoMVqtDajPPtFjKygZeIadcrTY9O+Oh5vBy+pcxqjCfBZgyYVPzu3r6IDyLioEtZYXgWGsuTU1lwcO0CCrItpI9YoMu8AbXS1qSxqbbN8adSsWF5VhSAG8Xil9ti88qULMdduKjBGZ6aEkfVMUsDcl02NFBF7MRxTgFtF159eXjJ06IoD16eEzwl3mvaAZkzVTU5DgCtt77zrc+/Oa3fea3vvJP//m/euWFb46MHRXS4ECihvXFdz78zgvnTsxMvbqzvcwE+dhHPvTFz3+1Nldzyu5A28DUxNTUzNTixFXqAs6UQCV6EVtR3QnLFsfdAfk8dl+x/kR65+Sv1YCLPGtutUfT2iPe0dvcfKSj5dDISNAsdBqG7h78yV3lDy5Ac/mI7P2TrmC7Af/Rlx5yjcqJIiE5pIKQyRMHtkyMf80uipGxACF2VNwPYRcGKP6EiQuOn/vCl56/fA1S/tAHP3Ds8Eh9fiIWkBdCTLGCwk/xeq4znBcOmBoTpkjhCWR2AXvo1NB9Rhq8dlVusb2fTJHf0aPDz1esMi0udfcONjQ4eiOK19buyuryysYS05pZllOb+OtyaF3mPThczQuDQyXc7Z5IVNbZ2SabLmVUN3I5TgMvZKvoSMnhAx/ya/Ah6OE5wXVARdLfRLlal+lP5+wXsiYtncFGrb5iEOozudFraYPSZrZ31BbtXaD1dVAf5xaW5lY3m1sWr94ev+vkGf4GI8cAyYBwu93kCEnYUuFgCAQvCWx0qLl5ubbW0bXGHwxnRNloK91szRZonUw/+Uh2pAnQEyGv2V2sJ15FGxsbdqS3OkcKmTO1suhsA1pzy1Bfv2N0mta2cdWZiZtGEcxsaaGbumhZElLrjIakohSCtTw7Pz0b4JvxSp+3a5lHM2ozTM4k2/oRUIVogg/RhFAQkzpyOF6hIjV0l0tO5/KoPNEqVt7f02sWATAAXZaSQNLM8P3qUnN1ZVT0TNwctmaaIzASVJYrRao/5R6biAHFx9TaGfW2WCBh9YDlRT0taJJOBs/pm+3ZJ8woGx4eGRs76g2uMAxCjPGtyQlJqq3hOJydJHCOXM2J7HRMccrbGxMLZC5DYNMxAlQeHQMI82f6/StQIYwalqyXbta7nP1bX3NsBfYvI7oUQPgQ/GsUab0rPeom28LxNVItQoFiC2KsMEPHQ0jG5H/xSPC8gwna1kyQ9AwMksvMKagB/4CUzZUl//KauTAuqxfdHafl0qI63bx2XZqHuaWF+voazx3O7iQDr3tRkIWwBSBqGT3Mq2MsBbYNdg2sM1fLEro5AhaJDIFiekqy1VVb1CxFVF2syqOp+tpKp038jev8WH/hR97/6Hvf87kvfOW3fvv3nn72mcnF60N9LQ+96ZKTdQXnHD5y2Fl3D73hnjfed/G3P/Xl/o6mBy+d2zlzinQhv+dXF813dle4SE6ph6iVDuqyyFiYjnYN0M4+n0TE6OhFE2lQEoNDLUsjekfhb6nXetujLRIiQZ34iveYUdXnA3YUTCrQ9rf66c7PDLNgWPXQ129bLDhQSoCPrdfoCjAtzle7KzVdaOXOiv/nvMelSUzcISOOXU+FRSYhN/ELvNnLq/Vf/rXfrG823P+G+x5511sXZyaw+RB6kDMkX13xCGdPbzLXN1igdZwO3mJzOf5T6N0cBu4F8pUACL3kChhdB1DA/DzEbnL4qOkWmSgau1ZjnZvBdns1Wov9uup08NrO0rzM6WXvQHgCoau8qaGksyE0AUFz/GPJBRBEEviQdeOQvHt9U1ixvFK0+6obvrqBKjqADKEX/LEIoaQRCPFEamGeZUTh2skl1QgzseqJSckbEqJ6bdxRtjMonc5yY3LS0QVj/QMQlT82XNqCSDZLJ3cpNoVqeXEk3DcW/Jc0Tsqd5SX8lP2RRU0yL9txbaXs0DFiA/RNHzW3T8iGZJ072/IS8S0Y19b2VORFc6PlaNwoAVdJm0oxcoSP9Hk1IF6fryGT+vbOolz54qwYJRIiiSC3BiOERAKClrbVldX52VmQBECQSjhKllZ0Jh8gB0qJAgr7D+WEPjyihUErOY3JHNYceVt+i1dHnC7TGASrfDsAiJpt3RLzO9c852VsUDHMzhwEDYuANYu+eu79TIkGCmb4nQ3qp4PLF4777r7eQIuX33p7ucxf6affIW/+D5nGPkkjVnOc4Y1Ljsoz2tIi9gCTJdUjcrxQJQdtbmIrOKF+lVbv6Jid3Vn5Piz/MoLNnx1TlQuIqRFwBDrxZzburG6tSviz29EquwNHsDQyegKyvGyUUn5tA1WrKFvedNkADRl6lLWm0vX0VWeJmhbbYYRScsEIaqTEcoxx3mWlGkTKYjtVJbseEC+2vJNAI4sqQwODV6/fJL6uTd2Yn5nt5YZ3trQo5V5cvwdyhCy3kwwVYYjDoE9gqujBzJGEczkINJYVpkxaw1nM1VSgyZ4eGf3i5SuSCtIGsS3B5JxEwSE7m0Lfx4b6//KPfeAnPvo+xzZduXqlu7P5bW9/KJGgztBr3llZXhgYHvzoD7z3K5/6siXhlelbh/qGB+QbF60BNPH/ZcbLxRwACXZtAvpDQeXKQm1QPd2LpYB6TC/aIClqa4bGvZj9fdAsWcFbcCVkpv+I2UMlzZYLPRVJm2cm3fPyOAWqm2BCVIZ8Vg+r++rX1316x8IMnkcA6NJBJeWmavB1b/zP9TUrAMAZjTcRKA5PRRGovdnC4G5L22/+9qdfvrki0vkHP/zB4b5OO9WLdhMZx9zmPshNgljCs0HHdwIVWfHM4P3ZQIOplQvMg2mBZ0XZGbJmPSw3qQpIcShsHA/1acFS7Ln3xBh2c8P0OF17sKu7E2HWE+pN18ZOkmuYhWrOaEa8y+oxufKG8UAjAWwOxpr6ar6wIzeoJDyhssULb8laYNHE08OCITrssvCLFqAHn5JX2CVJOu/g3+ZshdX5UiriR15QhLxcq9sF5OSsG7enllalVOlpaG9bWVq+PjmpI31tLc6jpxtI8kUA6IAdQNkVkSVPhj3/I4aAknYpmvzP07OL8SnAa7iNnxDP8b7l0s1wYtIroreRCguOIVkL0RtrYpCothxwdt+oGXvQa9ukSswRB0PD+eNnBVKurK2OT9xe2VyXPpKtwClNnQ1lSt/NuVQuLg0wl44MS0F7/E5YeVGgbeQrGYgMI1ecKjrnd13bxZvwE2P26ZHDNEEKcgiy9xAEK8Ig+tZ2kiICfAERI8VZcHq/IpS8UkBsnClfEMjI3ZffoUxQqoAj7fqJS4R4FMnUx2FdVt6gNqcJllEwT5loMGySxIg3JnegtPoOcqOm9Q8OYbUyXfMzaFon7XPWf8s12qMkt3Z1ceDzjmH6IghZUvyRXBC4VRh+gpuwDyLbw8wMjtgx0D44OsjRblGBTW3okQ4C7HAmSseOMKSWyZUV0aVsw2ijPHTZL0TsA3UW3jUFClR1BubA4MjE9KRAxtGhQ1O3J5CZAHcNusgAsABJ0MCXgZL3i7Er5Ne/Wi0QuDU+/sCR0cCOgNjepuADEdMEW88+vhw1XpPLT3spsLPD53Od0GrMSct2vQ2MDJkmREVyoITBwQ1fI4RjxhYyTmyY9I/WnFA/Q3i7zSKHTm2uP3jPyXOnBsJeROJtiqFuYluiJHb429/+0BvuPzFzY2p2cnwodnLbympNfCozOU49V+RbtnW6IHdwLXAOJw3P0dXGBgwizAdESNQiCcpWBFTaKMDJ2OmPuA1EYnsqY3RVPfif2mBbEMMVBE4le1/z6PXXt/1VdaqqPr2AdgAHoDRUNafp1Jle/+tywdhAIWsgm1lxRxhUBqK8oblvaOSxbzz9G5/5XWE9Dz90//333yszYJNkboXrG1GRmaG+gMzVHB+XgCCcNctarhijwej8WmCbt3Llcx/+3wLnqqQoOP5qurxJx+W95Vrl8dySbyrOSYuhXsff4bkTVylg9iqcPHny4sWLIhfCW7QLDYqvD/G6KgbiIbbokwoA891QLnVGW3A+XauYSBFae51Zq6HTEmXU4CTB51+8rDD3DiWfFY5ZYdMFlTJMdTjRklOG3FpaXmnqaNLGMvuvp3tyfm5osL+5f4D6bsE8Gb4sFJEoCYfFx4X3gCTnSeSx//r6B6KXYQBh/9ahAQpBpJMQHZMJ5hfvvlF4eujwYRE7hSxi4ihGwPhHb6JRS8ESC6awa0v3sB190Y8tKIyOHbEQbHsdQWf/08bqMkrHd2dmBK9YuMZheJ7CAIXBmUAUaby65aLgci9lPquJ1Q8dDVs1lq2ddS67EnSPI/Nw2U5CN6fsg6a8qWo0MRQ2M6HJMCCSAX1bb92qc0zQ7VSoWMXU3JjF4FUxKoGszFBBvmquwoMshFgJ8YbVj6wGFbs/fa2uRG8XCO7ZLc7E6eoDZO431hNf2ODA0N133X3m5CnAJ1TJDo0CKK6nUgLT6ZmxSMyEESVsIHo8ns71UEzCVG+HMu7fHqhFAPQN9joIRrnoLEIwpS1p79JHlbDZ5GNbWVyR61w+aksEhoL7W2eKmKp4R9HNJCgjpq5cu/7NJ5/o7+158A0PHBoa7m7Ose8IttKHvauTPgPYsuyl51x4YhvqztUbGFyYnVtZXm5cs6UgpqK3FA7Jb+8wDrzCHrTazGjAvyAWCCpAh6hvRlsxR9V0HDp0aOLWbQ5RL8IHZg9DCf6Hi0JMJyp32eTcZioWZm9mB0Fv39LCTSAic+0t6umVWla89nayaW5vDA/3v+s9b/9n/+SXbk+M33Xi9JHDw2uLCe6O7gMIZkLdWaqEe0nOoyeFn/ibViuuIkC6CEr4IGVR4GHiIK9AtFXZOpKfNcMBGTAxNOhR6vF+Id38DXJU4UUBS+EF1U1aKtfBVzVU98iwIob9IvnrCWXw+IkxQ7bfrpoLTdNk7yz2r8N9WQMQwI8nbFl8C8VRqhqaHL716d/9/I3F9aMjfR/50Y8JvmnOwVHLHW0WfmI8ATRiBAQIBBr11bDUHGoeC141rviIhdcGvvvQrSYrqBVN0lUE+T4EPVclgksl7IrNnW4b4MvxC0Uu4wZmljaQzWIWEqnSayuieDctlg72DY4dGrOzmwAwKZQbHXPZOmzXeyVvNEdUREKUnZiaD69kR6SqVQhD+S19SP+VcRHisaTxs82dW61TBohZ2XW2Wsc0cz6iIzmMTp24l5wsbF/5fSiRK3aKdXRzSAlLODY4tLi6NoW42jp67NexuTcHyEQKclHFAqDyxcLF+rH7BAzXlmpg7En4YPElKIPOAxlXIAfT9+3jsPlNGiS6hmZhwMjWyaZcYZv2l9E7MY9+GR7Mj7dpZyxmAR1mkpLeqycrS7HgIvu5OlaHN7ednWUpGHyIADMLFNoMcpihoEiZvhIWutef/FqEgU+/krleW1lcKpZanEdEEI3SV5IKGaqCIPWWHpMNnpMzouP9qg0Xpb/61U+GjW8GFOFHoSK6hoZJRtPm0tGi15KVbZ31TvacJ2UrVQWobT94q1xQS4AJviXKBgZIdxVslnxBvlMjPHrsmG1fFNlDbW2D/X16Aj8yyMbGwcZh4jWdE5nawh7oYDQR49RsNeApxE7CpNhKEDUhLI6urHUN9y0tL8vAzI1jd7gUpSMjHSZ4pVMac5npmq0Wuo4cOba2JUdN1HMv0kohVpG5eE0TU86M/U8//y9+5/PP9Xc0PPKeB//Wv/fvOimi9Csf1dzog54UxO2yX4yKZG8w1Z4b5PjxkyvXr4M2eWyxd7lErRVVLZn/MHeiVbedJnb86DG+OAO0R0z83A6c5ifLtrUmdGXzsJNANtevIkzzopsJtoJVgTTbR+RcfbG+RLbTf/v7h0k0RALGRHuyP0rOIBJuZYlHi26ONkVIfezHf+STv/aJucmlydmpsaEhPbTPjb4eBh84RLb7CNIVJahSOCJronBEYWcL5m90ooKpSua1rSS9cE5r2XaHPDw2e6JjqefYjiKpUhfLTWls73X31aWAy1s+NeRhefCt956VPqXOcgNnNMFhJZQMZpJ21FAuzEK7VQX/WnwS4EV4V4MiJsWlJ8bji1/6yte++YS9W/c88IZz586xjxmawtJNQoEBKOC8ph9YAhm+mHIflopwQyK8cGXSwuxh8h1wU76CZCYuVz6re5aayRKOANlQen9/b0NtzZxzkLIrF9fWoDccdmkI+rdKYoOJdnRLmvLM089J6pUkMbu7tjTyZ/KBYM0mwoX/UP8t4ooSTD5AoTx4GcSN+iRCRtQrvSnMB5741AGMRV4WwTAQyyG183NLUmH70d4vJ9ArjtuotYrsdfaW5WB6RbFr8f2NhALaN8sI1Q9HqdT4rdZ6u/ox0FWOhLgRYHeS7SRWMWY0OGFoNpTFn6pXOoCJ6EwqoZsQfnpesDF0rjHlU1LkT3gUrKtkgBsgBUDrBirmim/pwBU3k8yG4NjcyjlnrfI1mTxkb8m/SyriuanZ3l7FVLIzMzurNxZddA29RNZn4jOPAVu+xfQIV/XI/9UU+uPr3lzDFYFKa/F9HzqKrocQEc8gVmjFEwP0RCV63N/X37i8YuInpiYtBuNEWTVdXjYwv6alYrPbC+gr5lgmNWL5YA2gdCMsQBO2IidyrI7wSvAXldCaj6xw6xvdXT3cZFqX7WFxcXlYHvydjcmZGUk0fT02dsxB8rjhcEIhoxEwHzUtoKwMinwLoymsvTe7p4U5q5ZHA87AGBgpMdDGNu09sWcJLtzp7u5byNZqmwAsccf14XJmtNdp/f29Nl4vv/jiZQqEhRdQpaGgnjLMmEi4CVWJEtXe0/Obn/kty2zvec/dLz3/wue/+MS73vnCmx64z3qQDD+1pVvF5ZTeUs/tUMiWm+1tRgyhK4uG9XaGuc1fE+O3+g8N+4mspeZbjKG2cfcjQXhGixEoNi1TabM9ON1UGj0hZJCHV3i0QZ7Zm5gB2BALpm5fSQQWF21nN5OPs8iSdAKqm/C7bYl88xtBDTPwwaJdCnvq6hngQRQtZ6X29sTEhbsvPfID7/+V/+njL167evHcRTF3eiM7odEBOdlDULG4eZphr7neu1JbUM9/GvVQrw5Qwm0WU+z8LSLBkvsBjzYKg604dbjXAffxdomK8aSacZ8pWWRq9TDVll+rtwABJ0IzdltiGEhVK4lpXVs7dvIE6AWqXe3WvgLzcmSVF6t3q5s//lPTVYGq3T++8B//q54cFKiqBTf7ORbmZiyXG7gTEbp7+9taOyfmlj7+qU+xEInw973vfaMjQ6sLEzOTt0aHhldrG1GfYvoFfoFFuUSUY/ycfYYpyAG7lQ1vtbZMJGfdpTgSIZWyVGnFIEXmqmjcd4CU9LUJIar7+fPnrbZdu3WLFc4Jm9hKTFAiLDyQfc3xmos60WabPWfEtVevq1MKHq1gf45L4pIyZHPtWEeX514Qd0cMcIhrNF0tRgAEMxBveaISKqwbhb1SmSM9MrKITVpaEfaCodr+39nRk24HIYuHHp7Q0y3B5fTEvtXigxKuD54YmqB+zo/azOzt6Rk5SCwldmBi3WE1ZUrSpg6QuxGZGHckZo7WoU/u0JY5Nbk1aVmgh5GFCSmct9xniSRhgXmL2LAsXLkf6c2GKYAb08NehIFblJYb5vY012t2L108e+a4g8Z4hzqzrLKzWcPRoAEv1tVrN4w368C1uO4JJa51NBhTqtBC5qBQ3IFaXaHBHkKAoFnHA0M8jVk3t+YJ+/lkJGK5euOmNYpz58/jnk58lvX+1hd/H4c6f+6cQVmiFEhAD83MdXTw5qsErF0R0YXtqqp6GKCUqzQf2AWQoc8KP/aIJ5jS0NDX27+wsCQhkOMbZhaWiJ/f/9KXfvYX/hl0JCFh1Hvf/R7crZKxmZJ9dc/rZfAAzcLyCzg3w8dodppjOIk7cuJj2ROXEKlyDLrTg71oh3jkkkWeeHTiLIFSaqhyhClgw4VGDYcDNZ6KSBlqUEalZm+k6d2d3r4BYQ+9g0NOxpOtbmW69sSTzz784JsiEivFlookMruwJ3MGt/jB1F/GwRDPXgdMUL45Malx05W2IL0y3vJr3JKysWxL8b8m3o4Hb263Qd+i9XFjNDpg2bEJPYjZK4p5d9MxEXg1lFWPVZBURUPhs2FmBZf1nTET5NUiL2JJ2QgGxhtVEtPZXBOvObc49573P/q7n/n84srqqxO3Lx47FXkkerWtK3Yg/M9iiXinaG1+Kmq+z9euCJjCxwmAvRvV78Ox/BjxXQpFSa+efEsVpdLAvZQzlurytbopL+fD14P7lC5TtvdED026IGYLMAK0inq293qhYFNbCZ6DGv58bu7s850tirZHaHRpSTO6B4ZELg4dGf6d3/uE/ZLzS6sf+eEPXTx/urayZOPo0MCAs3BFdBuHic2g7qgIaXvEbY0B0Q9cgODIjNW5OWVhCyz1RoFtYFbm0RxXT4LzKlMBVMHGiAayZ+zIKNWK0s325forOFMYbQlFxxO5+JBNrND4IkiOJIlRj7ZEP+NW2t3c5N2ptzTPVRQtESe3syCKStGHS9gco0WqIvQCBShS9HaUDjlxmzAE63/9A4QEO94oaTPSxFC1Mwx4FI4TZ7UveVIuCFuuCBLdFkhjJ1AZ4C6XLNtXjhnbibD4BDUUQOIkiF0ZzN+nCv0jMGFLmAyouPfXfTxCEV253//EEqsBVrX51DTmUV9dHxk6RCO7MTPz3KtXx+eWarsN/LNa/forr75669b5o0cvHhvr4tmLX9q6QbXFTGC8oZXpodY0NK3xFxXWxrLXLt2OUQjO+aKxymwu/UHouTTv8Fq2BmATiWSAYhaHJqenBkYOMdk+/6Uv//K//BUbUPERjgXpk+67595TgsyPHH3TAw/ahcCDa22aE+NgSJh/BVafOhBQF2qvCgR/MgW+5QL3isyjIEbv2O7tSW8Fy9Osce7nXnxZLpr5xVoCDLdWwPn5F15yPKTC8YCXmVOJqjyp6i2LHsF+LmTdxrIzibi6NYCerri9ouM0cmM5PsMehLzLZMtSiVNx46CP/BCd1t5i7chXQXMTt6fYmHydEtHQmrVVvBmZ3YiN9MBiaKOzOK7fnDh314Vr12/JsNjdszoxNT88enh8aZr4Vz/G49Ra6AsmyE2q0srNnQqLMcgnB0dF91+4924A1Df4TSRE7NvUw9Iqm2xRKscdosF/hXINd2DBYkW2uLOrqmj9iFN5ZawIixCA7bAVDlCtbCVAD2H5+T9sGQT9RqNJUgjtxizzq18wQ5AU+9QlpPbht7zlobe/9VO/9lsvXL3KW+X0ys16LctjrVEhIzf5I1x7PgetIZDXrmqagCyz5YIGpYHI0uqJrwcIWpD24P0Ke/dLZa5TQflUbVUzfHZToUFVsnpePUlhTE2bpWYSVBnmFHygLioZbAQOPOugmf/5bqqeax+wRNEItgGkdRPT3NHQvnNlfPLzX3pMDMuJI4Mf/fAPjPT31pdnpFB1eoXTjWKVcvob6j5pVOPwBBe2Usg3o2I/mnIIxveCkAtjz8qtn0ox+LZnyRWoAlEADjpuSrFAb3R0FIsnn+Q8h9eWgTkReVnZARb4UjzolZAecfctHTn9iR7jU/v0JnRuUwhaiAGyGWy3jRxepXdpPB3RNeYEVAodi2GjvEW46QZ8ha3c8Vb0mviX5jcWxfkID9FhDls/WesIh8mooxXCM8zaMoDIVGja2dZK+ePBd+JfLGw4v2NLYu3GzVt3nT1lr4FoNNAKlu4hxR7m7sHzWzEl3CDIVS76/7eUDf5WfI+aRQ6zwN0YgcOvYKCFVw606+MTVycXLSw0dLVI2ylEaHZheWGF/jculvr8qEPBuqmibO4if53hw8NEnLd7I+pbdk5omJ0hKVEibhOlRGuskGnvswymut/TZC3Wl5OBDZ7QtCsjsne38fe+8Plf+pVffu7FFxgeZFfPYP/S4tI3nnzihRdesLZpqBfPX8DGAtVyeR0Fxt2b3sRDgtPlS8j84Mq91s2uMjGNypYxE6oeT1heJUS3jUnWNzD0qz/z3794/ZUjY8cs2HD6c4JwanN5Ly4sW2XF3DNKbrMSLRDfdtxBuyu1hSBSvHRERoxEip4hzEzN8DcAlIbs8uICsYEEtwu+2iSCDHLAvc23TraJzuX0BGXoEWwgqMHxUtvYttJmCIU5qiZ7FKMtwsOGpms3buJA6r8xPkFV59hcWlydn1tWznKFJ24qlT8QKMRp1AUeHnAhchF29vf13V6YU6VJIbpYiHDaEJTIQLK5I4qDncCeeN0nWWgj1aGhQ46LkfLbw/m5RQVILCRECGoL2SiJ5MLgijJQ0JVxlgmDt0FdrcYsiyczdlD4RVa8Mt76Gp8CG/cDH/rgZz/zuSvj1++Zmxk8eXbXtum4GZNaUlX4E22qKFxFTEY9uuMqmHCADSZd97RZUCbFkJALPANSX/Px+isMZf/aJ8s9+swAy7X/e/56kDmqaNhN2EYQQGiZ5kx61W+gUbjC5G8l3Tsr+3O618mDlrDybvn0sc1y3OuSPU7dA5/8jV+6Obmo0I/9yEcvnT+7ODsl3aFgeqprGEGAYAIh6WuXCo1alGF2vW1vW3ZSGL0wNHMObfHXw6uw4XJVoKjuq3craPuEh6H1sv3Two1s5zrJg4pkCAB7ZRx/zbaIUUwMlCA6EwB1ZajWRFMNFRNSLba1Z40gtRERLlNAvWpRpmINKDWMO8vfcCT6XMglEogK5CUcJvFDiWR1SRSo84npD+lbPpWlRaXqJDuhZq6kxAhYpIQRh+LMCTqyino72vsE4Dc3D/b2yYM+PT19eGTYOoHcAj2OWyk7Xr0VXK1QKO3lqmDip0qFrR5GPhUErr4efCqlh5pz6Yvnxm6Rrqenz/rrxMzM7dlZBo6s9Y1dPdR58rfdQeW7DdOLyy/Ur1gAOWntTfAuZuJ0Khp2xCAaCwcW0+eGd1emaJsNyg7hqL74cCJkXel96eZB83oA1l4XvwhGOKmdWQMix/sG//mv/Kuf//mfvzUxLiSoabsVi+HHcDJyDkRs2BWX+pWvffXEiROWsakPpqMapNrMVAFKBml6DgZ/5006o+u6H7ZRBhGyDzujsVq+p9WKk796c/zJZ54fGjgs3lbHrZEn4QEOKgd3URlpykntQSZAB+yrcCCDTGrzYH+MAO5/PclPLY3dwrbiaNHrIoCo5VQHDM6+GcVNhdBaGXLlrRKWG+VCYou2pt0ZAoCGS4vhOGgUoBXdOUs+LuzP5Kmdw+3lV161gn/16vXpqYXR4WGuQdTI0UmVSpw70ZATJalFmXuIy8iw9kP2oBRDcHloZezm9KS5YM8ams9QQKFeVJQmi59NCC9I02r8SjvwrsKstM6lTuCt0IuNLwQ2c58FfhiXYtoi4Mt0pPM6E34brT+UocN2eAeYZCL9i3UEJuiZt7Cxc2Zi4sEHH3jjm9/4uc9/7YWXXzpz5Bi/NAorqmJoLFLDKKFaWO5rV8XKNeZRSHLvIr1ieFRPPK5+qW68UpUPsO6sj0yHMt/uymgKfarRpFdFPMnACw7oIl0T/AABrBQI9pbmfeq/ifVZdM9v18D3/9keLEpD1T2YchzQgJdFXvb0W3995sVXPv25L9W2Gt7xlvvf/953N9jvyg7raLGOtra6jhF7MZcpCBVAnUyIi62/ieFkd22whdZCMaLipFTJTwD9wM1POHAq2ANmYc7lq0o8tHYURTMmYlCZcyb7ZqG0+LH1TatStr1mw5PMmsVlH/2yVY729j7nWPFPlaRAHLpdULtcWHnIspoCvRJsXeJtaJBwFeJmMLooF1KBhTvyhQuIbYDXawmj857KdAMEorA6h6AMx4iMX7f9pB5fm2UqNTS5gwTFOZC9bffE4SNZpVtYGhhpn9nari1vz8zOnzp7fKVeE3yanYwF41B+sLuARW0HOObehX60kTKwCMOq0LqoN1EuckF4tJUAP4YFB06CG+VJ7Wq19oj7r9RxABnlnEkrF1MTaezYE4zI6b4TG5s3J2cGuns7+vrqC3NFKiYNjTaZKVrDtgDdyrzlXHo89A/Xi30l5WdmuOADmRMFqOBD+QzTSYK57NwjrO3mwga/9Htf+Fe//mvjE7eGD406gUR10sYpMD0/C5mGe3oA2hZcLkhuKXMcw7lcyrgy0GIWVPd6WQZffZT7Uizt6SaQRvOMsaebWbjAELe3e/r7fv03P21RUcjj0sLcyZMnBodGJm6Pz8+3Me5s612v2cezbBEk7lGBYkLsA/M0ltjJKP0dku93lqNGy/EAogE6lYHdoq+0aImdVgJlrAYbQUuH7HXbYgB8NrXh3QlyUEb4LWbR1dJRmLjJyaoOFqSqrCAXAyBPnC28tCK+9eblK2SHjXQCOi17Yp3dFtlsd2ByBCPrAA9aWI/Ul1GPigZkIhhrus914wkPj5Vh4juEWrxDXolVzWtn30Bb+3wJ7ykIH1liyXp9a/2VV15hQZtNtrnla9JUhsOOhuTAwkJMsixWKoSdqS1cFW35U/FYqBorASlmOsI3xfmlwMbCvMORtls26tvNo30jH/nwh776pa+9/OorN8+dP3V4rFvePSvnOh3CFi9XJsIYYeX+Z2UIVI1qHbjKZ5aoiqQIR/fQ5RX/9ph3Hrx23SlT9FNtB7+Vac+gDp6bO/cuZaoXPVHCE6/5jOO4rKIDKXFhnHpOGKZjB/X++d5Uva3avPN+Y73W1dO7LGCnqW11s+FXf/Mz40v1Q31dP/qjP9rb2SlF4VBvh8XhVWcCy/DqFOuy1VwN4UT7vEe1yCSLvVbsDNNskYuYxVq9uxACLAKiQCnw2VObSmcC5wq25accX7pfMhoD0PlqedlitfA5+2DXe6N4xgYoV3w4zTwLCfVRT2dXVgc9aTs87KvL63hIaSuzj6EHK2NpsNhFTBqH/+06Z6rE4YiCwzmQXlmt6e7tpfEq7aI5adON4Ruvex1x70pfCA7qY1evZGJ4bDzNwNLYcGJs7PDI4ReXnleAkbTesjq/uHBs5zh1wKZORnelm8ANrYbwK/IpnQ9/w4ZhVjWA8lmh5sGTPZwvsDXawjNjDehVYuFbWtj++Cxx1tbSuSzB565sS12NNhTLa9G4mSMUN2oTc7P9fT1njh9ursUrRVs1j4Cnz3RiMtCKRbTbzLps94pk8jVhiwT8jsDWN6/gtYSXV9PVMhMKgYsUlTpz/fr1z33uc7Ozc/JNe2GltkYg6/TM9LQIXhF7XCKiPSanpp577rlH3v2esEVHOGUbRKjL1PosCBNhGxCZ09JWKRC2UyRXioUxFW5gJL669IhSK6LANo0nn3oKDpiJocGRu+66xOCx9i0sfXTsMBwX7nb2zBl2Zw+EMtMswISZM/gl+MzQ+PX9a9MFTRZmFOMRY3PKRXHjJEYo7gD+ewLFRiiLoXoENNkfA29o6EpKdMXAsC9AqmkJconUqCdYexrJWrORaBq2W0exhn7z1m1ZSb2oEpmZb41P3Hu6nwtIUhTdAC76MmKTpNyLBB7s12tMyJKAgByL6kQak4siA2JwJaPbzLHp2c1QZlTliBACteXgiK6EOq+tjR4ZCx2WS+efeeYZJyofGhpsbRkIssQI8J4EO8gGtKIQhNVm1uB0CDBQiRYTJg7FveUMNCYUxy0joMVZLQ2NtaXFh9/80Nvf9uYvfvHx559//nD/wFBH7HqrdBVDcQK43Z+wrWK71adu5wr0I+1h48Gnu330KGUyW/n1217BatXo7f5brytWcOw12bBXc4X5absIALElDbuiPipJWWYcNMLFMAn4Wzr4uor/XL9WhFA1WSiDk6Nui85srfa5rz39taeeFVTzAx/80N13X6rXFpmodpcnCsDcxR+C7RoDLA41RFUJ/geioGGweVjgAEl4iinTTc7ZbGvA+BAEPGyiTCuW8MXQjpn0rreqd/N6uQK3Uptf2MAJLA0uw4MduYWDX6UkUBe+F9MK/lG4CILqJ6pGMFJuimJta00Z/0OTKCCvsQ09CeYgs5AseRLs4kVPdDPbgcCQYN5sqocMSidi1rj4uiIAyn0sm436rrTPy8vzDoMSQ7gugKbOib1mE35fd9exsSOvvPSieozPdiKch60QasHHjLQgZcGO3AWHQzShrOBr5sl9QLOH8+5TsExAYiEDQ5fF3qKEUMXCB6KQt7fa2msfEjKlv4mate5olbvLcp1clTvr9geDijMCb85MDo30Z19C1tWt3VoJT8rIaP12D2TtNzIRky29xTK1LhmgZkM2ofnsADFhFJ3SOQLWK7z8NAM94xJ7+eq13/+Dx2JC7Nratyo2SwH8RZwcvyFGz4KT8Xhztf7E00+9613vwbO6nHtVpizvyMaUiJe0QOMCoOTkxSfd+y/dUJ+O6FTpV0Hwops10l3JG9uuDeWZZ57XKDuRVXDMOeADgy+//JIdVes9Qhm7Brq6jh0Zk/9H6JOVodq69yz7r+sGoFhICKDlSSED4iGxgqrl+KaZidpne5kZ6BrAbG7bDkaAclIqKpqTmsy1mJ3DoDu4IwSIk8lU8aqjESPyHKIWJqk9q6+NgiZpCnPzy7Yg6EdzN++NnR3y7TTAsq2GvlVRuk2MCfu5F+xSITD6BvpMYYUsFWXi9eIB2ro2bGmz0C8wlH3rhAp1EjIWMayRhSbNKSCzDEhEe8d7WvqPHR2/cZP4MUG3btxaml2woczMri2t7vYOMKI5ugzTaU0YXNaHOzJfKDP4GvyEyPgfWRYBmGW2AjEp+4RAbK5tDHX2Ls7Xevrb1x2aXVscHj369ne8+fHHHn/p2rWH3vjgdvOIaOoOC3GYBwOFW5M0DCHsUUJFD1pM5UEAM5BnsUHKVXGI4Ib/QTQfuQralrs7PqL1qKDI+OqxYqmwsJuDgp4c3FvHhvgwPh4D2CiOvrHRdtie1hY2YppLph09qqI7Erx38O6f582enqivd7Sq63Ym2dHUMdA5Pz39m7/5m7S9w6NHfuSjP6zbaM2pjKI/nU/Hne4kZTNZnDMZDlQBY7DOl4YGqXniMy+JSbB+JG/UJh2h5eeScJAeU/0jR8AwEhdmlLmo2Chgc7JDHrHUcrqGysuLGHlRwLRPNyotsyEZnprPZp54m9NiziLGzvbMFIpGmP6+ZIokiC82imO6hHuk/rBFtElPy0DKuoIC2YMiCnNr0+4uj72rCcJD/ZDQyiDPQBWf7nlUXt6twnr0PBhDmEhL0Z4s8TYAC58d6e2fvHGDfjo1p6Wd2YV55+rofuQIQBaU815gWuFqxBSmFoxSI3cmSPmMQpWbvSsjCfO1aY5xvWtlMmAvP1MjXUQZi2bJFuptKWQaHSwDvfkqpbPswIu2uYDqmLR9OnNr9fna2lG64448ILIbtUBrB64t8yxvCcUW1Q0gITNQzX4eYtlNoW94kb6aU92OspwAW7psYxdfL+A27C6trbZ09vzelx/TK947DKW2usLpn5R162uOFTEHLCzcb3BwSPJJHg/S4rRIaocLhKfGq6h2OBUVJDQZY6lgYD6xlqA4F9i2Qwadd2PXOiGWAymsyMTxGq2RkmBTVOu1G9fn5mekxrQ+f9fJI5uLczurKyeOjGGScwuLPB4Ov3bOe2CraVMUExGJF3QMhwmLwOyNn2ZavgfkcfmXqzwKGugS3SY3Dp7yWSkgkfC7VJOm7YWpqdk8zGnD6yO9g45/gYzUJSvsBFV7d/vycs2BqNdefKm7f3BycppV4xJSJeq0q7fLoXuO2us/JNX+NLV/8NChS4ePwDlLVssrC5MTt/g/oYDTPBfnl86evGDfGRtJ4A5Vvdtxc6wYSU46HOu0bQlY9qqL589NTU3MTU2eOXnCYgnli6wasjXXib61zbtaLvR19vY0d20vbxwbOdq81bQ6tzyxJdSal0w61DhY13p27PW1TMc/KGu8xNrasOS0WFtmY9lXEgQAABGSjY6NW5+br42OnV1Zl3613fkd9eXJH/jAO3791//l9Vemf+/xx4987FxDd/9iba3TboCW5rI5AyGEaxTdsbB1kMe2iyfIHLtCLj5DGmQQppGHZYbKr/nYEwPldq+ScG/P72DuB189rJh49Wuq3GciLKfO7ratJUtHTZ2NbbutXRPTE7PrGydHRruFvYog2LU6yjvnJHQdF6oY+jyo8KCJqv70oPTh4Ot+Q9Uve593vv4tP1TD1E6BQ/4W2aMM3F2jcsWR4siHtWivia/vWAKd7v7adtMnPv7JxanJ3pbGv/Zv/Mjh/i7ZODm+F5dpiH3RupwQEKjbvR5WmKtI3NJ6gJNEJlygObMhIiaxHlHhYx7WLBtmM2qnoAMGODJ3YSU0A5RZiqkAZ1PPjnyLETNR9yJVM1FywLFE485IdZXwMCHGWlTnDDUbrkrhrCf5FuMzoI6toZoQbJRBVjgiLnw1cHWrVVKJjoWs1Bz1JDOLp2c/eVeHXZOFqPWjeA8STWFvrSasY+Evod6mumf6llOkGzpbu5fq67qcbPKM6bJxFwJMzczg0kZ3aHR0/Taq2rRY5BxXJMmuwSaDqNh/hFTsIQgd0CSOJeInUi1bH8RfbumkSy/9GrglPDP6eNQ4CWykC7OzJ6mKIoMZ7XOLyzapAcriWk1s8vr2KneZFNnr9lHXli+eOzU7Penk8bXm9msTM0dOn+5s7ajbwNHeKIvlzGpS9i6t1WQ+tgzgUBNzDGb2FgjP7LAUws2SrS9mo0xA6ZAxpGvEopnUVy5z1HXl8pVXr92wl+vQocPXb16VZXOgt295ZV4eyrmFOVPtq7x0N27faJWQeW39yquvnjhxrCBxvDnBjiyY5NPsawDGRJHwGRYa73kh8oSOpD9B/ZQsN9kDzSfCnKkvr7700ktYMGXn7JnTJw4flnp8qgOrtQi8KSczzYc+viFxdgiVv4+IdlBgYhi1RK2rmHq09SpDgWbKbvLgmSvrm5He5YpvRGdyxbFTtGyV6jzLiC25ybWa8Hb0UxA5CVX0ORgQbReWOfiskedOzm6ggwrAZVLTTlnPoFIxL7Kfu6+bXsX54F3TYmsSEk+rjc24v+gu5ipd1BPP86tdL5L7U0B0Im66TY64jfoaDwABY+ywNis+Ng3bVbjTKAuj/mPyNCbEtTg7owM5EMNxNMHBHYKno6eThclSZ0jxnXnL2xQQDdsULPJBeFS4QrHPtqwKNBn7Vp1lhEwVW7c+TwMY+ejHPvJf/lc/K7nAs1devnD0tDEM9/auzkz29XRLnqW1DAOUMs9Amc8/6vLrH1+gevGgzB9b2esb2aucZWzqI4PItqj/uL59HhSs0jg0CS3TqVyUmNfX8p1/r1D6T/leWCVwlXzF+PbGKgAmABEjpzNvN7Z39g5/6lOfevwbX6esv+2t977jzQ85682eFtyyeCcS42t2og3Bnyq4+Y62MypX6ExLBhuGiyJMEPvV3ErIbBsQpKIkMAjoB2SPCkCv0IhG8hVKIzE2QqlIfSGw0G9hL2wLhxhFakWuZEjVu6lJY+VJ6VTeyGyEA+hM/ilRipslD1M4Swsh1hB4qUokKOeu7zgv8JR3ilaupCsYrIni7QwdK2JK00U/eyPkGNnhP/Hejpl2/G5EnDxq8UHpNAtJQz293XCjaboZccr7YlHQJruo7yWVKVoUNYzCuARUz8KJn0EvGeuEkoFLP0MxLXIzIhh8GRsRH7lKx/cgE1uWEEzQQQUx8A0HCxLGdNtaXqkN9HUfHj3W1YN1nOacx2QkjqgdWhtA6CXVXaazLH9yHVnWOn7k+OzkFEXn+DE5g1e6O9sOHx6u4kBCkAFQoBF4aSSeEau+PPhVvPnu7tNPPy3RplydFiG7ZQxOipcGSoE9RyePHBWhOCy4ZbvhqaeeoryvLFmdzXr0Jt3/Wy+1lzlLS5qofqweBlvKr3tf/SlflQkB8iS3tEzdGL9x7TpmhY06/ISTCyxMAJdUV2+3noOk01swaDcFJ+BXDj2BRdCJqy/4oV24EixKZ1RfeffyivnKZy7kwEdU9cGURAUshhnYbHDW1GP09Pd18bnDEn2ACkgN9hQV1u6qqCSe29ALG/RQu1kMKNls1EycGdexY8dWlzemp2bVI4IeJj799JP0ZVgMk1xT09MFDXD6BKgIRLOiW192QJ19NizfeGRlTBGvBWnt0ePlvHn1GtzDIvqH+3UA0Vg8MCLNcdqz9Qto45GL+yfOx+gprbvtXd29EmOItmZpwVEEa+mAXc9EFYUWWwA1QWcrc+hwu4EbUKJAdMjzBDPJda088sgjv/Frv3X91Ymnnnri9NgxgXSkkGiPinEUgP/JH9XE/MnlvvMSZqGa0+pVDZHGHuq558458lmtt6O0UrhwKCwRB/lu+b86VfUddRbOhjLLZS7MoPgZegBcxQwwBlLfadeT0zMf/81PSgw4OND8E3/hx2ySn7g13iWYPd5w0xXe59qj7MJA8zVX4OCCFbF/94v4oTxOb/3Eyekf8FAL8HEOTGtMNGll8Eg/BSxeSTRxhIGLzuWqQOonVwIO4EtC8KpfQ+jmISjhJhX46l/4niehPQvRpYuJpAs3D+i9Ugg5Fr0W8qAMItLGD4WcMza1I3v6a/Gk62H6U0qbZReiMNwijNLVUnOFANQbiwd5QacQhT0EEw3T03OzlLOern52EOSHzz7FTmCJnrgQtfVy9URhsimnNEFYGm9i+uzLLWnttGtJtMUSs7SmdN84oKLbGV36UXriMxpHjBKwyhUJG74Ua0gTRod7MAcPHzq0lowMDgnuqi3OOkx8en6he3Q44U+2dlKqcQcLdYmBb0qCZ+kjRLXy/Q72Tk9PvHD55dcEgBYBMP+VfpjviD6qZQk1oUW+cvVVwMbxx+dnRwYHwQdHk5vvyJEjj7znXXgxX7mNplL6feNr33j6hae9q4CY+tLhalJSdQawf+193X9oSvBQjCXl8jBM2r88L3mUJJTF+0CE18LBudFKYGEhCb1lGcEbXMuqk9eLmuB9t6kmempxZipTLqwq481l8X21Hps1t/6prAhA8CtMAT6Hx3FBcZ6puamZwCPPAY3aSNGW5xzSm2IvB6GJjbI3nfVLSKxKKNTdWxdb1pjN7mnWWgtlw0pXQ6OFBNnSW5oj0nKO9tY2uDXLx2Zpz+HOLS0S+2lRF+gMArQ5q2PJwwk2sUhtyNcuPnpnsNcWxX5dMgogQiKmY3jokLmTh6jHgk0AGiqHPUaiGsMMbsi722V/Q39nX1ffyBCLJMqLqQ8/B5VoR7bR0yaKLmNkhSKjfcWrihgS3eM2SaIbrVE7neav/bW/+p//Z//V1fHrc3Mzh06cnL5568TwQG1xkTVZ6f6ZDP0pf0Kad1xBgju+fk9uwUQ9BalSn68H99CLie4JaPhJDhIwIqfNpFVE+BvSMOZqFSRvfweXVqqmvXPn/XdQRSkatwC+r5O0hwT/4V+wzOnSHb/xL3/jpavTRw51vu8973ngvnvm56asC1qjj5arUFH8M16ehmwBjby/s3Vf86R8ViPN1/Q2LBTzgo1UE1TmMCJyUf4X5CH5oIdx7ER4ZIxQjoM+am6uMHoPAc2n2iTw8RYMVzkmr4QCJQSnwLZCg1JPVd4UlT6k5kpM5UZlpb7qGcquymD0CE+FEJQM8tCVZpMzTKVoIeOrxqiwXzPcirfkLhXBOp821uRXEqutLX6uhl3pbSbHb3EGUqJlDx6SEp0fZq1G8R7p69lYWcJa0LhfqVPGmG2iiKscJZ3VlES7Bhqi/dSMQLJUmAVrIym2CKRL19KoTuPdsdX4s9RLmxTTKImSnwrShl4sOdMje/twgB4pLXhoGpuG+wdWltYELM4sLBweHrAiKLo8njVxenW7lwQztjluz7rFYH+viZMiiS0X2kfi4EGNLB2I6ydmo9a2tzqLIgw4wDC3sIBJkWNe7pOgcXllcHDAJ3fDj/3ox44fO2KcDmAUgS4Tp1OKr1+9ZoUgawmJpdy7CqRT98FVIJ/ZqJ5UfYAfe18zJ5lA/3Cs5Xq9saXGwsAZwXWwr3+zzveV/QGqKEGbmVcrATovx3Zi98LA49Rh2scYMqxVUZ7By3C1CPg9To8xoZUgGRMvOwPzmy8cfOl2oX9rWfAYZuDdMvbMTE26VxNJEC6a/TKcxfHcxdzjVbGnrKmpvrySdgvGO1cEDPlr8H3l1Y9dMktstbY17PatmcnJKRNuYyTdStJNqRtgFa1fK+rkB0O//D9kxnDfgGPv4RNotHUwLMVpxLNkmgSEleMKdgf6BPu3cQUgUqtaRdEIZpMrs7PTRgvAOm0PjtO+eqwOtOfMnKb4/9lPEZSh0rX6jgPaiATfwTP0aJTZIAf487V5AOcvMRYznZxIDkpta3/00Uc/8/bf+fwXH3/qmSePjwy3drVZtlJpNbOv+wx9ht73Pu/8tXp+55M/y71OppWCb7n3v14XJPE8UylwQmbd/cypZGBEeUFP+GASv4vWX2vuzqa/w4pMRGGrpKyMlazM7e6uXgmhXro+/puf+azKjh87+UM/9EOCu+yJ6utqX62tHahRhnvAK90f/CvdKVZboBwmhdAO+pWvsefwoyZ5rhbml2jxjAonSwu9ix+oUZ41bkv+qHBl2CWUBjyzU8bLEQBxexeQA24067hHcGorU5UfJGUqN8z+pEQ3yrQgEO1nfgoSAj7qDdVwpidXY65MC16RBhLBjn7jOdFoYWCe+AG/KupKQbzC23ipvMvoC8vLoHMV8kwfQrnea8yp43EGbm/Nzs+tL9fGDJmxs7zcf3jY6Su12jLZMDg8MnDyGK8CKrb0KNVEhCKfLIfEWpJdwijkSfAhOsMvyrRDgLdtidBJBXCSbEuNbsHLXqBNqgueBjAchOwqPTTSjDeYRP3LaR/87Wu1JczornNnZ6YniydmfWVmqrZT5w+RNi9KjRRkjc3rWzukLoI9OnpodORQbY13ZnFpec5RB+99/3t5NTLsoEioD0yztuOTq6R3txeT0jIA3bh5EyDabR81Z/wJrW0Sk1Eq3/vIIw/cfz8uoYFaW/tLL71ssYimcPr0aVuxTFvpc5AgN/sEcIBk1UO/VU8MT5GqGBQxRXpV/ZRw5M2dV1999erVq9SQ9Z0NmwyBGyMqce4E0IazqI6fOAoR9Eeu1yTIYmuRqPRcwqwoDz0jgwqwVss2knj1w9qadvu6+0TwQBN4FvZfhIC/mt3rLeee4xo4+22YJObb2mYnplSlXfMBeKY72hVVOPmzNvD+oLFDcpZrwCjAxozkdCMLiWIUQlg64ZWcnAgDdJ6nSM219Zo1KD3ATO189jqWJHcEPQICaW4XaW9uHB4aIUt0wLsaMsO+Eks5ZKbEDvPbeBItgo0OTNvbye2Km5cc0aaJyDQ6a9aCeiX/gnZgrTbEUDDViMrCCbojZrqTfw3SmjKLEfEL8EAoLJuQliyENDesrtXwS5gdudu4+5f+0k9cvXzluSsvnT914q0PvHHy+nVnFGNPfnUhTjfVMsAehO/4cwcjuuPp9+i2oqWDyozIE1iP8s0fpDLvfX3Z0ZKfYGTx/JgyXwu7OXj1O7ipWqleuPP+T1kF3Rnw2WQmg04gqFM82PxC7Rf/5b9cWtkYGOj40A/9oOxYa4uzzMP1ek3y9yiSDOJwEA7RisyNFFsoavsdxKg/+1eKVfDJk4Zd28cQjynG35mnsHEQ5yibtorqv/eeNuCMbfcREsXoNq5UsP/p1wpRYTj8hGMBbxk8/A/h+69cFUAiPfZwO3pZ5ceyDCgJexh+bPTqiuYRbxCPdLlQMIJQiW+Z0JimoZGqqRQp4sF0B59jhZSFbKhdnoCzk1VY/NQ/OpstrgIIMb0434SHLS8NS0fa3iGZ0O3JaYcD15dbuu0q6ujA9Eayj2JtedVqPd3YPh4qGyMpFoAOZBsT1/HmRkWzZRdzWKuaQcNg0ILQPsXQatYYsjibgWQAhTCBUy+Z772S4Pf2bop7XFnFUii77Z3dhwaHVudmTLS0cY68p6oy/vC2jaZ1YqCtW0BP4/VXrw6PDjsXYfToyI/9xI//6q/+iu2mKq8AbzpMXcS+f56XdX6qaw4DsN+Vit/ZLUgo9NDV07W4uH7Ppbvf/Y53EvegO3Lo0Epnp4gjyqmW7rnr0uc+9zmqK2+AIWjA4KubDKlcnnie2+rT3/BRHJhzLK9UxdK5HRbYNr3VOoRvcBuuw0ISWpI1YhQjAeHl2hLLvbmnD+c/fugwDlwWW0sL2gr8y8I/aIapxULw6T6aAd6taQCmHAA8mZEqSQ39CTLF3haDJOkUqW3dZidpocIod7Y6+weqrprsIh1Fbkm3kqUYTsDpmRkYoHBaL853N0aBKds/LCHRlZeeWa1t9fUOcmFNLk1fu3nj0qWL6JbaYGjzS4u6RP55S8fRoVzgq9Z2j27qSLXHIh1qbeL/ARMJWEiJ8as3CfzCyyJjguybcR8xVGGnbgAmzKG78f9UvYKFCLG7pRPSryd0ONoueiBHWAR66yq+kFgzRER6wwTh3LRCIGVme/uywPF1uYlaLE44ifoND97/4Y988Of+h1985sVnL50/JyAcgpvUP4rpVzD0GYiXq6La/W9/pr8Feq8hVTUFqVG0BkZpuVR4agnlqFgVSAJLfq9kgzmIZzI4/F1fQd2KpP+YKrRCKaaLBP1BwvfER5hg31WALHiZbYm3Oeixxx//0mOPs8Xf/pY3v/0tb11ZnOnr6thclfptVaZxzUWpC+vPvyqsWC3GubcsUFFYnHzhRIX2o1YXRTCaF3ow6bQk+FXwDn/bFI7c3b3iazxAEMF7lT+HXgCjJYcKn0qLqcBNNMZEKQMfPpwhYGn4HDWeuzNIR09SvLxUXstIUaJSJFg1bOMoThHKGtUpQY4UtbD44mPK7IBs/vnwqpeCn7ECEuoTOOTKc8LDLCR9RmqEzIgjT1npnnPNozHfLZwiAK42l00EHIPJ0zm76FzYeJibGucW5sfH2xZaGoEamegIhQsJM75xJxnUgUjKZFtTcc606ERxuXfY7EUgAWk4T5qPhIieWhSvJK0obh99qDLUwkOnMsIA/cOa2P2SH7vh0J+dmXn15StZUGhtJZgn2N+rKzNLy32DVoLtGWgQxd4h5hMCbW0uyaAzOPSFL3z53Y+8/U0PP/hf/9//HyOjI0HxBHUELykLAGSaRJ/oUH4yBozAuo8zb3lhKAKY7OFDozfHrx89euThNz1k2IpRUSWHANAH7n/QV2none+DhDwfcAz6H3EFQbVauKHPg1KeVz+Vv7hySEKC+9GjJ1555SrOBWmG+geIGdzTPbCSllRaZHPPPfccGhxwtlx9fglSZKUM60voV5BUE6ANAa27QE7ZGzyp2jK0IKv+5JMsgH/6J/As1BhkzOrCduOmo/LibUSSOGmUIOsilkxNQkvit3K8m7Nugk+R9Da9x0DZ3GIk7g2KY5a0CesXEbP5wnPPm90LFy5YbV2uWUvoES2qIdgdFHFizFpOk4/swe2bo+bbeAu94GW2Cts079wq9stAf3tn++3bE1an0au+AYidZZrSh4QMCSCpB1w6D9Po++ZOvXplYwEIM10NWwArGkh7yYIXgyCDteYHExJNGNEIRIBP9kjgRUvxi2P9HK6QIEGCyBF6qxGEVKj3v/+R3/rkp8dvT1y5dvXCqTOrtstB4sJHCy1mzgNwwC2f+X7HZcK+hzJAxRWyVS3kvtztzcsed0aSdFU5A8AHTupC1IuKjeFXYHZHB//kW5Xfidt//AvaqXiUYsGwAxiV18paDMB7rBdtMqx96Q++Zr0e7/jYxz4WBLMnr1Yf6ulcb5Tuax3P5MMvwI7Hg7JTqoHQIQQdq/rms/r6hz+9ywaVbBELUwxSwAeIt7Cw6KZ63U1SLySUUJC24+IiXOBM9atPAsBXxSrgVz9pyxOZ4lBvtUoBB0o/9ugxWIcnIDxFS291Oi5LCj6iC6Soovqwn5i62GZ7oM6IgqlwnSNBnCNGryP+V1W07GLmqkZnq/6k4oIe+aOntt0yarFNmVo2ECC1O3nxdmZ3EQj22tXdQyMU17dNDrfmDC9N0xgRDttMW45IwQDFxTjjDNz8KJ88YTC3MIsrWhTEK0hWpoOr0jbwsXpWVZKQg2D0ClQL3DACGmecYJFwmhClISqJ61+44+3xW3ffdcEorAMraSpml1fHEJqsQWxxdGo8NOXENDXaL/Wxj/2w5PI/+7P/lHB0yELya7oyTf6VwWcmKrVYkuStze4B2f+Xr127ASI6rUMS/VtWPn/mrPzPhOnlF1/6R//tT3vVML75jSd/5Ed+RCIgkSoS17AZTx07Ybxa8KJe+nQBayReubCkCPoK+miyMZmQ+SQUM1SvUDvBmY3zjW98g5PEu8DjPNzayjJnN8mLAeG/wBeOWfa74rl9rTk4Lcm/oTvsxfZL3EJcOkHO6ir+/WhVVg6ijCic8vvkoXF+9VJriBFeQAUJNIFCTis9URJH9oquAo659MRMS04nJsYikrDU1fW6LbHXb9z0ExBpS/+9pTl9Pj42dP895x0+YVVvt3Hx1vjL5D9lQYSnjBd4sW3VGLyMuHCZAW6r29zUxMVzsnGfD5psbcBLo9Y6qQICo6OHr776irYIEtMfk7LoDoigsbXRsrlu6ydnrDKIOYibGz/HjAiahGWZWB64XRr92lZClWIpxfnIqxtBFDvehNopyowQLNfVJc0XayFCVVAQ7azZuvH82JGRn/jJv/CP/+H/+PiTXz935rxtJ7WlhRNHj05PTBKpTBYkoS6ZSvXfW3t0qGflHocu6Fm+Fuotv+Sj9Prg2x0331rsjh/2bu98kYq50SDLf7vwFB6tgFEOsLLDUWgDLLKTQ5xLXpFwu75pll9X4UFt1c3B58FNhSTeOnhS1QANqpvq+cH9/uPqQd4KTUQtyxMOyJn5uYGRw5TT3/rdz1+9fqO2vP7X//pfF4wo9SseAeeBVHyJsUD9YHneh+G4MM5vHqP6VIIVJkJ5P+13JjxYmbzlNzdhBWYgz8tPeWErGwXCzXNSRWcnK19mkZL9Kjzeawg2oUFpObwLX8RPs22QJ42FEHRTpQ5G7CtgNQl9khsahLF+USaeAHI4TCOd8d0LdHemb25ocMn9YCdM1v488CUWfKFc7ETRsi21SZSggeiNn6qQbnQXPoaw6SiRE3ETERKEimLmy/ZVWmahmya5K/RQ/RjY2ka9rbNLATUAALo2HUkgWTLNpekyy5wR7heXlqTEx13JBjTrguTI/9jx41qHY+BGqSW2V5YTxAiSqgUonKGV71eyJA2F34dHqWR2ZbWrpz/RSSXRmD45ikO+QvnAJc4ToKXOoaERJ9HbxwAqIuZb7WPFcxwdLCpfE719ly5dsqY99fwz+t/V1g0uUQALfhQth44QQRBtzBgqVHCDI+uiG6+xbgST8rTQtT3glP/H//gf6zQYcS9wPH3lK1955F2PoG0lkRBoOmIWtAG6AqWb6j5N701tQQczkamMYNAcrbJyo8VMa2zu6W+dnZ+X4scsDg04zdySZgLR1OnTKzg7M4WIW5jJhiwYpyKoEFQJBkAYpXiXqA3+mqSMNI/KlZy6pZ6qb0GpkH2DDLZl9tMKgojqtVZnhXHZi41os6vAVr2iaUBvYFaMvr/rKBRN5UwVh9j1VNFg2imMNYPVbdzEBSc0ZF8iVq4A1m9oaJXi4LD7a9eu356aolV18b61tFjZa+tow2295eKLcwS80dVqGyTNxNSUEzmtDgk9EOBJuhiiMwCQEN1Bx4LjTbHtXN6qBpjR+wGhkTu0Xfp9SZDi1wxZVwwMvMph3B7GfkaNhdIALCwkBlOM0wKftBR73UDaOzgz77//7vvuP3v18tUnnnnqTffcTzROzUwLCeVhg1d6EnIidsoVzIsLLjzK/Z/HFRdLUAF6QBhsCsK0tHZmQV0PeJbDA7N3JR6xfSUaZADhdd2rnhw8f93X1xX+tl9Va9zVTwVLXyuFICAbeezkO9C6PTX9zAsvTs2sPfzQfTbDJwxe4IOYBQe64blhqckLXDiimXmtnowzNH7nZYQYcBlfEQbVb94pN3vvuq+eFCAk5w9nrzwjhokb+MSAHJ2UsJTCK2BAVQ+R4d5Ee73MbSXVCnbFQeUZbh+i2GtRA6U/Xg/6lW5UrAG5x6VTJFhmJThbXm+MD52cCcw5zErLGKgs5NwnUFFVfoLcqU1jxHnZ6qxncN/YRbrGZWO91BGD223imiMDkkc9eUadGkZA+apFhjIjzBlctt96oqqwiZD2HsLmiWdlCGpWqagNOEOWjgABAABJREFUUhlzVwyrAC7UTUu22UaBdZKkXqcrkwX4GzDGLpG+m2LS3uZrKtnNOeFpLhTdIemO4J4jx4+u04JphWurcnE2NHAMb4rnc+Ty0ura4d4uMbdrUkAKEuxo7R7scYINUXN7fMo5nLRYh0hY2I+zIpytYvnmY0/YIwkeISpjltetbgt6B0LroBnPdv3t9771zJkzjoL6jU98PE7ididpZajQQkbosbGjb33rW4cOjbz80gvxzGzlMFWXaagYn08lK/xwnzaKRQm2HItWj+0hcBL62Oghh/yKHJDRoWdg2BzAJSGPVI9u52du7MjRgW8m3VhrTqwkAMTASE0jTMcnnp1cmvgZNELNEeTF/xdMNnMZUDVzPndXkkLZVT0xhblvFD6PrJJbBOXkgXfCu9ump2c2ZOXs66MP0DK6iw3s3Q5Hlm82WxUSG2oaF2rLVN2bN8dNIawA3rTMtVOuiJbtbWKyu2uQe9VkQwKkIt6ASwdgrz3/vF/bmjo6Bzt1HgxLHkCpPWtSCXnbKfDowTqS5Nc2Kw4N5+ALvFXMKnmM9HWWUMFVufKYCQal/jI6nY1eX4RgklzGWLb/QyATMzI7B3IpGaAVJSjgq+RiockALS5Uk2MtOwOLzzZSoCBRvNgJ+zl95tQHPvj+f/j0zzz+xDfPnz4/1tc9NTtjoULfDLkI8jAI1FN6otY/16ua6HTA9NB1iusW0tJpwilhTvAkV9WtApPcVsCpHvo8KHDwpCrwuuceHhSobl5Xz96vhFKurK5Vl3rCnzAbvt2m5m888eSLl1/Rp/c/8u6Tx0YFe+9KCVAJZ+Fneh4BirT13pdAV8v+NySdjU5QXEGFjaZL1hx9plAuL5a/3J5R5fcu1Zan+aSUbG6tMpnAitfbJ7e+h3yTQkNLdGhA6oJJxesZAQOK5dnejZ7pXv6HOxUPLWJDeWqfW+W17UXiMN1vlCEHSBgAUdsNIqoX5AuJOok+4TFQFJn6yX/Uk6oDXjW48k+1Xsw4yqgQdfkXyswlVpswkJ2Fm8W7FU9rGzxk5UO4DiCRB7ACetiHi670RrHqXZ/uD75W91rBwfMpIcwudbCL7njzxg01CymJojwohWYPfwl/kVlDrewC+pxiVhxO9Jy0gUDNyLaqB6PDKLpaEn8/OX4TT+AXOXX2jG38+JRcQBwFM7NzQ10dslXXdxZ7+noTQdPVMyncnNq6UWcbGUJSLfAy6RNoIv6iL1Q44h7og3tKKEB8GTZWAriE1Ej/yEMPPaQ3Tz755OUrl9/68FvRi+xvIkn0hun0zW9+89I9d7MA5FXXuQ7blmFU4f7qTJk7VGDMxX4oTfAakUiYgfV09Q/09djjsLC0vL0u2i2JRTHHihOBF8ZBU40WyXsS3kNMxD+hGFc15uLS/bgfC4+DfRDckBwCzWSshqYvKVaILXDIFd3Vr670mOcIT0NXYdsqDPOu+sCTyGnEtiLXo2sHVizKxqm5WbjrZEoKRUNLu2zVNHdSGj5aBiuVpPJKSwFDzSWatnMAQmCIxojjuif/iRmc3ewow/LQG9aGDflNi/OKWWgRr+/YA1KE18iwvb6zPQACSDMpjJItJKezVm5ZJqV64CBdHmWUDutONPdCWxm/EdpfUDFizeXnsnCdMceWz5Xex2Yw2JAogAWuVOSgEARG4ijflohGO7Q7e3rr67W3vvXhcxc+9cLlm5dfuTJw3yXZKFSdFYVQPY6WuKPcBO3y6Sq/5Ob7fJmRPZw3NK3TxXTGSbb2UeuWBVdgSWeyCARU6WcmItOdzldQ+sOdrJ4f/Fq9Un2+robXVRImWzhV2th/wSN634oDqGl/5npj64uPfUUe9AfuP3/vpQv9nXakrzrDL7s0pGvTY8QsVzf+mJ5HgpnMCIXS8/1a0+s7O3ZwH5ZQLgUgTXXvswgAtBPkQXEVBKBZZckxTIUD3L41qRNoHK6lgTQRmvK6ezCrXvSuy6OsHShS/VDKg7/Owrfybe/DE1ewLbXm/6oGOKtXiFSLWCSWitfd0UR0qRT2f+lJGUt4mqs8yY3OVfc+1QPa8mxGCWhrE1O31rBetVVVK/4VvaNNs+AGb66qSg3+z+drNfvqrYp2qiFw8vtKZKqTINLc+Pi4IRd6N71M/S5WlHhN/2xfnVtdVIFKQEpzLCUpGGaWlzp6+qAEOUTXpFEJOqIv0t4kfiArZp2TNTg4OjokP+bg0JB8BjeliCEW5EjucAgspdxyplzWr520nmHoetEYMowwg+B8Is/sgsNi5GwlJ3SF88eGgsuXX6LsHz96nPHywQ9+AD+aW1yYn5nHoW5PTzz1zDNvffhhhc2KjlryhCjuXcYPuNZvyQZMX2gKloGn0+uPHT1hL5Nx4mI0XwvmRigeBaxvTb1qu3MFSoQo0IU1hbGaCWU8D+iLsIVtklE71SsRrFCDLzQDyyd2K35T6EBGWMqXOctX3auwkLJP1FUNKcLgUEeERNhAkD76tYMT7UuorciR0pfVz6REZUQycCoZzvCwfKJ84FaYHVDEBoxrU0/0MfEVRlo6EkehCzZ4IsADIfUNDBSGnTFUZSpdTMeMhXZv7Bq2jAyk0F45N0AtUYes6wTA3OS02uaXEptsDGsdexnWlVFnaDJ6yT4lhUgQhvjfYo1XSJeVp9g7abSQq67457XCT8pn2EsCnlBzFhAKNUaq8ColmFho6Ebf4GErQzd++mccGXRkqO+uc+cYO+tFyWI/6XbmpVI4QLoMtxID1X01/O/TJ1AUfAhigwfAEkbUMdMhRqViDQrol1krZXEfQ96blINeFVAefMtN9eSgZPX1zmJ3Fth7vlftHpO9szr16CEhblX2yeeevvLK1faOpne+8529XXJ1OSvUJlBkFF9BsB2B5DNqlxkrLLzMmknZ77kKVVm+hQgqDUP5wg/zRtZPXREebsq/jGpv4OjOj1g1vyF93yfXdW9n9/pQjhxpXm4FSYgHyYNp8d1kmTRQDMZFpSpNR9vQhC+l1/HiewLUCTWorn1oh+tT6cvCW6oqvEiQXvSqKHpB6ES4Cv0IzpZUunaqcMWW0nk70MjlgeLYLo0+623Fe5Gv27sOyOM4k3qluzX7TFfksbIRJr7KHOaO6utCzFfr7W1Z81tdrvX0JudYVWd1U91XYEqvIrKKfRkGEg6iYYAxONNsTiWOsIjMvMBpEbUoI6EfYpBcQp22LG0UBzvXv6qih6hO0F1PN/6Dz3AVOJb3+vjNQ6NHJXHZXbVk3a7DyXrZOJLVtd3thfmFF6++0tTe1ebrpmXtrYGuHhsqVhYXyhpAZhfwipyE6zG/AvvwrHLYLOaeJsshJLY92/SrEzZk4eDDI/3Hjx+/fPmyhMNlAFWUYZtf3/jGN7I+rIS0HTtqqxE2rTaaPg8PtFhYICo6ucP4wnp6s+vVnIUI7TTpaG/YbFmr15zStbi8Es80MdfTz/Bh/ljQdmO1cqCrEwRNmhczxRVCQXsrTqvYoifpv2GJhWAnUjVRBFNB510GCLXymS+NBG91jxIgkJ64Aeq1jVWgSaSgoIOQQ5gbfsBvNz0739vdCUsctVv2AAfz2lu6kgLIpnBp+szzzvbCwgqyhKYRIWU3GmB6zmEnwAB8hvu7+paWpZYAHMQj4xpjcGBo2LwSCZZnBXmhiko8yPlk+M7G1hlmUEUPcoJbfj127ITgq5PHj1t0qS0u6ap3nY+mTtYRH6Kjz3TArjHDkEELVhqkYq7ciNEsyniFlwFAtbxWABsolSsUu/dfwFI4daSv7WZFawi4kTNLTPhoTTxiR7e8gY9+4NHP/95jX/n6N164cuXUieMhOfw0p5A73q5kydqrPq+7tOJyX93ky/fhqux+RIUWRfbRWlfXVmCE7RQVWAzUBdSmTHdjOgZhytPSH8X89VkhT1W4/LL3URU4eHJQ7OC5J3fei1Ix5AoIB2+5oRNxCdNHuzq7/uArX6PXnjhz8u6775a3hptaz+L5L3TLTFQlfC2SAIqnGq3sX3tf86dcnvtb9aG697UUzmd+OBjdvuZUvVhwM0gI7V0ghOObU/SI2PNrtXBYKg/8CqzU6W+pNb7C1F3mOnXu9ySYV6SWt6rOVH0o7+7Bv3qCoBMVVDwk3lIgIUlF5LjPmndGELGXd4vmVZhw2tePPeiEQ1e8OTultYyrIHLnnE82TOhJzgQe7HGiFpYlJIoLvqdjWKNs7sa+DoNwX12ptwxTZ+4ccn4tE+HXMDryTbH0FC8IZ193fh4h05pNRjgVmIjjqm3X7ZrpKFtSjMKvtLOkoHHKcU8PBqLbgyPDfPozc7PdfYNE1tSiiBurWc0YsWwQpM345MTtmSmy0VIb3CBtOM64EATwCQO3LVm/9gYARgW6+QME6XPZGGmVH/TMsUiPo0ePDx86xCa4IjOEo5oXFx5536OPPfZlRg0VXmgaz5VF79tTEy9efomh4C0M69ZtJshUhFo8Gy0Y3OjooWoxE65YIYA6pB92MOOky+WlDYjeTZkdPnvhvNO+Wjq6Lr9yc4mrRMRLY05qBfrh3q7K50MtMHtqBlP1JIx2e3d1OxuOMiI4wXKEJRh6k+wUcgGV6cgvezdeB5EyG9Hz8jRjp4/YSUFZwK9M0h7Wmh/IQdVfra0cOTTCwWVbllQQAvt1TFSY0lboSWCOdJ53SZ5JF/pCEB+viYKThjWvWjtyu9sPa51YJlDRjFE41YAMt8CujF755Fhda1rzqzEjMUAD7bHRw0sC8pobxo4cmZi6zeawBGKf39zM9PL8Qn+X5WWRakI0uQ3MQvvuTjsZBHvUo9qgoEEaDU+gP+LasiiS5wU9oUV2gWrdpWT6vM+bKiDF+s7Jl/mlgpeSJB09L4Ea+Wyw9a22sDE00PWRj3zk1ctXHGT9/NGxs6dOi5Mz3Trj5XzGVee2EiLfIgby9Pt5ZbzkHxHGF1m2AfNeVg36CXWYAzPFnWKRo0Ds2/QmILrjOvhaanjth9d9rX4I0NJQLvcqqj7zJ+6OIDIEtIOQnige77JjhVqb3/Tmt6Cjxo25RgKgLAxk7wYGrFyBfTVn6ojIzjDsTcmdSlNv4YYFu8IcKzTLasH+v8xpCufX8pnuuPTHcyoM5T6o3tTEYi8HPSYori781Fq0CBXxyix3Cns0yUSppQ9F96e2VeOFRUhY/w6uIFhhR6UXeazFvcKl9YJsBeFK73SbFeIqkkLx4m2nsclv3rSNNNQPuRTI21hgbM2C+SLStFQt7adjvrFLrCc6YguTZ1Lt0u2yrtDk5FeHCYtYlSGq1+or5RW3seXN6IIXUZ5z6VF6UvhLWi1f0atR59dQW9bmC+ADKwVBJvKg2HZeRpioNV7RKkgyIexbcnJpjipaAsFbFMBPbBKiNNedu9XVdf7ihZdfuWIFdGB4VElmDXXAREheJIf94qLszJtd/b2LgsIluXKAzHZjfWnNygwWIU4ShYfFxIK8YybwUN0DXAAhTNAnhwzwnDl1sn+gV0Keoo9LJ9r1+OOPU/a//OXHBLN3dc0gIZNhCqwKvOcdb3/yyW+eP3eGvLJvgGVttKBWIJugLPcSO5MZMsYU63tXZrQjY6PC/Cn7Zsv66upanZi6efPmrambZ46fOTw22t/dsbwwB1ji8IWr0wJ03UzBSIkzO51dww++npz4FOSygUn8dgZgMlhSQO8y5AqVq6+WyotqW9SmCsV5HM0a0QnHiMMgIuOA2yzKPEk62Ma9NqROU5IQBBPq7HVnSScnYITHeuijYWFl2fAFE+zz1cJdo7nA1karBYODw+YyPrmY1K5dezomb0/IeYfCzTQGAC82ir8OG0LFZsq2FPoIgccsFf41PjUhQpkIGT00HJ7cbPdWJ7mi1wxboX/kovMRaNtQlvmSBRNDykgLY8MB/TM+aFgMoFDEHVcBFxSBL3ka6subgVA0aF0C7vJUnQDB5BcO293XKwTCTpmZiduPvuftn/nkx7/8+BNPvfzSybNne9s6avOLsl0kMYZAVa/r0H6boY3C/EoLaev7cZUmyoBCt9wmcdxBtn7ezvi1DNNcZ38MouJmiNJY+hEar2Thfocr+Bx08uCrmwNIZmqDdWET3/J8r7bwjLSTr2HVpOJBhaLL6RZdfUPPfekx04rpPPTG++1KtzElZZLF3Xmd28ksnPDd1y4/B6q4Tqmr/PAtBfTIAIm4oHtUYiX9Le1n/xBnUsojRhWkW/kH1wMMnAuHgnX0DASLGWFAaDwFyoFF8JO+GaanhnQlFQQgqSM3lo4pEYkYSPQOYKdpPyAxr2QNI/fBsbQYhN2DYd6PJONEUihrFfho2H2KIhLZlzGsrJ14KXVUbYenRZDHA2vM5ASXQtnK5gFOLvTOKHl4fO3PCTIxT40uZ7FsOFOz3drX/LxIisRr6t4awVymGC6VS3cCKN2tRh1IFiUf3RG6+FWkYIJX022Q5zDAlAwNFehZsgX5Y/3Z5v5sb+K6zU773a2lxlaRja1czcODvVaC2PRCMDR19Njxl6+8ahYOjZZk8iIQExK0LirIAKS57h8anuUxbu/QWXGD7Q1JpCadtfAh4wxDhB64hACDYpVju5sS/S/W1wc6e66N4/V1O+PrK8vD/b1O/uJee+65Z7m+sWDzbeUWbgwODI/fvH1oePT2+IShDnT1k6X2D585e+r+ey8ZD1SAH0Ejiai316/dSI85lyQ395ytcPHcWVothCNC6CG4apw/BNr2Ls/FKy+/dHhgmF+2t1MWivmgKHltBmWrbGqVd7O3o6ertaulofXU8ZNiowYdppwxKQLuosWw8OgdRcMx4uA0zNCfcpPZO7hRCma7YCejh0AVJK6k54qRfBUFklLCsPo6hsZGRrUFFNaNFudnOa9sl4Ca9mLM3Vho7mhbE5TpwHrrqzn/um2uNhuvzs7OobEjbTsrXX2DkIV4snhd390YHh60OHPlxZeOHj5a390Wz0ty0nBECa3Ul3fW2tvkpJVOZHPz+q1bywuLl+666/LLVxz6Jz2ALNFPPP2CoNLRweEFbvaNHfz32JGjSGlhbqatdVCwW2HhcCwHPBkyXOMXonHQMENSRZSF+/pXnApFRSg8pIAodB/4BBRQOROavMGJKFCNT3AOxe04MrOHiEaHnIewe+b2K3/t3/pLz9+88vSNWxduXH/Thbsl1fADLIoLBs3mnMkQjz0X+JAG3Ajzq64C+7378meP4O58dOe9ntz5NZOdDr/2ME8cqGLn/dZ2fXuL0ba8U5+Zmx7r6xhp7zTjBC7KTVr2nZwRhlDxuDidY8GX9Y40AEbizGK/+xIwpZXAKHflPlDdu0ofDDao1kiHhOrQzAY6qnI00sTuqyr+8jAF8EhIT86lhoq2gwszfubZ55fm19781jecOXp4bXG+w67Uhvak8bdeZXHPTCMYmF/4tU4YZJzcHmoyE1M5QgLnMMIS3qaU4ulyFO+QRCELw0FdlZc4TvPUUAZiyvktMpiE3BDdCYBubd9x5qQyoOGq1VacCUMv84giFmdDGK5q4vc36lIT8GUbtt1TvlI+DlQANcFJWpUKw57wZhVJuxV5nVZKX9OFim4xJfZPItKiwOTiR/E/7q6I2sqnH9NuxHkUFvIMgONBNiAM11xLsK6Pkqzt7tT7OjuEIU7cmloW5OosCykVpQ1uaZb7Qc6ljZ2NhcWVwyeO0DJBQTYe2+Tc2xxD/PBqsH8s6hkFBo7e+aGAhRZf+qIX6WqAXkABLJF2+uUssxBm/PAEGlV6o7a+uxHZaLq4+5Tr7pSURhaW9c5sEW5YW1qR6nlZkEB9Xfx5QAoDWzqm5pfOHD/S2rG9srBoh7+T5AXmJYYs2x+2Nij/EgeDlAlw0FmFMmBC9EXiOQPArO7MXbt+s7ZWG+nppkP223/V1Wk72+3b4xg6eogZUq9ffukKF9DLL79MI6bmxwvU2Wlx+C1vftM9ly6ZbAp++GnjLo5/7do1gkGgBfX24sXzQmK7e7o0ygKYnpqU4q1IVNMDCrJeYrstAMdBZH7t0lGV/W/Usn4L3P297Za9qc+iVDGL7V1Kt7cITGzarIZ6wsXAFgSBdNdpZXoSVoXp+bSHu2BHUB4sC2aZCL9WZQ6fOikZCI5PWuqkHB3wxBkUXvOJDggq3evq6IQ9N67ecMYCfI3u0tgIjMpLC5UdVlboLZwlvNwEIPB6cNTO886sGTivhaEg6wMm6uVZSZ1qNQOzpUplehjr1KzxtBZ9xBI3zcXyEZ/gjdsTFswnZ2d0S+rapG5soew7oUUUby4GrObtRsFwF1fniDQt63Z6YvHJ6iEU9C83Rg4KQU1X7vYvCOpJYRt5tHcXLZgo2CtZachhMkoQmyYp9E7oJPbUEdaHhvvf9d5HfumXP/G1J588M3aiv5Fjqm4eue3KG0ZYKk8Hwrr+HC7YkXEhCdFchVVKISXrcZnCorMWlmrqQ5J4BkUWT8t/YVbkgM/XwepP023Ax5QZk0zK8Gqzy2mclfNI3vwHxJSWmCFYfJM93J3dA1eu3bx1awKwzp0+Rf3jCAJfCOJTo+GU4d1RayqWpzLPteW5y30lA1J4/0nG5K3SplryLflPlM4I4zgOW0rpUnBvViJPSoU+I3GoYOynzfrQwGAX3diCX0uzhUo9cZoR968sVhA+kRk7jYmP2M7OABeGCe3Y1zT3sqAUJpfuVSzbXe5hWJSEQKWwy4Ao39MtBYIs5S4fRauLxMPXtxo7nfydl/wrawV5MVeBmFlUR3aSuiIjk5Yow+RCAPQd+cTKxm+zPzk3I84SVWoO4Tc7bKajbWml4aUbN7FBR1OtN2x22CVKwXeqBHvI/qsd1Wwsry7LEmcu29rphx3cdDoPsSqc8VkGRAwVWVdGkiG7/IlFEB+ZzhtlXswMgtMuG0WE+sK2xdRFVD/QOygAqF6rEzwUOTZXfVswq5B9r9mHHGOSiaV676vGMMv+WxuWIFhxcWIoSIG8iiaLG5SVdGwCy7ab1GotTw0N3Y0NIJYrTR7Oq7BBimQy5e7BMWkyZxw24sRzMYrrgnwWnVUyI03pwswMPNjkKfrgBz9IkoTwysIRZq28jJKEh32kxm7CAoL01BpvK7gTAOr3CnkDPPDJQ8oyFiMDTQ5GgUGkonDozTpoZZNewYyCJebWTtuoHz39/epF9jHQQCu/xL9DCytYiBITzallrStmJbYChdxz5IrmDGSxswNkfG3rzE4uOzmMq0J6GkfOW9uyn6t1c2EpaBc/FWqXjYGcFbEtNIJTTvYFVlHdOU2G1tkQMFo0Bn17+VYka61vROODjrGAk7oOXWuw6Cl8RH3EhhhTewknJqfJp/nk6iiSwlagnQabQ+iRLd1O4sp+qyYZA8oivHuGF+lLVVFbIUl6UugLjoZX7HPzoN/+lZl4DSn3n+79DVK97lLeqI29wnL0owCEkX7oBx593xPffObyi1dfeOnFdzzwIA9djS4SDlV4VYX15bMoRK+r+Hv/1TTDesK+2gWqq3b5QR5DKGOGh4LBd5LaloaRJWvcEEFG8yr4FTZUDfOgc1593ZP9nxTeu5SBAw6PAyVS0D00wwWFgFVNh5FjSIRqpqSRLjFwqPPyyy9fH5/o7Wh88MEHQRhqpHDpqXo16zYc7FsvnVG58nlc+enCBqB/GGglMKKW+7Hi8QX+Sqfm1En2pWR1VVTlvlQYxsR1yVLaWOGnrMUF1TLIoaoXUe7D5GnG/GowtyxC7PdWW5EcpSKIonX9dCHA3BeFAwkWTrk3oqqAX8PmfaHiY1/FBR/tODWX+gpL2+FzNbW72a5l+C5fM8YyLgDXs9QRJwzlGD3FjFJYceez4ja835zV4jssgGKyY/2DaB+3kBESSQrWZJlNzS0OppfCg+qbttf39uAkHEwLKytx5TQ12bjX1ddPNKrT9h1KWLFlCogBVw8LmRA/GXW5vKa3paeCYgypEgBhTe6wLLPEbsFUsQ7ip5gK2Vm1godYa2HNyzu0ubkiEHtzvdPRQaAETsEW0hYUYr/SNuI3S8PRaDJ0qo17E6MbeMpgZ5ZxcDpt8NJsT2UDMLjgIN6i4/vEUMKVtrbo9dw42D0hAbiesAk8PDLUv7KUbQTiUx588AFv4USKVRMQ7MjG15gdnvAa0VUroODLBQ3SMS1i97JjGgJk7uzpXF7csmtO31RA1tW31yVJau1ql9ZGJL5ZTdbJKKGmG06ExcfDzj5di7OCgGNd+qRuoTACIScZ0bmixBaaI0782rAz3N/X0dnuIIiR0UNGRE0GdPu8ZdSDDdbuicwV5u7KCvcXO8ARW/QcA9JPC9Lx6hFMkMnmvd1sTgYKcfqEo/iv3LdlkbyndwjUTaFlPmzddsNgXnsnwzMmpGRQpMX2hnUfGyWIbruLF9gkdozYpLe44kzmSJ3kK02aBkaoGeC1IHgSZGa44a45/oVYR3WhhibxXAF+yhNLnkJAVbADKla8z8UADcSqzxS54yoPC5u482HBYxV6S8fVr26XKebmP3HkyEc++AM/+8p//9Wvf/Xuc+cODw9Pj4+P9A/CblKX2nVwFY5kvg8efF9u0jPyT+Ml8Ytu05estSKqysyBh9AS+SLyne7QYCBW2JMOebviUblxFRZTPTf8vQL5obpKmeoDO6TCd0RPQg6AE1Ypr48Tv0u1qRDky3vVHyXFBaxsNTx4/91nz5ypJV4w4ZIF3lVbKR30LuZF6ZKPPZh6HpZdvubpazd5q3qyLwCqZsvoqjHuF6hKhqiK8PBYtQDiueFgTYxRrWMXVoBcBQhN+MbucsLYNqzM6WHJi6kGI9rLcriPYMq7TRn0EJU1PcGVVF/dZwgH197I8h3w9ocQTuoq1eztOgqooTz1xv+Vyl06rE70VL3oMzIKj+Rr50VobRGoR72T6cvJX7QpJ6S2zNnSlD2nKoymr5JsLaqTdjQC55+rnPsI4No6uhJSgAtt5bjAtvZuKX43rA/yUhXZaSBlLAGg3nqxGni6V+wVzz2JKWfhukBYDzElfjQ/4BWL1iIadnVmibq3If2icxAdHp8DzHN45laD46JomtxE5EbJLepvBKoeVPJcB6wEyFuMb8TV554wrJaPV+sin5KqBWuj6WvP/AGH/pE8meuSyqbi4J5fuXKFS8eMKuDSRZ/C/LH7oxcvVnzfr6qBHMpDDvfkh5JBfVdSU0rKWLLTGLbRikrExLU4N49L4on0VldbWzI1xie+ujY62o1R2yqAcXO01Fe4cWeAmC1AzEkGB1cD2bi2NWXRleVBjWvxW/WZOLKmnY4Wy7A5c7T6LM8MY3tD5k2RzXT1KOj13oH+ruT0iG2rJ/JwCIK2FaGjS4qctoRhEB+M3E2Z5JPxwwAVw0RsT7FNHzQoTDkSiGGGASdgri1rd5whdHNWTnfPTkfjodGxhFF0di6UbXvWZnICMU25rWNlad627NnFJaFZm8n5ns2r3VxhrRSxqKa2+Rk0BWDZOdKbW2PDAyQIDGN4AAMY6gN8CsCTCtRPkCGUlgkLIecC/IMbPxis3/PwDzG46qeq8N6LRRerykMSbSE9xdyTTMTB2974xpvvf/RXP/07X/7mVz/6oR9s6emsy75A+IS0kboJiz5q/Tzf7yDyfP9eX0XNfq3S0Ea5PIpmAKbWCZl4DvNpEp2c2JIyosAL3IKlYdT6XCopWiQC9qWC4T7A8mvFkqoxUjpyNmdjM61waXEZ7J3f3NOU9B58ImHriD3sRT3e20U1qMlWGE/f8IY36AN4xnoPC1YqwKr6U7XrrcKiUwMGmh5S+Sh+4T6l334o7LC8WFkDwQSv472g7salSO5jN8TtlyelLY0W28B3cxX/JiYTx/eWjaw1nEYiA6RGswYpHNBuROk1W+S4SWgQ2jlgu6kzmtf+hU8XnIwmBh899htpkP7qQPncg+QecgRri8exqK4mpipT4JL11/B62u6erAqkOVpVq11A1Dy+2NxisdoSBQ2yuTWk3biZYLkMzEF7sv8XcWW+eN+7enodeFjJUhrXKrm2sS3jAvqhlgnnE/XQ1Z48ejZdgUCY506yngjbwGA0qFlugHQLXUTjznJFQKlLZdpCBCjOzLW1W7XT4Uw0ZGMBZH99syQcGAjFlBIMMUYS/tO64wBXfA9uwB8+Axsbtzd7m7ogSqbLR5ChzGz50ETEZgInyaoslxT1prWl03FjvUlld/X6zXTRofBLS9rGuA2DAPAQjCAl2eDeDe2Y05/6rw0CX2FqOx+9oR4U81BzlQdJ5WXG96wzlQATxZUDsUI1TwCXGalCPkSfXi9zmcizjDbLZtHWECkB6JDcaNuceI0Nzt3llbON3T/1AHjok0oHJ8qiPXzRMbBH0RKM+29xffGA9ftOAPikFJJIWRlq2LWTrixd9ItsMaLJqWm1Uc9lhYVEGVrjksUJqXhsIDJJtTURTJyB8X7oA6TMpAjCKU9wD/xf5yFcMoNbD6QwkBMO0XSsIwBywtnHu4kFSSiFhbZmUbCpcWFldU4C+Ho2iNjqbSMCFMm6TkL4rZqHE0VeJDjVyrNDgjcahUclzmxdBO3A6CCurz+JZYqfLZAxkMLU8gEsOhxAFURxAyUz0qI3hRegl3JVN6DrW/XK/vOUVxUM0aVSc/ZeuCGdgjbt7e97/yNPPPGNx5558e577zl79MTq7ILfUqaib6vuZZE1swZuew9z/z2/dDU8T71lNn0FAWIbFoMSBkH9J8hry6vCQCwBbTeZpFBNeWMPSq/rVQWZ1z183VcNISXc0EaQ+to6wQz/u3ZEScQoDa8NVPcEso7I8H79hZfFwo30tZ07dw49sq1KZ83tXt3p8L6CrA+u6muBYpDQ0Ny7qX7Vhjf15ODT86qu6mG+lqIevsawPdpjJ9EJqjor9ChmUwPT01yzmIdGhvFQGiR4YhTRfpoTbz07O++JVzyM9pMr7XqSdguCVWyq4KZn1QhSrrqPG6O6Ih1yvz/wfK2eVL+HUdxxxX4uF+BHW9sHV1UYmdOAMVyEJooe+kJkm5nmlhc5ZttmprEa8UYRDxXFaLcQrOly6rplfdTOwwssS8uznfb1Or3dul9nF5vRQyTMM0zjKkQRWiMG9MFPgYPK76Av+Kin+igWqMowCjJeZEP59K79PWOHRvkbIE98JNYaW2UAtaTu7NXVLHAyFJKVr8AHj8Deixpn2gIzGOhfWAZ/SRFT2JlZIt+4BjARPDoysFxowGwZD5Rl5RE+1fy5IQ+kduH6xx8rUBMDVgUUUNh6wZHRw0boqt7yqSbunqow6QOTzZPK4bS911EIEJ64mnCoYJhVZaLXJabA6ocemT+LA+k73z5Gz7tiToruqdBQf9+2w9ldQfFCTRz+FXw3C5456J5iLF+BcMlEwXPTy6QR54+2q0+sVPil0Nd4CAuuEAWTU7d3p6e03j8g7mmkvUtwAA0gmGT6u/raFhaWgFT0zqJ4XpE2Tq/MupDA5EoUyaK1Zt4hX1ZPaX1bm53t3cK352S6W93oHGw2kyu1dUASNWAzgbbjHi97prZbmuyMk1NEgI+DIBy8BSxmIgE88CUp46MEgZPYUDjFaW0KKD+QsCOJoyOngTHLygUVYEcxN6MTeRJczKj3+E/KBCVVWemAhcDzap6WP+X3fW6YX/JK9Te1oShokL+FdMk/jIRkOHv61Ps+8L6f+4V/+dUnvt7X0+skSfBLmb323Irijtq5LxI8+b5csAaOIcGyA5wYSkAO81SfTZF5EuS+Jhn8Sq2hM3mP6RRtHWBEzSxEhEMW5kWz0L9CWEaRgANQMB0FVn6omHQ+41zM5VNSj/mb12/2dDuI85DcMjQGCk+glfkMMLxfOG9cGdZ/Z5c23/Lm+8bGRul9nJOO9tZx4EfsOhway1yU2c0chqWkG2GquZTxda9cSpaHRZOvpgkUPIJK+SHMXw2Vi0T95WvQxl0UM+xC7bErsuEqQ4LtPqm7jVKkLC4zWOnAnWW3cB+HcjE9IbaqdMOItJGXM/O5tOoWVfvUdOl5el+ouCoCHzwuYwtsFIxxkydCnQuOldFWNQYCZXKK6kdO7rVn0QBNpHwwzsxRZ2mDqQeTpEghipZabQHuEsfYq42WK6urDLXkr81i23LG0tputNQ1/n8GjxQi3LscRggKWbV2dZJ78znLL3nlqM5gAchCsPWGwgbTSAUsKBAQ707niDGgzwZUOlZ4F5DqG9+BHzCMYrskCJ3CuTyzbEDYKUb9zAuXl5ZXh44ckQwDbsh/j0cBJ/JXRrvR9AwwNedCVgarq3if85qTYDKwV9CkNsUvlA2363WngJmn9oZOnzk0qqWFqKF9aBXQVe05eZAy7e1CgCrK4fBZWls6fez0xK3s/zpz8mRbe6+6NUz+Y98g4hW1qcdDbCo+lrIHRw4DopBcsibtJ/qvifGWtnQsAbEin3KIRxJOeYXBKPQ+x5hj/NbKOEQsI5fUAh7YrFHibhBdBVaMdI8Ii+cfy9/7z5aR/fvsFMnCCIjtSm4vY19iQHVDJwVGGbhgYUcn1sZvy9UMjoZjs0LT/Lzurdthoam2liVhNozeyjgo61TWAMBMVSlAUvPrCQHs4DPsXK1vXb1x+/bsZs8wJrC1Yg0Ko9zeWiZdGHUpX/SF5gbB4O12Trd39JbzwuBtcjQnX56DeXWtEL+AAN40R0hJuxQHVBJlSy5NIyObFZfjNrQT4ijMCGYV6tUQ1E9z5dq7Kd+q+wqFNFNdVTH31c3eW+UPLckrYhvMslZMdx5DxV1nHzOrW9/00IOPff0rL125furYKw9eumd3rSJIhdSWJqtO7HUlL39fLjiDdUfuxYxKlAEy5EsNJUZBk1k12YOddNTSlDAC3DJGaUQo0Old6WqYZrpnyAfQKPeJ64w83QPpXuFSMi2ipqnJmbbjtsG3QRVzHRYQHxDdPwwuDdCBJM5bTVotmUMkYcSG5qYmUZxnWb/e42/h2qX1mGvV/UFnUlW5qiduC68plad3wrSgxB7kDwDtlyraM4pBxuC1DMFFg0n83P7Uq8FDLkjVar3O+kzkzzZZJfwMW1FSGewMc8CwYAW+IYNNMGIf36p39xooA9+7x5u8bUbCrgPo/XaNd68Ix3nRW9K3/QqVtLcvTmn4z9rG9aiVBLv5NqV03ApQmeVE95Wt6dzgbICmlmUn67W1o1L5f7FKVZiw5LKdn3WoEoaptxEAbNwWqW5YjZu11dpu/6AYMgqpxBEUf54IzA3TWJ6iNeJdzUO9fbS1aKsu3KjkYyaAbPMGHWQSVIsnR9QZVNhtke4lx8AZFDGuv4XI83eXk1gF47duA68hU+wMxDISkMQXQCbSHhz1EQEgMdRW3jRDmfrgiSu8nnvOm6DGEaQHEihEG8SYOpMxBq/XT8AKyBuTwJ0tbPDVc0+8aO2X80dsj91hWKF3iaCB7gH46iuR4IkwGYLU8OSLZtMUTSGSlmOtVKzIHoKqEHJYz7DVTj0WT1gYN29NeKiq7pEhINLh/z9z/93kaZLkiX1ZqXWWFq3FqJ2ZFbi7Xdze3d4BIAAa3wKNfD2k8a3gSDPiDxBmMMIMMMCIvdVielTLalVapRZVyc/X/fk99aus7tmZ3e7BRWXFL54IDw8PDw8PHdFJ632bM9F8m+w207ZuudbO/YfbF37nglO/9rnWdUAlmsZtpXw11phJXNTkCA2x4Zr8owva3f5sfCTqmKivvZV76/K0i1ffnLnVImGzTOw/ehQRN+KpNftw3ImPlWXbOmWZ7Hm+/vBpXg6QT8WJt/ce3MZ593hQP9dffe3wyaGO/+LKzBd3H+w83F9Z3jSaefDkkS3oLtDQWYBT27d9cmh6bZt4HO96LcylEXkPpM52RZxSMU6jcpWLHJkLiqb1HO+6x4EvXtq6eD5r+BoANdHYMJf7eWPvBB+CXG+gpGyoqM3hslPKhXzoQ1SRDbNG3elrn44CErWMT5UEB9LXqHZXX8vgTcXRkt64ce3//H/9v/zf/2//j//xf/5f3n7lteurF7wb4YJ5wobGvYNd2asxeLqvlX4saEf3Vzp0ar7Sf6RtDG0f9C8vOdFi99kBSSbbd+/ZW/VEKLKx0Jr/hc0L2w92LLbf/PjTC9cv2tq7uXleDbUtyF5AEfXv3AwGc0/Z0FRlUtci2PURdASmjBbREE1O//7v3jP5au/0l1/e3trYsodj5/H2lRuX5cKqnu6hhkmjs7yy/Ox4xg2gULl5peuU135wlVKWhea2FBjuJJKpw/QUhQovGM1K9umhJFsGaB3qMPowBB49zUvI1QfMFFQUPSLSzuWFwlKbNXKowUTBZQenvhoupEyGcqFmHVagS0xMnaND5+492Nz0+sWidKl+KPQfEbPlAtHVVW3AfRdNTm6Oa8p1D0gjXVYcYzF6SumxUujVT0dEFgUEpGeUJqHbJewNKfnqQULyM6egXEwCWmbY/OJWayjFGrLQh3pZOTjr8NT+Ia1KbN2ik3WF3Fm7t7K65kKV3b2D+w+c6l9z2P7u/fvFLiz27Aw2pK5lAsNM7vFj4wg1k0L27Aalr6u2cLqkJ2HD+Ge3b6l2JJw2SKjwmGzGoWGMKoyalBYO0lgUpQt/3OPvVk2aSY/9/qOHVDRK1+pBEWu0BhZWVXIX5NGh5U1rmw6vOXmT3R36KiYwd3bNFmi0iDMlpezT4VE9Zdvr9BLGJKzsFl47KJrG1u02OtORmyyQzOsNQQjtw6Ns6ZF5VEed1Q4/7ijr2s9D9uQNMBgNHX8dZwD8k2oZsSK71SPgD7L92Y+tOS+t8hKMCUdPbfx/QNGrY+FTOip51txz6W7kQAkk5lgIgcU6m4sj+2a7973VsEpGSA74VIUoID1Sm0Uj7kmxuhIcND4bU5Ri/6uwahPszMlkTXUPVQr4olPduDp36fJVNZMaFSqcCHBQpmZfVCn7w4wNaQr+mihm73D//MyaLCBYbpddOrW+Zm+TyZD33v/4/b/72Sdfej5iznEj1Hh0TDmZhPT0sXlzeUrhLcyuLKxoYlTtNF8Tk22rWs10BZNNUqKYiaBFXkXpMIursz06T7VpiqoMMgzSYqWMzJ2ld5dbf3PczbpLrRgriLCoTDOs3b0WJ+UGSF6mTPvzGgEEFswApsB1cNL/mHfD1cK1a1f+9b/54//x//O/uiTuv/hP/2Rjc/3xk91smc3yj+4MkcthTmmNCU27p1L+xzs1tMo/KkGR5fzjxqe377nSUhfq1CxiMmgm03LX2sPbj+8c39u8tEVtWtXb3Fy1TZCpGniQ8flXmVA+CalchPVyIa27d+7fvXu/ZDgQfOpuhToTnRLKyIkyp6xQ97lDf9vbV9bOdfdZQ5pJ1OMT+4OjgasgAMOjEPM9MT6VJHTlSJk2jKqdks+kUJpMvh0j0avlBkD2CV58uqDlcUiIR6ZuOqiShSMVLaq2dqPJly4gJLYz1Nrhgo5TT/2D1IYJspxmk0m22dZGF7U7eGt3CeEMPcMMDwIQmDEiOS+eEFx5iTwKS9Kxk30mFRp8tQHEHPLOm2SEglRVMaSiGLWoUNLMM7z63dYh9Qz1oNMLTz1TufJOZHXvThyzwcDs5c/B/lIclSIrjUC0Zc7vKuDT0/208AvpzchXCt0676znQzA0nQdKyiQ+JIzozk+YSbItxFy0z0W8NxLxqIabHb0+tr3zKIefnAmg61Ij8Me+RevtcpdZf9pYI3Do6QLHfTz2NGc0YePdofWqE7tjwOtMBGkOWKXQIxKIscVfmx366BEcSV9Nnv13dNPl0e4dq5UHcYDR7MSUEUqhwCKPeCeHOk1qgt4xjd9qLlHmZ71R554Q3X9VpSEpUY0h3jbrSpkMbj6Q0KGo1BSpX4oXTp5hXm2bUbJS15tAs3kj63J2M2bWvlaTBBJHKa4srbjzDHDaOeWRShexsKkvLcKLRrotfDI7Gp6iLi9vEh95ib9JomzCdF/n3IUrV7XS2jbSoOJmuRUxJ8cmcuVUFJfw7ezt2Pa1WCv4aHawi6h5JtTozuzQ5es3rN/+t//df3/LUa5PvtgVb83s8uyVV65sXbxy/+5tvQnbWx35UrCn8ysKyaGBjMkzplNOKbU22XyNrBRmuv/WHLSTy17wnJv1ZILT5JvO7+WgIm4of3c+c9UMQ+pwqktO/GT22cHdNCd8/C+WhQnNLWnVwKLVMZ5k+J5KOGUSVdGGwqiVqpv5jX8qCcnKPIpZDiJ27dLl/9N/+V//5C/+9q/+7mfff/u7P3znu3sZS9lCbqu1F3IOc4x0QgmcjaSpavc/0YY9/QKHknTKaijpeqX3Pvzo448/JnXzzvuckO3Fw73cuCItI90bb7ziwj+7bx2KpIwoDVcBknrCmX5o6nK65VOGX4Qv4hOeUwApNBt8rejeuXXbC7KZfsxRqhM9JtMm/tRhMJXlAMMG+NGj3dfeeFUDoB7x1IEPTFJKJiZqEPOSEF9g9auAhjLikwKIkgVC65VUp32h8tPYiFqhGVLQUi0auiTRoJW1cEs208wAiSnlmrAY06RuHJHB9CbytsfJs535xYeUrPnhSG0uqkNelAbi1QhXv9hGoZOnJumH8+zyTdVNrgptZCCuVrkBiNaIaGSgKyR5CkCNBvxWSxAPrUAENRIXqsMmhv7VLxyipd+YM6T5o1NBZaH3NI27iHnTibCqVbSWgw6H7lKki8zVwSOZFITWc8J9+UKUUnHdsus53Eat4luBIx7R0fjSEh0moCKKCLBmzCtJ6q7jxEwUnR16FvlAH+yJiG+0J2WiDVB3t3f2XOxI9xoBgF9dcV/+8vZuzhl4rlKKjO4o2hiDMpdCezVMw5ypp8VwuEo/DXxeC4lOy+Jn5EbxyhF1uXZ6aneRFg8urBIElzZAZHTTv10lMgtfRs7NTmjY+fREEAZinNZCKyIuRyMRHbDecqir8m6feBp6HR1IBu8dlCI/ZpHf/+WH5OPajeudOmESSsbwHLwUi7OIlrlsbCS3hpmXLl7JYm5macJlRZXyt/nSuQmtPuEhAQqRXe5M++JALgNEW2yhivbRzq10kGt6jiZmUBuCU1vyXkR6DU7cZYtzifXTeOoOGGLpU0jT5qLky1RD3pJcXt/YMi34yWefn/uzv3CU4e7tOxowbcjc4mox6Jx7T52ae/xkDzoRTRGk37S6ovXXaZA0faGO6aoPf64l8b6WvoEaRV2ZtJw7Z/Pv2qLroq2OUCYW0EWK0NEAppVIvPqt3IgyhGzvSKVk08JV5UF3mXimqkTQ81OqxK9YbMBVgKCi1dgJak6XnES0YwLcRifCurlFuHO5vn7xu++++2//5E/+/f/zv/vzv/nb69demV1bzvxrqDP3lX7ASE0oqUQnmL6hXzLQ6yg5DzHrLYq1uVlPK9uc8/rVq2allj20/WxHC7tx/sIHN2/eu//w+qvXPQ1+3rTaeWs/kQmcJBEIqnwq/GJZvtLZoD0SFBMmcatnphu82Wkz3/XrmWsVIKs6gDo0KvaMm25nU+dJsPiGZ16C3D2csYpD2sm8ATp0dIXrFpoRPjsVhVLlkpIlQY28Ek0/V8k32AjfjmjJMj7bNFpRulWoT5lMIMDUPu7OVmU7SfhfFx4Ept604jCFaxPHW2+/YZ/I5to6N/pbWrSyHtelLmQZpNnvZiZ+SjbIKtWWq3ZKuhyxSERsCjRNXBHR7lo+aTCYi9qESpRmQ3Ra3M5DkKREBi5RkXlasnDmxExuArHnImKYLelZHlia0UM1OQlxOJ/yUcqZLoPFvxhJ8MQjvcA6YuTC7pNFF3Glxw3IIk/Vl7hDsahOfopHt4PJlo3aNKXadseUWjNpRA9lNqGYQiegxy1txGPR/hUDHY9a7XryS7cgCeVOCX2aXlm2oKnFS0Zsrq5TBQjlmXh2wvRwoCQjKpEizXTWnBEcqehrOhSMEmILZTQ7SNTZx0YORqgVAqNUDjKqecAgDuxAqxTExdAu+OJ+rGJWyxM7SVDZbKlnj85ibvMOGXqMhj81cAYGoRonLu7kPqPaB0llKzldF4cvvrx7z1UrsmqQEzUv78pBns+d2s4hXZwA34OscIW4Rt0/bwAi9Bp5EVO6dqMiqroKehn0phfHcoaFvk0L6rhdTrcTsLRLouhsEIEWyQgXGFk1q5i3w9bWPHvzeP/ZhzdvPto5vrC14uDJ3qmXpf3mmU8HRm7deXBysKshNDP/zK6fk2NL3PX8i60CuJS+v6TpC8NLm44tjNPPRn4mGzPnOGeyaCFbdPU7arXeuosdrWG+BgkH06mTocguk2GwYUrVhPRgJvVHULLdQl2VJKJduow9cQQD47PtVvqY7FOhSrS1Xz4BZW/9ydKsOwtPDZfcnPF//K/+67/9q7/9+w8/+e4nH/7o+z9QszxucPhk58Lauo0BrsVBQJg/wd9un9+IUV6Ump6j3hY9a5eULvaD+3c//uTTN165YUJ3035iR7L3jy9duqI3RWvfeO1VKszszYULW3z0b1ycpVH/1fQ02WzipidBqnXf8GRjfTMqltBkRGWXt1Nnmv5TfUD1rTKdLgV4GrGH3XZLO6dUIpnaivUDT8KpkQps9zfUMr6QMIQ8MShCPQI6jaRGm0dlqQFxcKqFfgzv7MXKNGYKLv4lNGqLWjZJxrb2oRa3D+WRpkRXghqqFQiNqN79Jx9/mkvLL1/QPzNAB0wYbTO59/ChKxbMvFFwtAdm0jTRU8lYdCietJSG7Fp8bjmaECCTIaDEjAvNJYqTYPS3nhE9fe1IZdCmcS1dF06IYUTtCPjpopmfLCsUwnSP9P/DH/xe9oyhyUDz7zCo/sb/4bwmtjTykG6IRK9y4Ej1wbugqM6jiJnF0JuIGn8qTSzPqOPUXnlPt+bgll1/OpXeuVLBMTDwu44cx4QOfJnLPXHwGyjsPg5vnz17QgGFUdFAlIJmx2307quw6H2yfbi/9Wxjzd0BuRdYR9diaK5moZz1xswzRka6FCUQvukP1qSVwtAiMkm7pES2O5lErgk7tgk+RmMuKgFVN7Tehgha/mCr+b7GAAkMjRCMTwYAvsCjdyzIsBrpedRWF8B4xUv0T08u1X2ZxNHjxnq7ihRfCJjTeVbYLzil7PFe+2AytrSF48jLZ3cfPkoJ1Liv++NpAGqQiBjinMxO2cZdow9AjIidQUZqgjJDZC306n5nLsXundL/83T60Y7LmrJlWC4UYQqHVEXZYm5G4losLb8RkokyMIJM5thuu7xuW7SNnulLeAfo2cqygecTdSDV7pRm13WPmGRp95x7lbW7sOFWJoDsnbU7zPhOM7FgNE3zexbNQtKs7WY6EWnYzTXZITBoAcOgEp+iq8sRSGp7FidTudNhLKLjX+USR2WkSwpLOmgM5c+nPSeOSFGYPDBwAOBjVLTn+voatytsd7C56/V7737nj//4j9/78L/5u5//lG5VmnbogdXER7vY1KBuyUoh7HTZX2tKhL829MWA5Dykm69QtdK10t25ce36rTt37Wj4Z7/7Q2WK4SoKStdWlsxkPnyQQ+kEwKjUnLwtvrQqZr6IuL94DsoxeQ8b4m9iBAbvJ9F3rkxQZdRhGGik/HkoIkelTkw0imQyT4b4GI6LrYLAQoTAqwX8zRqR4zH1kUvKZXTLQtIvn+jW9AMGfpZ/ovPnrjqResGnv3Coog7YeA5wlaTeQuKMxZ0TpyRERcjiM/IkqmZTF5SJCbTerKlSl7o41VuhlJZyW2AuX0JY8Be19Au0xbBBEDM1HaqZcHXKPP+cbgABjGKDDJ9tIzcoihvEPdyoguHIW4m2dRQFUYOnCyqbNsOZX723peO6EyzPIJvG1FtQK+csk1admJbSYkjRF8yDHojCScvo4hptTTSw7Y65F6gBD000QUTUamynNipfrQFRmZndtrM7rTe9oKxr+8DSxQsOAT96mBOyRyc7ThJpwBCp0cIo2sP9hoYqZDp9f9NEZuxP17YUVtrnjAVzW4ApIBs9m+OhVdGZql41/XOqrSCgiONmhLbiVpbUEINfEMkG1PqaRnYKVSgyDUP4sGG2tQgekDBQoZVo1pOzhSob754rGmWEQw8fP9AA6E+7RpYGMHHu0gW5em19HUKadHkx70Hqc6FBPTDx4mJWA4V9qldvRvOYa6vd6EJyWzprr4LBAelQHFmhySqHlp9aVzzECs8QVuOFFPfoD7JVRPdB+BsMEAcNi0fk00dTuphNsUXAZDcbPWuBlriV9KYRzk4YzYKbjm598fnG5ubjnW2BX9x6INKih5TmVy9sbC6trO/PHD+2sr19YLnWdlizwWYrU6CE0CBgfu7qpYuZ7k+7MJSCSR4NgHuPtMi0UM4bmxEiyBpS6WciS65JGbLSB1S/MrirU1ooDB/SXdBVj2wZF2VGMwo6ZlI3hjIqQRjUWIcCICBy7rOFpAWmP8vNEtoFEVqs8GmytG+mIo1UMtm6t/9Hf/RHf/pXf/PTn//iFx9/+Ic//l23Gjoslr3M6FSmwTEkUc5v1Eq/O31Dfzat6vF5oeinP/uJmw2tBLz1ymum6fjr0ODehUsX77x//97tO1dvXFXxHHx57fUb2tqIXkisRafmyIs0ptGLbGYYTi2qEQ/u3beNhwyni5NnxzeIDzHR2/AprcWZjJ4ZjOWjfkUj1qdKF24T71K3qTdlUtITo4JzNnwrO5IcUQKdoy5RR6VpFW6KG3kVNbgCUsbI1YqSEuZVCrMQVihskE+ajRL1IEpSVKcoSlbnmwj2NhcBHi1x2NEYi8ZAioTMXq9v2cfsFG4Wwcn0shqU7db0YUqcXIae6n75kEJa6Um7ALmP6uMhOwpl+IgrxcGixpFEmcJTvhNmTU5OJJVueIoBSsTanoYYhfrqqJk3h+uusDpvJRc22ySZ3L9Kcsy85KrWqM76kwRWlZ3U6IpmzVAFlL8MTnirGqqmMecye0PalaxenWJiZQLbhhr7a3JF2Lxr/B0a0vc3LiAzIpFJtENGKxro16mgPAiaPoEt8aTN5qKTk+39PeuOD10fnZkl3cRcve7CNOJHefaaTCgqOtCQgYFbaKwnPN7ZNYKY9Upsqe/MR53T07QJPsOHZDKFVPGioWzE3DcUUJmQpS2ibc0uu5jfQoKNExhKX1ZjE57LanwsaddhAo1HmrKjo9yquri4dWnLoEujSBAAkNuV1eWnT1QQfaX11eVFS5thQracZosqGK2ZNYBoRqetq6WMBia7VQZEs7R9CpviU0RE60hBppoMkoGqzNkbLJuk08MKmedct0uQSCCC3eVg9l25G9UhhYxKggMY5qg2HAQRu+R9IhKW7UWjyY6vXXbvzaduWLdebPrImVJbvvb3XAqUQ9tahafWljfWnXFYsRUHWA6BPV3JabRzu/rm88ubW2tQ6aqa4l/JDt78mR1SrhYRNUbyZomKVOGNmXS5pEpyJW+JuLkkVKbI5s/Z44DKWt8R5ibwFIQRQL2gV8PizJbWkDMCnsrUm7zZkfw6kBMAol2tSzsi82Waq1hbPGmwBEjTUM/ZqmfnjrQBTvXdvePO8Ld+9/d//L+994sPb376z3/vD9wYcmF14+jxzqpT+MnFt2iMMQyVUItdysnFpa9eueYpqJsPHn/w2a23Xn175/H+xfVNE3dU8Mb5DSsodx48vPbKDeVz/879V29cqy78rjFdEar+kTAag6KyCKULU60CRmg6M5ieyXbAPbd4HDjCqOCIlXoUna4n4T5G2wpzd3mNyECbJHAY3dk0w/HcMehPR6XuA9B6mzKqBR2CjNO4O5qUe4ompjzjBp/Oj0Iy25BKn6kaVSI9gJrXAVninQYABhS5/yJiVK2CH2UvOnHVgvRQoJCnaZdZYg8boWVgUD2l6RP9ao7z1FQVqbty6fLm+YsRDOo1TxnnJgSM2Fhb0++8dzcLwk12pYY2Sh6Rkn5m94SghGZLQTIlzaiiTF1WoxRexN22e141Q6X/49n+keD09JNNNKgA/Dn10hx2tfuLTpU9XDEKO6pH59FPBoAteKY7d7Pv17WVmUMPTnwtbks0I6aiu9MKGUlNFwA39Jjth8z+TsqcilYiij47OBYWkVnFriLHPwUjOQMFB6SyvSiNh+kGB/sJBBqikOjr9KId8qfhrEYestP9C1KEnds5mtm9+8RClWtzWhwQRzsyhliq/7xpLUmZPCBObuNxW71RsKlCcR54VtAGG3uKNM9HB/aWPPMkwvzc9SuX7z18tLh83eknylrsC1tbn5o/Pz5cX7tkEfLJ9qP1rfMrW1teJIsamj/3ZOeJtsH1UKqWKHLCkAZTIiY37TdVi3SQX3llUzMlby4623+yPbuw/Dc/eS+C8tQk1vrD+55Bt2HxYH3NpIf+owycO11OBypNonTM1e7sbWxeuP/AhfvLyE7XITtOipuR/Jwv0/M/YwJZhqOBBwCfJViJqcnI8WRtRxWkU7hEPlXIgVv3hLvMPyN0/KVDCyodAXjJphx5OG7FSszh4daVK6b7zfM+W1rWeNGGWHGoeCVpzjcKeJYAwmn62/CAejpeWd0+l4XiL37xkfWEC95K2zq/tW6e39DQHzYYF2S452xOFA5B0aciGeZPVB7zyrWFTtbSRPg0Pzjn9lOhSCQR6a0JxaZcCZtlWLnJISbZS87rFILsRiYzVE8zSHeIV3Uu+h03yFO6A2mXRS8j77m7qpp/vvoQM/Ou1lfb3YGdxvLprGWAJ9v3/qv/+r/4H/6n/8m7Fn/zk5/+ye//wc7du5tLFj+1zwpwQDbos+Hrq38y//prG7hpfSWnZLFuZ/sRybLx441X3rjz9IM/f/+j77723e9dfXPn3l0jqvXzq7un+0tb63ocd+4+9CrRwsrCrU9ubW6t3njjxpPDneyj0dZiRFRHHbZMBzZ6yvLm6toW+bxzW60ySemCdBN9cyurmy4KINtG+r1d2GPu248Ozm8era/b8pt9UG6QUePnV1a2j2lQiyq2CZobODja2710ccs9iBmwUYdD919p+VT2mUFSgIpQUdKPVeeyqalLlSjoF9CrGqsy5JvbRwk1nmuv8rBpdjTITym1YREYRjnjA1UzO6F2khEIfbqqTUo7mjgmHnZB6PTwdHOZridlaslQrYdx98mOjgwfyFaWVpcX9HXnbbQnSCLbZigVyzB6nyTWzhXZw+ROF7GVRLYelQOpadO4k01p6xJHWF80dfHfQHmFtputvVJ1MsrX1JYhzZbWHP2RD91TqlXLuDi7eLi0KpzqHCipfEqrDRiOJq4I4URGCKMwJ+RHtO2UUtO0tXKQPly1662kreFqpfT0si5Sh7TUiPk8cmD5QXWbd9PMygZFdO7dt99wSGXFEwius6XIXVBWq1OOI2h97zzaUzeLwKoepQmP5OdkZt42LAqUgNIvtdHf+YUly4/7B9tZMKrKr56E47WirWrX4mLavUhA6IjRl549mTk+PFBV7JdK8VuIyMkvW03cauO6tBUn3AygqHxD4PSga/+o/WFOhcDp040+j83dU2JuDLQkU6u+kjZ7rkzzuOATb8V418beStvo3SPvwu4l9w4aTahCa+7/VyQ2kFgWxusqDNiqTkQooHLSgn3GDIVWgttBfDioZcqZoz/jqNZDN7alUDbbqIEpX72z6qtUE0sXRfYZ0pgZbbsbFTARyN4M80h56TfJddEgz7yinlVYl3EDglWJh7vbP/nFB9D6cCv21YuXnCt3h77BXPb+pAqnfhlqUmEZH0S+0owxwY+EQFRCoR8mJlsaAAxCUaGhM/+DDv06+oGYqHICHVKplkz99WJ+ek+WnJMD8IEMj7vidUR5FTSaqoUhObKTYb/xiLz6zoH7f/Nv/s2//2/+345EPX57Z3nWLupDL28M3ZURxTfuWMhBnlTL3CaS7hvpv3T+wuEnzx7tHzx5vHuyiVRU6HS5EuopRWWLgdPbl8978ujE6TCDak+H23R1QvqUZdd6vLHTUdbU5zSLePbUFmF7ujSIdhO6J9BOrlxwm/3+gVBK4a/bxOsBDBWEH/5E2vVvvHo0M5Nj+Ns7GyvUkGqqK2g+IVVaOsqyRrPF4zNW1FIKokoq5Zs/GjxgUXfR4+mfgmn7LJcbATtxwDER24Bxdu+8Qs5G7O+Cj6yZ1pNW5g8sX62eLBXjjabdtW0MTXIFqexsXVyXhhkfm5OxycGsGGk06eECSbmIIEfqKgfpo3jNrU1qnk6Xj5JDrjRRQ2D9pD0Ts1quCHu+opf9MOlIAVeVdOqqEdCBo0OdpdKpyri5Wgjibb4KDb162vhb8ntglKllRnmmoqUiV0oS4qi0EzwYRJuyyyTF7IlOFCGEnzHWwy/y0eRlVihszwF1d8ZfvHSB2jSWMuLXMq2tLjoqLsO4QrkUf1RzA6UglrNk9iUz/9mXX3h9WANA1rTKm3LuccTT7OvvRmxkTWdSt8EL73OPsjjWGUaoIJ+CNCVa9e39B9pJFJjMPzhJQdrFrFyP9g5QrGUl3N6BAaOk2XhiNGBLgB0QBgqaB/ejmwM3u2ZqSCo5EnmaCxFv1dk0oOe2cizZ6MElnF/cvkMynuztyh2E6AFJrscMD8o6PIkB9pWOZk4DDDAGSjXZ1Z9sOBsFelIfCpUUdQS0PaRNuCB6tmsZu0SxhCkdGecSc2ggMBU3NT+gwCK7bSQh17rJZgD16DMwfHpiP3/Nn2Khx8+ybtazaJ2XSZWYoPCbia6s00yyK5WWv8hTsQENaRQ7TqiWbrcAoUdjlslcmWPS1IvPQw7TUclPQvR0KzwY6+KaGmDaxBJsAY3dvEoTWZV2isiJU3v3n/+7f/s//Pf/348//vDWO+++e/2aO/ilebauTOC/qV/8z4pTmZBaW8vcbYXJuhSmfQ6vvgoGMzGNrNoj9MEHH9mU+e7rb1BS29s7FJdZ7AtLlwPRnKl9JPRIOB5OQmzsd/TgoXOdKtszaCEntCpF5L+EQdJaCX0LHFcdHKxc36Ihs6Cl6D1H4RyCpeCH9x9svHKdkqCrMv2YRFIBpw1UPrt6crcBmLKrPCJV7W0YvQ6QCnMA4yt6fQw4gyxFVyHPbZ8RCulnhUOEATzRXzKCpTJ0qis5gxT0m8zM0YHcWmMeMl2K1QXnFjd/8IPvu2D4k08/M1u9bNVoIcBuP8/mh4mB8jnN1ZxRju1TyeFA1hG5p8npBoBP/BFfpj85zY83euUCuw41JcondbyEsUKrwebFs3oPjd9nqlthBsYzLK+63HYqYNXHMTkpju5Gwi7EsSJ2Kr/9jKBCasrPWIGapZ91nSkBOmGTfEQ5XHz0cIcezjwj0C7oKuV283zZ5GpPMwCK0NyLyJIn7vDao+ZTZzJZKnQcRdycjeWawsNz+3oPfICRV62FuWmfGcrZhVm1hUI3pV8lt5PFjZlzVPPaUvaMRvGVzJncpOVlKa3u/PxHNz/RLzq/ddE2xu2dg6o7mdOXukZYRAmh7YqXw9ZzuMxxAby4duPV06RpZ7SrMeXFyy3Tma0ixIYqjA5oprTdGZyOwA0baTKCif9kwCvD6VToP1UPOgirbBpP6kMZn9EFKTMxACfAiYEsGtUecB64kfliQ4qSY8sioMXDGUJuvcFYim5ZNXpSNEZ2i8vaPErfwq8CshvKpE/mfLLXFXoVNJjo6FSjdLDJTeY5EYzVstMMbwqj1MogleEM+0pXyVp7+hxBOqjtjth2RtjPtccQUhFT8eCRqEwNSVQqafAGzL6HjgkZcMnBj3/3R//L//qnVl+/c+O6U3JuDDdFOp3ct+GW31YqSCXiPlUqlyZ9+unnTgPsvL6zmbeFsDLSzt/dbVastAHXL27huTkN11HNPlyYUWaGA5mYzdYlTMXWHL60HebwZP+Q3D6xLup2FhdkmeY250nTqQT6+FHIWjtllj1mefVob29+4/wyLWLyxLlxN4D+L3/6s4cP7j94eP+t16+TfCJBDoejHBN1j8I2csHRdpg8YfgQPPmhDSOfZCPSPrgngULK2fZz30jFJKwkZBIU3doxSt23dwGHEhxRwXGHW33XLzQZcP3SlQiz14pqLkUUnMEKfH7nnXfsENV3tDqoY4epdaV58gIVI5GyIxSTnD6v9lEacl5TQ4Eog2MTGkulTsifhA9Leqkviq/ubCDdZi6d2JA3/rJAjUOuMVMKpZfH2OpzxL5N6KwGAJFNcwokBZHqxvBsBzsploGZSfZqlkDlMSRQwVHeqOX04NDda1l6xDSTHybbgdGIHxcfRO/koK0yrUZ6TOlFxzydEo2mHpfBfWXjBiKdax7Ky+RhR2lyESFdSnuptqPwBK/21oaADOepaXwxqaQ6eDFZIyqb1JSjY4YqOv1WQDQJVlGivuuoVDKvKfU0q9l89wdaCF1edBTn/Q9vfvTJx6GnbjCWrn6ZeSS0UfqvXr++sbFplIBOMiTbIaMMyGJvuIZCDWnkNT3iNN0N0/ZYAlqYF/yrbGDJFKgsZ7W4ahTxqcYAWmRLSDcQv0UmlakWo0lBpx0QyNuMYJbU0jI9M9aJMCk+XWZzaNjDEDk1pFrBbgB0OagFJwMo/HNL2YrK5Ck4s2O55y5r8pnEIY2Zeh0UpW8p+5/fYg7hIor+prNINhVllSYy89eftSLa+UBPshzSgiH8qSzLeP6aYG0U08yIZziffDcbJp9RsFVddZHABlVqR0amgzHOJoV/8q//1X/4X//0o48/ePLjH904v/V4zwtK324DEHaRkGpmQmRdCEEhUUAffvix7pHexvKFDXMMrrixS3thbvXGjRsui7j56WfnNQXrq66JtK57/95jO7dyOdOyE2zWri2WBzNVLprz4rm7cN+tfDnASXqVmp1snkfi8JedBriCkapbtpmfGOZmPOAYBE7PnLNZ9sbljc/ubd+ve8jVcVtVdJ+JeEtmEouCUchYHUT5TLmH2VRhG2orMNU8SEmRdvMsWmS4EIDUb5Au0S8hGiJXhgSmcIFHxKJQgz9RJlCT1H33X1FQ40vyA5pcpe4bBztD4z3Y1Ut2nai/6qYdJsYJ7ob0eqC3N9555y0xPIOjDdBIrG+s7R9YHyaNSOukI2xtYFYPQk4TpDBRHNVZ3ODZ2SlOizaABXxwtw+iB65F3rOJ1Y5cO1pTf0z5CB0qEmd1uIIhBhm82j3k9MUGAOXNUjAg2zT8aLdn50iJ0F21pyVbuNNlzBo7CcoRK5DAKNLN9TUZ0POmcuFRuNgbLTVJJXriJZPJ4ZrhCCK9RkjpZbaSUJaUKaHR+NjD2Cm1LY5Uga2slTrOpv3szlR4FooDg0xnVg8zeSdIc747c2rAi1AhocyM2lFekydIYqWNpkm1cqYLdGlXlr+4c/vTn7z3s5//0l7pWvSwRzhaWKKaq/3txxzbT3afXU1/P1fqrOWOHQMmG2noT57o12FL/sqgym+ktSgffKeCOHFt9G/4/kRw2E6OBnlLyQUUPLqjGVNpGpiQS6kKz5y/j6hQWlFs+tUULeIcu6YNqnshv1nmGiJoy+dMqefd4Kx1m1LTVtWJijV36rpI6+nJxvragpurCWRtRzLXT8h1Rwg6FZaaLLGBUuSmDjMokUoSGmgbxH305ADWWejaMvkk6p3XbBKbgExkl/6g5Kq30qikkKIsA9s0fp9CQkk6JVUhc2ovoJpC2ZBHC0i//7s/+t47b3784SeffPbp5a1Nl1k0Vd+e3XlHtna8C8IKFsk2COhehYIIE6otBGZW09Xne4+9b3rv/uMbaxvrClQnwINM826OYEz0KzkZ49uN/empZc809xmqzR5aBzs8VKAltzmyT/sXI1zg4fQvijLaSMuxf7DibQ5cPj555eqVd995+9a9v/3880/Jv14M3WTviMXgkdWSC88nzCrn87IONWkcsgODK3WkxNUPNR6vRO4mJDahqGYDXAU8t5LA5GtILJ/xSxE/D5wCkkFfqU0V7DMSNTtnDq0VBSE2/bs4kyWlKAfHxPZ2wLgwivr64svPtJpOyJju7hwmscI5UFA/fBp/vqqjIV/t07R0Q8in477Iq0RqDLIv/1CkgSv5VFpRdMYglQVgGQoILBoG5FNpEZVgSzHF0dRycIXtZSYszwd3QosAyJl2a7CtIKRFrof80O+vtnjkOikiSk5A2kFgv5lPyeGkhSZxQFa/MmhH9ZWPKZMRmcTMxygG54eoGsMuWODlz2EVgqy0XkmvtUqOPwm24fDxkb4MDp0qvAf3c1GBnDiAqk47HmBsOz+/IrIVX4toCtzWE23qsvtV6oY4FKPRWlYmBzMt+ex//g//883PFfYORhsNrC1k+z+Jl6ImRAOw9+RRqCpTq0OCstUXqgePnrhoQUY8kYaTOBrWqU4lllHVGa/0Vs8UCT60zTEWwBRz2tvYVZcjlaQNDoQb6lImgoIkfSHtnjxn8iUlKcEudiMAMmAoRifYXuJYA27osGvp0lzju0Y2JkPLFEYd79IAQGa7q05nrsarqbYeOXn90ZxRZh7pXgVkAFGygoxkj6S0dkVBiiWqJdQlVA60sWamSsozXRQRH7KVqGBCacq4Kkg6h3FAkrFgkvC/ApsbGIOr4UDqCxMe9zjAfmX+yjTR4xk+hEkwdqqVcn2FXQY9Hl3Tpf7DP/rnNz/85P2PP3nnjTdNbroRsOdeYfs2DNpQiDwCaY7ftNqxjX9Z4nNLd+47qXqR8008l+eXvH1u3sYiwcfbT27fveN1ZYNat3nb0Gkix4N8HpLSawuTSzZoe4dIyT8G6EySZIrMPmA3j7pLwpbnHCitEsTDEgctQFht6GnF2A6hvBp9cOC10e+9+85f/83ffnrz4+3Hjy6e3/LuT95wSskOhkimRKtEqvRT6BWmCPIXQUq568emrKNWUnbp+0u9QIcgnrkaSuQ0jcHYoVwlNpLplc2gJwxBliQqz1MkJbjokcckUSjRjJkMTw/h3b3/wJYH+y/15RyrRBXOu8FEH5TC5XzltRurGzkPdOf2XbjrL+kxzbowoebfh+xHbtHfeURTSqPymyylZCZIRGRCP+8yNVsQxAN8PINA/5Ix9tY22UAuXUAUo9LqiOz2bMe0p5wC5hO8teTDEXexhKOCnm/b7bgFkvqJ2qwuIj10xnBjDkM+TwyJqmbTiOFGztbk4FHJYEhinpM4kjVxpL+MPhsPonNmXBudvv+jne1sVujIUznsWDSVJlohWYZ6fO6x0QMf3ZmHD+5Wa5dtQnyoNLSqVznoUZ19HKQE5AdKLarKUK/Y5PINM6rOXn72+ecH3lN21cnqqrshLU2bJpSo8bi1MTtvL5zfpMTUKEKcezNPTu88umN4se41nBxuykCJZV9QH6QMtySWwiKw2IHpQ2FMOFDUTBpqnjI9BmUE5gLRKrlEKxP6lUUmaAbGPnekJohfo/9gKVxpAxCWA8BaLA0heDwPN4x5B8GieWJMAeXcAOReUlteeTq3YIRsPo37dGn5wtb604Od7FMjeLaLQIjPKM45UkVOubdGqBxn6GFJQTPQpKQ4O2mOpF7mOfElWISyQ4GgnrugbE6XswR1rHIEr7JmQzLi8dkSH5+0wgOHE6U4VqAZ06lsEfAInse2yLErEg9/5/vfW1tZvHv/3r3HO5sb58nyQCigb8GgCrVsHY4wpfpDfNQxbrWDJHOrUXklVHdmyfGUGdP3Xoh7+MiGth3Lwi72If9aZccrbRLRxcjgrAw9NL+iQddPt+hl317umlYpiPTGhpErocXSVGlDaRKCedG9jGJ22ih31M8ZX7j/9rUbVzZWVu7fvaOGetiBztNLs+jQ3Zzi/1A67ZZ+F30YXoa2QlfEl/IqXZy+XXokMdEvVVjc5d+RUspc07yvgHic8W+YIdrUT0M2cKiqiN2VpkP2D5X9Oe/EOtZSG0SOMVMeMd/NawE7l0OUJJ3O+eymNiDpNjZ281nftFNvewiVo3Ran9MJWP3FBHlsPFTTyKX4DE1Yd/hUoOADo3TgJBI6moqW7mIUUUZTHT+AKXTpderlMVida3a1lMJT4sRMcD5qxbRhuAUNBtuzpJfCklLAU8NzEueJa5M3d12neLyfcwnWrglVwdiNkl2j0UKlgJLPF3gzTZet86593nMT/eKe/vXGReWsppNjWpXom3qTHwkgSwKMN8NsQTH/nPzXNAtPYKe2nrs6MRXIyygP3/7ulY8+/cKwQO11yoFweWJN+a0sZMxi0xI1KHELDp9/9tnHNz+xvUHjry4uba4tn56zGOCYmjrAB07zsJJQZzQ8yFcb0WO/4Jtvv/XZZ19gHEoczW+HTUSokBGfTLM4Pc8ylq/b0UEF8gJ7YB6iVMFXT75KuKsTndbxy8aZBoZHonFnVQNo1z2tRnWyzNBtbKxubpnr/Ku/+huX8x3s7G+sr2cokH2b2b7J0OW18yf3XGAjYXHGmipZW3GM27nzjIFWXIAR3Rzh6b4/gjsvEUQquho6xR9vu1ZzFUSETBEKD1tEDfqitr/iEzKYwqrzmmfrZafm1ioXtceQD5hq3HOOj9sSBUmI9kSVHcg1NRl5LS0jPfmyPiFRnRhTAGCCJLSnNabFQmWcTv4ZBOy8/obF4Nc+/vDTDz755J233kYRgUZ/8HQvb5JfeH59M3JJQmOssKV2JZJhLRklTXjWllf1uG3UsdQ0d/l1tYBeV+0tABiKarIfPXnSg4Cf//znBgFed9hYW9UZ19LmJEatcKTbGONWNw9aPACvKlNq+i5uRDCQffvtN1GiQBEDzoDPuFk1sRWAp9u7nx7vq+QXr1w2ya++OB399ptvfPc77/zpX/xEV+ndt982jLAVNHJGRFK46eFDBYlfc+yVTezNsEs2s1gVJSKpLN8pEYPuLCUba0QZ9VpLuvODTizlh/fkquqE7kaEXzcg2GrTqVkzYVXUkbLOi1FGkROiiqIQIrPtWVS1T6s/KLWvR59+/pnrkW/cuI7Vt+7cRqCdfKoP4xCo6JSHQ9qrS+fv33vwxa0vlQuRUHD6lzLRa2dSJredzcgn8TbyRgg6ZN+/7kpjeLXrISlMV10G1ZxRahthqUTJlFjSMlFB+3LkyprqKJxSWTUYbz0AsrIZhGgImueyli9GRHZ4Vqxpm8/oECR6iqlkCPEpgepU6XmkcAr5UebsMxBxWNQ0/MHhnquM1BNTOLcffOFhgVBbaKWY7cKpY0qL3wsmffmZVXtdhisczM87Uvzw8SME6fomWpcxumLSLRIl/k+9kURnJT9abJfVu9ZD4dEOOE/Lg1Y8SytrMmAgjAgHmnUOKXfvG3hQRR378vath9sPdTdWFl2Ns2Hnj+fOs2BGoUSkY+yKN+clRZVDcbrv1HKqS4F0D/lnO93a2ur6mi726Yy7RzJ/Op1FGPI5yT0s06Gju8EG4CqhRNIP05p+RTkm3gicDJfhqUYlTIGFbwpMQYYeE19/8Td/+8mHH9kB4gUzTSOB1l0kpFhKmnOTz2QEoEbbAKrfaEmAJyOFgOXSXj19+MjERFKTmvyJRJalmqXYFDWwXFQR1jWFwLiRjUVNPH8FzWY6Cx4RVogSZ/MRBbAWVxFLtFGhJHJRRkHDwPCEk6OxsX0yoHiyqx9jGiyrxmkMMjAi2pmUQA3ZUCOS8PyKG4HsALzvajAnw6d6diPCTvo3spuekZjOLM+0z1OmspbRgJaAtzJKvrLOpWa4rtml6/vqv1tadPyZ+w8fbXplc25+vZ7UC4VD6Sih5FrjaHkjPbRcDL54++5dpfT6m28ICmwa6hRUUaHUQgraOqdRW3a5kYBsyX3m1PfVy+fVNxuBDJ2Nd5WZxzTrRMWgQVISpbA7vxD4TmEPaiUdo65XaiX68hkisp89n1WCwZEYBDczne2ZeEWevCSwTCRsysjKND+BTAU+d077W3mM0shZJ2phf/XxE5eGusr34aP7KsX6+nn+1Ajm66sazb799uVLFy+jpHdSies+CS2r1lm+sU55MSlZ7Xbp/E5YokL5M3I6ZFF+O1vV8QeTJqKFNryJDANmDMS4hUDiMxXWGydeXT9wCjd1p6CKM2FfR2q/IUoilyk8g3uMyMGMMAC5+UCdvmtNrlZsu67peYvJbo/Y1xdRAXWO9RFxQF9ErhVl/lJ21S0oompw2em/YKePL5mDk+hrbxuZ+XELoy48PEZnYVZxBF9ycKtW6vWVtE+qxOr6CkaI6PF3Q1GaX/dAkehdWL+iJcDszuxtuejGI8CnMzc/++Lh/fueC1ZgqHDHxcmM2/xXcrW6Q//Ouz/edgl+ii3L+ZgaNsEfYpRG6RSq8+E99w5tX7l29eGjJ+5Nfv2tN1002DCoNShL8575j8pqyiaFirvBNlEofBp5ARWrJiUU/0o6PxaAi44URok7RwCyNDAULcJ4llFdlT1ZEYeei540htMR//TWF86weNjv/KWLF85f3t1xj6/lldPVtbzTEoXrHLb+ChFNt93LqPqCmYWpnoCRUIgIxYPhTY7jIe3kNFNSNfmMvCSLjORYEqoDxIgELNfEx0/WB0q2EpVYpx+U8Eyd1VWCVI8oypdlFxIOFi1JqwQrqFo2Oucikzt9JLe48Wl+AwE2gQQS41NS/mckUzynxawCuVzBIMCbGa+99sr+s6e37Xjc3b3uHYSirOP+o20kddJnMExow8kA0B1sffAeUBK2SHgeV84oBDttvvEsz97RoVn4q9evvvfee45mba6vZ8YmXWdlDlVaYo4YD9WtbxJ1dcEhRG9KW8V5+603kpgk6Z0QpmiKUSVRdE0Y61yuPaOHh848atsVr9mnN9983QELNcimikwgkhYd95RDordqbqnAW1WhqtJQBKjHBIDVbScYgxKUOoO8KPa0WtANJVsiXu16Ck3uWxiTHCQRs043gc3A+q0iHlyVzWkroAEOxnBAZksFs93s++WdPFN24cJ5vV2vri5oO5+dupZGVnVBtHkHe4/X1zbeffsdKu/zL/NIjh4EajAIVZHl0BWxMseQpZfaXZ2MpE+EBaGFJfW0bXHEQ8yiJwpXMHfDpFbE2exKXAa7JEHR6RCIaysjQ/8MOVJPJpP+japjTSRQUjH9OTqK5pDSRQkVo+Rg0Gum0cqjurap3fmS98cejLSh9tHj9fWNJ/uP7F5zyH+QVRBRGQ1bDtiTQmV7cOYF5pBCudtsTk8YTzmTqVUxi2SNsrVLZIJ01fV+tDFtpZ745LBW45ljs3W5lWxp/tGjBzwZoRgEH9ZvH+z99P1fkHXa2nQfWvC4bZ1a4wxnuE7zTEoarlSd5k70TQQuBJ8+NTy0aAabc2pE5LHd1/t7BuDcCJYFNKu/Q0mn2BIzTKjfsqtcU98GxyR0ABuLBMBYHqn/iREfRDcMGzvas21FnuUj94bOrwaakFjzTie3GgAnSJ/Z4eb+noX1jU1cxR/PA1za3LQGqKdPvlXm0v65TaAmEyiQCLVqh41qrUkgs7VpHDCwchFxjxwLSoOhiUOfyb8CiIxGV5cBxiRgYEh7xw7YgC2fStZnbSQbLpit/pT7OYb8ajs8rAYGqlS5tPvpdrUP4csApEwhT6L9iUXcNgP4JNaZhjJC70Lm4/UVTeXTk6ODPU27sd7e0bEHkL0QUBsRhozAIN1g+A1NZ3w6Ip/yTEZGfxnx2fuMFX2Lls5emtHcT6pRVCuUSWq7nUK2KpJDy9c+e82l0YFIS5ACiDYPo4wOzcvU8i9dZvzeOZikHuZ0CUkC+gjTyal9JzaWRjLSLTj36is31lZm3UZn4HvehG23GlUQkkhnJehGxPmaNiqynaUDeP0ktJgZ+eJT7I1LlUNOEdToQl6ZJMSUb/u0PUk1v6N/e07bLwA7Sb6QKUTyhtuYr//nOTZzA9/5zne8vCpHlLMtIX1pkuMXO092z2/lBKyXG6gLfNB00T+yxlD60VP6gEVDyWVadF9dBAPxWKR+FLuEjbIFA2GNXaaRkN/AVAkOQQVQVT7vgZux0I1WuA0T9V/jj+CYyOmIc3QksAwHz5bAdgxE8lQi/vBgEPimjaig5pxplb2DQ42wdyIdCnOtp9qLGCoxZafLkJghYRI9FJ0xmZORqgYM0W6ZAE2TGgFEQUs1Si+GjdGCMJcfFe9AozJTEm6b42lUpLu0v5+VAwWpRHN7sh1ddfXr9t4OzOajnVkTV7HZL8Enp5pNhE+IygxyUqVMEYWEfNUAIHXy+rUrGWacznhK16rAw8dPbAywKduMqidy0sOqtw3ELw4OlIf4KrBKJRXJp4wV/vCnP5PsGVMexZIXAhrOpNm0r+gZH0iz5vT7ggy6Ip3rDOGebV266vjL3v7OAU1naXd93YEHIf2WC92XgULUTL3nZaIkw9jMKOMFCxtY1d9TqjQRIUBIUiQKQjKTUi1reizJTP5gZZCQ8dAg5pHPSXhUFFTp/YfPERR9VS234bZriOLrAbzqUyAYo6r7CMy0fvLpvBNhs4OJB8juDxaayVUTGV1kXxrkIT9KsPYqJDs8knAG5Jlc8tDGYt3b9Sy3g1y8sH/k7T0Ls0Vt8RoBzDTbf303kUhaZZJeRopR4pbRE1SIOAwA6CMrUmwP/8q1EBI7cy4bUh0FkIfjkyOdcZtW7XN7/fVXP/vkM3Myb7/6GoDIXFhvqk57HKyqA1QS4nCVvMUAE9lGGAgRmu6BYuuiKXiQgoyB6S0T7U4DrG8GL+1v0tULBBcvnb9l3nR7++KFa7aHls5OIUo5CqNwIsAsKlRM8KNHLSrdSMRKf0chCi29mTjTBjvCkcLFP5KVBY6k4FNQXFVrG5WQTifAURwASEGB+eZIjYunv6SYkDJpJ7Mt3IdrAYtXVILb8I9/+YsPXB2qAaZOth89dg0MVatJWFtZe/J426SQooEqYllXdmsysQkL04SrtJmKjJxmA40ES8Qjh7KWbGdOH1vy19GQVyRSn4Fv6riY2sigUDh5s6Ngkx12NoMiQwsk7W4DavdvhC04ygqO1K9Ep9zi/6Jp2AIAk2Wx5lVYZyY+EfPfhoAawIeHTTVaKSJ7dm4/uGczlfeCaigy9NVCc0mjuvdigvlqOqKs0R12uPDLPEyea0hrJmLHabq5eRJcn6gzXNg/2JUnk6Q7j+zY3bNLcNNamDsYIm9ha8u9m0hNP1D9Du5GssvsP033ByRF4kp02kSTRYOj3mQ5vcVIiGmXqYXHjx8a4Gg/cPzV5dfvGaI/eqi5e/PNN9c3N8wFyWTngiMNUhqRxG4zoEqxPTddKl1UbQsbHe1ObsuMGPpTWu1gAxGLyfJb+WbqxtZ8nbboL3MzT7fdlb04t7a+qclc8YiLK8GPcqegq8RU7Zq7eaaHX4d7aX/RnfwiwCk7f9Fd6TWT3xcFqAYZ0iTcoSTVM8NYktMCmJ55KIgJQMla2+2pQHwqGoaPfPnkyc3Rn4LaJxqD6JTyYgNooZdtn4xQUTik02j5iDVEz0vF6RaAqoYxsp3CSokdu2g2jWhtl3Rz1L5z5HneKKlUFJi+YZM8lqR1GohEkF6OA8BSpFyyeEtZEG63Imui0/E/MiNPFF0Gubi4aj/o3Vt3rWmNlImI0aG4WE0I3L0HP/UmOfBwOkOgpojSTH7eDGRFMS29hIiOQqDppEolwKAldim9nu+XXz6wsPzG61WsJLqrSVEgUV/QvmAqIT6QpyDqE7gKWCZz/SGmMLRVeIIXshRei/UEoGMlymDi8Jm2QYQJ/vYcgkqiGrwjNjKzvUQicZ/OmIiOLrJZPAtCz+wJvnzpCqmwLI9wdwhsbV50jbYOCrboETojb2OIVUZTyl/cui2K4qyKGTmMIuI1mZmR9FAipevyUabJYI+08e7PdkwUYco0STAdJ9U+x2Almg1LdRYVYTa28uxMYcaIbUzoKx2NdUix5Kd90vCG8uJwap+jf2wZJCd5/dB6LDV4684dcyTK1+uE6lIp4W6zwaI7lCfdJr3sduZqaakurywhXU/HiovuP8gSuXQcGJ9YAi+FRS7Bg+TPhzqT1fRozj3b2lx3DNjAJNEdmaknj6VreZqPPVPqDMeVi5fM49gMp7C1lid2+5zzkDR9mtLTQMscjZQSLEagBPV4Kt1Qc27mwqXLjgw+fPj46vVXNHrAVNrWO1BqUwqKdwz3JN/jZwWUNc3x0Xfa09SuT9nPX5n0tVICkZI2mQQpo0FzfTFnttXqOJpQSwc+swOzBgxzzzzQLjpWzy273tGR5/WTp3v29Wsm3ICYeX/jpqyTIpsyqv5z9+6iMJuAJBC9NfkTTvAzaRBTjYRNqtVokD9123ghAS8aPjjTYtGhbKWmscYw/fRwsrbDK2vr/j7D1TIdsRgb6arPTiK9V+mMkMADJv9oSCunRQmvPBeYQ2thTWjVQ0Op/rc9sjYm60/YEuZIlPvLhzy/SPw/4qv0QgjrLDeFPCMcRQOcghiyREHLNU2tB3r6yBNyieWpHQVDF9M7ngm0Xq3jovrYs+TBVUiqSIINTNAWy33hX4klNWHkt3p4uG9hZZKF4oxCizIJAkfKIgglbFJ1xthAXj1UoGbPvNXx+iuv/PVfvXf7iy+PfnQk1rGbVqumNMKkjt9VUpWbUD5R9Cm+Cp8kHv4bZgQkuiVCUnONAYImpdP6MzjwZ8iRn1TPgKB6YgAk11Iv9BUaSjqxxtCw7cOOJDC1vpqzS9kinUvfbHSA3ijU0gmJWvQo2+ypAzEYqHlQKLQB5YM1lM/K2oYKRYyoFDMBdWtc0qUI2ZmxK9ay+VZ6yahc+6q/lFQR5lO/MV3hUMVWJJMog2cCAsxWIv6QrJvGyAtbEJ02wkhujNjMb5hgKTOGTn82WxqeNgCT5QqUWBZKZUoqaTDzuJAlovSoNIetiq26EjbFmYu8KnXAgf8aM+9y1nS9l57pUT9yE+2THZsyP7v9aRbjqoxFloA8Sdu4MlMTFBw2ZZ7Yzk5vkczrm5zuUPgeyF6skVHaYUXOdvOPWSBJ6DSpVBxaiHv376HHmC+vsFlytNfMNnbKJN3PrvJYx4W19EZ0aDKjcuxnyfvixlZWx/b23/y9V5ybdVpKpaUeccgYYskV1lmcQXJxqnJeRVlcaJmbsKN5HeTFo/FzEh6keJ5eeM2nAKDHAl9DYJ9tIgIKxrnmUnDz3mLQSmoAsCBLeKfLayt7+08WTAmAW3LP8yLuYlmmCiy2aFMrpnFpsZ0wpWLIukFS4U4rwdh+hyeYYwKzxyBDAU068j5jzEEk2OaROLUrYYdoUQHpU3YnCzMiXZUjAuzPEQrFRNdRbaG9FnvUNStEQTcx4YCYuYRjqZbQoj0FsvkLFbEdEw4pk4xsbPgLDfKRNjKZTS2s/TZ+9vMI9OyuOxMO3YQ8f3lzIxWrTGOD+VeY1qEhNEa+RtsR61wzrjmXXagUI2r9mGfJwmfyME/50RlPTp96q2VpfeX8YnY87z184h4PMV31o286s3C6sryy62W3JY/XZwv9m6+/se1SQrqSwEZUBnVS2Uq3yZBPnUTKslMFC+n6rG6sm4wv8qJkmoFUGB80EHd7f0gcjKpymXQ4tPMY6O5c/PDknS3U6V+kfQiqDP2UbImPXMidrErFOnAwdOnmurWagpMQyN7nM5ZZfXZ6nSi7Gz+OTiIURm/GlDv2tAnawLzkP4EPg6pGlR0is+ejpJfIOWzn9Cj9DomJYj1LQyXd/JwqVb1nZi9duUwJMJoBi+oA7FGT3A9/8P1PP//i5mef1miMUq4uZDMFrjjSLWZjmC9Rul0sgahGSwkiQ0DxsOyq5JUZ4qIokjX/qx6VpiKkYa9SLu+IPUUsIwYlwSSngCd2faQOAi6sHSn2mc8OAJk6he50oTJSBzZrpsDMVjHtwM6fvIY1d3C8v5GT8wseHEuOCmFnUBSmEU7bXT3m//1/+9/yRWKbpEH2cgUQPtUp02wjJemzBMfC67yHig6eriwtKya9B92ZDN4dvn30GOt39w5FvHf/0Stvvm5prHHSnOaGUv1qExHHxQsXTemEb2kuo5BIO71Gs6lFAEJSKSdREI9hNIJ+lg7A+ZU1G6Qvr28eru28fu3G4e6e26SNWtQxXf/VtbU79+9tbl0g95hQ0ih3+uHFdWhbaxZl03zp0m14pZHUiU1NiSiDqP1SVVWEAq3YhsI4EhpD2coBhWhopmLyEUfnJvlSf4+O1h1r4RHdbtoyQ137fjKbnrynvmfGP33wAsiycAzhgVcXwDRZ6NFDH+bzLbAPBofS5qWSN4rQjot4Z39tPrAQ7KQN46RZos/jpQSIl7cm0sQryqFvE0nQ4wj92mnjlciR/mKKrTKFVO+v1QkAMM41S7vaDjlIeUWsSq6ayuKnBsAYR95qjIRnxlfGFp6yUOYLi4fnaP/D929+fLC37S7+Lc3o8RGlmKmt1qs5ZaUQwnM51AFU5fQqwjNC4uDo4oqeshxrsVyzhljTJiZzzCDTvPcfPBLZO4z2mrh73GKHPehOne7VpfO25x7NLf5vn3y4uzznrdF/98Pf23l4Z2nhdHVmUffm6Nz8wYwTwt6I97yzCegwZ21+yXBpa20tjbJeQUTVf8Sk8peM2O127IhEn9p1WMaV98+OKRqAjOmvcKn0h6J2ftoLJjg5v3+YTRYyYWP05WuXHYxZdifg3uGr1666g+jLO1+6YXxhbeX0gPqrtNMnSc1JKTVu5WN/1WzGH1q+/E/3NIsB3ZRjoPqFk471uAOs1WKiU7XBFR3japJmNbcgiOu3CzYyxaf9M4+UcD7JfhufqeBhRwooOQyEJCIcNT9THCs8OoLFDxKSRwvcvYw/bsdAjysKdGP0Vp2XcFhM9bLucuQe0dpsYvsjzXDtyuWllUWXiNx/8IDoeuLHrRuSICG2WPOINOhoEl5SkwN0qdJRQOGYPOsqmVFZ0J2VyXRyc8lHTtZz7+8fqIaZnq6Khhd55E9vzJTmcCBH/tTQZ4pMl2JrfUszphbIVBouNUQq9JvKU3UxtZFJ7mP6sznZPu1OHQvHU7CBSh0nO/YgLe0fZuKR8CPJrlSbERynNTEuFdMIWB3K4c9+/pQa4Pyf2OV09Ld/n9PR3yWWBd50wER2nMxO5a95enQU2mgEc7UKzMYcF5zYGDSfVwjqQiICNOA7+4MjIjLYb7IqPCEVKbe0QGWKYu4iY8/DZk+eXLlwXpu/tb7u6jsPH656FrkeD3J5rlJGgwMRRu56Ps3QZrVLGCCsatl8HIhp8e0P0QffYvPgmaEPSqNuUmeqU9mfPe2TsInJlEaGNYsZLaR+Jx/yYwBQAhjvdPMZQbYz+Z7LDZLqCFFDAPFiQKScUw1T2Jn6CXxckKY6Df/CrcLWxCb1cLOY2l7sakyLFLUuKIlxDCi2ShAMIThr2oZ2pVqj2pLhquaR2IIPQBRxEi3gOHs2g0sa1VoHYcFAEGrYyiWLMuVNgZolS+NcetrS6iL+zC/YhkxVkVJDAD08qC7Z7uc5nGMX56UMoIKnEcLPwMzwaRMGmme3CVgllbM0FXTorOvklnTeuamB+VknUhzukAE4w1kbY5xhrHesXLS6vb//yOaKk5O3L1z1dNESpLYSZuEl/LAHq68VCXcit1XAgzLEvRTQYENfHymxl0zgvsIEUpA+gxwpAlAuGqpdm7kKkHKZmV1wW7Kx9OPH9oA/osVUYIOArjJFFTJDB9UIQfjJFKvYqQ5ELSovDIwoTFqiUfufoSvRy5zx99neQ7AfvIyZTKHUR7yr5fbFneoXr8EukLNWhad0ACtx/UjXAVgqtNfDzUv7e9sHVlzq1uFLF/OQuvhVSoZphxr7t15/zfb0L13jurevRjl5ByFV3L0EvCO+pMu4L5RQCj67B5SW0Y7fyJhAg9nUlolbG5Ayj5wPhVfi46tUbUkj4M4M3hLFds8eD8NirUKaGEJXnYUO7SjTEafdYDKdH00Oc8qVesgWECuyR4fZK85hK7nDuXYr5DpNR2eHYmj8/6A9UPkynDxgLruD+jMHLvS2rFRWbR6DjMgA27y1ufn04uXLRm06HRrPrFGUsghHU1LPjTJTDGLJ29DrzTgb/RRxek8vG7MTr71yfe/xtlgGWRfOn9fw2Fhpc5hNERDCpcW9fPWCg2xpOZmS/TiY4DTqf5GOSTIN4otjtOMoRdGhFAFH533QIOkFD9zQkUe92ROxuhRTmfU2MldcfX3u6oOnr05EqPrM8ChXDA1kxgRMJ1YcaGeXAeSMvIeqoVykMxG6Kveu75n0YapBwvhEK6jsCVAOxQEuSemrJQpxT2PQ6UTy6R8IklsmaQwrdbjRDJDrzrisjSQEdYZz2ehpIMyuwk/6TH0GWHIp+ZksjdofEy2clk61YCdNE5rOa1+5fNlE2cnRPh9GvPRkq8cKW+pwDT64mydNkuMLSJITucBRd3OSRhsNRCczjKUyERVF42Tnc37ZqodJr4d3H+4+2TZh89Ybr7mtE87gL17BUBzl8YKBwXfbHTDtfgH01/sIhyYIZa2riTT4w6yqm/347C4mPbYPVaXpwircuBRqxReLjzEdpTONkHhF7bVUVByhUmkYEUtcEgAqf2WoSKWW6hPaAtI8j6/kK7Qh07EPzBCxHaPNMe0GGTEt+NG/P+W0DYUjp+3e2ljLlbp2n3vedmVVPRIqyEhp3kYLi/P2JZ7PqiRdeHpy12O0VDo5N96M/o0WSiOoccSbpNjyrF8TDZXMcDQ32DAjhuEmCe1mi9j0sLPhtDJ7xk6i1QZwtKwWot59NERpVPmYMnD6GoPUJu54dYWVdAYc7qI40J3RyzHIsLBkY6ST4S5QKcBYI4bR5ysd/0ADEB1Rhc2BC25h1rMYGzdM4RZkXt741MYcJy/coaXKmegHL25zimOaIG4R2S2mDRPG0h9ObmcIKWaxVrFRDDSvx+SePEmFzG1HpPt0c2uLut/Y2HLIQJ9RN09nmQLpkms+jgQkiSAFUsjL3VaHnLEn4GkAuOUxZtIAcKYaUZql/ROSgslwR6YCSfek6x6AzAeld59i040ItuJKJvejdHmIHanKDy6U2DW1+cQVLX/VtEEQCpLVMdsupg1IOghasvIyNzotJIkoqeCv+i8pXPWEZyWarkoXrrzxUcdANuXdtPAUsZulpkEUDtliC/FZufE1YaA1jCOd2gx9DPMFqxz1Oq0bcyJg0vQWkIGssqfd+Egl6Aphp1hoe89YWhqfnQXAjEa0PtNU0PtOCDpv0RXZ3lbjM1dzolsknmZstAPmRiThQ17sLtvb2V2adRjtNVO59Chs2J4ZtmY4IqpQhk8/ZVAycf5TfzuF5LlyLSNMuhf+uSGq5sRPTz9V6bRnnveW3kgSR1hWpvyrOOsTc6g/EqnXyKNjccS/zOgjsAGagLB16L49F7AGAJnAMZHU1eeYB5iS7Yl7wNyfUhwNn/ZsW6tM/EgpAFretm8+O0+WX/VQhKf0lOJeFi8pekSaezbFx2GbSTqdiwtvvubSiNVPv/j8wf1H3iY244Nv2Ggg8MxsIwmMcCrXoraIEJ0nGI5pSgT6lM2R1PbhKcZEFhLYsRqs3U1/I4Qhk8SQTyp7Q7J5jm6OwvzcJ6GlbfyG7IquPgLTy3aA0lK5ZsAsCA2ZGaqvomQa/7T7VzYALn7IztNkHhFsjDaxpdNNU5AangiSSdMyK5tZkMElDYDeX93qNwA0QfBglsrf4qJIam5hWhbluYDSceFsOpNf/2zntfD1ZGfHSloLx9rmxpxzEHOzH37wcUonG+2ypRQZRIdUIq/Ua35jmtGTXlx5JInRMboDXIaPiXZ5bMPFu/vpNL9QA/MREiI++KL/SXIjvhUVIJgSOWhShFgQn2CLDBaVsGm8ClsxtmeT8b6QavThDk/EwlbjGNH8D8bEqlCD++DiAxkhzxS0NaGITZGS9iMyH8oF+UNICiW1uNZMas0DWCZRSpMmzYIEwB02C9DKhthUFdP+QRbvlKwBTaWSfehoi6IvplFfpH8+jQKvaCFsSgOQ9jKJoJJQkSWnwfX4VuZndHX11YO3kAMKXEmjWooeYtAVDNIOEooKgRYVRKMfiaJQkKFxkK76ScVFMP1eTMm8C5pL0RzsX7t43sPlwZmLPXTysr4hxWo1QkaIKnSju30SNmVK4qe+ORPvRXPGBxOLtkaYciljHEm0ZMR96UYA/FVG2Y8cVCFCyjP88T986KmYlFpGZhaQ0sdVAKnOzgqNWYgCr8omVncjMh2OqqqAqemhKDoxJSwVrpjkQihIheez/or6CgMhYlKvz9AxcU98EtoadEA3BcCnDToZakcbsLMz6/rVXIzo2oJ92wRmXSBjDIQVJiGAJQrpnZtfWV2Zv3rFUuXNhc/vP3ystbBijF3C8cHMmSLEKXlJmjUnk0pSCp1d2q5YO1AdoSpCWBE2PGT0YL2eG5AJ5e0G1A0JR4uodAXpAGq0GnjwKUHqWO0fsIknGBWq/cuzSrOKgWzjidlZeOUOjM8ovcbr+0WSyuMrrK9tABpWqhDKamcDl83DrC5faH9noF2UpYKpqA0jeyaCLly9LBYWCALZwE1Y3CUWHEIZ/h0kxQqdprLExlAg3LOYlv157grbefJE0dIjOngeaHUeuLvWxkSLpxbE00Sl20a8SqXSukmuKh+t2IYPR9scTYPPaRPIprLsqOiauimYBDLTEX0KwquMSZmIFAqyzX+6McCCwoADJoJSwAObyjezMoU39gS/drI/A5+qmK9GUv5xguUON6NXYyA22RmWl9TKRIAL0yighWTgA3fqT7UXcdfRoWaAkuXT7iHhUsyqUwBDUtGUuhF3ci97U/1BKdMX+gtExQ05lIZ4Fkxq55Rxnx6GpOcf3L1nQs9eYWf9QWYKsfaxhPIyPFu0OChEtoQ6qPIcccWFXCVZ2t9XNxVsuQipJXWqtMZIJRbd7IGehBPpj7efGNW//dob59c20ruswQEpLDWnKznksZMbs9yf35SdXKTEkqnOLDsdj1IrVjMtyOs84ZKLdJogQYlTpqJzv0DqEDSZ0hmZBq4jdq2cxG3ws3aHdgNwNqy+U+eKjIYccQrsVEZHPpuYidCOQYUph+8Q2VLXPqLI9UeffPr2m6+7HJQGtB1I2S2vLuv+U02kgtSZ5acKH997oBq6LHN1df3nH3zoxCjgLJ5kLJ4qOjR7MkOMyYuSrXaglh6SYBPcRQzz9OdIT9ioKzPJMv+GbwBu5HUoH/QYXqcoy+aYxjntBjx+QsI9QTuUaWGWlaxvG6PiEmEImMqUtKudmMhDPL7e/AMNQGdAzeGQKkZohz1Pmm1CMzkyk7pRKWH6+uqaeo2US9evoskskMsPajciUc5QejAqvures95zBjJqfs1zSUBupyEnMfAsY8G5WdcEuoHr7r173/vOd/TX1Muf/+L9Q1s/bRgvbYvBa2sbBzYR4vZERVLEozulPSmnSjA85VAeI0xnlmd8MksfE+CpKSBT0EKny6lng2q+p6d9ei7EJMPQDIg/NEh0X4QjbRLM8MQkgRjS2D/l2e3VICt8ujEMAhGygufQKdpSkYXq0gAhdDq0bCWWIWESTlc8q+3ahCI7gdy1KhUdnq8YZZ3ZHjMOwKrQzBWRsxLcNCMBra1MxRMMANg8HFodOWso2HCvsLaVfEUF24VN5SKqNtJYEza+M2giXRSeWwItNb32xitquEO3UtHNSjJ0oMyc82SKf5nQz+bhkyOzOgjuAko/V++V9ndGy9S/+zWZDOp1/c7VSDn9r8pOqqISkqhXsLUjFp8fbt/LReLPTt9+9fWV5UUX7NK2AQ5fz+VN+FbKlRvZbjOwbsJAnsWTIXQ6/4PXr/cTPkdVpCOFVJEiKrWnRdYUitqn0i2W5m+pwN8URuTN2qBhtH+1yEMMIr8RCXjU3IGEdI9EwjZFUALQUtCCArjgAQtOEQySkzZeUcTDoCjeIS+aNK2476QT7+qPTmp+CAWDvjgSIQA9h87hY2LXrwFmCq9WdCpffEW3y4W6d/jLc2qaCNN3lnO5dR2IVi7RmpvLzRLOZ1GOxye6EW+8+pplOJsDDRogUV0ac8ipla9wmt5Jh2QYGGE1thdAqEUHMUh5FAfaLoYWEwa2JD9Mg7Vb3I7uE07yphHS24BcRUv2ihPTsdpnROKTu20lyGFUAN6P+Q6XwRIDZ3YEQK8oU+jhP7tZGsgm5ivtf6ABkHaS77KC3kMEe7vRUGTJrm03UMNe8xJkEa9nj08ePn4sJdn7yvSmPWEuolsg7JYpFmeCIvJ0xjgjTJ3duXf3jd0dJxb07qgtaX/86U17qzVI2m8Ztenq/MaGJQGYYUgSGJF5h2SEjyjtyHf5tN2UAGhHBZb1QgMweBdM1jB0cHn5TJc/WqjnWvxWegUeX2XTjUeNSNqdQGys/nJntosKURzj0C+5KNFP9rCmpuOStLgBLEUWXVrCNJS1n6E9c9FiUwg+DIMtjUTIG21IuNv0Pv1QHHURXnHIHTnrKEmyDEpEqZmwIbNyqZ4wotgfzOYWq036WOn7mAnKPfupqZC7RdnGZUrCq0GWBxaePbj/cG83N2ArMjkk1AksChuPRJsJalHqfC0m9YCDT3fSEWzq35QgOZTpzJ/UGnKJpRw5aFrV75lWR0VyAM17S/Pb7iA/OXbtw/Wti3ZnuYhBOygLuANMoua+BjZNfpA0cT7/5dkEP/f6TVwVd0DL3SZZrnlA9BjZpHUstrQMKACfTUxkDYvqOujUzkkhNp5UownNcXFjWYoSXKiMPRGHZHfiTtBgCmdgBxMkkdKgAA6qAxq8FdG05yReftu/MUz7j/q3g2QfpD2titUdcI+ePH7rjTdfe+UVLCGZ9x8+1AaAtNtH7wER7g2Dzc1LXmq7fOnS+a2tpY8++uSTT3tvugWiqqnpRBEwQhZS09ZWezM1bI1/mRazJoMH5MSbHY1bZpp4bn6A2yEvHOCxiGSmwS2Ajsj2OXKAo314MtNun0I7XaPZoHIM2CE4YCkBW780VL8qeoBeNGcbgDE9VUUnOv01TU3fl6L7dvrMc11/9Ef/QpcBR8DojGjW9ms9ily6FpqnnFdNS1KiYwXK1TqfypFf50FYE5M+SyCrYsehqR/axrCjRJZmpVh29g//9D/8+R/94R9euXFjb3vvL/7iL3b3DrJVOWra2M7Lw7Z7bzt6I2JMRcb84KjU0hYUH3lMyAuJrbbakz8K+aTUHbMY5DvikrimDu0jrM58d/IjQ6E+WbMKAZ6BoVcIuguegQ1GnMuk9qjcSUZ6NdUmwZG/0JQUdUWwsfVUmhnPAEhMqhPTxOvm1Qz+qWnNRBeeNYLsKgXMhMfdH8yZi0xhEUP+Fsa4S8fClL6wzDKzznTrl+lco7gm357tOxx7ROcQBtRTPTknFvxR90eHuR2kGUgiUW/gDqNpsKL/GU9g0mLbpHH4LKdDoMLDNAAWjeq0iUI3dLMF04vwWOVO4OQot1mntjCSQDYK+ehtwKAVMftpwcCEgNBIbLZ/1PXCHDWBkGrosPVerncuDEo/p8ohBFw+tsAfO75xMjf/y48+JHaXN897rP1gf3dJ2ajeUf7ZF6tJsAMixVMm3Cuq+vM3tTv6y7GSkXTz05sgUpgGBvFbG9d2DnYMqdPTytXcM86+BEZVmyiaVJxUNhYRLbmNvOQUiR6ngQTW6TYpaiURNtqzEZ/w9am3ZnPYO5IjZ308OPih8j+aDisLs3xDWQfZLJzHK+mmBhRzwpY2mewoV4FMfCdMqzaH9IdmpoNfdqAweShtC0ank/A6WvHJpzdN/V+9fBk3nBIg9Ns7T9Ie0EWur51fwB+sWNrYONzfM2n2zttvEtyPPv740fZO5KQWVJyTgPPoIAPNzBtHQdkirDYsrK7kmfFoM/uIbP8dDu7VBGxloUmeLI+H6RU9Sp9p1rW75Z8bs5IQ1TFRL/CnCCa9ukYivww3/8bQ9hiaqpSbJ6JMbHPIyoLaPVmlANyQ07HaXYifFxDPsw1Aw/0K20Yg23KtqBA7SkAGnDZk7NhDlmqpwvvULila5utQCQov6rJWDlwII9LYpEhIac0acWMBO43zkdLhmj3nykCn/r747Mu/+tu/m5tfyu5ufw6WVvcvEl8maPzFBGe7xykmRFZQKORAPDIY7g7qYou+nDKJUvAI4QRPmLJZIfP+sWscUnVvEqtLkfquqJmwHuhr5tAuhae8U3LgGalwM4lVEeKFpyUrPOM/VJs4RemM0Fo5HjpRCpXv0NOoOCQvraauUgAcKVSUob8Y1jRyJlY1SLSt0BBW+yYVdHNgY209o+eiEycKc5TCiH+kRBKoTNAQ2GKaJDJTkQNp53ZKoduEo8smYEQyImwfNEBL0qRoetd+IbTBz4f+AoM8UeyUZmeaoM40ccNYViVaBSuiAz145/jx9mFGAG+/8urF9c2jo53IXorBK5lpBKCNSo4shdXfnpE7yENnUcjRPBz9u3R4akXlln9l6jlFfApHkJQZgtSd9K3KGNLwhYqkKPqW8+b4OEcUwKEQmm/Pk/hKV7U9CZHoCPCr3dOhY5QzjhFGFVBe8qasd/aM8h+ne7GQV/O2t5+QwgsOC2xYFo7QOg+0srZ6+PTEqxIPH+7ZO/raKzeIyocfffTxp5/ZqjhzYKeiuaxUBwZOgwn4ZLoJkK60UsHn0xXmOVLS/GWPGR2D2jF+NuTgWRi6hYZNkOxwSD2cLlzsjtIA7Tn68GyjH8AzVUCzdpLNoExNpZOWoT6C7IjTOBthI+H+jRsAW2v1R9zXCDWWpS92kAuxDQV02cyyZfNGPXWEazImd/U3XWf4UAXp2emMeAblac4qpjUr1ledU4R1xU10kP8Yly032Tm5d3j43s9/4TkI3dL9k+PN1Q06WF8dFzu37HYk/6W+g4OJblaD42yOtI3IET5hZQTJHXthNjcLMZOQlFaDKDzML/GIRTL50Dc1goyipKGrHqYep+bVb7krS9WE1Ocggtwqu7TwAQ99ojk2N+Jp+Z5CqcGHrNSGm2xhDLeqsNN7TzbLJwzOHu3KIByZJpLXQOSisUz6tjKOnkscvZxndljz9h2mZC64Z3TpCP3HZCHexdBqKgoUGFzl2YyGNlvFqvOOKTz5IF6nIV2uLP+kMEOzMNW6tgDJtR0EbuJ0p9TVS5dN8FujTR4mZsij/FSF0QnSLHlgy/2aBFJ0tKVGma4/imRSBNxd+OIy0Qz+yotip09yEYS/mXNPbP888hjF8Tuvvr7qMjKHkjM+SoYUSZ8Eq8JIlkdT+a2vKc8xlCPN9pTpUuUxOqYC08DIQvE40Vrq2DjZuYuPSltdDp60kst1q0TiX38p5IDlHFWYTrGkO88ZNkPrRGetokTR5OaRGnKYOjNVqAMtahBV6s9J5yWiBhyCLMYQuaFoogErTsoXEGPsEWEoRFXCha1aElGDvnr9bMDWbCpSrASNaRaDCrj8Gyj8yQgX2UfHh6aCI5FegdWPdlGrrLu1dXHJGUOz/5SjOYm9J4+ziyD7JA+NAwjMlauXTBTfvfdAggaZWn/Xu8oRcVpdTr82hJeRJv+qPtmGNFDYlFRQA7Q/yElIfiHoz9ERT/mFvwBHzPCDkQUAQjtW22CqVnXU6ZCs8RD1DCSiviypZeskVFbFUqxRIyF+QmaUQLCcpeo3bwBsNXXM6sarr+Kv621nV4yeF/FdA5Ctmqen2uBH+7tWgGeds3+RKdM5aIFGYvirGaiudLgzbSpC8+vkyBjdVM/M/tNnT+z62j/aWF27ePGqTPtT78ccVrYTc3RMu894isW0J3s0zamUR2v7oqTxgBFFggqA+q9iqJFytAvw8LhQUrSD9Iji9CmcHOzIQBnuTr08X8h7J9hg3ACYEFArPNyCip7uAiazZaQZOUj0ksCKNwDHL3IROaM+wJf0RGlW3EQAkFxn1lvHN96aDAgJqCCAlXcSlokbbptuK26QIIoPI3p7crQ76ZaJY0IYj3z5y65S1fHULq9HT55+743zum8n24feeKsGMSSNGOCXVvcY1Gfa0AMpdkbWoNijpCmLsBg1lVAPamRHcl35eCOvUlfxXBxhIuWcm0zcRUkSX7l63Y0Lcjeh08RwGlR4KwffjDVmZxodEofirIIIp0olR8FVeaFAxBY5PikUV6C/RFeYP5laAd9GQrx1atrBVswDYyf9DEwJcOe8QwdlHX9Rym4lPrh5jkao5WafDdyO0T36t8+0/xjE0e4uoHZP27SBjlbJQHoYdm2x7UxxIxNFbwS5f25fHaRQULG7u+M2J9MD3m7YP8izYrLsvTHjgJ/+/Jcur7EkQFS0ezqRcELFRlizhYMJM0vUuVHStYOjzTgFNPE4+9ux2rcLCjaf7GAv06GSDoVToi6wgQFwN1jbpJ0P4IhBVdj4uGzt0F3imdljxlhj3E6U/0jDbzYCwP3HezuOWb/+5pteYXyys60ZWF1fdc+9xtbbwmqjqvtgt+ZbJVJZLYpLJVWvoTMgt+0o4hQpTZoc2q3CTt+bCaOGDtfpsrX7Y23M1sZ57bg6oDanMDyRa94FNmlFsSaKdCs+Z7orQVLs4x7TbbCuS+3PHk1FHyyQTWt6zv6VWVrMLO0QPfW0kkQsoHSRn5vcOaKoYGGGyjqQ1ECRyhCoGZ1A4UVapYKeCIpQQHVXAwmHIdAyp7GRydYV0GQ6BaaOCwDpNXoIidkeOuOp5QlqW9wzyywjfNJ0JKfdRCUtaIXmYjsjrMWaMQ/ijJGJlx5LItY+Io7AV3e3t1LkDVCl45aLwi9UzHQbs+XESohlB8kRVtFkQMtp+v7cLS9C1QKAOVxT9xmphHlI8lf8S+U3D2D0mVlB4/o33njLssGbb75tCYE2X3QuIYVR5nmVMbhMfRDUBj0JTAPsOKUV4ae5XfzoyON03ls/8c7fEoKlmo6rfUp+oppr1DCg+JZ/QmBRyxFua5wWh9sRurx4hsNEfKKvFb0yIBqVOQWvBKkBX88ZIZYS1G9pnOxMGWZEmJqStAKfopFXQjB6poWu/f7QhnMhLvAMAlJKA0eHtPJdJsATAoCNnxPPIOHZZTO626/sTqVAJFprbWRVHlRm530zdNvfuXL9mh4hSjAqF+QtuLM165Gue5JHymX14gXZ2fFiyf6evP3whz94/8OPPvviCynSXVjqUmUvz9helEoQ0Y5IT0zWtLiL4SyYkuewoVVDU/cr7aAqvK3WpmGFUKTo5Mku/EmLv45IIpZI+wXQSfa6rDnAaoFSd9OLTstnAS9T8d2WNJLEmphOt+sH92/WAHTkew/uuxTISyx27BkZeRVJhcFEl7VphUzJmUrDPmlnGe9rjKaiSQIGhDtD7jI+I1ypf+w0C9zq35x92IuZ9tINjcrI0S81OEo9AB2lRDZxi1nt3yS0G2HjJzfP9mE3PY3necTwvMQBRFRPDNe0TS8UnmyeRNuox0VM7kr5gw+ibhsKPp8yrvNbJV0cSH1LOpMcBaAyUrA+qqlrhpRXKl/hLOJ5RWiCpRjiW8+G3Z+NKnq6Lh8dEBT/pSijAKyf8ZdmUEyIQXxLJ0zlGAYQYvV0BADAhXCwQkYIGfDwBRzOZQgfAgY4JaDkZ53jz0kWfXnJ37h2veEbyWiHoBfLC+sc2X3//fctBdsf3JDFptYa8UiupngIQ9TIxKcQZsXYmuHe8eE7l9/YcMO5+yKi7et/5jTSFoakmhTqDZMD/d/0Twgr3sSR9klGcDs74peXcrsG/2ShRGv4rILj33kqR9E+ySPgSZjoie0/M0DWZ1QanDgTCXpeah2xIafwJdsTT96DM52PMmNQg432yHkAI2Q7nsPUdwOMYANw5NnlcGkOs+CnD+GSpOr3ffrZZ694G2ptVc/MPZW0uafkPbvh2RJyJbMeHlN73DNLgE3cUpybm+s3nl5zhaWnpVw8Sts4J4DPdE7LcyrFxDQBfNox1lkFxAf+9h/dZykfSi25buBpAD4jZo7pNgCbA18SyzHGQoBP3ICwabSoo2pHPZYihQdMo+Jo8sboo+M3bgB0zcy/G3O99c7b7/3spw5nSYneZ5QKgiRmJxZP4xAXY3bCE9snFrTGxzJ/6Y0OocWcJjWag2FH5cXduYVWNvuYsXsfnQHRawvzqq8sV1jV7UjcQZK0OModlGDbbs/Rn6cok1gBE9SfPddBJijTiEYpO1MNABrbBJVYkgwBIiaxKdM+yVDqy/OAiPKEwkqzcjMshyB3yHvlQeue+ik5aj8o2l06X3eIB+QxRVDom1Ty9sMdjpQBkPla7Kqh1gBV8dFTeY9C5+9/0iFJw96enOONHozmr9m/2m5YwIGEmc20T9gxMdAyhts9CwESI7qwoNQI7u/tawBWVmauXbsGA4k6PcjbEgBHCW5kjQoFuhp6HhYAXEOiJUBSICfsoc+kIROxy/gJccO4MCRYPJxbXrX04R0Pe0HtPgryzHcPeQ+ZESO9s3D4mzKN9mVsoSm+UapobbJlKtP957K3jTswZVBav0MXSsx8tjUtZJVM9UOSKSCtF3gH4eQz+c4EY/pWHcTOgGAKVfAXCwcqSRSgjlDaP+lPxIBr/KzB4fNPMC3D0W1lGrLdCZ3orNFndAiyqkGQoIeEvlucnfMgorzsr6/duH5dkN3qtLy74dRWd6WhuVZMMul/fmNLN//Tz76wIrC4eGV9f5PEPH36ALWquLXlZlHbqGrTqfPs6u9zLIiRMI6O1Y7RH4YXcFa1fRmGjyIAyVZAHOw6i47BA4YRZ5/lbvhoCRJuQ0B4MjQMgqSLyDajOzi78Ira37QBmD16enzr9l3s/ufvvG0HyP7uHi6vZTHUPrIjL7yT1N16aN4GSo+cjBSfcVRLG7b436YBjEY58CGfdTJAaCsdrbq1HXrBLJNisLYFSVgQtnfsihT1lMyXV3AH08TOd5mBdwUEuJsuzOIBOZMQdSG3Syp1jW33drUB2XDZ6rViRxSgDLg5jWd2NybpIZn8YEIjzhRIPBItGU+UEo7seTdMTQXEEmF1+hVzssQrSuwoTzJhK+ak/AJImGDSq3Zx5lBzQ0xM5ZC6qCrf3Cg+FHxIqPoJELFg2ydXOJzO2vKo5ZVPnNHh0rlYrEvuBqYV5Z3C7lHeERJ35GcFDiNZ8YF1WbDNqGTmZub0SA32nfw5HYmqU2N2jwDT48sLy656tXy0PLdw8DR7TJuwQE/S7eSk2wJgG6ilYKt8S0vrmZqKTkukutCieFc5xdVwPJ2FrGFk7Hxu1rGD9cuzT1fWj2dPF87NnHdjjGU0kx3peldBBFOGAlCmXDLx9i2ajOiGIaQDP4RwyH5kjGBOqUtZwPOwpXPHhciy0BdHcaGZ1hTz8UkFaObbDYPhRZRCR5nkDBgz+cpvYVNOz/2GXsjztNJqFqsCM5TBEDE+TU9c7Z5C1Z6jPQ05enKIgXKsIKxglKFPxwTPzau/i0aBuzs7HvJcW13ePzrePtgnw2uU/HxmbzRzq0tuBPKE5IxzQq+9euPW7dvbe/uLixtOVZj6u333nj0IXh0cOygyOJqumdiFDKuO5U9H07BDATW7RqY1JLD2mThy42iLYbIzMUIVQft0xBGPzbn8z5hgk3lCaboo+iGGlsqUqQNTvPIuSWkwM+XVY4CBo4ueg+EjVqaUGzukZ5IZPuWyXJGuaJNZt5F88P5H3/vOd//tv/pXf/kf/nT22Yk3XI8P9zY21qkP20FVRYcUNzYvpJVP7Jp+HTIMV1JsrdFJoKMdbMQzrOQpcVPzVFVDtrpG3l5LIuv26UxBAyitibJCUB29ICEig0YDE4yjXZP0PRmRskyu7YROLdJvABpt9dRRwqjVKNaVPFIxTPikec4ehJyrlUYnGig92PylO1tXzDc1IQm2fFQhVbbi6Ss/BaVdkbZ/qU7psaZTHB+NTiY5h8Yjei3ra3rf3lIRs7CayalVWUk7ytS9seBPdMA0SK5NhbOKOzkKkclF1qSrbciOc2x2rR4wzZ5CtK5rDd/xuvllXavWlafOW9jf5UUDMtQrB3SGRSBv+kAI2aT5SWlLaNlV/kxm+VFUxWE7ivNJuUJ9bsl8dtpF4zlX+3kACknzP/3go+PDmTeuX3710tXjB0+eHT0F5G0w3EA28tpUBjP47X0dBvg2IGgJ1F5bwq0IFZ/DH1IT1oYcN76deEUO69xCUSt+bp07fHp0cuv2/e+//uaXhzu3Ht3dmJ353vXrh0d7dhdluUkDkV3zSwsZtNRkOhYzUL9kvsY7Lf4Ii4ypyM/9RwAOJdRqtBvk8NW/02cHe7lwd9/R342tdJ5Mpi3kteH1hdXkscd1pvFUgaIPZLJdIwatbpV1eq/uDOM5t5hi9USBwowmST3qkq1FyGHLQhoYq8+RTOJdaz81UWgpItNSYQW+hCWRW/hSoBk8hYa0MBMjX5KWLge/ZLM+Et4VPv68h9CwgVKfmI4o++pqJKVLQR/ZMNFO/si0HDh7eDiz5LKAe3b7iLr4dPb8ysbT0+NPP/+Strly5RIqd7cfkxzDKDzbWl22fXLbQvHy6sV33rbx4IPZPKq+7xYD1/97xcGdo7nU1uMdstZUYDbViSGZnddCe7RAM9MmuUldY2UuPvkpUmPnw6+B9/N8geyIFTgkIG5/ohPTmKpwYJ/3PMCk65NiwY1U6gkeBbmIczCAYSpWSgcSgLVpNnO8o/naHvoIMe1QFSkouB4+2dZZ21xe0flaX1sxD0fnY43bd43KNcvVWyEoLcZD3qZRoXj8bPcZn85Se8pA8lpZTXlXhit6puMTWqaBORuyHW13EBtHmi9sn7H9Lwaxh7haz0xXU/x1XjX3KsBJtsX13ympXOYMuOGVa+P3SQrzURSNnhw1Yh24IZ0xCEsZNaoka7DJSxCkPSj1GZpDAFFLTNBFKttNPxYxOXiLMpG0Ab9N6zIS4BKFCFHJHNyGv6LEaPmmJuUBy3c/XNZ9/2SdMWWUcXRNv9ZUbLy98ZWuRjRL2CX9Yj47ByImRCI/GNJIhonQypbXFb2GACZKGcTM8e07d522uXrhiuciFbfFi+6LwfaySXJlCJuq0oRRB7ZASFbjV1Fi+y+VHPOxmefwdNlVteYNT46Wltfev/mB++Kwc9cB6NPjLbeH1jyf9PtPy0W1+l8TV9GUA+KXCfqGfKQriUp9kJbS6uG8E2KUgB5wblJyWIyAYJ2GLRMhAfbTVDTnuTlGE4DqGLUPNx/FkuSqpDoun6Rf1XPouBWeiE7VnRBRBgyRKLEb6rJouriQxn9KGICL27E6rdEmfu3PHsngCBllxtDyGb+CvYkUDR+IgR0B4t1/+OjS7JxZRA8R3rpz12k+vX5G4+SgrMch1Fxa3lbRpbnZix79XF3z2pE1Y0sGzN++95PT/cyCbp3XeJzT7yHlq2vr1FqqEZZ7XyW9/hRUlFK/EzDR+/xQxYx5aYr5tGMoof6YskeAKb84NV0ql9wV+2MpejaZf55EMSo6AkXRh50Wu+pdklapBwLO4P/NGgCRpSV5awAG3VvvvmvO1JKLV5zIpz7jytr6rbsPMjO7uAw4nJjkvBMeP884xs8xlpxMe/Kv+j5YHcRGDJtpdnBMJ1Qhzy1BwEbgdnfwGN1nhlJlouRL50Z1NeYUPXe4/NyUNEY+UhVTDP4H3j+gVRNal43tYWSpjPYkkBPC2rM/m7x2s4GFyNJNXWnbhwKVTr0lGdhKkWMwjrlyicpullLVYBAataFPxaRHVJipwgNXuj4bVhSwVhxHITzq6cUol7ilTfBe+ZCPTgOinhgZWFKDYrt/IpHZSGLQNcls8ZEXVOlAuu4lGU+hwP/pJzcx4s033+wy5eny3iEbL/3IgiJSPdQNm0FDW73EfXhyZJ6kGP+CxIPnjXg3BHlIj84Q/bPPP3/t6itwO1FMgDc2s5eUP2yjXkIGAPYL6F6i59v0UOTpdYWqokTvj9tASuEgm1LqQfaERKUju0Uvr4lvTz7IHVTacTlqGW6c7MQpGWtboi1OEAHtDFasfMKT+DVJhYKO3kAFEyc8HYtjJJ4PgOc2AvuzJbATSnsrVz4CSV4D77/mJkQ/x9xptY0bhEHnnVTY6OnTuo4WfHVlK/w6erZkJxsZ8LjF4hIe0qGGjK7zNJzMy0beElhd9Uj6hzc//uLzWx4ddvre3cP6+Ac2Dr00Bq2pXSObCPNIRkgswyf0TjGhP0f/MYjPyKj2bJ+GxOcOlQqj5Np/jNKfbYs+Ojq5RlgUFQ+b1RPahP6jGoCZPABw69adN1551dt4jlpYCl5eTCu6sLRsJH54dLyyvtJpT9Nxxmc6aMwPRvNnN9Fn/MecjHHbMZ3tjjLtMw38QstZxaMaAehYjZ+aagLwU+EKJ4hDUEJi9IT5cHREyVWKuUC7tW37w8yfu0JbiKfJ6fDISsN0rLZFUeQNLaF2kIAAl3Q1zlST6gzGv6oTsgQx8KgSbLGbVHY77JgEL6ok0pwVEpBmlZr+wlYek2oMssFgqLhNXhRBaafM84hQ+kjPJepJVRVa82ZBxd2c1MC61yVfGSp6ynRu+9Ejm8pW5s69/tor7iiw51dOa65jUCJSPGMgVNWlYshPcU9yirhqrkP2IPQSypA5tzrnDrUor7lZ7+cZrjlAAI9LBfDVEZYgdKzm5MgQJtSGwOcE5Pt/J4MbCr5PvGs2jb28dmAiqIgcqJoQl98uI83sNL1KkPzDJFbK3VpIZS7dlgw2A5ximshpfJN/fs+NUo1/m1SQQf2JK/44SBI+Js0t/oC83KOPHkIiFvC03Z4NNgLLlqZu6jMpNAHpo/S9NfPzStPOYJMTly5cXJqbyXrAzp6FgdXVS3LpwYnN9bwN0FnSg4fBvB+0xgc//uEPzl+8sLr8s/c/+Gj3YI9OMwW4v+dU06AliIdEe4gpCvfIGm4+bbgZQT477/3ZEGNQgCbZ52jIjtWfXVjcCpQhugxPmeXJjFH6U17aMfo3tv4UNCFwKJ3fuAHI5KOW9vipJRQHAm5cueJO5o2Z86bl3Q+BrLsP7puuJjdSUOitqqapafpGKkfK2gE5x7RpSNlux5kMTGObdgOb/uQeSwLyRsLRMO3Tn+wpGhKeUEKf6QuZ6tnWjDoTudg9sDxJmKfP0DzRMk+Y3zbZHjpZDHk+6I1PgJN0C8rERkOIDBcrNPx0Uirb6Mtk3AMmtTMUmXhNgEk3/mgLYcjO02lZoU0WQp4uMGUd0Wkup++WjjhU6WjosRss60prHjLtgbwyNvWrJ4xSSKLav0pCoFWPIlOgyaCakK03ZTKO8j+zZ0MbCZuhgv3JBuEM1dqKSOeL2r1/797jR4+uX7h46fwFZ8ttJlNIxTPxvsK0oFNnuv9G7t3j0wYEb0ld6ZtE7EIIfD0k92j7ycbWecy9efOmDqD8yoNuowxpACJmuTknK4tjqsng/96mZn2eugJG9mQTOdX4mSejX5RhUegnIhiJwmFZTjWUjxTl0DCrmf4y8274R3ASD46xIcE///IHD2zNZw5wmVpTqNUZMhYsv8AwlRYkaZpABnhi+hM97TnaE5gOH7IgUn9PYg+fE+AMW1O8KeWuxaiKbGtHLIMpPmwhwPcfPORPNhY21i2kGSCbXXSdq/lKE7k44D7RMWtqQY2Bs5js5dnrly+s/t7vunD+lx98+PjJNil2QthUW9jCVL2TbdH1e6pihRhJhwnNiq7FxYSmM2yb8CRIynTQ5KtYO350nZ1wgTdgph2YSUQbdppjU7EHfo5ROEbIdvfnb9wAdA8aJx4+fHzz5mcmznKubmXt9pdf6rV5dJs/DYE+g6nnpfdiBkZCkXLGpAZOAU9DTrgxjfUs1xq+cTae0e6gRsI9siMSP/nE2TbIYHruAtshbBixSL7Pji5mi1Ejb8JBjwhHR6fSYGMG1NRUmap9jXPE3I5OZXSnZmddJR5TmIN1kotyp/5GQMF1v5hDvsThCETll5sByZbZAJxGiNvw7L5f08ATAM8Cy5qSnAuCvwEIBrThWrUc6XFX+8QzqCpFDQyy6HXVlT7O8mKtcNJVn378iV2Yr73yqkuljvcOcujIuzo2fU8EHYYzptPV/Zfm9evXde0lmgnxZCp5r/W6lC6dAUajZQZYRhBv97dLxW9ce8VtHmpS1g9nZowGOonGPO2Oz6RWnyHj2/is4n0BMT4z2nkv/Bh/ew5du9mMTTkVewe7yhTBoxkR8TFyZQ8lUgEtFb0tq6ZdhngtBq1o2kvJcXQq7dNukPmM0FXz244u8Ql80xCAaVLjG+kfQ0d3+7D5oJY9mKqt7T/aACh9RcyBYIKnT0AePv7ok70rl19/9cba1nlXwj3e3jm/uaHL4DIxYlN1N8Kgn2LrSrCdm93e35XQ+a2N/+T3f1eH4L2f/fyLL29BZcCFkGx2KGEG3PyJjJfhI12eHC8bOM94isSz7XY0wLQ/n65uY3SOdmvbOJqG0ebT8GNafIq6SMg05vYU+hs3ABBhmZppo8hnXziCn5fYtLpPPKR3cvr5rS+3c2dhWlcwblYp5TkonSYCPAdCx8+mZtruIDYS2+Zo47NNw0++8jtiaPd0ULunMUwD82/pYcfoyw4DkYGAMTpHl2TTzy2u/MAmiE2nkaOqwNlIlIhlqSJxF8zUuLy7DBW9OjViNyoKUgx/+QyiDFTtTLEkVOlF7qLq0htKmk1PzcVn9lSt8idld+LA0PsJaMHu+CPDdjG6HIgkIsRC/DgqubMjoaJz9qQWh13hqXwz5KzOnfwiBAy0jLTN1iRjriuuuid1hrZCEi1O2XclqfbnWdZp+7ZwfbF0x1JnVLDPPvvMUMWBfhtA5YsnMZNWcH2VgVwSYFR1ld+in2skfOYYTHgtKt51M5ACUKqHrieZf6rXLzk3DonY14iKFd16bqZ3j8gUYFGCAo4uv6Ih39+yITmVhgGQlIbeNJekmycHpzau7CM4cjq/+MybycNwNNtvetCUcqmmVtGIVUo2fVx/3hBMDjTS8Kf0U9ZhZiuTiIySrM5/pQhVOv6VftlWecH4i2YpIRU/r6L4i0+YNnDJZ9IqmW/Hy/YIPDrAcCNp9GkHO3mJkAY/u/G33Z/sFjzKR7GaCxIFgJMiVn1xzHuFW8trFoFNYpj4N8TEp7ls9Y46EmVtZdn49+hg18u23//OWyt2ji4vff7lLVNVGfTopKQHE5NtbCmfMFC6DAczTXn7jEE+salihzMc00HtM+2fVHokF/QxQtvIi08A/Tm62yegBTwNMIlaKqU+hP7GDUBqy9MTZ7DMQj189OTL23ciTQr+OLMGRgDExcSZjRYWqZxKbnEe024H+OY4R7vbIZTjDHDnpOR4KPuOAgNH+49oGw+7ODDwqzE0DMkYgTkCX1B0HCecQVt1PpijWnUoAtVGFFIzuqcxtydlFJhCzKeTYI8Lp6JM6RQzDdGe8Sya226fMWtCGZ/qM/olD6Bh+Ff9T4Vpz7YrRjJG9TdhfFrTZXBvAmFy+h9aVURoRyxVOGhAbv72lTVzpvGIRATtVLX1os78DbngLzNsfW0IOwp6kZf6RuAWZo+zoJww9wBStkcnLvY6evzw0fLcvCecom/0406eupjTNm+D9ibsjN35lSOTv2ydd00XapNiTVIHvpKPXSWmaLwK4/nsndt3nPu9cOGCAyVP9/NmJgyIlM2OJGMU4pkUf2ufOFB6eEgwrKoGDGMwV0ssIxTRudxENX+8zw/zi0uVzY5WayimKIYZc5xhbCWR00h4SYsy736J6T43iybRqPGIQmzlKF2P7LXmpeq61U+fY1A9gyBO2sgkNhEkZBT7Y3FHMMqn4w42r+oNdaxpewTmYATFVM3x2z7sRs7GioJIULNIIWrR3Vf2wYcf3bv/4OKF86b76KVe+EVNFlQ0M7aNFZdQSA4X55wWcPfn0+3Hjxw0ffutN8Bf+fRzQ4FzxFb7UmfEq8NkRtYIO/unxW2qpN6SOe3DkxkAJixrz3/QhqeN6GHlxPDkM3rKrBDY+HPwn8ZcgPFpmOmgqb1E094TRJGVQjcSkRvZ8grBsYU7cvTlrTuHB8f2Ar391ltuaMZfbbQZ1QueVK35h+XFJfAvmyb0xTRD3zTpY6yR9Pbx2YSdgZ+O24p+zDn45pEK0NjahyfFxICEjYPd1WBIlDbhU3+t1vtTzwqkLWVNg+i1EPq0x5LqcPCU6aKYrhsqq9AG6BTHTzGaZj5oGz85+MgUbwRITVXGQ/51C7Wr6tPj7lMBPXPVmlgUcLrhyWnfuFQJqBtYAQ9f1B66a2/uFPGASTxVSPvr2TsMoD/oClgNRsWr5sTZS/cSLC4Bc88iKqh3+NVPY77eQ+VdVvSko1nVAzKHAHQUj6P7RVhQG+96x2Nz6+TgyMYBZ4AvX7z0yrXrp3oSh0ciVzmR8oGNzS75bUMJNtPQaThsDsdMZLboUnB4VGH0ktRlUwXX328dIboRAGoNGhLXrPpiJNZ5D+0BkvWn+fME2Ym28EMudEj+pZ8z5I3hX+c/Apxx6HAgu3PQQWFgdRtl2YkHy7+5BfPUoeVrNqjokSKT1CSh1oytoDWcgvrIVAtwDwqN0yi8zOBHRiUBRR0rTb9Hj1hxZ6wGiZG9jVh2TE0UbhYPajQgrVxAHx00lE7wgKtaIPaY6/ILuowgywgaQ8uZVg1EYatchI4chclPrQJBwq1WqoCKQEIBlj3+wS1WChp0sSJnKjstt2zZpu+tmJ29fU2+AR8hsRk0yn9uzlkl9vLi/MlRZtUW52c9I3NokSoiZCP/nBsl8Nw29x/9zvdvXLv2N3/3k1++/wG2anm9PEPsCZWxQyfNRlWoKUqKmFAxhraPvkh78k9w53LSkW3PMUhou0fBG4PaxyfD3Q7wqbalmkbMHAyA0UZJGz45rZPwl8wIIaTdkulCokpTl2bOHRwdPCVOuk5Li/r+7uh/+Hh7dcWDbbZaOxYwt+71apctTjA0nrZbu037tLsJfYmcDOHHTHKo1eAb88vAfLowOJpTgDt6x+LJdIojnnaEgCqaDqUQOxWfpdWfJ8pnek7QJ8bQNZl5GAr3OWmWSJ9/TMpDFNVP3eHoVNghoDg2DT+6SWRRHnFnuJUF5hSZiRvOTIlgn0vIzsikNVQzMOKok87TUeKugIYkaGe81ZX7BuBhQ8vmLajrXpPBE3tRQtq0Hi1wQMI51WByPZxU0oZU77WLO+e+ktPM/CSJ3Ph2qi1xxSw5cRrTBJEjarRQnnU/OZpWt+BHJkw7EOMzBDLRCYGjxaTBo+ivEYHpTkTML7g6DE80P1S/Jkvzv19NKQzCxZYd7pT6f0QGuyJZuv1HhweZpjt3bml5xeQcVWYaA6XJeJmegusCVYAJmgi/rKVc03WJP+7IqVkAE0D0Hg98Y3AQpHYCvoKKPJR/pzB4iqsME6GMMEKoPzUAFSdHt4EaqP4cHfmcgA8kTVA1TH09j+WTehOp/aftl6PzAYkPWkkuxwAJvAl9YrmxtvLqjeuH+8/ypuHTp5nnWc2ypSmj3C9WLVA2WNX6RHFeK7L8r/7lH7l4/K//5m89TOvYgMN0O3s7hhFNRnhbZpoSQU3GNKln3CKdiXIG4Nf87IS6zooCbUccHdN42lOUr50CUroigGDawU6RF+rKrcJQ454+3tlduP/geP/251/ePnp2vLq0qbCPPOtXawPV3g54GlsjHPFPp8I9mgYbP8dsnHGcARvhUShIKmyGf0ccNJGAMh3aAG03ZPtzg2IPQWkD0g1pGAjVkQ4F1lGSSrbXD8ZnVxFdro4V+G5JEjCoftRVhEEUoHJB5ZDoJPX+pOEjmOlI+C/RdIjUvK5JzuEU/mjtLGVkhj2PuWcipXbkSEYTESIlkTkBZwD07av9cMO40zTz9vjWNqHkKFRZD1GL5leWfXQzEMSiW8Wl4c0X9/pwKEil0fpVtzT+evMgjZez+iC+zpcWtR6ccqETp6sZ19c2b9781Oj76uUrmqJn+7uZmKjrzzROzb0QPDHT7vZLBquk8MRN8D4wvasxf58NwIbQ84Gu03Dl5/LCIm45mfn0OC2ZLAptXspypv/+YzEkkGpN007MXFZz3z6L2VltmLKRKbnOMACHiJ7mtxQ3posTWWEstWdYk8fDlIVyGbo1QgogSIqHbD5RymHikH/lpZcJbYH7SQDkcHZBRy7iEw2oiU2CU8YnaoVO+7ebDVsnzd0OUUfIEaw9fUZ8itRpeKGjJ3+m0+eQNL0vVOE6//HFF19o/q9dvbK7v//Ga69c3FzffuIquJ2t9bXlpUUNgKg5oUiUq+KnfqjPhsUrC3OLS2+98Yo+0+qHK+aUsjKcxQ/Bg/h1HkdKOEayp92jZ1E6UDu6/xGOTrGZQL8hg08XR6fVPjCfSdrn1zYAoBtvE9RutnMTun54qsJQ9FC7VtsfJSTQTRp0ijUW3TpdC7zWPW191whhYLibv42c3dSPnw3Tn+0m/dOhPBvDmSyNMO0YQ8FPG3Hb8JxOBTxTem8g6QzANH6Q6h8fMNwTLk/qzYvsbjyDPeFtVGMtaok+YgbDdH45Gv/o0I1NcBnCB0y9G+Pi9SQwEVNXW0UUMU0hAHnnDv0t5eUG73tteeWormBTuJKiGSFQ1p1BZIoCQ7ejSUIaU8SPlIxDUcAFllFRDexzk2vaHstqHvA7PFpdOfWqF/Vw4+o1wuKJa+2n6f+QZ09mzRGPaMe0Gm37tzu2/We5JSwqUamkx1xt7RDLWp8AdxQuLG6uu/dBxtJKPj3IIrCe9NgAOMQQ5v3HZJRXOr/nzrnxhllycHV1vYWkchcmc4xGEPfEU+zM/rNBtVuQogRThR+xeQ5fmBLX/zLPg+Lyfwzp0h8TSislVBIN09ICOVUAU5dU40yKmpYqX26G/zRmPj6nbdTDHNAyjadj8ejPxjDiAc+0nCtlHf7Zx4/SGNzKNVNvvX7DqNC8iaOsnqleWF7RLUmXwQ7ZJJ41dQ9BR7LOzTx5+IBEfu8775hK+vv3fmobMek9zIRS8iUJJnEmpv19CR3tM0SOZLf/P8Ju5J0WGw3sMbmmpVMZPadT+do1gBHoTLTg0p3MoRH1NBnO87ESnplZX1v3JK9ZYFleWqgrtj3gqRNXlRCMuIleRsR2jHb7jAD8p90jWHuO9st4GrI1lNAGqNKJ5uJoux3BUxLN0ZCityMx5c40SZGcWEVyougXV+8bv/uTkKVHjRnh/wumYzmYHt9JrsXqiOnR8x9Tp7uqr5wuWPzDhAKYOGoQJjDEsf3SkXpeJYHpjBTmEvuIpk6KhXj9gSwb1q78ovycaX2huUolV4cg2m1s5kOXoiZK/Is/cqcv7lxH+p5C7IbmkJwmgcNkVzpB2QzBU18pKsOmaw0EMQDgvbfQn6lYd7QZaMxYNxDdJhX+kDgubDuZNYCFc7NXLl9OB8+AXZNWcxVgwoQyld3JR/1Oh47u3POTUIURYhSqD040NU80bOdtU5hfsBrhzh8NAP9uABpJyCupqET+I7JQhc579x+6//7Cq5ez/enwJPdoh+LKZo97UhxpqPnbaCWw+ulmjwjr0E+v8srW+EhY+KSEI76qNW5EAspEEmbnNddg2oCUmFjYzKe2ASU60+wFG7WeWlUmsPkzb94eZ2wnTohNQ3VQJ9ZiNtSLrh1DGddtXAqoZCNUiQagJhWDYQIc8vRKZ09N7otqsVcN0HOxmcdm9QsXzv/i/V/evf3lD77/3WuXL7kiibEwlh60LOqjnJCZ4E6Vms3IcmN1NTVq5vTKhfP/4g9+//z62i8+/Oju40cG9/IuQFxktztwRVpiTAwyIpdlOnRCPgb8k8zAm0k5+Rx90NNUjSmOhIH5VQ3ACIe0Rqdc3ZOkAbCaSFOc1BXB3vXtwzjZlbBoB9BSOqUlTBg6yEuVViNpe2RTf76c+zP+lAUYaJlph7y9HJfPIEAVBhXDh+HRn213XDjRw6c/OxnurggiDP4TPjyHHAOqAphj149E5gjA0Q1A94xGRPyZih1eTaFJRfI5drEnYJMi6O5VRRiz0/Ago5OhrTlceGCec6FaVQnuVMwApf8ODTsvvdTWeMAYAGJvNw0DtW6cBzbtgYda8vZ03+2RhKFiODQeSW1iJNih7KCrtFiFPErdv2y3zEA+10+Ihwba3xrAlrsDtxwnNBMtIH1V+4VAphBKi5U7VicNbfv0J3f7NE+i/Juvct/z3rVtyZyUAz4uGhWeZkrVrp5eSoeaRHONr0acncR/HLaczFFSrmA5enp64cIlFU0ru0jHERhaqjhTTCgOT0bM8oLbstaZwh8OH8lU8VAUH/zBYO50ZgUZdjTmjl72NOefu4NWg2GfAkmbFHpwVtEM5dLSC3Q0QIsMHp306OhPoXzaDiXU8ZQExqcidkIdZdpOEaetyliZTd44vP5mNXh+Ycl82kcf3+Rz/cplSsysTgZ/zwnJEFnSbN2fpcU5bYhJSxEvnt/6wfe+u7q++dfv/eTJ3r65I5Mi0oWfjRixmJHydjdhZzLI82Wfhvw1bchHJI0qaZfh73ckg6PNiPlrGwBwjVT8xpI4JWf5Lb4YEDGry2t4p2NVLI4fhjU7KBej65aRF/AE11nTAO37snva52zMr/kWZTRNsM/O13SMgSUlZAASVHmXHeImgxjReCILE25kH/2EsxWjhzkBKBkdmJbvinJymO2hbUaGVGD43DBttygjuIFHgtthqRKlZkgAgwBmkCoFiaoZ1ly5cxrApwniLJql806hB3kt/wVyNi+gBr8Z4fSloqNdD1NTdpnZS66Zp7lM1HMPnPqeSXHAo6KnVgCTGjSJXhWMG1XghY6xRGRoKtVfuwLGzjtty5FGaH7x9u3b0n312qsmtZ8eHKqx1o0YGOzHqIwNNVJEONnT5qzPsOKbeGkNwyLWjKZFd8TeDQvejosiI7cEU4vdd667ImThXF2RF5yJ9B+RwQ3Gc9wuzDDitodVpVMoSEyBTtiCck7/MTBB5aimbWgAcpgjWcsMW0dKQLXEyjQX/onVEQuxZYPGwyZVmROpaNl/FORJogE6FXPE7dOF3kGIiQCU4fbbtlBTyg3TsbjbNDB3+4+hmDDtww3zCDZEnlTYSLwqkQhDbQrHSh4++/KLV69fX1xYvnX3zt7u9rln37167QpOTppGUKmByYV2Lb2XPBkPv41DvGx+s7noO++85THlL+7cdYrF9WgjkSNVneumatrdkCPYSPY/xQG/6CNOn0x/sptvHKPptL6yAQizWjhwoB3s4Ht2brGeJVLzF/T1l92kvWi9RHGm8khvch0m1S/JaI1KR1Cnd8Zu/2kbfdPAo1sSY1yeDPx8oqa/yjQeMEzDs3megY2P/2UasgF4cKSnRFhrS4nQ5LBMYCpKA7dnos9k2UNe20dVS6WqLxxrYDZeAIijNC+6dO6KeXIkm0ScChQ+uEupxs3LeHagrQiINV3qVUwosRnD8UbTM1SGpC2udu4ySVXVb8GGpRTaU2uhFHkvLbjIyIrozGIyR0WiwmxpNTTBo0x9wiajhjVpa9A9WcPoKs2HrIkOCnJ7S6QrFjv5CT/lI/XMCwvmf1zG6RJ3fhfXNtYXFtznTsNQJeCg0nuYO1cNlciVzfp9bhW6UNteKnCrmeIVwagmoDJw+Ox4c3n16HBnjLK4NG/Xsv6hWBhujuo4AwcFodz1G7UkGk+ZDG75JQZRtSmFlM23ZSykRz6klVTKiRsREde/PT7cu/NkW1dzZXV1eX6OA/sxCqR8TUzgm+F8gGB7f4I8zi7BiSm2VWtLQye2ItNjaJ1ZmR1425iLnJS6TwjZY7pFqpBMUsVdJDXMCNb+TQkpav9sLZ3gAdBGdCS2+0xoqeXnmZ3EeP7bSY/f3kYk55LLLRpPs0uSyGo7d3a2P/3iC7M6lp0e7xz89Jcf7h4evfrKK9o1FJJQA+Ueu5MJxKSmLC9kKxH+YHleon/qEvXf/eEPV1c/Ot7fPT50A7dBcybTNBAlJZF5BklDLshR8hWBG/YKDuqOZ4Cb54kzTiWXGMTna03HHTCMaY3gkmaa4SNXx1ANQKSHEXMwqQMEJSMaxiyBCsy0Tqf3hYZFNVquwWTkQAL8ORpJHOUeE246engFhsoBw8S/HLXNIK4maMDTPzVfXFDPy56k8qG52APyhihbPERKvUgdsMSn0PsWRVE2kfwVsHgYFFBl799EiONTJCaVLGDidUz8K5XpJGrntTREzvQCqFZCTjaNUVAWgMIfgYiqwYRIGQXmDsJspVAuANTkqFhuyim2XNO9mc9lCkmoyv7fdJmZcpN0C576/jNWC6Wbmdn02uXKgIYU0nsU36nb+yhpy4uu9EChhsDGuP2jfb0brMteb2/uzS9zqzMZz9Um1K31zRNDvOPjpVzEf1ijhKiDJoDadwsjcfaZbkBdWjkwynRhRode9Vk43DvOPYtHT2/eurVzePTKxctz+4d2Ku24sH7hnLv61+bX3e7V/bWwO4LRohF3ZTplEP+yCwCHhg+ZbXAMkf3cWnhwNL+UvUyYbUlGtu3kOzp3srCxKJXFxaV9z4avmgHIfXiuXFDMPQDBZ5uoTmyEkVIGMs/JCCmD+UpPdD6Xlglkfkeapz3LHUXw1CmIXCvoSqKZedc8GS/NLzw9t/zl3v0PHj58tjx/4eplz26sPlNL+0R3dHdLr63JdNOAP3LuT0iTAbkQHbkaw7XSIYzF2kTPFvpq+qqigjTN2xND+FYdoshrRK478s1i2DqwWp4KTIoBKyPqQM+UozKbGsdwt/AAkxEmkjwxDSmIkRv1pKOo3Hy4wRPRBkMIR+sULoel7Trgk8XayVIE0V3f2NJX80SwI4Qu/nxy697O4cnOwfHvvPuuhWk4g0FZl5rTfZqbd/WCd9kOLZykBuUWIPOii/tP7r/16tVLmyt//5MVT5Nu7+5lVrQmmmy8MoOg1oDPREh2Ii3qSBmJHu4f6H/UptZnG+srjx8/UlXoWLz12q5lEfF8ylTf3IUTk9zhdWuS+EiqguTNZ7I56vMJ8wKGmc0xNFSsoUHirqW8RGsjWIS04UuLeYAUBYw8MByFKBgqmUTx0aZRT76e/yqb8QPMCDYddxpDAxTgcwtAZ4CjfTnQM42kIzYAe5Sn0Z8neGXbPtxMw484zwD7FAHQywBSH4HhKYkJNqUa4BRNRaoaAqA+Bh3R6baNzgJPyUU5D9Fr112+shj1HF7zkLWQLmmdiOo1JNy5lbR2jDh4Lpe1UuNx+eRagYkk9/qXGfTNzmYOxGNIGxsntnTVbmg5FX19a9MGfK09qny26ECIdEmrbSqPBTP+EoLEudQG88nRUsu9UneVIBUeCeIPJBqbxfU12lZDoGV7NrNwcM4OdHpnJs84ub9XrdcDpmPTKKYnnhXN38QMvbZECYVtwshWVYPH8IMvgdIuZq4gK1p6ShoA5Ha6FGV63qEmUdIEp89QHy+i+ua+ouNgq1s9kpbUsWH23IKT9p/eufvo4OjipctbF7ecqTva3/MaQG7oqPuixcJtRaNmpKsDSXG+aSsR1cqnOIBViZRslaSWzNCsqWhGYEMU7SBVWFpGLIb/C46C60RbJBwc67g8OdrmIBts2IKwqOKITzdCNfgYfApgjDg6ACfipM76bB92J10eZ61qrJ9LwhjcZJC9vX2Xjh+b3tGQUsK4+tZrr168eD7vCp+crkRNPzPFrwMUulM2KCA2soM03bWZg50n7hj/w3/2e14X+NM//zOr9KvrG2vL6yTFRJlbm6jOTD8enTjA8aMf/fjA4eRfvm9p6vKlyxbAHj946BkVWj9r8hT/7NzS2opfE6EaA4flR5q/ytGiOG1/NXyzMRmochlR5W4sH3yVkEmDWGXcsciz3WxuICCVVNnFjPJljeim3e054m/YEVL8dneUMWKnJWiE76DGI3Q6iJvaah92Oxp+mvLQOkmu5RfMtOeYViNhN3zs6vYBOJN0p9LwwFqe2EZKDTwCdEIY2zgb+ehuMHY7GiE8KmS7z9iFbchyNzKNH/yIpIkxVpizz712cKYnWw0Z0XUsGE6K2YrijsFGX4M+P7+3oz+0v761ntBqLjppAqLPbhzCqCEaF1Pz7l8WEU8yXaMSlxShhE+1jINING2pMFWgQo3B1TdCln05NgsdHVoBxma3tWARL1Gic8rRBPxGtoi/KXzR7JGQGG65R8NXIulm4CuDvinPMWEtWWclvXUPbEUtP7WN/eAkCwBa7r2dTEnHaCNKAjnRjwNtj7ngwxRorOJz6tew17a6DnqdYsl5gQZYdO5gLm5wtFGSQgHns5XiRFEE+6TucHSibffU0BgqOuMzO3MmlbHl1qcguEcM7W472wfKCAXfMODb7fPXNPouHYXq54BSDXJT7NH+rn798tqqWUt9KBUnmt6el0oqNAyMNEtYdNfFaGHp3Oxbb71lXvNnP/vFx598+uTxDiSGlXo66XWqMsuLqyuXvDs2e/78q9eu63Z9/OEHmoT1VSPseefUUW6rngziVXfbpDCdHc2xz1FCKqgBXvSbjjNxN7Ejwv4UmBU/HzKgPi/MZ5jPVAE8Lz/ZZjCILbS+huIRt80koSHW+MkxAcmvz47O7qARoB0tFi8HjT4c0+7OemOeTogbqvYB38mxUTACF6aBvHa33cBD6CQgcae0EmUxnURxrGS5Tjx1uqJMmwmmF35b+JqkDhCFY1ToYy7CmfRNIwTMdJT26QLqpNnwhEivtZXRi+2i6BIww+BBRNKvQKtXk0l/GiG3Yz6lB8Mx1z3p0XdfmITAT5pbYGCmxCHWm4/w151uiVJLwUl6UAoho981RZJ9Yg3jiFK60/Nzh3v72dW+tOAahmQt86fPG4CX89h5+UfYX4mKPOKpjMjmsSncg7zmFgonXeB/RELfdJQsCeicWpCZO8mzl5h+waUX5/KwwWa2Ztlfm+58SyDiiU+y0E++DJI/tAr8zfAUhUPtK6GKhHTGz3ApuCZBna8ApGUahIonmDYtftPw/DsWW2jHmrYTWth4ykLDI4mwkcYxFY4O6oR8tk9/gmfGhH5NR3MMcKSu7tZmuxBCX/3mp5+bnLx+7cqGIyrHVnlzSyCBB9AJay6SM8lTySdPN7Y2jRYe3H9gE/zv/vBH5zfOq1NfOBV7/JR4m5HL86u7OYlm0fTP//zPf/zjH9+/e1tb/sr1a++8887tLz83GaWZr9FzeuTOJYa8eZuVfWY+5hsxiJ/G05/zFy9cHn2TvQApjEHZqbMtA2plymrS8nMk+2Wa+z5HPNOOhmm7Y3Wx8fE5Hdo+HXcM7ShsMtHwbXdy7LHsX0bVPiOGSRQeg7jzmU40AS+ZEW2HNJLRPf05Jkcpmr2QvfR8U1/yN+qUTnFMt0JTZcfocMakHPLXDpP3HGA6EAEchCZMLC9rXOoYg1EkCVv0IxjCJ1bOBGdSIHMdiVJy7yGHtY1NeuT+wwd8NAObWxsGAa5tW3QFGNHLdC8R4LFgREhMTxcymKWmvZkqSi0MmeM3jkgNRoi8szh1FpJiNRuHx25beIoqG29mlxbd/YYkADr8cErx/NbW+orlBCPm3luSOgkbMI5v2yDSAP/46S5WSEtJpTOGgN9G4pXSlDUmOiYeCTGr7LaVh4/v3k0DcPXS5V7Kwu3qFBa1lH7JWwmF8R4dokSCpqVGvhi4MDkrmeUWyhE5qVD9XKHcKUpBGkida3EmgpdCKaHrkopolfLlH+zUVr15Ky6fNtyMfkN/guHo6HHUejU8FTvl3mlxCB0/O2778Jw2HTTt8+u4m3Jx5b3h0wE6PDLb/9nurittNAZvvP7qhc0Nu+ycWTcnAzirZ6HPDY6+wm8zNiZR9SE219ZxdG931ys0//m//Xe//OUHnktxO87R8cm116+98tob5J+o3/zsc13+N37/D9w79MUXn924ceOtN15zke3fvfcTPOmb1tLHqjGQ0bLUirxw5utNw4Rdv6nJUoM4XSryxIHzfJLPKdP6t7HzPgPQ/l9pt3x0EPwdse2vxNNpjqgaxuc0ng5tbNP+gH02hs7RiGdMmv+YBE9GFPYIyTEm2u7+HO0G1sh3lKB4IfoLvZUR7TQMVD6nEY6hPNt/jFglMvRTQk8kb5CGATgVKoYAqcrg5Uh5ccRdtI0Eqr4aJUpEXPAR+uradJuxYCHUNmeVuG7ThSfGYZFzEUTK+tzp0vo6vW22NGtCYnkLmkN6TXZIqsKCllNCoSpClRJ0TIRy8ScT/FV61cwo+Nr1a1Cd2CE66XmAlyNRWhpHbvyDDgOdqWWAfxA8jLXorgEw46YB8Cldiq+03AvRoS11+oLnN/+RtY80xvVcC/Tn9JxPXJy6svrJxz+99+jx8tzs9avXBFATSmRcBA7lrQeKpmId5kcw2mC4eR7TzV0cKana6aBAxGh4meeAqXAQkgiKGtUYeJYjgbDlZ3JxOie0MVM1aYw1wvNJrGCN8VmiMfi0kuFfIIM1jURQ786Y9uQeiJmO9g+5O0qnxWZk3BL49t6uxlWr4Cl5HXZbk4m2Z2HMuak6NmloA5AfYchGOLV41sBRhVMhMNv1cXpMHpL83R/92OOmmz/7xd/+/d/d+uJLBUrCvVf8xltv3bh2XfWBEAAyDAVcv/iDH/zA+vCDh48JIZXsLUqcws7myT+UmzH8BdaNvhy4xJbNaU+f82MDWMF4EF4wKGOfgeaDpgRXUNuNehqy3Wf8fVa8IW4lF/ztOX7+6gyPKZ5xjNFHbGOGOdqAYTp/7W4kHWXMb3sCaIe4o7shO64iFBSBL9MwY5QzniPOjiuUo20c54CHT0Rw0p8aYUacHVcB1cIlPZ6tRMi0LkUaLTGhhQ7ILqEDczjZR6HjOCDMRfACS6VSy8YHz+z6zwsq8Dsbtbq2pjFwKJdM6/jTCdkLaLrAdrdTD+adeFjMNLR9QdyGEfOL2QHswh6UMw4II5hRW+yrY4iJxsgaGLeWAhkGAGxHLomca1UoWS2DJ4gdPVt1tajVhf19pb/wbP64tiFAC17WOuO/vh31/ZJBxkt+ilg2jZmMb1Lf6NNkxpx6ur0pkd+yocFrpUaznTYAxfJiifw4aufko5s3dVYvbpw3YDrY219dWjzYPgQqF4jX8pEHotB9f8oM8Xn+i4j02eBormQKk80Lymg1xMks5pQuk2a4bd2xS1NM9IxF0J6Rtkm3qaVfdEbE2CXb3P3Z/tytZwJXkJ1ogNIZSKJ88ln1Am0NNpDRAYUfrTxTSp1cwau8v1pvTBA8/+0kJCpiE8Nm0JldnG642d65+cVtu4jOb65jg6v3VCeVD2Wzp8OgAe9VuTQY1rIOHZpZWl1ZsovnyaMHy8urG2urP/jOu89Ojj54/6O7d267ydU9K59/+umjBw/+9b/+19//7rt/9md/pgK++uqrTqW5YN99pZ87nnDryzpWloqjKnWRvVAJwq0U6kvmK7xGmGZyfzZvuXkOu4AmAa0eAaQ9LEYHiAEQ3yq8CfCQ3hja/mfsDh2jwAAzezpWo522wffniK0LTCz+YxBH0zniH+Eb/3TqHdSpj2CFLEjIUCOfRiW0uygNNtpjdFEYn4ImmOOD2vbnOfEfIiW4zIhE0oxPsiik/dsBrc8RQxHwvMJ0aTU2MpuK3cd6a8XKpwn9dEzKhCSXMaS3HuYf5LxC3swTmJ1ndPjRsU/SzVQHp6pZtpfkgNjc5papHvWOdEpL5whCbpobPDc8bIa6gVmnRl0y2SA0rCkO+wyrkIAuC9TD6DPX6iKMrgLGIcumMJhmxbdqS0UFNoclld72mnSVu0ofBTpUNAxhYvv7VRXtn0ps9+Kj/av5Je5acguOT3b37ty/J/ELm1su8Nh58mTj0qW60Z7cpMzwXAlLXhEoC8RWaQzdNaFkQ6hmHpM5RFE+Ka8owAE4jQJTFpj0AXIrzqAEGmHEqNYCpUL98QTJSIKNeWFgfbbPtFsQ03g4EjTXF/CFTmTwhJbkjFNGA5jgSV1IulNJNLYWGwh/TaM/DrKwprM74jTDaVSaZuDZs1u37+iV37h29dUb1w5tkrYlOlvrIhQRkLTQhD1DbdgspWJc3WS+4GLzvb0DrcLW+saPf/gjkH/zt3//5MHD1RvLK0uLFP17770nIYOAS5cu2U6BElXPdNDG+hbPm599CgZJiiZzed+cvOFbSC+7GSXtAX3zl69Q7K1PRRKw6kE0PImooV8J0FgMwnBhgJiwVXFOJ9b420dEoeAbhqNDR8o4RoQdpIA7uU6lIwqyCNPRG0ysBmv87RbUoSC75465I2SHwt8w/TmSRKd2WuA11xD6HImZJombOTzJpVcAFhZzDQ5J6ok8ItIAbYNpY+VdNY4SLdNUcbZqjlyqonXBcgijGI+yUwV+QXIOvsuPDlW37bMEBYDYWMfV8QZAuYOJco+MZgZG+dr0kjkE23so3NlT9/dJ6Hhv9/wFK4vLGgN0A+gRsS06n9+67fU3XZiQBM3MOY+SmNKh7e0l7Dwa+XYq4j7efoLVrVhr6JABpVUI/SB9VWgRuHJuwTHgzc01Qo8wlHhO7uhZ5mENUJLdrzdfF4p1Xx/pbAhQ5+B2nPJ3ymFmxjNhikkvMKxV3QtXKbRSVaxfRdFZ5P39dXR+NXRVBCIcMmqa3tSCG7TdVvzo1t3b9x8g4erVq0ZsXr40oZwHnjNky25OCSl4VvajzOYxvijvuu4XbyVHUEiaN9EjkpGBZIqo+Gnmh6SqFzkJVpQItYakqgDm7ibEvkYIGidPKQr12T7K2Gf7NBIAhXiYUUBxQypu5sB7QGVESWYqXYIHpjLU3dAJ8qSVvITsop890sC/PQvfoFLa/bLdVDU8N0oaxrs4bopa8tbFrDnPo4MHD/k3wObG2tKz2Ufb2y4UWd9YXV9do8PkzWQoGGyU0QyGTazuHlhfe/j40cySV06vm/SXtZ/95L3PPv304tWrDm/89Cd/L49en5cht3poDG5+8tk/+2f/bG1t7/GTh//l/+E///nPf/53f/d3yhd+irKFEP8ZrNchs06H+Oou5LdNkdr5OGvjUnuB5Ogi4MiexbOw9d1wk6DEaWMSbuLM7xh9LJL25N/mDDDPBuhiGz8brD/PRJn+nAYbKTwTy+cY9HLcCH+xAFibpgSkz7ZHh0/n4MAzPFXLEWELqM/mLAA+bGXZ1aMTajDiFRSV7pkkeuGxU2zkDUZi2tFBjZyPfVrAplGpgmjo+WtuRIoietoDB2rm4yaosas9cNs+evK0CDCIwpBUTtqceHGIaIYBcHXM5/d3dqnpy5cuCW2JQwB6mFDy1Og4qsFnpwgD//SUnq+wDZVWS2TGHyWaG2duZ46yApyJl5OceOpur7i/TRO2LCwoNfUDDxm1GeWpctXz/Uco/X8K/XR2ZkVMNqfiU5bZh6i5/eLOnW3r86aAzl+cc+t+VvTVyvQQx+SGEkn7HIYz8sHdtpaCWXDhdnwiD61WfAS0MqvslLuuA5iYjMkUemIKYgI45fDVyEUK9jLBVmC+2j06fDbk6N84+5PdkGyJh5CJaTA+WUCamGm0E79f91fcM0mLGYSSFmQbW81/6vS78tPcvV1qRgNuJ19anNcAaxc9LGyKxvsZnSRscqtU0MeNvVcuXXYBtQUAo+H/8r/4zzxN/P/70z97/OSJ7WbVz5jdpuwfPjx//r6+vzlYl0loV7xu7bYPzfy/+Bf/4mc/+xk1oo7AOL+UZ1nBS25lba3zPs2BEDBh+MtcOBM05v2FBgBQwaXYBog6kYwrY4QR9Rkfn9M+L7srfLAgoYMapu1Kd8QdR/u/7Bj9i9geMb8AfAbVCN/YCVb7sKfNgO0lJtIIyrJjtX7k5qPPSBwZSDouf8YTQz4b8+gAJkoTMNo8O3eA28HuKGzptidGTadiXlAotRu7hVjdq0yBjKltneI2PQtzznOE1fx7bhe2IKzKBUtquUWtVPwcv7J3TUT7cVwIlGMpi+fMTgpzwGd3bw99UsgVE1WCMJINd0a4ui1INTA0SHXl1upd6Giy1PlhFIWozP/go/6VDRSEuvbGeX0bWBstwfMqPvH89X8HgXg5Qnj8FUZmKdPN9XX8MPZn1udWdb6BY+90hCCQ22mvb9otVeWQZ1TzpHYGeVm5mVvae3r84Wc3d2dOt5bWXrl+XXtpV1cWYFTMKv2ShYiD/7nWTjHlHtaZp3m1MOo8JcwqJkTeaog/fFYuuhmInOisVGMQ+YGHhigtn9xPzHS++U1/ijR+tmA3AHd/CiUn7ckePc/g8QnVGCpW4hfl3NPA0+4x6V/HISKEY/R26Jx00WN+mDHv2auTw7v3Htx/+M7bb/3Od79z8fzmscWzowO5WF5ZNXNadNUgIKw4xTA/R8cHOT+cKSJJuIF8/u033yD4H9/84vPbt2zn3d3bceYfEu0Kzf7WO++45u/S4daat2lOT19/5ZV333rr0vnzThfzf/ToMW4YNGiH0AmP42vJYxVofpMoXST9s3rmV7NiaAA689Ps4K6YQwqTz0GGGunoOVDwoih0qBx2qM/RjD6NZ7SRAaaJaU+fDdxBjaEB2h402YiiHB2rI44h7VkaO2hGf3iY9uGY9ueJfjZ/jtHdLQHIxKwoo0NzzV16OF316dHAiLnT6qoyjipGDI2wgblfrgYNOdoAuDfW1zkYwkQWJIEGBOtfdy7A9EJf5WPW9bYAGiYZ9OZ1FrIOVxaXJM2fLS+ANXU6yMcHhzLaIwyCLSFMcBeU/qonHDVXMgKMbeiBhqKFgko/joEQASjtKzGMrEiqcwiGF0+PjnOUgF7IrPdv2xRVzzICmM0IQJbntjZU74Xq+lClSALD/DYpM283d24hWlvRzM1u7+1/dueOmu3tVcZRuoW5vOGlFSfIYJq2AE+kEf95KgA2f0YpCMXtykysiX+i2xhakKxBvQrlSjnWfBF4Qb5qVnLQ8tqUhL9ggmE0Havt9uxE2y0uOeUGwH8abMQwOoQ2wMt2w0z7N7Zk4WsM4JdT5CmzBJtDA+DL2DbyvX9oS74lgbxbt7l+9fLFa24PXZxXYfR3MolWMpLCKG53mmTJySozRdbYvHiqHr377tvXX3nNM7o/+clPfvnhB6aLTa7a768N+OlPf2o94OH9u0YA3hvQEXn44IEL0o3KjQY++eSmYQH5NCi3P8Mw2saFMWeTbCb1r5PTZs5I3iRKbi6IUQwNUYVeQlNLeZMWJoJYgLqLw1xefXbcTjixzhixiB1PjjbtZo8EjVH4MMBGn3Z0REFn/MfQM/6NYRrPV7obbceFvOl8GRV5F0QmBIW+orDVWX+yO1ZjOKpHok3R6kZJwj58Ug5A692QieU7nbBk1oRqR2cnaGKWV1eqsqU/nkn8YovAOTu2GQhQVSu2AEhqrecBJbepyQiuOYLIcWvzgBWW1DNrFU64PIsazvU8FInNgJI6ebq+sq7RQroJgiMv5KFwYdEicR9Jd0OJSV6z/1T8XN4GmLHtwbAnFNT9ceLGOXuOBCPDUAElRhZZeQhtx/OeHU5icu3U/TEwDc8089N9+i0aGURz1gDm49AEYlfpSEyelGw0adqndI2/ZdqenmYVh6LN2bo04vrj524/uPfg8SNJ0w7aqoMn25po/fIsqqAqox41NJThJK1FLhSQT0OKEpbucQ9am395Br6NFEVUPPxLnJJLnkZrCrNhBLUZ4rS41sckJJDc7GRh4n7ZpyIFMkGT6h73xHCjZ0QSuArNzwR+ApvfDj3jEH30nwYe3R06ptL+NH8q1rlMaXbTZr7Ngp5Fsdt37+1sb+ub64arAtijxniTMxuxamU0T4khJpPk5wxxZUFz6Vlh7fjGZiZtdp5sLy6tvfnGa+kqLS95Ydi0jx14lAPWE0KLYUr8jddfdzLgMHfYnTNVaysq48JlD+dpA2yg0Ay4mPp5Rv4JHaehAYBr5FdzBPVjAhXYjCdQMhlJarARZvqTezTycwZGEB/sYNrN5h7BRseIhM8Yazp02r8xdJQRZgQYfcaEGmHLWbtHmGnHoaFczYzzLJl43qXlA1sjhKE5trI0rAEM4lOijAlCG7JtcTtR6o+jTafbbrURBjZPcRuDINsMOm5UfE2jNRjNBUylaWo5gYkORq/cp3RBFkjS4d8A/MszpaLGK9pGRRwbPyTEdMlNiC6rKpK6mZk/ndubzTQ+KiQKD+mEc2VlmRzvPtkutKnGnbTMaMncMYWs3JE6M5erZ4oSAt16/7es/aWOSBlEgPw+3T3OOzm1yhVdqHgVMaDfosHhLCq6mIFurJGc8dSHNz/dPTi2Xn39uicJwzRkp3SomFzX3HUzVJbwxNElgnzwlRP5iTF6Y/cmq/JgJdYZxVp4dGFs1R0qKZwBrSQkDS0YXxyImaAaGNafoWNiABclCWm/Icpkyqj9x9BJvOGXf4gsWnlNA39dlDMYznx2rAFnhU3j4S9TTTDH/FIWpc37L6+sXbp6dXVtY3effp45v7VxeODcQOhpVOxOiEMUvE9J5QZyz63a2XC0s/tkbXXjxvXrVSvnfvLee/pAxgFOkDkQ4PC99bbHjx7acPHK9RsqlKZCRPtEv//9729sbLp3+vHOtsJSlZJQpTbhaKf81fZIWAePmR2X9ZKBaaCRQWOEDo09yaSgMcoYysHIdjvYX0lRs2zE0GDskbLpiO3fQR2Rz2jGKGNCgtqTY9qTG1mjTzsaj7I649+fVIO8tOEDbWNu1SyuIP5jQqNP+wPm6OKfxt/w7DNmhNGD64Q6aXZDAohYleGOf32REiKFmvbs+s8THhGBcXd70C17bsPXJNgOcs6l/CFSRFwzbrUs6yo3saxE6gNaG8Y1kw3zLjYx619tzNA8aAD290SFOQI98JboZ5pSrhniIrRplgRxJ7tzrrWetwM1E1ZOMHR3Vehv32Qfh3taVtyvvPpo+2GvURc3vkLzyzsJ+FaJVCDe1jjn0slhFmJu9+Dow48+Ut0vXbxgNsAGLYsWKEnxmaeuCXpuVNEL8TTvw1Q/1Ly/vGA+WxkooAIY5GfMCk+hbCIAUpmJwvCJmYh9OZ+Legc1N+IudE1Yf7J9MmDabpzTUUy59OcZu7HxHNFyQ9LEjMAj2Ag5wnN0oiPwtKNDR5iOxVYNMk1ZcUkvH70Ux2E0vQ/u3b1z766rEs1bvvbqKzbjbm/vLi3m6sLCbECWvBgHSFdO9e2o/rXVNfKf+z5nZ2nw/YOTAxdEHJlQPbX05VqnJ2ZBT3Ivuk3Vd++G89Lx2szrN14Bw6i5uODwh0rn7P0vPvjg9t07SysZUlAAZYeAckxn8ddyPx8BNPjIMujC7irUbAiOSVNndNmQ7BG43f0pnxzsdgiaIHnuGDG0YxrPCDzCTIe2Z9PG/+WgMRbHdOjopqdEH4WboyHbwX2GAIWr/PjLDoHg8KlIKDg4K5fJL//GubOzy93qjz/P9m8dx2c04jZaNs8RAwcaespoJEb0VqN2IDTOtltGuXOLjuRynVe0OV3QNqFhuGFANkc3ALl8cCLlInKHzp5fMtFUXDI1Cf/SxQtGoNE72btPrjO3sDSzCNvxyZGnlHb3tk3mBHJlRTZ0W6hR29VHtCChTr5ys2V44n4V8Hl9ydAoglWXbJqIosJoHyA5TVB94OfiBsE3bKSVlm3mdH1heW1h6dHM6ba9HW7dQRXtWiusyMs2XFcBdyENtf0bpqTRqVseYFzQJJuYMgXnEoKZuZ3jp5/fuz+7OG+37NbWho6odywd0Epxnj5zoXfHTQn6Xw0ADmN5+b8w7sRLj3oWVCw5S9MuXznm3fmLSAupUKWS68eFdhRoa3E84srJ0xpAB412cJYAtw93sJd4t39wTHwC8+IQa4ScBhuRCB13ASXqN2HO4JGEnhK9mr0O6dk4KnhMFX788cdXr15eW1txjOtn7//SXgzqQFtx49qF2q9VpGSZnUjFjY2qMIdmQF6cE5BQTTDO69o9enjvy9t3b92+q9Z5h5VSPXG3itNnjzyNt/5ke/vTTz+34cfq2/bO7sXLlzyW56ykEwOvvXrDXo3lxbm79x9CXkc2FY9SkG7KwnRrkh9Nc0n1mioCIpztA1hfT7pGqT3nAsACnY7Q2Gp3RvYp+BxDR4f6LM8+W8HIcyusEaCDhDLcUmwzktpoO7Q9R2wguRkOQexWytyGwR0kYgdJuuGRxPDkwwADI4i78TSF9BoVydNnwzQe/Nb9V2aC+HQqHBlE9N2Y1nhpiZrEhzmJRUdO3kvI3GGuPYbBAXGnBGFI9JHbydOs3q94EabQmX5YJTS7t5trCc4mbbHOo02uVJiPbMlFKnHuY9Mtz1lz8ATOXK6+CHZYYHAYDFK6Qu50xyuXOXglCrul00HcAMwcr13Y0v8nueTjwMUMczPWqWxnzuZ92z1PPaKbUwuAPYwncarTgBTjrVgk63lOxS5qIn26d3gAoC6PyxWzXso0IsjM6EKWB2ZPZo8Pjh953HZ/Xx+ELJ54rmP/2XHeqXWkrTKmyGqBTTK/vmmFMrJaxHYr8peRmN/WXVt0Fmn/8OrS+p25+dsP77vvwoto5oAX8mDqiQ4YTRzlOudErrFLqH3ZFMXP68WYrlJ6GfhlnyZS27f07Hhjbm1HN3H+9GRhdX9+/q8/+MnujF1YJ9//wfcubm4+uXV7fn1N46sJJV6RzS6JEEYOvL4bCdrvxV5BaRianKq5BLXGBDoEet9aYABaBcUHiPRF5GQ2QpPlXlUjJ8N5ZmtDdTjBWL952i/cBXXYOPkj55VmaqhYTK8sdCey6nFEHbGkXidKX1sqjFhhQtWRuKuKDbxrz7AyuCt6WD1E6e8q6GmfgEL+NfzPNuVJxKlfLVuoSKSan9TL00cBcOHC1u4uUZ+1BdOk3N+899N7Dx+8+87b1+ZXjvZ2vadN1PcPdg2djSYP93fJvOpjnkbPSR5zni5XilprxdKF627zuHZNn06/TrgV+F/84pcep3zw4IGWeGvz4sNH2/cfPFatHJR76zuXr9+49sH7P5899/SN166/evXCq1fPf/7lF3/9t39nJcLtvptbl57s7D81zDOFm7qeolGgBoE+MAHZqmplMy24j7bl9ewIYOSFaKN74hj0YH8Wn1IMo6P9pyMKasGaYMhvAyjy0f1y6OjTYONnpVZyXDKRpCM5kSAwPmVVihw8+7P9Ux4FwAbMjKEgVYYGEAqDUOKrJ1tKMwO6pPGioW0bFW/w3BzgOdgQVmsPa6LDyTQCoUl+0g8S2p9tCwUGSfNNKDebaf+2AXeKbJjZkB4fZP0wj3tJVJviheaVBY+zZPRfiVbdDyWQH+xn607jQS203FQzfE1hUFWj3llwaheMBoNNAzq/Zr+QAaldCvK6vbtL1Gz21KgYo2COTxhK7SMoOL22QsGfLp47spnB4/DIo13sMZ1JG2mU67QCI2Pynw5NNh3JZzjwLRmpWHRVFIsz894Lk+JhLsw/d3z6dCFEGAIUGRmK0I15PrOebPiWyJFV99CdHuxsu1fyCHFLy08ODz/+4stdm082vF61eniwRxBsUsqmfnt2T5+u1JUPTdAZ2fA5MQnvslYoI/XtTp+u9q2zex8WByFR7ukipncpaqqZiOzu9bfUtc+IUcSATgzgRsUmAE3DiCeiLmAi2CNVAEaYxt92e06nO0bhkOb0ZwPHZyRuOrgy8qLH8HUGfMSjeg0QxkzeYjs+vv/4ycwnn5i3+Z3vf89zMe402dy6YMeQ44ROfqkpSM39t/Y8k5y0rLlnMJ5VBHo32RztJKU+2umz/+xP/uTixZ/85V/+5e079/SKVpwzW8ki3LVXPE5wWXISWspVrueuXr6AdXajLi0s3rv/6OPPdFrumXM9590/qi8KR1UNX/EE/TwNHazVfWV+hwagi6EpA8ch8vjZPmP89mePZgx62QFm2hNBXVTtP/IXDB+fbY+fIwB/pv1Hm2PE1gBYNrJ4Oq2OC749xRohcRN/2WDEbeRCG1hQx+2ITQ8fbOVu45OjKRGLmY4CJ+CIe8FwMIDBTIN1rPYEWWgGPKMnf4q1M9gwbKF8GDLHTQVDzi0Lyyu5focndJLM7eYTzPBQuwgDprcOzDyM7v9KepcnOmb8bdQ3vNCrF89FYvGpjJuDBk9xgDSFr+GTxZUV68QpoMzyn2S3XNKlwo2Qs6+9tYjOZNrX6lOmMmRGzkv0B9k7O/At3Tx4WoSfD6+bId+4LV2DHx0362zc3SgikJu4xf56ZfGNEwOhZtvlSJcunt/dc0Jt/v6tL637EcrXX3/92uUrtpSsLC+fnhx71sWsQg32arZ/kJdUBwYeOWCjv4nk4M9WPyo0bioZs/NPaP2k2R2N5qjqV6EMfKOKa+Jun7ZT3BMzRlHEbToEzJh6HNV9CQVVZTp0GpL/BGV+fbZ52T3tA+b554v6Z4JgCmD0KofK1NGfYyj//mSrvGyk0sgHXoN/8uToYP+73/3u5YvnzezPPD1x7CssSruq05fIgLOIZmpTPLnNsCcBuWnLkNnJnnOz2zuP33zzDRsofvqzn1sH1vtS56Tw4S9/sfP40db5DQJw/dqlTEWeOMWfbQvuldu6tD+3tP7hRze1NBYWjp4ekldiW6JrLJAxRpWzBqiykXmBGrFR8OG7GYoqtqZytBu28zl6dvEozvbxyfhk8+ksTTsaDL9GeDCjoXr4j6aQBQ8HmHawW5rH0PZpgLYNVKOYyiCGZ6tXHhyMuAA6CLY+xOSzPamqaWzcYM4k15+C2vQn7emz6WyfJhVCyKUe1TYhBhh/9oCiBAiYiDwR2aj4MO1ue8TPwfBs/CJyMzw7dSk2QLdYiAnaGRNSWrJBasEP/pnPSLqmuUSXF9R67VncJDNVmuMnWjvBsoNQG2M15PqVq3o95c55Y2To1kPL7nwl47VdtYtpJi/0nc4eZ0wg24bGagsCfIUX2pvqyaXJKmFtAr4lWyqqZkr8dOb8xqasab3cxm4SRYMlw+mTh6zfmiE5i4ezmTWg4onCp59+urO3s7G69vabr9srcvTwyfra2uHxIaYRFWThGwngGEuHW45KNEJ2xGNSoF12QgsgIIlepqDABY9Q/qY3TU1kqmTENeBJcuAbW9lBMYIlxSKJZyfUPiNAoMsMGCYNwLSn3IkFoGtEx234IfIEQ3828HTQP93dicLDAT8Blp3uZnHzNGXrXvT3fvZzV6pYttUBWl5auLBhwexo3uyNQmDsma55JRmRp8zdlYRH1NO9gJhGxuuThaVF90YY5/3iF7/48MOPDvYP7EywKvDJxx9i5OLCP9/cXLdtwwahRa9b6wqsbSwtby2vbCwuWORzxOwTF4bvO5hWI31zAOoihYfmM6yQaoZ6aSjq5vMzvAtFU8bnaHhzt53cTAwfOZ2K9NyZil3tRHuN0dvxsif/pngaQFqN/2UbWBuoRGSkyObJwXB0UNv6uSmIagAKPJCKcyjRmkIb8wKAIhuJBMPd0XUVgTUkH0j6ky0WsDFdNPBpShqyg9g+6Upql5YEIBabmU63U2c3/k5o/GwHz+7OQwgVOqHltstme2ebQuZODr2PGlHO4EASPulrjo5irtOOHzcGI59qkZwRKwGds3XwnKme8NOBAKcgc31RPwUwv4R44gt/soM/6fSk81kXzGcOR1qTLACRrjGvttExV1Cnli80jDZfUjfZkZbzKDg5EdkI1QvSOEH1jf2qBzph8qzjhj4NAE5urqwY8qRZQOHXCPY3RsEUIunRuQurywcugl9Yfry38/5HHxotmf25duWqgdduDVW1DycWKiwBezy22IPyQuM3w7VMWyOfTFY5jikkuARVuRo4CFbKQnlyVVC56aaEDt27xCn8gMv1XC9HViYl1DBZSyqEyh08gLY7tCkZ3YgOAUV7HBPTUSZfQ1XyKWKnyD0N35Aj2jEix/OWcNq3avGLHsPXiLYd46d05Sh1atJdSyWy1nJ4bNLz/Q8+9K7RP/9P/sAG6MdPdszeVEWQ/Ui5Shf2Np8n+rD4TtCzzm745XDZrTt3pHLtyqXlxR9aGfjggw/clJsLiJaWHj584FqIO3fuvPLaje985zu0v3U2K2jIM/J+6803SO+FjbUn+7v/4S//8sBr9Xv7ylclTe1zX5pe6VAN02lgCEAqqqnm/sY7uEYOcrS7HV29B5/ORkebsjt05JeQaQxjKu05Fe8FsGkk05Dc+N4+7DaNRO3lwDimsyC0ha8d02mNGRHUsUThCR6PuBuPoDCuhGzaEyTTMJiLJAZAQ7a/DTPRiaVV21+U1rMVO9Q2TrboDcyNpEbFwTTYiGH8hKQBGgl/ho8UOwjOdvOny9LYl+lYnB0RmEbCJ8cY0Sc+iG4HTsOzK3YuAeWmg+TF8lLZmcN0qN2c/9rKKjH1KTsSZVMu4J2W5Gn8K5Vw2HjtJFOfNfO5sLK4QHDh336ya6XRBBKpVVEUJDZV0gPxTcO3ZC9qj04ypsaQvaNDbcA5x6pr8inlUrXlt0FHZc+BI+sihrVuqPj889uuDeB9cWPryoWLNom7XUCrTL9rn9BG+O0HAsCd2GWPRcaTb+wKVA5cbaddTydg6KzwpLiFZr6vqg9kKbf0cXnEJLSFoUq2fYakJ9zheXBQc99cZQAQp7Z5cIx2I2Qz/EfTnx1r9DzjmI7SbminPc/A//qfI5LR0XG7muBJV3zkMWCwEOeM2O7df/D5l7fs0z1/8fLu9mONtFYYkzPHWhNr4Me6Ft6mqW4tnKmhRw/ur6+u6lbe+uJzavtHP/yeJyT/7id/78Hh2Zk1w1Pt+oOHDw+y/yLbiv7lv/yXNqzZWQF4bWXJ837zjmyee/a7P/rBg0dP3B7hNsbjw+PTWpOnEiYNwPMRbToBFqZH1owF0z7jZ9PadrhcnWswDcCBC6N7xDY6xqCRoXwYeei4I2Q7wtNJELCOVTFekB4+DV9yXJ2difQLQm0aveLydCqCaK5WRo2hbaloVMED5gOnYh6TRg9sgsRl+4SBoh/pBCkWI5QSERoNWKaRdKwGaJsPsDHdBubJIRW2oDY8OcZYPtuHZzvKI7ShpyHZ1pHYfLy1TgzVYzW8Gxv77oP/Wc4NHERX51pQWe7p7/W1TawwHqFYSmNk0gkep+GpyAULTzW2kCgV9PTcMT6E28+eHu3u0NzwrCxaR9i0UBnyqqvpYtL8xmRsocYcPcXtGcNkyg7Yzt5utoIk9+Fh4L7ljr9U2lD983ns7GhpIfs3tg/3NQAhAPcUAnKK7An4t/5r5H6U638WbEj92YfvHz47Wplb/s6777pRwM15jqsd24/qZEa2JWV9DzfRFBr1JyaNPR+9gPaP2/+usDU+0A4zkYGSkOSxznPFJ2OGAVuhHFQzd1BMFU2HNoZabhgUAgEANlWOg7tiD1Yn3dgCWbiefxbUNIYOKu/AtuPMpxx9pf/XydEZPGPciOGE/tGTY6xfpJ1ReaUY18Kim7o9B+bmZuMA1eGHP/i+JzyzaJwaVL3/LhcTQXnlp0TKerB2NJv1VO10fWyk3li7YNvQx/fu2IL19rvv/MHv/fjCxY3bX3x587MvMu//9NSTdYfHz5wkIKj/zb//fxGJ3/vx71y5eOHi+S3rdOc3lp2o2X967va9+6vLizc//4wSsMKgu7BgKqC2BauGMSYXy+Hz+RpAhbxgKYOXjfJ8Aag+vo6bI+RYPBBiCnv0GWF4liREPHk2ztEmWKObY4TpnmZKotS3oA5lQ9KegPtTEvDQaEy72cAA0IaCmgY203rcmI67owNgxBU0GkEAJMSGSmgUaDUYDQy5z/YBw7NzJ+IYlyc3nJ0vYMwI1rnwyYDpUPCdr/5kdxumJ85NrQOmrK3+B2f2iIXG/C8a9ssfGMJWlqPEKT7uK5evNcFFSfqMR8e5VdRj1ojsVARxOEqWDunTuhSoLoyj2Zs8sXotWk8TToNNPrpCRhBev3bVqFGC9YnVtdWsK7tZujYXIXiqcqcx/i0YBC+fm7UdSg3HLik2MWekvBTjt06Oaumlnd3Do9X1hUf3H9388nMV2CDpu++8a/eRrVbeY8M6lGpxZ6qI9TBHSUAfd1PJMZruxPNXaimhMkpcteBsXTAda4AwaDO5N1kDgK1h2Nxk4LmZjAkiFXXliSBIGqDhBXG03YQlNIvSQ3UYkTfY6N/AjWQa5ozPGfKeQ1a6zz8nrmn4iV/9VnXu0KaWb+eLPlVfyAnW8UShVXr32q6tbx4cHVCxC3Oz/+HP/txWzn/5R38YGNzNE5tHoO2myEZRnlFFA/co4vhoOs6do2cePbxvYPaf/P4fYJ0JpafPjn7ne9/9/nfe/au/+qubn92yS/To6enrV65Zb/j8y9u2nL79xutbW+cjtOee2YOUveCnz6xIu5rL/UXPNCkHhzNzxw4i6xmoZXpfmfbR4JZwd2OQLq3kmcr9c4tCHD+EhupWqRPI/mwbZHIyKeAxIgd9NEJWiUeMOOBvEfEZNlRvk7+0uh52rPRxCp4eYYRCKK7QxuYTnjFUkOhiOcTUZIvepj+HqYzJHh6egBlnlyAECbOihUcQhykOukwllAoJYARlX3yNprlRLiICOHxSHwhgmkKY+cNDdCBkwyM6SDVZciBFn2ZFU8sT/MiWpq1JgrmRsxs5/HDqwkudDawNqlDOpnYZSCAdkj43Z5RquVZEMrmzbYZn7tLli3aH9vVEcLpwijWzkNkGrZy/DA0c+p3Ldk9JuydjdXnl0IGw7RQNwzMXDJk+Pp03NM4dKVqd03h5WJVcnjs+ImrE3XUp7je+cPHiytqqR4kNAvRrqDaLZ4/u3Vlbrq6JDlK6UIOBf+L82t+XYdD+ddBENptqqg3DJausH9/J2Fk3XBwRw7BET9YgsazHmsb2cnJjaKc7TfLLwNM+cZ/LQwins3Nk5ZMvv/j09u3jmdPfefsdr5M7KKSbCTl2kVOX8FW7/NRkGpGKHM7PHznExggibDWZQ7nQLqYglBpPeRzWbhbrVg9nBSo3IimcZBAJ4BcXFJkZIhJzeBThFFGowhWKJz45mAiJvktNcXTGn7flrS5KLQiChC1us4VbdOigahoGH2lUKl072pPdsdhJbqJAp1HBBuxlI72XPX+FD4a9HCohFZ+/SsSWCzZPLF1ayl1vqHKYxvvWNgZ9eev2X/713/zxf/pHd29/ade/SXwc9IreohM5HJZvQmsOCcHDEDDVxgaeOmbvyTxbsWcM3IPfWZyZ0z/8o3/x6ht33db+8Wdf6qUtWvZdWzNfdGHrIu20+sp1m/f2t7etP4uysbbu+lJ3VJzOvEJCHj157Gkz05m5zqh2a3i0zJkSxbS+vgk++Zk2X8fHaZivdH9dRCmN8CMMB95JPvmfal34jDDcjLhtYzFg7lGSOAJR5zXEakOeGkBII28MPgFwZx2nNDL3iJBD0QIIvjJCGZ+qFkdTiwYwogNhC+2K4RMGoWMQR0dvqtglK2m6ROm+tuhUXleYxgBJUq260XZHb2ydtIrhE7VsGBiQ7FSkag/4g6xMxDILDy0DQFqC5JODBufmQBiqmI4IjInI1j5RMB7ISxLN565OdSFEEwBMgqTZJzBGoijRIeIjdS20qWpggkD2+jJ6jAAgAyNpV9NZBri+vu56RcXSbZWykriUC+u3ZaEkepc6qq6DZHoqTGYURnRTpd98/raImMJrP5/nO3eOj9+/+bFJBLrBk4GOXOjimcZTW44cw2qlgT9koObx8Ryv5AWmCCgJ0e/T+ay7CEtms91AWbjyNXnJxtxBF6eIqxvEh1/ZVbOGViHiRLZbuuAn5nw4UsoNPdWD0YTz7yD2VM6eO0d/wUjVyrcPOxRUVe0kxjg+G6YB2t0wIzEj8G/NoZtweJQnTjHFO03S1ekxBf/sWc4HaAM2V1dc8Gk2n0g/2dmzIra4EM0OcjqbMpVNQS8ZeXaQYH93b2t97Y//+I+vffzZez//+ZPtHb06Umqz0BefffzKtSvzs8+uXrzwnXffUp23Nre8Mn/10mUbK0iB5wf+/r2f/uKD923VtoDnenBznlKy7kV6dvd2X2gAsLK52XbTM+3mc+bzJZrPenRuz/pW/kdGcLS78Y/u8h6CoiZKO08TwM2T3aZTaRFpVNPpNqRQwB3KwbPhp1Vq+6QW1bSATwYwGsYoeM1T9BEVRwG+oMQBtEJsSvqTm2fD82njswlrR6NCg8/RgOQG1pCjYwQYHSNOK0VQ8YeqlLWtPvoi2f3JHNnCMxwVSfekul3alfQYzMg3kdSwuNwMN57QSl4N0CDTC9oPPiezzzLALbUSjKdPFwc1YXhE06fvmf02PLOyqH2Rk5wDwlLnrd2SePfB/d95840nx480slSV0evc7CKmDwp4zNg37ai9etlyKRcGQ9B7rczUh5mpPvNFPWH5N53sV+PL8Ny/+XmvP75/86ZZvPPnL3g6HOvcOkli7BF66jpefEFwVHFu1oALx2Mrt4mxnI7z/Kv0E6pNCPOtsUf9D2IfOjBZQdTamFGaALklG+IqUht0uWH1yTS8T+XOPfiUdAFLaJn2T4QmrLomQloUOdqfozAnC4Las/Hw5zmaEb4xjJ8NzB59RscY9zdy/KbRpWxuUxIhzGW5C890tAmzGQjrAd999x3Lb4/u3ru4tekyH10wz3ADlgqa5VGV6M+vI1KVBKmanF9e+dHvfN+V0R9/cvPWnbvHh6eWmk+Plx6vLtlD6lqhDS+L6ePXpQNGA976swVJsV66cPGt1994/8OPrbdlauiZ972XUGqNOtsKJDwykaPNSI3PM+5pnzHoVzjoCKHNVvboiB6ZfJ5JdMTWabEBYlb4VZ0RDj6YEkc9jYL7TIOB4Q/J6BDE3T7HR7naoSGbMO52sFELsuEhYYQyfIQyo48KAFgu2A3ABsAHBoa7E+q4qOXoga2Ov1BuKhVkR+TTsdpuPI2k8TRAJyf1joUemJsS2Ph3coBDffGhHWyYGcCMqSI2T/DtL7pxrvsv2qeTTlA1hESHEie2CAPAbeWKpo56DOWxNQChqvhgIRgYnLKpPUhojRIcSgab9mBuiV4127C8uvrg2VP338IsuthydLjnSEtQs9IN/zZN06wB8+AluTEZyEe+Ja/U+QSgDM/O77dHjoEWZfzTDz98dED1zr7z3e9YfTk+cLP8vN5+bgDSoLrzAU3Yiz+DuHVBDX1znLcI2blQyqDy7eHntNnPRXo6X0pEaGc0uFqA9RcndyBVgqk4yqXlChMaLAO7CZfMcT6HDHRYx1amo1tCIvoUbfTkaPevw9uOPiY6Rhwdz4N+4wL7zaStqlU6eWoet5kW9QMzreX8+V/8JanWBszPzlgodrqbskj7WksmTaooHM2QlzOOQVC5gMgs397jndX189qAKxcv/eRnP/VCwPLCa/YAGco/eHDv/Y8/8XaP9v33fvgjxKhKrg/yLrFjyU6rmaf9k3/1r01PffTJJxFvWwgM0E+9hzqlrfB0NGdI4X/G5+XPada/HMpnGgDCliGeowHD32dH70THpBusYcYgSExsCirZTUSZb8zsaWwj2qoPAWumg2E6xYYBwEdoA7TK7tTFKvDA032S+P+z99/fdh1XnuCJ5x0ePECQBL2TRLmUlKYyp6dW9eqZteb3+Tunpqenumq6a3VWd5oqZaV8ypEUvQHh8fC8Aeaz43tv4OA+AARolEpVB8F4O3ZsF25HnDhx4grhAkRIgCARByBKrmSEx4eGVwOHJuydRbsGgzfWIuu5YAGBOHY2RBFEkSSYitribxtchWlPLZk8+PO68qeFcjo1bMvVqxeQwuBq2a05pnsms00AANneSURBVKc9WmK0aGhbOu3Vrosf5ud0L4Q23vCVpxkbYFfIKXWmQ3pZDO+8LsnKq9cBaLbUVI2eZ+0SXrtx3brbjMpZ8TDISz+yz+56KcTnjK2K1aLSU6fOqffwrsKJYwM7W8WMjIApk7660N7p7Bzc/uVvfmPmkXr1tdfKBi8Y+f/MiLVyqwM/dYqz7Ym3zzWqu7NLKWT5wSovKGOmPqAdWd1OgtmXK0csoExJsIFzP6X5ThkFBDVC2kGXXtwRV9XB6LJCBOqKrN5FR50GRasoorBHYDATsWR7UBnV6pA+cNceYIjE20PGXWggJ7gePfkg3gfhD9pPg1UN6u31pXwNcs7Aj0HazXvn3ffkfPfb3/Iu/eOLl5zxd6t6d0GssgnqmcvGkZVkM7L1tDzVtbTxu3/bVx9TfinMjwtcv3zRsvfb33htb2vTkaD3PvzAO2f1e/3W+tWbP3Mj0bdf/7aNv23XwlQL3/ay7Ruvfc1qzJm2Dz/+6MP33vcTJRrZ7WTTS4snjh0dbd2mWsv6QYOl1oIJLH5QRXSCCcCA7zJL+lg+4wITmNCzuoRgJAHokYGrWK3DgVWlrqftudT0gGSJI2SoInK89NNZhUgLMqJgMEZX/HJikoXkihHQa0WDC0H2gmCEoZ2RHF+Pi/e08EeDxaSSpTpnGo2IJwKCw8bDYCeE2J5LAvn9eYJhrE0ZUw9yBfLhE8sdl6iGOZmkEctCr1DKpPGgBSeg56yt+pGRMqpwS7/2U0LkI8OFrAimp/NS3d46rypJb3utYNunnFyN+hZm5+pHMGQ79sDzMt6JN+ZVvbkMs2hI/fzjOVoeHrPHoVeVwFQt4iMalbm8MHq4wat0qe2Hy/lScjXDxYufvH/52pG5aW/Iz55/Qk+Ym5n1cL/vRdLMEbttZurmJ0aPXGo+vUK9sYE/lswV9rLKfta3bQS1qhWqN7TQ6rYGVMuPyAKLpTVo9ZPBb2KnHa0WELBKjHcsqgYpjIkIBpAkIHBs6/ShmWjXsIiFWBXeJmMkJ4wdE+1D5BDuZI8OPB57fTCuhmvsVC/SudsSh/GawPfbFowffPiR4rz+9a+dO3PGGYr19bWlBTvwNQ3D4xKwP8DCuihiZ2vboNE5sWy1j78WFpe/8bVXzSh+O/762o1zTz01t7Ri1vdW6N/+23/7p3/yXT8egF6dewnkVTCPf/PmLd+OeXqwE0X7x5984nHfCb+77+5YwKDY0WuhY3puz3qAxfdHk9NDRDEuGAIjU1JdDPmDTyyrSyiGFhDX4cJxPUaypAYQhqI6jK/DYRRDGhtcuWaTRBD2oVJ4AWViA0BulwbZuSAFGO2aWFJ5m1F1A36SyaIRY9i7YQiQQQYvGRrJdLUY1suIIMIbx6gawfDkR4UC1i/82sPhxdvcaZ1tjwNeh4AxlNnByzOVOJSFBDRn7bwBMu+RyHSWLWbI92FAVo0pLN01FOrJrJyReVlcAltoOR4I5l2rGeFz7VeQFmZnbqytuXb0jN9aar9M6UH6zo5LDlB9tUEB63RqewTi/Q2b3bVNY+OEX7tsPYXh2kecCvlqralX0LtvvvE7fcLbkte+/jW16jellr1l8Utz47mwjGlVwyTOY8pLgeaIRWoYizYdNZ+H/WrKqngYobVDLbopqB2usa/HhZLawvhT53Orszl4rvkEeOzk+Isynar4Gx5lYO3etbSqK3QHZIWsA60swd0z0TazUU3WfDPy7njpciKiK7qr9CvuQg5DM8mmihrwCkZPN86r/mbnvYa1jHDkxs89uvvQNr3vKy107hw7tjLT9t7R+Wobo4t/2jbpyNh6Aq9aU9PWIta3Ht8cMTJvnFhdNUC2tjYuPHlOX11b/87Fy9c2d/eu3LzpJyQQ2y/yRu3KpcsulvAG0/iqYVt/F1xnfdJ7iPZU98Zbb7rg2pvkUUdJ9U3Ew8odwhNkSQ6rfkjAoUhO5Eqqtd4pEZCvIgRdLcTihEiThQYLAD4yJQ1douJVIQsznlFDH+KoEKs+mK4dMaQAgNeti78FigwkJ3ZC0KWFnRwNoHQpoFwysWMBCGSgFGSRgEwuabI81mmV5GZoIQgZJFic8kKGLASS5MMQkoqCQSkED5mRGcoUBG+9/lN7lIyry8ZLLV9m65yugugK7QROJasy2wte7HgFGu3byLIUbQbX71NbOzBD1+w2oC8tpetIXqjmh/FSBBYS4Ppb1u7VU0R9nTDnysv283i+e3I7tM8op7zU2dmbX1nYc2WF+SZuOHZ8BbHiqLsqwp0jSzNzfqnvyp219X2fKVjKGp/i0VczlCNTGY9lxWgWOeSGgg86LznEblO6trX1xkfvm5C57Vdeetlerd/bPJi+4xcE3VG/7zWwX1ZIJymaupbV3dp90KhbOw9HFkYvaas52pytmBpLQFBFaCqVJk1TGXmBb7eheLQtx1TLgo2t2hDTqaC1YHWJRqkDTPAmiSyAuKQ2U8npHR4cJEqe0oGzeh4cU8qKBBiA0Dthqj14cHKDTNx1SXa4A0PKh8CHGuohtJXllA5/bCNa5dQJriqJIekARa0pbazxwgsnFn771u9s2fzpn/7p3NLy4vLRhSUbs7Z26mnM6wM1XGOnJuR7HgWqAzoxz5NP15veuojlwDSwaC7xdmH12Il/86//r9dvbf7nf/gHP1q/6Heip+ZcsP7DH/3457/69auvvvrd731/9fgJs4LBrVkM+ZoO/Ozr6vLLz104tjQvy3uDOuzBjlQ0+6tU7YkmRR/VoD+tLUOWuOGq8YRgtAquNFtaiPCOlBUhYh0iBGDsYp0Mce3JRpG2b8sKWUJmWpR+hCQqeAdKOeL4U4DyyIKMAV1dFEkKqyeOUUQgMtJwxXhnPzi4lcWFnovLbOmQe9+6kaya0XH39+eXFn04pLJIIIoPdeW91TWYXAUpU+3HNv9Yotovdh07eQIst0LNWwfOpbKqSjjyL2VseVALZyKaHDCprbw1HqCDKdJQjh+nMkSHePvbdYTT2a/pOfd1ht6ZZYAqZQXXv7FXZ/B95ru1ve3zcfKZwznoNOVQ2htHndvHiKmcsu2OC53rLJljpGitYDyKWWn4NKy+eXERqbWP5qjfNa17DR03tYY9uDOvh9vuX2njwOfFnrlOnDyudb0le+vjj15/8ZX5OzOnF4/WO+qFqe36wN1KfDwqH8X3ts6TYrJTCNwqOIi7scuw/FLB7t6O33W1AF46mFqanvM7lx9vrr0295xVt1/YqeVE+alWJ2VJVX4PTVtPjXQlTW9NIS1RS8Sq0NGECu80Hh9aN8i7Pt7H2MuL61vrM8dOvPHe+7/99PLi0tKLzz135tgJvw9DislZz9JNXMLks7UDn/zrA35oufW0xXkbd/XI6HtPX3HoIOrcYKKZCXMz87YRwNpOqNldd6vtugT+GuwuWD17xjfbCizJPdlz4p31KNK6+1aNKoTluk34YaxUK26BpBrPbJVds8U46PZtoZbeW5XTum5eACAKHjAyq+V2GHFoakaucuUfdI12ZMpVqLGHuQvXY23hE3dFSUb+MO4V0y25K7PRDaUpIbeuv/tCPkLkehCwCTdfvwBTbp1v9THM7OLCp9ev/Yf/+B//H//D/33h6LFPPr148/rVF5571pJqbe1G7e/zFRjbV9sqirQ5Qu2I7m57WjZOlcCJOVjA1v7e0WOra+s3fed55tTJf/2Xf3bi2NJbb71l83JqaunW2roPwD68fO24Xf9LV06dOnnyxIn1tZtkuqN37cbV3Y2bs/tb3371BW08OgbKbqGXATwsf8cD4OVqrdCEDNz6TQgrhhcOy4HsuaEOBmWCLyWClxwSx7nLClmEMAONB3YrawAb9FeV1d06jKAHJ+DtH3zBYDEkIhAQyuaZq3RUkA8Jg1IIBgDP40c7jfCZBhDXAGtBLrwQRuMcDEmaAEAshLgRjihhoh0SATuTCylLPcTgJGWlaMGDsciKIoXySYjHTME1qBEV+ZvrG8qgh5n2iqEVgXuwH4S4q6hStO9FYUpy82CRbzogqtjb+U5cygXjE9WS126IUzkkSBSZwlqxLs5ZkKD0SOu3MqYX59Tk8ZMnLq2tX1u/5RuWWnHv7hvmTsEf1A9uj3xoleErCuzySx1H/CrAtDd0zqtu1PkaXq09BPCGdR7/c+rOSr/Gdtu10ScyCVRb6LGtpj1saD7nYdf3d9/66EOezDPQhaeesdtvgWad4XCfxVHVqulHQ6hlXdcKwZbRjqepEkOgHqrFq3tZSLXurRy1atyurpiO0VqEV6qWqjJibK+Fq6ErkE2LzCqw3Fqet7HQciuDcHHvS+Ca3po0NOQkwAQpCUgcG7qowo/fBrXSJaekVW8ZDIRIiBBEkuIhS5c5EnGIJiyRGbhTHgaGBIEndA0ItOc9nSNZ6gkQ2BJMqu2rHvnf/o+/ecG5Xi3mx5RuOZCzpKQGlm/k/al9OZOZr8X29+3pcyaOUxsCbVqKltFyyHrKBeZc30fvv7e8evTPv//dMydWf/gP//jp1bXb07NWB59evXblb/5OM732tVe+9Y1veILXcLv7274Uqysh97Zn7hysHj86OgYaQ6u9GdFqVl2nXnrJA6QNwGEJcWesEre2mYiH9MkiJ7q6FjRCRyYpjkZxchUpWZ2xVDaleDuNQ7jBKzbe9FqY+GuUYPjYT6YaD30XnqTnppBFb0SFBotknoXjf/myyIltPY6uxCwRkhWDA8sF9BggNyF4uiDr7pp7z56iiT3iIWXozUy6kd0eSmuVNFahX8FEHa14yanVaPtYTGEHqqulSnVZ2KaBpk+yqSjvU53bDwY0J5Wv3f1yoSczYkrpVM2XhJgzSBZu11NveTSHUjyOOKp86b0PL16+5Hvg1bmZrfU9F9ySWJujX31opamqU7FZ6tb7sRa+uPJ7Z472AjU7vHUc03J5rr6GmJnd3tnRY69c/tTOLBs8Sbn0kXa2qS4rSf0KrPWyRG3WVVI1aj50EwZLtuodLQW0FDkKqBVSKASj0tVqusKEhEK1mzziCOQSQp0HDcGMfrdymqgRe1VkCYz8HvdxUVJbJ4xAc0fog09Wx4SdOhixZBooZJJCZwH0ELzkhCUh6Lo6fQc6YzATyfuSoTksMDajjwT1BqPHf/TGm37r0Y8HPPXkeXOyX5nf3966cXPNE3OIS5o3CLNWStVYxnt/KOnaA6BExv/QrnGfeuqpP/uzP/vVG7/za2I3btyY9wwy41c6lq5euvyPm//4/e9975knL2ysr21v3vJrccdPnKqLGl0ZHdPFAYgewrEpyJQkmLKyNWSIO++QcgIp6yEhwrHE16DskiNnqD25ieFVgYpQv3yNAFZsNR4WAtVOJIvhu8BhI+GCh8ElgAW8YjJhaJEEkwDQEUMQITDsCTughyas+qhnlC6QPSgFotKhQybujHI7DJAFI+aYyQl9xxtdPCxpaMCMERiMwBsg9BaLCgjZGWt7fTwFsgOM3qi2skAvIB7F403kRj8arhFl+aZCfP+S5sKhaOoaJdWM0XcJ8X9Ve3sYN1PKJZo9teNpe2Fm9sTqCdOIbc21jXU/k22Tu/34oIHgVwtI+mpDWdgCk9SAZB4o2SlYqhXB3Zb5cowhWR1rfb9B5iSD/TiV4kcBb95c82XEC88+d+bMGUf9KKsabut3LKnSMqt98wXv8HcavbI8qLSKFbsTRlNku8YWkPovrrZ+b5TVl5AVqvWrKmMLEAFgFJ2TSm8LUpyOQWAwYwElSXDFQUSJg6EOLEYPAxYAYQcDGm5ELwtx76thCXFnGSIDizvNEI5wAoPs6mJPZ7kvMJQztDn4ocAhJVGSHRONwYj9roshcPHSlbU1P/1769WXX3r26Sfs6VcNtDf2VbE1+MqfeBCoR4X7BQR24fQf95f4QSe/IaPrfu2115557qV33nv/5z//ubfNVy5fsVNkA/ja3Eyd/jm27KeELHLU9+LKkrvdb7ua937CCxe7ASnJRH0lt4weh17g8EIHCD5JmB7ClySakJWW5oHhx4KrW8BLigVJcNXQOMCoteSKIzPsEdul4TCckoVFQCAAuD9x5Ic+4qMLPlxJyoLBgjfjk/+VFecbA5rgu1FHdmPkgSk9nAUjl0BxCLp270iCjCWhobf505IUs9vgLw8uQHLEtY6IH2tuoraVa5Uxup2iHhQ8A9WHYDVtFIuqbmbQKDCDXhsMBEqS36jqWGhTUhG8HulITVXOXPtezBUoCw6PtlJMux16fn17oz6HYVXtJ9UOqdnbRyuM2fDdyrVrz517wuRQx1SU5QG9v6n+0iKWR1ZVSGvHvKtX3q4jNDAj0p7xeYDqopq9vsb344Kb216mONh3Y339t797S29wccCrr71s9CNTk35uRyOpcLA2qf89BrQPrVV4vd0Z2y+ZAJPOaYcFnM6gBROIRSZWGCVCA2/z9G5p5bVcEwA5NIaRKFVk3SjXQ1KjqigGRCY4oefCpyZLVRu/naUKNX4CmKAJJSRpoQ+Q4daFTwAREmTgcE2QfWbysJyOCTBMDlXAJ4v98MnqgKy6X0/wY5/r65d/9rMrVy5tf/tbzz7z9NTtdiG500LzdUkDCw3qvb26pLZbO+x8ZGoK7aKvInBPFOEW/t4MexY3/Tu8d/zY6vmnntzd3vHM8ctf/tId0ceOLv/VX/7F2bPndlwtsrvpxqFaHgoxWpwAQyi46+5Asopn3DA9awIYEgQeEvTcriUApxUyBOlSkmB9BYFqHQoBG7FmVAGBGoFRKZLHjh1DnI4rxhuNAGLBcgPAIAB3MrkCTHXQ1pDgkAUv5jFNuZDpkSghtVlf0bNEbqyVlRU6FQRCRg6CThPKHhMIHhLE2vpopIlFACNIkqnIZEKqhPBGl0OOrEKADF5sO4hkcJIK0ssYfARCqj4y60GxefYia6v48EJKQjZ6kUR7aVxHIA5MAGqGmysTfcTUgo6mdYtv6ojXv+XJbtclBOfPnfNDV+vbO+999OG3Xn1lZnHea5y6nwdFr5GvDFBG1inIzHx9V8lea6sY3DYoRh3yC+qvlwFmPRU4LhJf4JW5B37fRvs0/52PPvrw00uUnTpx4uknnzKwvbZRAdUtPZ4O1DNYioUe7DQuWItod30WEr2gIFrW62VwZgtkiqaYABJKSPs1NEUHp7xlYssVU9CiysFFDqDl1vBpwCiup6Rxb6cPsRDiYm7BuIAMWem+63PujmiEXSxACAaAviEK0+EAiZkXgk7Wk0OWw7md7L5Z3YAOTNBLHpYP2Y0c0hug16/d5DeOHT06d2JuY3bKj7q88dbbvtf9zre/aab1G4637+zqIapLY4mH7ENYZVJBtYJrepS1hrObdHDw6osvvPbSi7975+2//uv//Te/+qWdWAS27uwuOgbizcGLLzx3/Ojq0fYTeHefAMgS0kgRHX1ggTVJoklS3DGQISgR437TzUUJGfqeO4FJrti6MDQFZ53SBILhuxlye4AXqOv0kp6AYgCk4aGC4hm9BIZHgD2OzBASSkRDIhtqIQcZ4gyAwCgBarwxler430gOso8BvPCSCXK7nTDkdCGdPUWDhxEioSexJ8giIQRyw9WJZbF5abFePstVA3QVcZsAYAixKa8UFtr8BYKwoCmyElSWd70QWkdIFcFX8NxqEddWkY4LzXgzfCQ3382zXsXWfvp8zUmMqZV1WwHVm1DTgF8UcBJ0fu6En9M+eXL7+o3fvf/u9Y1bK/MLzrw5VWUKic3Noq8wUg5lVzSVUNXSNv0m9FVZx31+Iuuzk+3bTpU6pqw6VPPO01jxeUni+cv1DxtG/vTsS3X954rlH0scenNri7VgmlXc9u781psav+OmTphqhdZVunWShKfHgjORq0kC85qRe26dshh1IF1H+cs2XaGavdlZLxdKbsVNfgCrWDRFNu6ZgGQBKFWTPdmzguyMCGCE2COJUkDAzmEycFE2LcP+EBsa3z1RZw9L8kKcLHGAe9gOJYY0Q7iXosuXC9lpAFXV49DxSnDy9ClNY/nvQbm+y5mZuuXXn90QvOKKTx+K+kWd7X3nPZ2/aqNbe4/F3PM3bcq16bFGmY8oafQaSWz9L/bM/9wzF5z9N7SvXLnGBnoZ+atf/eajjz7Sx7797W/v2Aa4R2qrYpjWNJOPMCk2WwMkJjchBe7tFCRRyIYq4CWHLMntMp0CCg3MkJhkmCrYOEQI/yIrnTudHmyOTRESZySIseOCFEcaAB4jLvXImPSwMKLxCKwGAWgg40YjitNHT5dYrjjPy10FzNjYOn0EJrx7T16GRklkAi5hCKOXFAef2CFLLIIkCUyKWKojhG1BBs9IWhALuEpgtoC2t70paZLqoT6Wq0wAIwV1laexPAGksNVrx9MhLXQdX6n1RR0OH69D9Vi6VJSgL1YxbQQ187b9+Pv01FEHoub0fHsOdVFcHb+ZnTu2fOzS3OwnVy97S7V04sTBpuOf9jd8CnBP/6HlqwgMZnRqTKxoVV+Q9yqHuRfxGbYUdRXycKhXMhtbm3OmQ7Pd7dsbu7suf0bn+x1Xd6n9ulXGpXumhJnZzZ16gdSaRU71ByyaVf07QQjQk9hsvsgAIfzGrbXWiu2zcLs8rWvJpQKcApLZkmVeFW3c3wChF1tbijHSJVSjV1Xd01FVU6+x5HSCyCRfNxBLBoMehkDl7cRDAkg0MEIIxAXc2wCFeWhAEI2J0XaxD+WbzIyiLiTZkt2ADvQsAGRCYAiemg/QNK0u7vjmcHtjc+/oyt/+/X95xnPfU+ePriy58Nnpr6rt+uw/8iZjpeCXFD5bQPFRBqmbDvwEyLHVE88+fUFH8iHC2s31//IPP3QvEB9l+U/shx9+fOXajZOnzh0/dfyu96FBM8d1IsqIhVTIhJjQ+5CCdaMQxMuEvtOwMvCQMjTok9uFEwijg3fiUIaAPVgESDLVIOKqo7YXjwYMr+uToyLEYGSywGK8qkBNBU8OXr1QlqM+vBV8ZBIVGzBGUTRKkhAYTbXieLIMEAcKRtMlADCyXywwg8bkIkuJ4EPWs0IgZpI4SsUuKsCScoUGC3ZZMb7TKw6kbQJrTJRV/M1aArDEAQFHxxRBkIL0SgCjk/xmBWsQ1YLdVmRRTNcVETRWaLv5RKW6yC8CJK44qb3+KnVUoIG3+NSjFnxVq67a9Fm9Ns1RRy2n7HLs79YvaTj08qtf/sKTxHuXPj25eszCB35pYbHu+rt3zKfUD49TnzGmw/dlUYRWn/Url5rP6zhFSw0cX/BhxLqaNWB3fEozt9B7vDJ2aYG7lmFWM0DfiyGOlbZF1e2a0/zuQt3s796e/b251WNv/vxnH167oe5eeumls2dO14UN9TN+s75RWJhbUfEqk512CLre5kd8qzAK0StmiaZMP3e8EKPfBqm4hdiZ3mIPSrLtANWTRaOsATvqOUS1dQ+8/kDNSHV7B6CWjAUi0ZOBRgyGR1ZSxwEsKELwYAA7s3JSD+DqWm2oYqKItCRZ0qUBBGfa0FMUAnDwWaBIBtPjGBaaR4lTHJTsjJBwgWN5sjrcaTom9AoSoMeN0kuf5nJJ87R0pNwCAj/0+Os33vzok4+/9c1v+JkXDeb6tqNHVzygOwiBUeCj7EZoiCfOnfNZvpoBs9btJXJpp5G/c2J4xYUuLgutmXraN/ZeKRH7m1+/4eS3lwHPPfuCi+o+vvjJ/+t//B/rR8FVEH61yY5I6UlAtz7FG2J6VoCeBRjCE2Q9mfbrvF2+YgTuWZGmtExNtcZOcQA9pjcbYrBYh0AMSAwZPLHpE+EVw8gSR1GHk0U4AFIsxCrx3fHQUOEFhuxwbGAE2SkRgwV4cU8GZmQTXBGCXvAMzmK7t0eqn5CJwwio0NbmMOiVIkEy9WMdQrK2QBgCcoIxPvlzSV0Vhl4E9VlZCzBY5M4t14Erw7a4puqDuNml+hkZ8tFbv8ODUerI4+mShZVp67uMkrp9ZPWozyMXNzfXP75y6fVXXqnXj35Bfq9uWo/GryiuGmqBQYL6EUN2vExwIT+XBTnDVwWOlvEStmZnP8PJS8zNbezsvPXBB1UNU9MO83keatVVpqh2gVWxIffwxCQSg4zZMVhtJ2REa5r401AOS4ArW3zKDJ+tuUK24rc2rSaO6kiLkNiALFl4G9PIP6IZhmhEABjiwcni11iovAIMmYIiJ3eCRTITTASmpKHBFZbEsobJR4e7RizgKPpMdpSdZghHSM+qaq4R1E2VsOVtT3bK9/BrtzY++viil5fHjh21nPKFzpKrwaemvSHIp7928535uXL5sl8e9r632zZhM3WyDMZqIddBLi7tH93/q3/1r1wF+tbb73zw8UfGq10/Hxuawmu93Mhq/ZggmfYe2D0CJ8o2JOjWBBjGQ7IOUxFpsR5+xNIe+bsiyOBhAEMuLDFVDNZl02uRIe5dNqLEyHrHQh88YnhxljMdCYMmZKolSbGAXtBrwQgSB5jAFP84ENItGZIFOaYa/R3KhEITdrEls9wQwAuBZYVSzDz4sDgMHBi+9hPbjDgxe1VWK5dKAySGDD4VQWbR9H2e1nxGo10dL+K9XFK3ZYlvmuz77O6glOtHqyF5oWoaW3O+Vq9Qi3/inFOubuoenttOLJw4efrszY31tz/4YOMHe35idfbAzviOvhhLvqJYLbFQSGFT9hh8xwvacTf4otq9AyBrNA9oqapMfzwi2epxhu+N3719Z3beoT3HBJ0C8dG04avSSu+MBwcctWmgNiFGDdom99Ewb9UqS3FqGNQPAdXEbDGtrXvfSGFHc5L1YfsiwY5gaWm/Gavr1DzUpGH3N32JtYCo1l7w/HUIZAlaP8Q+F48ZTUZFcmESR0KywIJxJyY8A7bbH0ffhQBkVTx6YCmlGHvczRuyRLL40UNnxwLujN3+CfyQZiJrIhnK+o288ZoscxTvbw5wZZB2+uCTi4aPDfpTp87c2tj59T/94vVvfE2X4O7Vj8cFS3jPYn4d3mI/tlWbNjNbK1pD1HPb6PicmWX6CA+w7Dvz9c0XXnhhaeXoP/zjj70t9iDl5NnWji/tx12KOLB67HUaBRPFGFZEJ+g0CtkFTlTNkHhIP6qXcXOmGJ2YtAhM3w2MRQgcg9M5hngLWEiBKHHosaSfQYY9iuSmN3eyjo+EJIfxUNcQP6SnIv0SQXxu5A/pA8MDeu7QNvAw2Udd6MMYgmEMH0sWZ+oYX2DIhq+BrX7YpqPEQgSQZLqlBEBLjczWs/o7AFVns58Wg7/Pf2GETChN7UHNK62aAOaqm+aoHx/hzYIrDdpbHl3TAwADbF1poLo7yJG1Nz945+L1KxevXH7t3JM28rgc/eHuKCTryw4Ky3JSAzBShfixTAGyZ43ggUf4YoaoJl/P7fsEzBGg3/zuzUvbm/NLK8+++JK1nsuf7f8cccfPOLCNh5zQCNlCoVP5/sIETl5vHclqmiNZQVdmuCoePZy0eaW5VzVQtONFVXgli03faE+E3V8HLxaiLmSRELw4NRmAfDTJ6h8eEhjLw9jZIy3ETUghBsmaPJI8HA95D+d+JqbbPKTs2iHBQ5qJrPtyNZo2r7fnACVp/5wCraWAWeDd9z/c3tq1bWvlfvXGzR/96Cff+8631YYBq08CfCBi359eopq0MqPrghcIRSlYRJjfjTNXin7wwQd+Heq1V1668OwLf/+f//PVq9dvrt2sXfKQEpGqJI4mI6ELfRSgbGl2lNbxYgGmrLlfQBb6ZHayDLxkBZkYnliwrASwEMcaOARKJERsKOmSDA05AcSQCFJ8sys4ZENF/GBoQtzlBOjIIQAWIn8IRL5YkCuWS1eAw3EkiEMDEA52R0/KpaOF4MU9CSAtArkyBaz/tUuzqt7hHakVXDF67VE7CQ6X1g9EoNmd0QlrzSjTwwbVkdY+6/XRVm3pqBM0snSSvB7wrknFWqPaAsoP4KX/RI5XC4T0812xM2dMWKIjUIz+woULsz+f97Lqnffff+380+x3S0FWSWH5KmJaehkVWc+RVBYhFUhpALlVc18oKI1mGjks7nhmfsFN7r96401SwS+8/BKgLoDztOZoUHvXmzVyN6YI2pSpE2lY/UxW2VZ23vWG7Ff5kK10o/WN5TN8tv5l4RLMNaFsZa79wITUAOEJTf4I9CcLrMxQTRUZJdwPj4WSZGTgBLldDozc4PUfQvRGxYTUDQQLB69hRpzjPwpSetumeSlrAhMjYbN4qJE0Ycw9+XdIOcxLZwgmNF3IkGUIIx4mH8KF0kcyEd7+pCfUU5cNmb091wr5FGX24tUr6//5h6+97DLAV99+49c/+ulPfvCDH3h74B2V7SHen7PyZEeOFdpQdWHqh+zaBkB1j7sLX4zPPv/clWtrP/rJj1euX3dVnN7he7HR9iLSVl0V9YaPoSX0wfXYaYYAm7CIhSF+CE9k9eRQV2CxMCSQJKpjIjY0CiIJrt7cxjA4XSd4XEIkJI4oyMjpSRjSdMeOT1aSQwklsQVZnb5jYtJQSJeDJraFuLMMiSElqZsIoYHsuYe5YDKQhkJYWFztLBDtMUDM4xh4Oa2ExogSwdcWTVsQNAPKoWSwiXXE+uSk/Gajn6rPjwnBrtRVHId8Sg6m7DHuE2m6qUdT78OdYvQ7eqYCxLdvP/Hk+TNnn/j4ow/e/fCDjW99Z/GOPu9DodGAGZbuy4VTh+ktLGdqGT5+AtALUvviL1FvrXdn57f9euyHH3xy7Yodm5Nnz509/2T99kvzg3QxRsw5MinPQQxrFTsaXCyvV31SzbL8ac0x4yYZgFA5vQu1plTthCRXbAJI+zbCarTeY8MO08RXNQD8D/BeB4xRgGAqMvjsJIWyCyyhLQQjFobSdJIkUSlvCBLDQw7jLgpB1UwL3WYpxELwiAN8jrgLwTuU8yB4gmwiiYv3H5nFcv65bGoLrKkj3vfWy5UqqMfkeS/NPvz0ohMcz1y4cPPGNVtAfhnUCPX9MDkq32kfzF1aSRLaMQODzsSgZto7tqoK4fxzT3rf7gqKH3zv+34m9mf/9E8rR4+9/vrrNVAxZkgTLSQJwFZCBwEmBAPcXTD04g7czTsE9ZZLDrGxxKG3julyAqARMIYXvc7H3YQRsvXG0VsvLPDiFE1WeIPv5khilBUhAJjkYoHk0SThxT3rMH3PAkwQd11dTrRECC0hCFeKFiGJQ4ZGlgApdJZwwcgKnKxGVdHefnMfDcslI1MhKm20b9joUlHlxR1Ob6KiCFPlt25m3VGr/vEvATS+evxiP2kLC3VPhg4qZEHn41XsbYHCrrsehIOzQLFzDUUvi9z6QLUnCLsfF5579qNPP7hy/ZpfVT2zcnay/6VsX2qcghCZDqAUAoObba0zHFpkPZb+UckbjzIrUX0oXddtVte6euPWb37zG2s5F4u/9Oory35H8/oNZzPMzlbEHqccwXJPKkp2Vj2OQolrlucUWU7zyOv4Uc2Fq5fFT7NpHchmTonAEZEeC3gen4pIcsHielFYV3HUIEIf6aW0dUULi1QUvEdFQQ7MXl1IWUBYorpoBkKSFWSeb9BnttOdaGekJ4yuFGUPfuIEPiGK8AIiJ3jEY5LH/tsV4QTH7KGUhwgfZg3hiIoQ5+gAOkC1X3WH9m/qiFtFDSIl9zGYp20/6muH5sP339/95mtnT5748MMPneD0dYj1mS0gsYqq4rdeEMmOd5ePa4EStWI8S+nNXjW98+7vPF44YHr27Fm9yzk/94787d/+bU0AalAAEFoM4ySY6FTB4YqI1h53AkACgT33MBC/HHzvJTS6+nRITJRk4piHJklcOorcbjPDo5rwaJcMsqtADyYKkKxIwJLySgpooiWDIcjQIxOSOxHDGxgdCQiMHa/cyBGXiJZMEWA6McohPUuEziIvjDA9Czysz4jqccxGXF6tiZJloQ5WD4Iyivlx7sapDNIk5Vqil+T2g468c80Bu3X9SPyRLEGS/EjgLJjhxS68CQC+3h9w8PXiurl5B3ucbKvDP3ESlkGWu9NI/YidXyx68uyZWbeJ7u1cv7G2d+LJ5q1q1VQPyfeGu0spdSvXqy+oNrruJfyMVJOTSrV8ciG/lq0FFPdn89T/ZCuBKqlh64HlkCWfoUB2fXnRZlE1QTyDj0xv+cHuudkrWxtvfPyhoaqWX37mucUjM7v1NfWcA8uqlCNQh2kLD0Np9+o3o516T3K1/KehUBUKVrW5Yxygi9VR3DaueVgeQXnrtUP628hN17Oa/4tgumYIzlRs407jupkywrGMQ7HLIp9KlOKoYLMs+ASMPRAeuKwcDwQAPF6M8Lj0H72L9++MIRaH0eZ4h2EEXFEa80IP7kDwjxgTGN6wiyfkD+X03CHyMNwtIbq5/kEvGvUoZ3XqnSXe+cWa+W7cvOXE3emzZ3/xT796/bVXHQ5+63fvPHn+PPd96eo1g9Sxu3qItq/aij9SUT+nWt20vs4c/7RA+o8tIAXxqnl7c92du+fPnT5+9KihWg+8VYtNNxgRWZJxiIFTpFQEDABliJMVZIgjqtPYXR6yRwhM/c5ZC+DIam5itHyGJK3HsUdf6ezRqBcCYomOGGT145naL4MnIZ1ypKV5YQQYYQSShS42SXIEuSQAIr+Rl1UJqZ9ISJaYHPgkI7NLxgXuyRCL4TucpIIEiKLksiHBBvGQpauTizLEUTSOkbgQbnrfd7d+UsTtAgdHtjZ3Dmrqr6GIbN6V8eWuFbZeVhuBXIDcY8dX5WpBS1FHjxE4sA8vF55cmKp2nxq0prEQhGl+xqgu8eWX9/VHq07VqLOV42CIDagZl31aYM4cuPaZ2StHF65fufTNZ55/+5kX3v3dOz/6xT+99srX56cXZ/a2Z+8ceCLGvDS/RKhjEuXgGKb2yMdco4pnq32S8tqFGgWIQAwe44Z/awB5gbFyZGF5fnarTk/vuIDXOkT/mTnrvn4fJHs62fMpg1+GUBLlnhA0bI5DuhzsNBb1MG/b5+o5f++2up5dWNydn14/MvPTD995f3vbgu+11145v7By5OrN1aWVnV3eUEUtrPllmtYcWsQwVpnt2d7odkek9rROry8TKysrgPrWoiYBwxijF+61plfFPCzNWGw1tB9tt1egrcuoFsh1IlxBOHMw1fqM5EH90DkpVWICDSXIur1vdtZCJwXXDfDUm4U2UjzKZP4gOFwxD3uagIUwIUYDyHgEwAvYg0RJAi4EMCQIgB6SS0gkdzxAVsKw3YdwaIaUgUMjDjAWU2Z0eAgMOxuinjWU3PFqqE2+7eyb7lqOWuV551/DCbPvv/h9j9V+V0Mz+nWXk2fP//SXb6xt7X/ve9/75Mr19z+5dOHpJ4/Ozd/eNa74/5rg6bJW2HYpkIKrxTabqrQ4h6qL5uSRVW/03YlH9SMHx1YW/upP/6T2W5TtHnNbIWASUnJxAiQg5QxBYPEwC40kZPoBoHOFPi44NIflhEYcAkDk9GRniVVdeJLolT9IlHpS70zpLj2r5+p5XSb2LhAsyJrABD8RI/tMzARBt6TjO6ZXXbJSCtUqGRpxD+zvEoYEfhS0yuir2vEKq9eAKgplrc/HVW3/Hj0agUwxFQBzAMADbA9GozFe/cxPIbVpr18ygYZjhcwJovYqoW0TNGch16KYNJ5739/2bcH+1p4vVrwdePHCs5++97FFyjufXnrlwtO39zbtLnErXojmdgT+Z/tgz/Nsxp7qsPhvfr78hZ7S4keKwjAmrYeB9gQwqo1K16aqrdsuU2o0wY+5PuOvJXL9SqBq9KteM37JpWZh7z7ceHrp5o3ffvi+F74uf3HU78jO3vHFpU2v01uFqFhjpPm8u71XpWkRKgGtIUart6pwmLYkHxnkh7/N4gftu8W5uluYKB6cZ09HChlYa4gRw5hJW7vUcAvQn2ir1bJgGn8UFoLgI01HoyJuGoYQfSCi+joMF0wMBrfJo7oujBAuMSFyi6BNGM3OkQFykwUQwkhm4IYbRciGyS8Ox8LIGcKHJXd7Yl5iZNZH4ipJrVbqj6Bv1MPloWAUuTTi/DMXPvzkk42///s//8EPbq1v/ujHP/2rv/qrlfZB5fbWBpfuxfilS5fOnDqlkm/duKnnGA++5tSDDFuW9BapCqlf5VCB9Neo6T272TGorxQvFS0mRQCQHgBBWkUcIPaHJTCaLqFjUhfBRxS458LoNAlDGEE00sUficMCFpQwQODe28KFscvvZIAuCkEkxLYQh7fHHQkYGjxBMCxvpD08HopCGS1dSGpADM9aRqqZJBH3whq9kAnhjRw0Fo9YokUyQtIh0HMxGjTCZQmQctHjIhYs10snvAIYQVoHb9hjEnxXHWLSwpI4NrC+FWB0VLkTUJQ5xmllx+H9MMAbb75Z3zA7Lsl/2iRp2+Loqwe2l8gZR63rqJ97enKK/1gxybE/dkoG81hC7kfMMDaWeSXfI5TO5ofS5mZdzvXJJ584WPXUE+f9U4GKFu296tJ2GlqXFtJ7Y1sEDjUGL4ZUmcJE62Pv47eMabNIdEUyOMmI7QRBNo7yyCwBd5oA0cvgqIAsWYMQAoxKmgBOfteOS1ZKLU5IueAVB71kFwKQjJCQibthcgMn7llD5CPCEd6JH0XUkIYlCd2SLjD4JA/H6D18GxG3Ntb/v//+f3aTxCuvvPKTn/wE4DZpG7NTs3Mbm5vHT5y4dOWKB2VzqVFtF013I00FplOBo3rCjBr8PaMDqNGNc0Z/J5CSgrxQDuEwBNOnuVFybIfm7PKHNsGHMpIPwzBCNy/JLgqgNyRG07UAokXflRsJ4RV3ekAk96wuIWRDArAQvLibNMR3gonc0Dwkjl5cQ70dGbFyE4ZyusFB+sHfIm6XBhMlV8AFvhvanAqf8cbvx7Nv79QJH3AfdV1REyNS3VV7RIlTxUnGMPjibW8fDPKoKEqo2p4YNRAyWdVTZ6bdlnX+/Pl/+tUv33vvPb38qC2OzY09y+a2Tqp3krP12MENHOqhBH+ewNS+FmNGq5zqRSlU5Y4L+DmkE2ie9YOcHvjVgPnMr9zUZRCzc7958w1PPJ48v/n661zb4tSi+dacB6kJhKir5/xxr9Y7g4xVidPhqdEG3Wb9vM3PMwDHP6hGDBOWXpDQ4w3G9jFMkMGU2NaIkmDsdW/cePk1ISc0elFYOuNd3mZ/yWghcgKjKeGNAJ6QwHJjXjcSJaR4CEzALfMuQUSFpsOdZgh0yUMkeMj1IJohS1ZO4RJ3oPN2ILk9ORQC9oMvuz7i2tw0neuUb/zuLR3jyfPn3CH6rde//umlK6dPndjzc0I7OydOnrz06af2+o0O0rQ1dmak1UZNNrYEQUKtOECxD0NPdkwMQgPoDZ9kaMRCelgXFYKKJ+eRyHtgnIobKg2sVJ2HusAAHaXDAJio1u/TY4bE4J4MWU924cErKUCIEECE9xgQ5JCxS+tZHehZnf7hAHq8MQOlZBqyPhFqQcFhVEsA58PQdDJAl0+IRMjEYXFLOPkjFW13CD5ZYv5I7FiBbpTzGPEdttrDkp7ARvcWqKqmmZLRX3+iLqcUZDRVVZxsE9X2JaQ/xVGWotf0xTU7+/Irr7gZ/9ra9bfeefvPX35lf8c+1oFXkjPzbUNg17PtTL3SsHfReFPS2nUauYVe9McAWKivqlIBW6/5kfBWABr6VPGIovHxmrbCDBCzHi/qkI8XnZ/cuPbBRx/y2SdWV9rtb+Y3n8W6/K0qUeXrwCqkqqfNy+QAh+WTZIORf9fCQZ+0POQy8lI3Y1PdoiRH0WCShCkNrciyUjpAglxZaWuYUCIH93EKjpAIt2UUIHgFIQFjn8/khiA1rEoFmMS42CZgpGJEUyTlYeR2U2NVy6lIVg9dWmlqQZa/yMSBg3/ceMg7gtN9H0cQxgRMMekh3Nb0J06dWV+74aWUS3MvX77k8P701LccCvr7H/6Xv/qLf/X2O++88Pzzqn17b9/JTj8Zr6pVjoFOrF8M1VyGc9v3udcZt5do1de7ER2YMCjmEtoDTBix9BCuXrYJAi03DEMuLJGsjeG79iEcjZHZCaKrs8MHHrmS1vM6srrVvRvlkdMtibrI7CqGgKzOEiCYjg/vMNnZh1qGcCd4OIAltVcuspWLFpWmpAJnAS9w04L27kESHkvLr1VVjJQMLA6jISdkoJKsrnCxinxA0zMakDEVUhgWuRsJCH2r8vY6uFUdf1eL/vTDxllfoI2370p1s9P3UE8++aTPA/7pl782ABwKYRhyq2S8fiClnEbNHnX+x7/uF/XyvBh4eGVO5BIGQ75YiUp22xaXBAsT9I+VVAPmbBLrkJLdL/Olcy/TM7/87W9vbful3ztfe+XVxdn5pfkFjWgjeGfHtwH19UlaMM0XS6I3FZ4GUnWA+4ZaMOZ3ntu0KqkgvAR2JmFJeSNNVsdESxW7hZBBDhkn2n3IApbbe1fk976U5FBmKjwSxpXfFgpNe5fWs6Ahu5yICjJxRHWCJDtymHwsOAI7S/T25GFAC6qEbrbqVQlpr25zN7hbexjAaC537Ieojz/++PjxE08//fQ//ugnb7zxhu/V/6d/9+9feukVR4a8L3Kyo9Ya7UdYDSXC2YBL0IskBXZGBSCY+yyrUxjmhmJYtogIc48jUVa3Pllhh4yE8HYJwQ/jzhX6iVhF3BfTO243AEYwfiJwwqouJKq7VUnK7fhu6hAZmbKoiKjQi0Pf5SS3C5nAJ3cYd0rITgwZfGJ4fUpMuzhAI6k7PtPYGXuRjCD14KBOcjFqWfiRF279oPpp8/WybDZjQSZYc4t1JhgxGvsXjbZHbQuovdFlRhFUqL6lrxfUNvw55YJLFwn5bZPxdSXNUPbEYE5Qr7Xj6avFi59e1uPf/fDDV59+2rJ5e2N9ydRmaeyKCLXN9de9KmmFmqg+X+iqA6QIRCl4z5Icwo+lSD3jVRveJzviaPfKS971rc3fvvM7NbI0P2cCmFdLetSROiGSiqrab49l7DERpsno5blJkyVOCP1hkzy3yXLoqHxBa1xc5KQsXUIBmqLpJTByMIITw6ROUCoFCRo1QnoM6GboAloQBn3i6CKEzBiAOPSJ4UPcDYhkLAK4JwFmvIa4qxGXQFSPAaHpQBRFTodD8zniLvbhvDEpNFjCJYYX4BM/XAjfbSP0yvb26uqqLyU9B2xe2zh+6qSfz/uHf/iH73//+//hf/mPf/EXf+Fs6PLCsvv9l7i9OunnlNDB4mzd0Wuk1AfjToWqlXrpXmNnZIAv+A6rl4dIkwCEtAGgUzb0KIkyYdhUw7KlaTumyzHUuxy8wYtrHTQOJI/BscWNB1JWOhZ/FxWRJg6XOPBQSBh7HOFDlmDEXVq3v2c9HOjqSBhSdvwQ2eEhcSi7AcmCTHmVL1wKbqTpHwJYLwlLctEnGHKCSlHJ6CERgK2jwVj6hIEMhiyrxSxV+P1i9pskbUgXcduzQRZjeI+FufrhFyHaxRonKoJpmRXh6i+EghyxNNdABas2bm2Q7FIUX7v4dYvrly+++/4Hzz1xfmF6xonMo4v7zicW11joSBl30489j7M+99+B+M8t4y6j1lGicrx8mZE5PbOxvXNl49aVGzen5uZPupT91OnVpWXN4ZryvYPdxeV21HXHHTm1iCt281zbEqn6G+y1Vn22Zo3Bak+9w9ANc2t93dFAHcSAIooEyDwHdOOagLygqZf/8HV8fDz5JRc+gQQFSSjKpqiomzoxDBWeYABYgk/vwtXZ4SHFaOAByQWEkRBZbEYWykw8CGQhFieEBZeQLgqATAAjezg8pr37dyjhLnZcxiHm4XCKFpqhteoBsmPAD9IYXs1n+Y9GJdy6le2+2g3b2d85febcz3/xyxPHVze3t/78z//c75aoTcfnECMwVZCwtFRfVICHn1Zkoy82jL4EZm7sSJWJ9bxgSNEeMJICWNztDhyukAUmMMEecYg7VwBNi1JAlkoJJk4KEleaf4I9WYRETuhJiBwCcTFefYUAuwAfYIiEKSmtODG+YyDLuBYCJ2tobXE23pANayl4LCMRrU/jbRxVe4gThhNeJ0YghDjllZX6qVHexEpqVMU3VDwkApQ6tYGAcOzVUXZ8YbjgMDuYLnKCb4e5q/Vhsl2gxnCtLNUeImLyJfHa9peFDLsVt1mBFoyNt2YCv1xCC+KoWF6qT1pMDFh8f4C4/X5t6bX+KDtrOsnvgbQfNqgCVZBlZ5Mor7z8PMBvf/PmzctX3ZPzJ9/41tkTx+cWlxxS9JpUMRG3txG1Fr37GiC7P+MJsol8pIjeepQw8fgEwOvpOgo1qsBS1BL0sL++amsuEl7phtIfkKyxWr3RzwlMzziJv7W/d/KpJ//63/3Xq1sbdnlefvGlJ06fXb+5ht1Fr36hmRZimVSYFnz0oM6Dr02E1kwwMrVU9IaSa6EuGAQoPT0Q5cQRgkqa49u7MT5F+9oRUjobNlpWoLe+/W0bOGAskRbeqCA8u/bpHiHzsgIlWCZ1KFnbJJeLj16VACOWFVEpUadMkpAYIEkm3uAhZYHpFQvRUva0gBKBkGRgMcrAjWkEh6zTPATo7MR2siGsqB0/BDrjEAnuBZkgCH6CWNKujm5T+NJv4rSEaF28vp3cc8zTJ5M2+ufmf/aNr3/9/Plz2+sbdZWhoeYswfY2V2i45v6+CKEoQySlGH0sADs0SF4wkOCE4m/dIkBiWT0ZCT0OoJ0QBJ4AwhvhCHpI0yIGhEZWKggQIR1IF5GMIvQdRvnoIQLRAwIHiNguJ9ZK9voJ8ZARHLM7V2hShGQdJoDposIYAxLLTW2YAIwBScODr0y/N+oIn5ApCenK5QptKyZkhOO1+Z4iIAslRZHMd2SgFlldIVcEKZS9nNiGlzSG2OCOhUVZCkfeynNDE1u6aueoBTbyWV5Z6J1VnHZ3hKYrmuZ3uHh4BpiT3A334dvv3trc+M3bb5/+0z/128F1HuaOy+q26/Ome0O5hy8WUsaU5YtJuoebQGn16Z6kHc/hs3MfXb703sWLqm9x+ajXv7tb27aA0MQday8sqS5IQBwMQHNztfG8/HVV+Pg7YZTgTonGBhkCz/7q1tvnhEhGLAmuHLrGPrckaJKWGwLwaGJA1wJMtw1CcgJfQsb4nhuaThkhks2qkZAge9yFBIAXCh44nCD/OOJhMR9aoro8V283+iz89avl1VVO4M23f9fqZursiVM3rl33A6tGkAskNPGFp54y6MjXcKM6bB0lGmu6HuoLFjIN2c0C9IA+snpXgIkcNJHWgQn5w9xOE2kRMtQyJA6MEkGnhwwsDhAycRfeMQ8H2DkU0s3ocnruhKLoCtkETSiT5SksuZ09KjRhDOuKAENGuT0pq66NbRMAg3kEMAliSQFx4tCg39rc1JR8AyH+wqPRLY4dXe1NnEnUUC8uWwKtEYvYh4k6jY2bO3f0J5Lz0ZakQA56bmvhSC3r9Mg8Z5BGlCc/vI1w5GiauiPe6JJjgWL6qB/Etcvkk1bPFu0BxQQAWFioL32ffeaZX504fnHz1i/feuM73/2Wn4vxG+dEcmexyoV2Fkhf3PW3sowmtrKt1T9rY7/qV9IvEqpyXO5fTVO3bb/7219/cPmSKx+ePn36uWeec8bJb2Sapg821yzV/RysxsISS1pcrjxPaUzyTCbOAz7Y0xLbYBjsDxivoGnEZgDNocZif2uClj1eX8Mop9wC6lln1JFoJDNCMIQdJoA4cFMx6jDgmNEtRxZe+CElRZ19YbH2KDpLYIxowps4EsBjW8qQLiRAob6ycI/ioZa7VTLEPjb8IPmjqo+8kS6fkpjf/aC3Gr+9tDhrNbd268bv3nlPpb3+ta+dPHUGue8G3BsBuHnrlitXD3zlbrTU4Tth1B8orQlA9Q1rEFaAFwDIk9vQtRKfIG4SiybEie9ytXPiQ5ZkEd5puvyIEhMywRL6ZIVsqA5x6CF76NIeC4icCZYuHEC+3F45SYY+cIiHcuBrDTgeP10IrsAdM5QWehWOrOMtysPVY4DAb6JnFUASfRj55eJt9Wk8d2mxH7FgfY6Gp4Dk8+OOueal5UUsXIgVBDnka/uoEBPFjSDjyrt5gAT0zKhvzsd1Ba+rucgBr/ea5bG8GTW/eIho152La4Xv3cbUtHnl3Okzfh7r8qeXPr15452PPv7WSy+u31r3RNNq8p5xQcUXD6ltNrCTNNYFI6kM4CQfV5EnpXZg1dtL93MeWZie+ujTi+sO6k1PP33hArfu+uu6Q2m+nhIyt0VdV6RSqK7KiZcfNC7b0qCIYx6yBLe8BCj7xwGZNoaZCChlQeo9YjKFqNMccnUSsawiqyarZuryJQVZjaa6a4hjUkRBCshiC3hsVPUQNFhC32PI0BfnuIDURBeyALI60Ah/r9GDVD8I/6UYpwm0iKFHi0dkVXH02AlfF/7mjbcc7/7LP/szo8+hoBPnT1pW+SFJb4PUsWahHXGe42NhbQEVauybYHuYsDV4rRJ8kmCAOM0Mjqge61Sh7yqSTJxW71nYJ1odmdyua8gbLm4rNEmiTOfrdg5ZQjmBSRK7EK6ok5TV5UBKdksa+T0EkUN7ADGaTh9HHNsgwx6CxEMucNTJipwARdPay1+GabuYpxLQpzJjQGBIC2d9xeZ76LsuS0gYjDDJYqHgxABPJMDLFex+k6YbQfpJr2iMauXzLaKjBV5CoPEZEQmWG/W40D49qwsQFLbsrlAa61qKuvzM1rZ5wKsAQujSm5tJU4seifz28tb2iWMn3YHluOTmrVu/eOPX33j1lfYue2p2YZ4zjUCxLZK7Cjr2cYBe1Rq4SjF2tayaEDMsy0TWQ5Ilv5w4nzp9c+3Wh5cu+cTr+PFjz7/04s7Wlq91d9bdtLrr5xRubW8eW1rts6aGw2sfnyV5glSBHvvKjNa1TJPgGMwAcE+qd5g0Vq8fudWgg5AykqD+qZMLoxHFkJLxMpIJWOsCgSaZNEiwuBS3UJ/rNdVREgOKa1CrnUuuIoQycqIlBOR09i6z+5PQd3wX8ojA52Z8RPkPInuQ3l7SCUb11jFV7xXaFHtQPxEjV3/QXosLS2bpjbWbjodqkq9//esnT564fuPG3v6Ot306Dy/fVFSTjTdyS97oWEg3CxA4MzyKNEmAZIETkhzG8Gm8TjBMjtjan+AnBA4JJuAHyUEma5gbeIiZEPWg5H0Zg2QnQCyEXXIYusxO0IFkjQZzW0nB4NUeCV1g8IlDnyyiokuyD85gSMhAzUTeJYQRjTFMVLaHyUEcad4KCKEnkxyweHNzw3qBB8e1tb0p9svsDuTYakDmNTOaGN+k7Re+XSSHZaE+Civ5OqVpoxRkddHK25Kj1QZtkm0f4sArYpKxeM6Yd0Z02l3223nsePLJp+p3Itdvvf3+B59eu3J80SGgaW7JP+xlfPf+5eTaGgcw2jZPHTxqrFCaNvanKsTK0rz3Pb36USUO6Koipmed83//ow8+ufSpMe2c6+mzZ3Y3do8uH7097RK62/MrC/O3azxmic6S9IF689EsqaYft2BaAU1CkhkJ4CTFnvnxctkltgVAek6sCwzJQvlDpKRnQUKYIcgaiW1zQygjLXj0kqPRGLkt7pTIOlyUrVdkgpEUIgEgK30STEaPw554iA/BMPdLh2PVfcRW4/wzBMXXKFrNuDPGXRCtehdXjh5sbvrlL6Pytddee/6ZZwDXb107ffr06spS1ZIXwFWlI4MJaR2uNfxECXtrhRZpgAkyyGSxBjDkCuXwcWPIi7K3N7jLD1LcMeEaSRubMSpB24bucACMQ0UTuQ9KYhHCG3hICdOFD/GBkxuuLkEWjKQAtnyW1K1DDBO8knY4QOOomozATj/K9adJVuFDmhBHZiMp7SFFltM4oYHUbxxoEULDBoH/zWyRYR9ivEU3M2Ndz/jxAQToaj6hvwMoVHuk8EmiM6nudmYMBxSTRsbYgsiL5RlLj7o3Gr72qNvgR0mCcjkTadbZqWsyl197/esfXvx4c3v7179546+++2116SdovPRIGb/0OKVmScJQPsww+YiwEnnO8QRWL8KPTL3zzjs31zcWV5de+dprUHVGri3ldm7XJpvfA9hb37PCVrHqQdzsqWrhKGk0Tqz7ZGkpWTqVVhsaBkYsTpUSUEJaPY+zRstqeCFILAT2JEW9HsZyRr0UfeOrJEAujKfCJAszfuEvC1KIKFl6EUWAFC2qMy6CRFwS7mVMMkISYxQQiztxafrnCF+WAQ+RYw8wC7i2xBkXctpv77SfezQW6hzXvjFeO7Z+OmJ6WjczBp0RVNVXLl/Stfxqd3WM9jDYPvyoTwLIGi391HsE95odtsRYZ/0NZSeDCawDUZBipGHAgg4Z9iTFSTIVkGQjw1TNKUQ1oFCtpcHh6nHwXULwQ7LI7/QdGNJ0JGBYLjSdrAPNlpELAIdeLriox2br0B0T+WGsRfG4rgChB6DvZCEIPTwVCYiTFUoxjAoHZFABtDTG3gRd/u5WOQhr82A4d8SE20XRLcJlF18uWMznkmxBgasu8/RTLY52b29noeHwZdi5IYAeefLkMV+Z2QLS4fbaCRa/ZSp4AiAhq9e4MZ8UAzxMsIGiuqmsrPKhbL0fpaKePOaXqMPnShN3YJlxvv7a1/7ub/7WO+Jfv/u7H3z/O/NHpnw+6weH/fL8TLtc16qGTa2TtT78OMt/XHgyEowiv3fTzsneNjGW7TKn4Fw7Cqi5b/r2eCS2wn9mpLs41bN7sLvtg+ep/fWZ6Q+vXNYATxw/+dKzL97Z211aWtm6eWt+YXbLz0isewEyPV+/uqlKRj3N4C+v2UaWKtIP1Lza4/f1DY2iKTVcWeLFeatoeC7ZixX4VuXtjWETUq6E02g9Vm71LudE28te1S6jlgotlzwchOsA1BVhC8XSTm1JFdh2abDhSqAirSGrh1DKQBNG2smX1G1ghLBTN5LTNEaC3C6q0f4LiBj8WFY+hP6+fU4tYTGUBAN5pRb4U3qR60TU9tLRVT8c/+//1//1wjNPP/nE+avXr7liyyCvg9lVsTUV5GuAmgDSPEMLwISKExCkVRQJnJaDAaSQyOIRAMH0XC09kjLIkpvDrdVTdS9rJAfWWvB7IrYHIqcbFmNxdeH6ywgeHNIYoVqGvhmCidiwiBxxD2jAYho7fTDsD1nwnWXCQcOn75IgsF9SHaqiKmBb9XQ5AEgxmepNE/b1F2QTUGM7lUCOAGaJsLxQn/jDEB6xkACKOAVIS0UwgcSiPHr8mDHGd8jCxTWLK9ke+UNjzEUpY7yHdB/Z/raXtFNO5RPlKTLqwLktmZGWiwSuzM8TBb2yuEJXM/jA6TQEdh45zdayZZtveOuMkO1s+5V+CevqVff7WLOYPM6cOm3R76MlBbl16ybexeWFja21xaXZ7a1bS1PTf/a9P/nf/u5/f+vSJ/69fO7Jo0urO1s78/WC+Y59cw1mWePOUL8kU6EeOhrwSNFt068jSNPzC25gWPerCXZZdveXvFVbWdraXl+e515ll290FZEvKeohusnvLXhYjyII8Db9D3xwp3svze8vLv/m7Xfeu3qdE371xa8dm3ND853p/dt+A3ZzZ+f2zFSdcZpxuHt3cd4aYmbPe46pmqqJMlhMBHpVwT7s8m1Bc/1s0L3qsg6PUfsjhz49U2s9je5MUX5dJJ1hd7/OAtbx3fl6P296n1swfmsXfstPDDooUsHPBtx9LGAAdek2ekjTMzpTRFRsg7TFLKYU5Va/w64NQBhkVLKnfmCorVrsGc7Nj57h3IJBMmmC0nUtGIMUQ/ZKZmLqVpxAr9x0fkAIsMsFd17JLuQhQG/cEU17eHoI/SNmKUUoY+1hrk4wkXWv0XfrAb2tQd8EFL2fEPCJDoRxt7Liajg+fWFpRdu9/cFHmzv7zz3/zD/86Kfzc7Omg+eeueAbnf3dvTYFHFRXEHrtAGJKj7tlgFIwXrHiUr+QCWocBlziWohMsTDEj/Pv8zdkETjMjpAhptM8qEKHxEP4vqKGBBNwytWRXa+yQ8bgyEyMnknwkuJeRemRWOC7NIBGQhau5MaDh0YWaREFFoy0KApxZ0SW8YkmKmD4aPKNgawiscQelA5fIpMV+WK5Yr8+6ishrSzr+vXrxTtTPxMGEEwAaGBoiai99jK5JroWZNVHBxzBxiZ6Lk6YdQNOu1QOfO3aNXMbXfWFSp1tv+1pgw86vloqiJWVIhj4Rp8fgbGE4UUsvn/+xhsvPPmUPlcinYa6w/iit8NSf1vsV8lhHjHUop6TbitnM57jUD6dUi742foRAN7A2r+eZShrG+o1pUV4KvkzFZlTHf/ZvH1nY3/vrY8+dP7nzOlzLz37/ObauouNymoi7MfNzS/zx7PT2+sZ5OZXvai6EO/PpKMry1n1R6O6khTSHzS0wNzqA74n9jZlcUFta1KUCalbE7x1IyFJyjKXo1QcEvz6Sx5IC982hUx7KBkAE5YmtpZKQuTosdqXBMFTQ8hkSaLB217vV7vISi58ANWMQEiyG5YeCA8jdF2MDIbwABPJ4HturB1SBu7qDmf9S8XU5W62WA0ho8HDqm3W237S59qtm0fed6j66SufXjK6DcALTzx56uTJhblZv685WubjVGWpNVWTMKwIGLni3vzg3iooAwPgIy1A6CM5AoMPHErxkAucEJqJJuxZgM4YykeJD0sL19DCoZzQD3UFRjPBEjxkZ4HpSHhhgkuusYqex5SlDtFICun6CHolw4CzqdLlRGZPdiEAQuRiAeS73/IObQlmVlhZWpYrlLI2eZAvl0a53JasjfVbkrx/jClR7ZhmuCThEQxDLEHAKRDSftiIo77jMcI2Ecm2gGIbLj4ApaTip3T6gWQEAgRZ586d83sp775vY/Od69/+zvHFE7f3dtpWw+gzYP39HmcQzkeLGSDQqDnVg0IplUcTeuGHMmo6GqeHWUN4nH/3rxLW2mxu1hL47bffNu/6de9nn32WU6xnidKrVmkeCVdvfviGPc2A+kZXo6RpAKzjGYu69RZkgZGBTU7NmDI+jpKLrqK1vgrZaGpdHIy4hLdWIEHSM0sKLk5t2AlLQ4sr35TbFsWeGPAKNOpnJAsk40cpwLOBHLCsaCehEVavDjAzW1+MC5JyAVQgBg9DCCpuWMSRIBVGXHIlxQGGcGgSdxbA7z90GyZUd5sn8J9JP1E09UEUZGuaqg2rq4tbFy99+slLz/utjResZz766KPNjY1nLzy9emy1JoConLCg47tBwZAbIDGuVP0QiUUyArWTJFiA7CFtLDkhP7wh64x4Iyf0ESXuvI8OhKvr7cDjSlPqodK7HbqNnGHp0qEzwGgZKqJdrgAQCBQbReJO1vFyIbvkrhGBIEssNyNfM0XOXJ2cKWQIcEVylmwpAgMiFpmNeHOSHeGwIANw3xw3+TaWsSdIkubIZ7GP2wIyPst5ZAZ40pfrkYAQompKaJaIU1h6SSuv542WUrQyxqqmxaS4b0vke9/9rl+13jvY/u2bb7z8g//L7sa2L2ub19e77nahMH6OWEGy167e2O9HCGIYk0hjibjMA5SJdzUk6256Aroz7bsHv4DpMO6n773niWphev75559XLbN36hIl856NES2nBxhXasxa2m9PsicVRamgDjPuAEJ8J9VJIpCr1eoxRWhv3YhqNlevgKv2LUnWD7VVGKQYmXpPc1Cq1+BCDINL7HgqvABfss1n1eyjlYpkCW0B0l/tTWSsFWPBSI4sgBCWDkcypJDcADES15BAVvpJ2MURKw4XTDQG05FDyg4D7hPGPfk+WX9IqBQtxY9dgav52zpGBRpb1bJ3asrf3tl2mk4PeeKJc/vHVx092NrZnZrZGH0JHObD9dWL3DWlPYJH3wMMGsnOApBEH2SXEIKhnGFWJ56Q1ulDIA4w5B2qfjiMF2Pn7cBhrq5XVjQmPkw5xBwW+CCM/RAqBGITksxgg4nYZBVsR7kFZAESI8CSoRtpIdD2gNrRb1uiYn1CbHASxtnF00Fy0IzZ3FzHYgIIO0qAzgRAn7jMaHA3MkJQCtjl8vVijDD2HCVdZ8jR+w0suijCy+vJtUJB6fcgxYVsXqYUNc9Fmn78okOTJ07evHbVIvrW699bXV7Yt2NelXE3gPNYcBf1CFDVnqV4OxGB3N6omllYXqkvmcf+pYth1ejd2b1V0QkmABPaXn2579cLbr/51lu7t/dOn33ymacv7GxuGXgawAtVuqvp6vWcJwFQyUg1piZUV6uUOgiknsG7Dlq1BTsyNQwvaL7a3jEB71bzZfdfjbIZC7xyoYeIkfDJkqSCZFXtowOxUJRp4vZCLpSR05TU/WKQodFSYAYgqNmjhawDxLIElGwQC5IRBe5dC4wgeouohSELRBhHeff+QdmJ5SSJPkAwHQ+ISYA/sqAC1a0ASIVoDYVdnF/99a9/ffXTT//iz/78qXNPbK6veyKvX49JBYkRCb06wnwYQzSa5AKoCQ014R0yygp9Fxti8YNaGvtQQtfVkQDswlBdl9+BTtAxQ2AoDf4hxKHsNJ3SIOkwIMUMRoyrhwynnhUgAtHUaGvjDd44jJEqRyCzE8NLCogjOZQwEdWB8EJqEWPSchJLbQo2LwCZ0c73RAJpWMAAPkLAhYZqIbbx13JDAyiB48B9V9O3wY8eTSyJFhfgIOY1uSSS8cJHFIxOkKTpgdSmcBShGffF9sHLnf3Xv/6NH/7d3964sfbWu29//7VvKFbt+1NnMVOXW7ciKMWYrfI+KyDm6mI2WkpZpTU8BimU1ww1RVn0jzvbYQBXkCnUhELy7/i0enb24uUrb73zrlze/9SJE1tbG7j8PrfpErJt9RtKdbm1t8Gp2tYoZVvawitiNVlV3ewUgwW1Goxc6mCm2vtVUppJ1RURdJo+Z6bRq/7bYyVHjIY6rS9OLyKzUK17iyMkAjtSkgL0/op9zcF+uZGTRg+jWIicxJJ79avQo+ETIZGvIBHYkWGR7LwBEiMWCKS9w7I6LCsEgH/G8GXZcFhO6mG/3d2rEtS/MaW6rMgQLy4vnjpz2vdil69esdQ4c/q0Z3rVM3oSR6ZS0nKpHTypvsiFjEo04CBheghecoK9J3tW2CfEPiiJOCpCMEEW4Y8VD814dMah3sAT5SUKXiBfZUbLEKNDd5roRYMgAy+YPpglIwQBONJoFEZnFhtDJceDEwwX+gA0Gt7xX3JjgBgN4ZZ8IZYlUG2xFpP6Q0lW8aQByr8wuHn/prwOqGAEw2MnTWjCqiN512SbeHnFJcfO+5edJFDhmipOFlct/dobZlnk7zSfGMnpjW3LvTbjnRSaun3w3W++/s5vf/vpJxd/9cZvX3nuea845/TZ5u6bEWF97Di6rIuVAlyVcHDESdaqrnbPHQ2ZHut3DNp3To++BaTy963r5+feeve9G1sb81O1/6POFhccpVAjtfo3DRimrWrjRGvHRt2qLvYwg1uPYWmgOFa1KrBZjB6xWkWp7dq8r26qOE3iyC2iVNWO4gJkpEHxyk7ry1UPNEJGONidkvCV1U4QYAQgKMPGIbnMqyZuDhoBZJeTuk3bgGWJk0xxggkSlxDzQiOOCnEMSDK5PSvsPQbISnKCUjJygh/G+W5piPn9wEM7hxqHJR3iJ+g7md5QG7XOx7V2VI2VunPn2o21+dlp90b88le/vnbu2ve+893ZOYfxrowmgIhTKaq+y4IMDBCoF6OBDB5xyxm1ZadBiUBSjD40yU0WPN5heTrcyYYYSOUJJtI6HEs68eMCn8l+mCAW6riK1kvX9RpLsVABMzglQ0ZUeDsxADJNJasaazx+0hBhCXuItU9nl4sslNi7KBijERlk9vTN+QLbxJAAJwXoxcJIZUFMexNYyPImXv8uHw8sK/K5q4gVl8TcFy3BxNbQMKRC2PCJo/GIYH1OhUBjHQe8XUtsuxZUonddXVlSOyHqZzTbNS3BcG37bgd9+smnXnjuuQ8+ufjBxY8v3bj+5MkzOpDJoX5pa/Rq8PGW/1QIjGFD4NSM3sxUSPb09fKIwDwRqMVF8Flhtw1F9/9gVOQnzp6zy7Tolnbn8PherUZReWFGVPfY3t50e7cKafXZHF+bAJik1SDTFjEVrKWYoaoZwumLVbj9mZXV9s6m3RzVGsVPEZfLtvOLmCgBO3pNazI2c0j6tih+HItAcotG3j+qM0nQmyRTdaC0NZnanTSBLlkCFWDSAvR4CKRcXSC9vQMjE5olZU8EBpmY8AlAEjJ4LEPinqRxiP9nh2PtYTO6wYez7ovxTcn2Vl24Kzd1lUqbW6j2nZ0/4hTBjZs3f/3Gb10XceG552r5EB2xoNuhRcGqSQBEijiN1MnCm9btbRwuFiRXHGBoMeLITywrMkPZOKrlIIMPb2C5HYAPcRiLehzCMhm33hLioUxMQ1GRCRP8WOToL3zsTzpyEhvkQ2LVNcwdig1ZRk61zeyshTCxas9AEmPs9BECubdbu/aIxXIL0w56BiNJLGLjWSDw2s0byGDgo4twsO0/jLLAdWZ8ZqY9EhYCQVSTFi0oLee5FUfHeCJ4SVneap5c9SDpN29Hs13TVZZzBOg5IxgLatVSoptTUEb7j5K2tGFQgldXVhE70MxIBCrEYhSX16drN2/t725bv7g9/81f//bWzRs//+2vn/nv/2+76xsz+7fPnFi9dvWKb8j27uxZu3I1ZAopMsmAwAHujX24WudvaKy7/o8c8YHC4uy0N9uWUUPKMp4jhhysW2jp8gNMxHXt0fz0+s7uex995Knn5Wef9VH+5sZm/cbX3vaSa/qbB/d2fHX1uNOmFmiabG+vLnlVdl2AQDv76n9leZXPZaf68Y4eHkEw2kt1aRRlCYHWSRY56RJiXYocTzVguZpbrjaqFwutLxXzndFxrHDR4hho741pxLwEznSODE2r76oKtqUv6XuEldKxbVSYFdLPk8UYBE4BlVXjDVWY0KAnVjKht4V3G1EXTHKxkBkW+FQODCBakIEFuWFp1Rtw5N9Cr3RdF0Ud/oJAVHchQ8lDuBN0gIkdfhRAeV2mOHOkvhsPrztIFMOcUCuMdpB7787tTy5d3tndf/+Dj2otEOMSqwWcE+ZG8WcaGi5kCeG6ryhZ2kwcytCIBRh4wAR78EHeN54gSEEOU04M7E7QNQ5N6rmAbliM7PaHRm4kJHfI2PER0u2ET1aI0xnlkhzhcrvSyIfxojZy0BR/G3U9lgVGLMT/6hCFaU8AYYwioxGQpa6ZAY0kmY6TGL28QxlxUCfKccHI5ZuOLi9JOhQE73go390eNEengChFpuOR5sSxAYkl9vA4vAMMezSNQDVPL1cPxLh20N4W3rnNbGSI9YMqwm6tNI8drenK9SY/+9nPfn7zxu8++ODT69fP+qWk/f3tzZ3q8DUlz/ql+Lpm7nECA/j+2rmorwHqyUkRONASWI2uQh9JnCIcpnMAdOtg771Ll9e2NmSfP3/eLUtK7RvoTUvt23ueKOZ9oz9Vn+bVecz9Az9KQw4bmuusOdunkepfJZSprcbE1MGgYSo8mOVBepSSTM17ciOq24byxInjeUTQgmjIN6WgyVRtkktAqRUq+JqvdQwYgFznmujS+rGTrupzLTDMdAKU1eyXWTMTA9L68ClCALA8Svp0wqqwpIzISCsrmkxxeguBYKETwGNBKYZEAEN1aIIB96oos1voimRV7rgGCv4jClV2XrfOialQh9P2rly76sro0RZQqmZYWcr+WFWgrlP1nZG0LvBwTaYzdXyIxdUI91Z9sjp9ZCaOrgn6iWRX8ehAWdBsEHdF2DuspLGnY2JJ4vAO1SETSmgLEdWRnSudkmSArowWTeSEuJLjU0AdHwAXeoYJeCEJMQZOnTpVA359gwuG5C84dw7l5vUb6GGMTGKxBIiZGCEXmt/HSIIVExp4YmGoC32ElGFNY7O5zEbAkrQkH9Dw0BVQCjBCIMRGavkjN5zs10MACxWVXg7KY4fR7OTMmXPHPbf6jbCr62tvvvfO2e/+yRH3xrGNC+dx8O457lSndx49OAKkXLtbe34M00YMLWr42MrR8iKHAv/4cOFKpIA9VuzZxaV3P/p4c+9geXbBCwCzjDL6cNNNGHu1vX6k3aA35bHdbrtyaKD2CFQuftMVSCaG2/Uh1amTZzJbqxxv96rGxp69w1XLgu/i2qMb86W6PVwjWJZYSDuKbf8hQ6y9uIYQSKZLmF/RRCCCEVlrRMj0BwMjWZU7XrnLErpkWZSGDFIAC6Y9eLrEkIHhwWERJ8gCwNObXGTJkgR3Akmhk4E7WWjEcsWCLHGIUdYT4bhCOleAfymxbmxbdCJ4yq1Xwkfu2K0z1q2WNKuryGtRhjR1JE6A6ZULTjXJmhA6TPaq7LwwAjVDss+EsaDpZjQZFR1mDDINOWGbJPxhFpj7CGp0pHUhkSw5obdjAshNIACmhyRLVwtN/D0l6pjQYASEPVn4eodOVijFFl+yeAGxAKOkAnZcE6JgPJIj4/Tt+USFFoHkbbParXh88oc0jh4ZJN64gIxk3qd6zOamXHgBvqxqr0+Rdu0AGldWjpondnfriKdjoJktsORhgsFgdOS4+0PsBjhK85mbXCtBV86QcPTYKZ8RrF27ada6ef3q1772tXM//OH7H3zwq9+9+Sevv37MUYddzxZ2pfanZh9v7c8wga7puXI3bAZztfqa6kpuj2v/x6Do6fsBCh40YAR7YTM746WFHdlzp049+eSTSq3RlMuP3litIjNWreYBzf3ObG9sujso0y2TVPtcnf+sJ3oMYq0Q4ayVVGni2B+BJgCUWgo7k2mUWzSte7jWmzStj0aWejbUw46eEWCSBYBQzdSeMtEDYAAkgBNKS4NiBnpAlwBGIDAbMjTJDZ4+3DAIBPJrhnN6ra1XJCMNEHim7skoryKJC9xy6l6KCBFjgY/81I8kpBAhE8kghwSBO31PPjowlDnk6qqHyC8R5v2HoT/SVXOrsX2/1LdvDvBloppEOXoCAMXibncH7hH30DngMKXS3lcOSs0z1Nhh+KGcz4R7hUZCkh35meydAPsEVyxJfxqSBZ4gPkwAMzRJl8WSkCy5hGsYyY4PkL4bmRESFrnJGgIkhAYAD9bpSQ6lEW64Vnu37WBZyT17+ozVJbEojRjjVpKRVqZ8tEEY7wBDjkuBUJJwsFcv9zL9wBh1fs6rJIwHGKQ+0kSOBmE3lZxeFkiUQgfyvTGHyTehjJEsZ8D+3s7q8tLx1RMfX7rkgeaFV15+64MPPnIe6PKlk+eervfL9rLropv6ojZiHz0mP8Tmj72demnBgPpM2mZA2w8Yrl8e8gTA5pEcRRqXDvLTq9c+vHhRDT9x/rx5ZW97z5Ust/d3tndcr10/3KjevYedmS6PrN7mPRnUKf92omavnOmCBzHfZ2zUnUvZIdESahIxjLZAQ2MZ0H4G8sBHB36/4daaislCL8RsgA9lGGkEEEFssrSeChEkw4WGCgGmzNK12qtmcmRRUaVuvQ5B0bQJoJsEEzkwgOCHMc+f6kpudAWTuBN3dvhk9TgqxELoG0n1sdAAhOQGVm7JZnJNGAJKyJROckjc8v+wogeZF3xmAXGAOifhX12zVjPxwc5oG1aRa5yn8IlVQQo6EjTw+MEMK3RYJaoydQoJjrQHWZlcohCEpgNBhkAshCDwMA4+9oC7YQF6cshS0u59uddzh/QdBvRCFe9AC3iYTK54SN+RHeiSgyEBMEQmGYw4BJAdbzhCajUBQQYMpZLizgI2OAWtrjnkWttqenheFV4SEiCZvXgqEBRL22kt2P7z+IMAN/ZwQ9jhMXIEshDzAhipwCUERmOlyZM67QNp3YEFPV18DQwuAXOjL3dz5lT9HLwXsvZAaBE8rRLvJk7vAc6ePEmjLDfNvf6tb/7o5z+9ceW630F96cRZX+1yIvV421bx7cwmqY8aqjLrTqEKHoyYZ/9HSSf4+0pqAt+TKbtkgMQG3gcff3Jry6X/S/Z/DIv2pnnEhKbu/XT7nn0ri7IjM7xnGlTltJr3yde2tbz6XFxYZqFqrJps9UZKs7oeXJSCNKLk+hAMRlULmQCwV0dqnc10IjedQX0KpCg1UQQiA2CMiWTu7dROukBI5HjmY17mjOgdFbZ1M4xJJpbEi0xbdpnYe65mlUxQZNrR1zTTehQWmBATIihgAMiehUyJxmJGHZK1hIQGMa5YglgymIgKZhS3WoKXTBjCY9y/gL+9ANkOMrg0QetU9/yOdy0fhkFpVQ3M4xY7XKnWIftD5MjquWHHqJHEPRlRyIaYoXwNLNkxyCYok/tYcbNrVIFdWhM8WreSFju7/TBDyiE+0mLnhGQs8CEWkxktQUZgcmH0b3Ft8LUqEsvSy6kOfWBcmhlxYgdLNLwLOLljBBk/Rq/NaEmMyBJKeEuiMZyIXVyorZvyKeMbaZzSoReSakKE+hWTFjL8aOcHIFIQccoFkyqiFDJwiKqreQm8tibm9akjv0xpv3s3O1/HkyA317fclexe0/NPP/XSyy//4saPf/PmW3/5yjdXjx33goDAkjLqC1KPGuiJtbFBic49cVZdHXG94uME7MhT3h7DfPDxR15R++2X+v2vnR0fPHsIr8lsxV06tXtjsnFlnl1bR4y4OhPtxnZt0Cm1WK1y6yrNuj4dAIv6SR3CML5yWzdAyX6UcvFqd1NtKHGBxH5XPhhVyh4STMuVm+dIXwK0noam6lOfbM8TxIIha25olw2YLHubhlQSjSogrYBxwEVmiRpPVHTJjOUhZgxAuZJUPwAhpsaYYCIZpgcYIUmS6UIZJBWtEkYmBRmx3RiMkSwu5GjRPMJh6bmPBTyIcajusQR+QWLvWiw+6ufaNIdHAcOrXSN7n3cA0XRfQ5XqvngsJbEFlQgWJ/mgioCfyIpkjEMDOllv14mKwDUhBwFkhsQEcWUdRjVMtEddj+WksyZXnFByxiMk2sc59/T+bphc9ktWDxt7il5jQ1Fyk4yKxBGOnjF1YcA4RCCZgrW2OPSpK4PKuK1fAmifmzUvMXoCMIw1v1yS4dnUVWSlb2EIbxyiodT+TJzO9mY9NPgZSFlcAHWxQRuMzKu9glqorq4cFZtIWJUPwSRx8XdYwORzacT6TkxEEckEAsTcn60SJdjY2HzqySfWLl7z6+E+XlAcNyP7teul5eWLfgl7a+vM8eMqVdXg8lnA44ZZR1jdyqwa7ty+sbO5e2e/fs/Aw8mOCWDatfzthH770LiuBKWgHgYgJxSZi2HGnyTU11t8Kbs+/fSSTfnl5aNsXr++Nn90eY/b9f3E9Ozu3hbvuuJbuam5jfUta2318MSTZz+9XOtZj1DaU+UvLi/x5pcvXdVGKjBVp7YBapJSNQmWS2n1EP/PzDjgUfZ4+mpVjd5UL9q4cdPbIMe3tIsJQDjaHhYB1SKC9mjdVVJA2ahqii0hbZOEGUwlQaADMiyAfh20LMJgGCPu8sGCrMZ92zWF/eMDHUBJk0U+jYJkMKH3rCQJT6M4SDHGoh5j0MSkxMG3/FGkaJHAGKjS0YLprZNBdPhfCpD1/tDavBP2Hs7ErdTWfVxzVW9bAlZt3recHZlqIhGQMJQeGLE2CEtilB0IDUyEJMkUgNoPHkxCMGK8YR9iwIeD/j1Edq4uNpiOH7X3cJ5vLW78kzMig9Gtm6tVqpIvrsXN3c6hW7d0vcKLAUVZa9BRwYlCL6SMGaJJRhECRYbpVRdKSZVDfvAIwIghhY12VWeGHyTA6h6NwK3zngZn3cXfyjJnCT9X/bs4rYa8+6nHwBnrOk55ZalOAZbkPXs0dp1rE0kyZhBlZJpXsNiIIFwRZJFmkmBS9kkIRhAL7Vsr83zbOBo7oPZOr7keknsgJDYTmJWDs4VV3vYdAKtqHlqY9+7BBs3GzS1OsDZqHG+enrUn8q2vvfbTH/7XrbVbf/eLn7746v/z6vr1E76AvXPQrkkb33Ex9hF0PSjUD9bsl+9YP1j3gy1X9lyXdfvsyRNHp73b2NbYezV93p5vIvf9nrHWNb+5ILN6SHn5NhPU4WrTlb0aD1qyOGaXqh09ccxx1Zs3NvykzMsvvaJ0TsturN88dtRVXHN+LeHksRM+yfGrkKtnj81Mz/liw5Pa1evXNdnJxZPq3zRgGJkFXdC0f7DrF5/cIuenNu3hqT2Hs0zQxNY2TmsUja8s2kKjqHJ7ezWHHVhN19jc2NxSq04TOVXlkG51mNn6DRxPbNevXjXHH11drkZ3FdJ8PfZtb9XxAb1Dm88tVD/BInaWUDi6ulofc7QVUvUtb7v1Q4641VX1NxfHtk0/XKQtH6tFgwD2oqDkVHvf3trc0rVMujAOmLKQ8Ka3hhWxbeuKbgcYTarTCkgC8egJKD3NBpbjAncMvQIy1QipU6kZBGHMEqeMaW4HHnHFbQiETNyBCA/mUeJI6+xhoVqYYA/lYfwE2SMmJ6Rb5wlVL/ZG9cAqIIX1SQuUTlKeYmhrh4vlcUJvs5QkcsRpD5J6CbsKAGSSATrNo2t+UMNMtuvAdz+6cJT6TeiHtnU4QE+iVBwBJjFMLImdkJHWaQBCR4JDGZdKjmRCpwmQGAH5uAwApqptScdmgp/e219YXLL4MvDQQwJINto31m5x65Dct59vFNfobEeMSCOKf799UD+9mxBLzEVyYZgUgZJC1MWkWoi20BgLZpWABaUYsQCWxdo8KsZzHantpXpVgF6JuJjZI9MeQ1hPs/0hTnRhfu7JM+defuHFv710+YPLl9/48INnz5y6vbM9b6vE7keN8ccIrOWUvM3YvHNwY2t9euHIcWdAD2q+Vw6rxLaS53v2LRDs09SrYX+dji/z68fIamultYKvmesRuxYSZocZD9231rcO9o/4SQPXr0MqghnEd178zsatNT8AuTi74KucWzf9JEK9kvFLOPU5b/MRWiQAhCxPXaolDjptnfpMNRIu1xofgBiBRleTpnutQI54dmGe1/OoUS3ulG373tuvb6p5r9bNXvWwWGdP6/gQAnO//qCTaAvrYtIinO8FwFOEEszXeweDV2NiSfdorV8R9pgUDBrmQUqa0A7mqyeUiubHISUFZDD6bJKpCjH5pAHgg2xkoyjEiYMCp6LE6AWSweQABGSdvnJb5QOCB8gdSX/8P5ETviH8+JK+EEemgfuKGHm3++YNkZ9p/YOqKfghe+C0BxW9DcCQQ6VfFhwbEkfdo0vu9DG7F4S0DpN2F269JbqCT5aefV+lye0WBkBMb7LEgQECgtAkhsngIRxGBQrYG211Yo4g+zDGOUGSyIxtI9xAwoseGRVgGD8jZWzAEJJdePRcRuqhkC0goKIzogkBTJ6BYMDibiG+ciKDB6kYqaBNZElWVizIqgjtfIhPjz0bEAVz+0j9XHD9utji7De+8Y0f/+NPrm+tvfnmm1979t+43ND5eiLKpscJvDx/5G2163KvXbm6urjEG1qi9kGfgnSRdV1OLUtHoeWO6iGVY8+lfut3Zn53/+DSlSua5/ipk0899VT9gBmPPMX1WLbXlQk8u07RfsBrdmXGnlvJKQd3sLs/MzoepiqQiVVO3CgCi39VJ6nOs0WjicujjX2oto5Xg1Q6Af1eu+bh2OoJvhu9CYNY+DQ91fqGz+6IRdCb26+KwSg0ekBTVKtp8pkEWe0y+JRXUp0kkEkOLl0LJs0dLniAwFQEglx706nDsKMp49pAiJ3gKlrrVygjHzE5JIQLHIKoA5e1LTAj0sQQIcCV3CRr5h+EnjvAPRJI2pBuIjnM+v3DjOnlqh4QCzqQZKd4RPtSs4gjJ+zitEfHD7XITUskt1M+osaQDQUOGbv93ZJh7qPD3cIJlug9rD2YCaWQ5EACkhWyxJGc3K5FltCRSRJiyAUOZZnXGtDA0NF1cblqEhACoxoglxM/cDVZ20e2fb+y6L6DOuti5Ozu1IpMFuEGIQyx6Dm6CJQVgmzXSEY4XaOh25ZX9CZLTIIQpyYpi3kGre2m8IpTEJkI5Io5MT6LGZK+igL40SK8gsWsQzQWm/t3DnyZduHCBT+r8vY7b128eNG+QeGrclyYU2P7McJMPWFg3Li6sXb9xrkzZ0/YrNj3k5MVPHWMxNmAmLrDiRe23jWb5syPmW8kq7DxfFX/6md2Rq1euXIF/uyZU2dPn97d2sauWL5WS1Xs7mx7jHD4x76Lc6DqwcK92ne3GlHFpvLrlx3brQ+lo7VLfB8ajZs35CPi1i6Ea1muTk3yzGoVDZat3VoKmPtVF17lSMWaHihySZ/38CYAT4dYPAeIvS2wEVrEbcOGFoH7Zc/arVvwaGD8oiQJpIlXl1fEFDOVCgQh0wMpYjAy5sGjkfS8hwBxk10dD0FsIycXmSEOMtIiFtyTMB05pIxkGAFMHpZO2ZhGEb0CmrwDCNmQoLI+bxjyDuHPK+/z8EVvL5dk4PtPALLTybqqztkxf+CAJo+FKbnW/XwGp+DiCaCNhHtEhoCiTim7wzHjHoaWCD5kYAEsqP8OS6JNEcDw0VLUBRdLOjerAH7GvOGrQ/PjhqtYluf0jD00GeFhhAegEdy1wkEYnIVpn1YRgh57mdTcQdeOJivNlEuyMM2xc0ONscYzRgENOQKaDEi8kEnCCLxILKei7so3kezs+4wMGZOcCKp9if3b69s7nmFeeeWlj9/74OqN6x98/PGLTz55ZGdrr25EfoyA2ldoFtt89tVr17a36gXA0uL8/tr2wlQtctW1bjRqEpaN3sBz1qaGkSpUxKikAlrr8KwAy2mXV5sE/aKZil2/uVbfKM/Vs53NFvvd2sW2jI/lbt1a2z/il9dWlc4uUR0V9Xv3rY04TQ9NWBCDs/494id2WkVplNyqhBHGOxguFdISnrEqIjVfFdsWvwEY4ykHAWK1qhLMEPy+6cGERJSs0Iu3m9fOUwi8UPczOY+7tQWOGRQB0sSQuATAqDbG04BSBM9C9FQL83UYuKbOwtjCG/dtNOjVsVwGpzvJ7aePwPRGIF4SJKMxWZICgiESLCTr9xAPLQn8+9R+uIBDGwLffwuIld30bnGAapX7BW0QlqEOLKHv0jprVCSG7MlO8IgAvQ+h7CZ1Ayh6CP3hrM4IuC/vEFmlaO4vcpJ1OJZblE2g+gELkF1X2CWDSRmTRIlFSKeHxAlpLIEzHiLfyDFsvL4zfmQhMKhgMlCt7DiUDMWlhcXQwOSHRMhHz/PEkggUR0WsFbMBY5JYQsBxM4OrgmFRJGCkS6yCepNJChFu1sFSy+Dxs4LD/SSwx7OA37HliJxkW5r2wtN7yNvTs1OeACxRb9y4/O57773y3LNel277wtlph6h8tDinWLYP9j69ctn1Q0+cPuOcVV16Wtv7I9u8B05F+PVGhVWCzDN115t9/1aoUcMrTpHUgSG/xLC1s82h+03jfT8Nb41b8uY9NShjeX9HbNvKV8HnPQq0nry+sVa1N+9CiAoqLW1qwlMbJdk+Xttnl0sIAg0qIEuDqlJwZl2eU5JnL785NfrMGws5YtZw5YwEW/5Lak2Th6YnEI2TSMtL9fSQu6URUCqJnmqWgBMjLrJ2iEsupYoDA0AAT2YMZhtYjMVyRA2EV5yLKBADUwpNQI4kIVhIlpSFRgAEDn3HBNljAHYBkEoOLCngxRgtkqMH6hL/hQJRQ/6J5DDr9w/3UlNdSwl/hqjYmjg1K074HLZGzpCRKEltEKAbEGSSQ/rPB5P/+RjvyzWskxAM7UxBRvF4QuoFD/6+YiHlEiWgH7L0PooGHlnPTRZ8uAgw0gz+YFAaaWBkCAAWemHJgCTHOM9xUhhhntNsKzIDzPgnAQGWjNIIiaPnGbHLii6xD83QByOZEBp4c1AwIYDpAZ6gUIrpZXbbDRpNjd224vUaUlkaGbdLp0nAxrrfOP3RTy5/+MnFazfXTq34pql80GMFh4usyjd2tt2NtbTowobTTiJZcGbrR9lsLh34gJLXbq976wgQ0AzQHn4UotS50KEacOxi3PZjBm3fTHCUT59/UhMA6q639hJFvLnpHP3c2saGJwBXgfJ9G1ubU34jpyZK1xrVwEw7mlE0hMBv0iFoaxJ4zy5Nbjnu5h/VsCQycrQMvRb1Ys3M3d+4voZdlYpNPJkATA/UYfQDohhjLZbYADAXkyarCb/tsaN201sHK1FtEkJgpjmxemyserSmSYsjYy0YgEAgHMYtlUnKUqWQCNiv7PAWE2oXRmAVmz2swMiK2Kr7NveonOBRRnjEUhEJrTZqrMGTr1BN6l0vUQaQ5v8mv/0tRRNAko8VdyGPxfXlEseGlJFkycCjL0qSGBKpr1jQeSSH8IR9qfeI7pToO0uAnkwf1R6RA0/ChMxHST6ocru0Cb2PInNIw/FJ0jIMnaAXpwM6HMpoF8NLTsQRmBi9Sgh7yCIcHjteSfhOEy5Z6crJ7YyABAQZsQuz81wDYs/49q2NIjIJ37i1bgwY/yXnoNb7WBRWu4i5BuzOhpImiX5UDwe1IB0aJolmaKcWRU8glrad4chZ+SPIGtUW7628YWmiakyyhFKk9DISPncEbW3ZX96zF7WwmI0g3y74kYOjW9t7Z0+ffPHFF3/xkx9fv3Hj408vHnvxxbnFJUtNzZU6/MzY8l95nDza3Nt2bnVpdv744grnXZ7Xff1VsNqF4O2rCTl+G0J1FPSu4PYSQL/N2lw5EDlcytXnc7h6aXnq5AmFWl5Y3JvadkJ3u32Go1FWjq0ed3+yw6M+cWg+1BtdZ0Brj96E0gJLrEnVBnruL21RhjWvBw+pHZHBeDhSyWqPgz556pQ3EN6NM0DTw6MUtrfrdJAnJ0t+bZSqjgQwgA1EsUeL8La+PyBh9OlQ64fah6M/Vp9fjDqhpw/yJXFhyS4NmBw1Qp0gSZ0YmepDL6tpr7dQQpXIsqQ9y6I0vaH01BL21LhcuLgOsECIuLeHZA9BqkVAiRqvhxCA1SQ59ILDggxgJq64SQYEGVFfShyZh0UNS3E498vCpGiRFrjtFgNbSAZTErpWmeDEE8iOx5KsDiQrDXCYCxmBal9WWFAGCROuoV6UcochMies6or0G/AwNzAJnWYI6w3wwURLkhP4btLQcvTw4eU1wzgUApN+FppOAMAYFeCEjkHc62FoBrLUlU4sZNkMCHtUKD4MeGe3vL8sgzauiyUcxF770Xa6kNmmMCBD7zUgAuyWjSYALiOqeQHD1c43HxECLDWkd+tYEd6wG1HuNADLgkdJgnblTSAlzQKUCikFISHzy+9yM3mkIGK8tWz1DsCVQ3uufZ5eml8w4fBjDtfzia+88sqzLzz/wTtvffzJxW9+7etbW5suR+b/yRQiJ7oSd8l3AS8BZuevXL64fmvrpRefO3v85NatjaMrx1Q9GkLqKJQj/+wl1seTFqcLfs59anvX0nXPAVqvb2ulWhOn87VLC9MzBzOLp4+duLq+qVpPnzw156DP/Exd0dC29VWF5b+jQdl1OXac0x9N0lRqGgRobb/Q7vSn6QdsDuVbVa/c7d3aCTFPgDWrWkrdZmtISVU+OWjgedK4e+o0IiEIvAHyywQkKGNo2KZlsSDT+uK0Mo3aaGerLgHUJdS5mYhVbk1Chp6RQiYSojCSmU5CQqqdEGxpaxgBr4BgfvB7AKY6ZhCCXREQeGqhAhkJuEggXBzJMFTD4EKGRoAhQbLUNEViNAIAJQLyVRoV5NACAw8GKFCnlwSLw5645w6RD4eHEh7E/iD8gyQ/kH5c2AnGoQ09i5DRE3pHBZAxwfBAfWOnOSGhJx/OmNyurhN3TLenC3xEoItC/yD4M0VhTLdAmQrp8bB+Ij/xPevDgYIhfdBDqwaEI1APBt0jGaptC6SzMiw9eL+tSNOPsVDEPaWjV7IcbAW8MgSAeL5tzhBiZLIZO+8gNngoJdlY4tUQGG/wQslsuxwxgBzD3lUQiLkhcUa4DRJc/I5hZuJDrBJJA4jds5ZCMamsGQT4vPglhxkcKzny2VErcSdC6sR5HQ61bqujNjz3wuzLL7/6zjtv3bhVR+n5chs4kd8FTyQ7PoAVnx2eS1evbN8+wmsfW17a3bYu3l5sJ/1TY1wwO9Sa9T6zfR/niUAt2mxTwDL6zsHR5cWZuemF5QUvlLfNFKYN/03dPn/+nK+c7OwrO9ojfqOzvdiMizTd8pjmX+W1pa/grNIiNCAoXbima698fX1TDSuLOheD1SfYgh2gdSDtuGmUBNslpgcHZtUhFVbl2pfTd+80+loNtFCTyu06EfDMM8/4OuymabCdEKUxPYENqcAApaVhcNNumqncppdYIVtAAHrDqFCIFYeReON5ZSmaeKbd3o1Y1uj1SWNkLQwpKSmBveEiNklwklREUcdjp1HRWkErVxZFsU3pEBwOkdZ1/dED1W8mCgmjXg4jJzBJdsrDcu5L35ETjJ39M/FdAqBzDZGBh1lDuFNSNIHvqjsNYEiDIAESMJE7ojxUdZEW+i65i53Ad4IuX5eF7J0YHgxDgmAU8SoASFmCLCMvBOK4BL1flu0XmIjy2aeRgF3AYDwkOJ0CQ2CTVXIAKI1beE8A0U6ggMzAjhnwJBQ9Nc3jw1Bb9G2/ooxpgzBGNvlwo2cjPx5TmOZhsQipyNrvt8HC3/Mjpb2c652ZKYs3xG44ev2b3/zPf/s3bga9eOXKM2fPeGqx9iu5g5DiDBAjsNz07fpd8o8uXVRxT549t+jnk5w/tYNTdVzVJbgQopxHC2xUPIZwLkzxhMP/e/WwurrCgS+uLPvqdN8eu1+Utw90cHDu9BlnsBx+ZTg3T6ZqVD8eaOrRa2ZJxWpB5bU8tcsN4PJsNHHBzOZkMwG4LAOjXPTqnF9TmeRzlCWh7W+IU1INYUJsrVYbL0yVZdbyC255qYsXHhlAbHqwXwQ2ZxBoDhAThfHEiXZks73PQACpawB8IM4eZCRnAkj9eLJsNKOeAxmrEkuqQDGa0BPCEnG1fvs1AmbLFUOoaHCpaP0Wpirn3hB14pLQHjo7veqKtM4RMxBHYMdjRCw57Doh6zR/lMB9JoCqheZQevkD9CQC9fWI1THkGrKo7mQR1eUHnhDeJTwIPxQ7AXde+K5uKGcIhzcYxAHEAbqEkA0lDxkDf/G4y4/2ZkXVeQaGEdit4sPSrUOjYvmaGNCEVEFS25JCGC0zwWFUNcYVycXKy7b2NfhtVodALFecJSYCmRxHE1uPCGC+ANJI9rEWYgIp0o/ECASAUCpaqESzJ+em4BvRqJlIiCVINB2bKtcsUNvx9ZR+e29k5xNPPGEj6Mc///E7777/zLknYjzZ0dJ1DZNDmIu5ubnui63jxxc5672tbc8YTkXle4XYSn38FaHNai6vToSqFR9X2d5x2acrRNsEsHh7e3erPiTzDkCd1q9UqjcafYlhf1+1x99xjFUndRXbfP0q/DhwghW8W2+HbdSDhx+1qm4xBumnPjl9MIz6kSvOTExMcbcDNk1QNZOAeHOnLha1qwI2u+Ayu/gJTAoQXL582fOBm3Zqi6kdBBCT4I4KwsuI1vdoNMuIHQMlJPPEZjtOygBJp11pb6rbFDp++EuX6DWPJsFGDPmxuVq6wZK2p9iZa8wl4RMiIbwTGFkwYrmB1UYsBKSuwkggTChHctPAUOMQUUmBI3Oc+cfztz053jtaUvJe/onk76Ho0ajGhzZoM6p7035uMyKns/d27Up7VjB6YYBuTCfoQBdSmOESolM8GLiHd0BmwDBV6AQM0GvjCzKkkcPYgEAjV4DBYtkdrkJNN0dzbxMj68Qos9ERZE4EgXkcE0DIkBhIVPO/YLbF6ZR7au9Ha6y2QcUeBMXbzgsSLUlaUbZlXe4pClIscOdiHo1DMQmQIFTx28Rh3NoZnmnHbAhSRK9lPScszC7tOQmEbGbm23/yvZ/+/KfvvPfu97/9TV8u5TGCUmJTqB4DJoJzsh+++/bVm+tff/X5s6dO+9LYA4wKbDsO9ZBh28cbWZLqKaRKq118BMYSlbDLtsXFpRMnjvHvtoB42rkD33rVJXI+u0BgKqzDPwwuLzy12+qrwLl6h+EGCxXFFyn+7Mzc0sqyTRiVyXLeOT5Lo3LcXFBVRftwT6lVERpxah4eoO2rwVtMrPqkhhyK4Dlo9ITAIIaR9HZhdr7eE5w5c4YQu0DIEBDCJMSuoa5KZlzbGyTWXg7V165fF0dIPgTTJYqyaSdZVghS4cSShgaSEGTwYQenyJlmJENcNO33uUgjGTEW7IkDRLgYS6ol0mAkhW7DkB5MZjDERvJIVCtUF3tPVscOgAcRDNUNyP/gwHoHkDKwuBcG0OEJkx+3YA+i7/I7MEEZfM+dMGNo9uGsjonMCJmQ//DkfSV0Y/AeljkSeGgp0UU9FkB+gg4dQJclYYwe/dXFTQISyWVDdXrr+DZzSNq/FwtoakQ1TwGwMZ1xVZj2EjgsjuXBEILe+2xII1+IEFKjGK8ssR9th5EbFhjOzWiEbNY2RzBYcMUFoMc+2p5q1mbVOXXn7qtsTkEgRdmIakXgCeyf8Mj1dtDvqKgOe1YvvPjihWeev/TxR59c/PT4k+c55dCLA8SYJIcxuV4wvPv+e7u3jzz99NNHl1eOrN06MjPLA6qwIWU9g4xDqsJcbALypuPo0eXV1aNu2HMNUbksd3vOgSzhTRpVS5yYXSyhMR6pB4HpuXz0JJfzNWuT3RbZR2yhTKnSI3WsU5XylQrJHqXmQFPJtmjAApncdJAkaLOK2+OXy9pwefmKQDB/c6Yq3xcGOaXDmHzzZQKgRVKuhmOSJOEanW1zs+3lP6Pbi301KZcKE0YzYfQeVS7VJHiAgKcRDZlV/LY4oIs98MjgWY4APK6WogQLKQKBdGlsZJByYahWLQiEtClRYLEkMsTRGDwMY7oN4YpA9AyLJeDQl8xBs1fyjz3c8wSQekyxh4WHF1IVHThM9lh1NcHeNJQKbdZVRGC3ZAL/cHUPIo40uZ8ptlsISKARo3Bf1WiK4L554/4aCT1+AG2ho4VM/TWS9eMhUkUFrxfrypLCSKAbI9uoKznOJI6nBw6XBHKE+BcjFo0vrQwtLOA4JkCJa9/iYpEVS+xZRAIMZ4GLjzDG0MIntFmGgCzB2m8PNQmUIqgXoa02aqyOaqzqTJKDMOeQSXKMYZ47zDh8vpR1TgHV61ewkza3KXWCZcEOvo+/vvWtb/31pxfffvvt187XLlBqBvCZ4dKlSx999NGZM8eefe65uqVyb99BI5sl5b7jmElTG61dPQ2QXIWoJzFXyM16iSp4F+22uPaxgAtt6mmpqmfR6UmetWqbKL+KU087rfPEB6XOxVwusbs7tTaPC/YRHJbUJ8cmlyPNQxgCd/qrH86UZGbIJVArcJdycXliOP/kk+YJNHIR8552lcgnlkZJ9IBy8Qv1NZlZQdbSslNU1dx5FFC0rc32INKKTyBp/D+xtnsoFWAUEZc+IOm7Q3JS5FHBqydVfaGpeajNE+kzCNggS6gWb8+XSSImuR5vm3cOJWLsAmSPUYKr8zQkXYTDAMIbAhgBJgEML4QsySLwfwvIxuAf89/RE4CKGJayF34CP5EMS4jvm4XgQfjeDEOaEMs6zNUxgG7e0OYJuIvq8sPV4y7wvuq6Cv2DhJ7EldDl9NxgrKYnLEkyuXh77hDuyA5k8OAa9mNIXEGGssY2PzRbi9Zg5HJTMbu20dsQhcNbe0NjCbYn0JBWaBnjJbxjrPEXNdjqcGMt07BLeuUpC6U1Pi5+i2uW5W1ntdi0+2zm+DnDjzGOHlYW7lYEuqyDOUBTDViQa8+goFq0HbF9AuSvqBs5wdv1xdN8e9NKeO0GsLSGZb115O5sBM0tliVOhb7w0vN/+7cLH138xH5YltI1FY9X8Twkt5b6Ebd5shqC6/r44ieuRX315ecvnDu/dX3dV7OrK0s2gTKZVuE9IdFUdqmvlrYzVLvi+3Pu6ner3hKf681xfTKmwrlPj0s1i825b3na5UYKidoZxzyLOTlr9nV6xytdFeWX39Xqwnx+bc3PA6x4KNm7U6chU0t5dW9lreYxes98sLaBRS4aLhU+da7nwbQKcQvFDUj+HZl3vxStnjhuGe5DMDTwvDlpaHQgMXu8B/b1shIi44XJqWcFF0jxzu1WUX0A0tdjAN9eRA6M5tdPmCSQSQKTMhXhjW2a0lObjyG04529upkOmZ67OLfoV972fXVRG/7VN2JVCqI2YQS9RREIwQXugSIYIQYwBia5AHYyKRKYAQhxaEIcCWLJUnR3CghtxQSG7C7qjwWqPpkSKmQKpSIeVLpOE5bwph41ACBwajw0w0qH6fUYUei7rk4Zxo4PS2fsQoIZcnWWDgxzo2tCGjPQCMPcqBgWdpgbCcPcocxU4j3dqFWsLQFicSGoqP5Vbej6+mh6qiRL1KQYRlJALNn4alFjmVTrpMYrlwfWsw0MBAI7je042dGJfmcTOY92Z0Ct7v3obhvMPCIHzCRLOQfVKRXcD+GrsOXl2h1yZaR3fKRZlfPqfmiq1NevSNYkUFNDu81me3NdG86YDhyGsVR3Df1crvqqnz2ZH2801TEYTnxulgm8ZNv1aYOqel+d6+E9jd3aL5jjT6uuLFPZZgSrEvnqq/aY2+MQRQyzEL69u20By4eePXvyW9/55n/6m79583fv/vm3vnP16uWVo0t+ZMv3WE6istiVM84scoKWtBaoltu+w7q1ufmrN96YPzLzredfWdy5bS9kb/7I9t62WnLpg1FvLvFvbpfnjxNXPUf8xoJLqk2PKwsLx12qt+y0q5+k9/3Dne19XwksErG3u/mtV1/xmvXKtSu+NF4+tqpB12/d9N701rWbfueA/7X6nZuxL+9FghqopwulW1u7xnXGU7mgRx3xwlq2TRWbVUft5xb85K8qWl5YkavRCfQ61/kkp2x90aZyNtbXa/r0GOKeifasppXNCn5Ex71v129ctbg2deW7M7OOJyFcSyurdHHBJ0+cBngT2yToD7qZDwVqOmkvJOqbAG2lB2oSpa3O0wJR1OFlmNfOjOT3/RYJwCzoNw+0vic27r6yvAjZ3UEg6GAb26OL+5cWVghkv0BjHx3E1icIberCXv2/rfQB7EGJS4wMXgxWb+xkGhoBPnbK6lNCChL2GIZsGDDKHWIeBEf1g3Ifgn9cRqWItF7YUdLh4/uFlP1wzuiR6nDG42K6AgbFJhIgOz4Ce1ZyJUMQYJj7uAYcph/KpKXrGloygTwspJsna2jeRLkOM05g9DYs6XzpjiGYW6rH/3THEGTtg35CQpLdhqEBYJ2YEJIRWHYhJsfIsQMEb8zAxBdIGuHuvEQWFlkAARBjMpCCxA957OjRImhXNAPwclfW+2101d43G3jJ7Jqgb+tWr26Ll29LAFgt1sxXjx12ngqdjaCmeTSeyecK+Ra87WHGkrv8C5keGigFu/etjVvHcMw0U35L/cKFp1anZt97/8PXXnjJxpEJBRua3Ci5t7PtKy21yrmbZu7M1tnLt995b+3m+pkTp86uHp92jWjbgFIZtDiaj5JWSXf/s8wk4AYK97eZjLwYnvfZ1zL3Wst/M+TMlIvta1rn4Cj1KLQ4P33m1NHL165uOVnr3cXuaAdfu8S71cvfdq2bStUiiDw71UsE83E9udWemKqQJT5+8pRS+4FPPnFp+eixqWPKAlNN3D7sUv0ko6zK2duLIzb1k4MAXlVzzX6YDAshoYfM1KJv8KF+Z41/F+Dt/5gq2n12bl6qNYrQO8at9sFXtbmWq4VD+SOKzCKmDXMtShdL0Ei+oFqKf742iFQUC1UHm/TBGZXXPCwjSdC1ogWMQ1aEB2meC54i9awg+jZh7I8BKSkWjAgQd9vAESIrAcGQS9KMD/MvJSjRFzT1S5sAYkcMEgupYrUPljsRp23g02CIwYiTjLRhHPYh5vPBUUTaUGA38uEyw5I4Xefh9MNcg1MydUKCYgoAF7EFECc3ZOFFIAzlJIkSkLL0XCYpSLIireqz1i7lUMEocRlghk093TengMs+tazwagejLsQGVZntR8vHW6VZR8mtwVxxGnfUvgR2qyIkclysRgJFwv7OXiaLEtL2fJtRtfyNeSQYpYZ0dq38eLFgcV0PHq3aIFDe3t/ystSMw13US+yp6Reef+706ZPvffzh9bWb586e3TvYlefppopWX0S7cmd1bd1OdzkUlqzvbP3yN7/evL399ae/7nvdur1htIVdampFHu+mnonIetNGVNttM5F5Y7x6/KhFtBe2KbgyuC7CXr9nAR+q+bWTC089/asPriqO2vC7DPSqB35W6cBKKm197OHKu3c06vv27p5tJQ8ErQaqsbRCiGtdv137Nq5sjSjS5KLhcJXI6tWFQtRpXFkJ8CSzkBfW7j5jDl7S1pByEVs14y5oD3079QswgnYXt3mizdJtnBJCOLMFEwwLqa6aYc145UE1yVRw/RSjBAiunIuPjgSMui8tfnIGBj05VYTxQzBkk1o1RgjVAhqi6JVLC3pZhAidBlmkYQcoAkzgxIQIXX7JbSHqFDEEf+Cx8nYLh3BHPiLwpU0AqXRaWTM0aAh3m0IsVvNBItMAneCLA11vN4xMSEmx0JMwQX6m0pCJP5PyMIFBCKm8VCduVtSjPbyyhwCsf+u1qY3DuoaWg7vlZIINiYwKSXJKka35ek9QTtyo0++poCurPEhw/aLuvZMHxowH+Nq4t7fbLohXdCyyYHjk8slVk6Opy4AjPKEtCkuGJDhcYQQLrfhFG5nEBE913EomgPIUpqD2loJjRcOtkIPdnoYmlWaHWePJJ84+8+yFn175yeW1G344fm/DFZ97bhrAVG+Pp1zEX26Xb7YeJ8SRoU+vXlo+Mv/shQv2pnfWb5qiGcrpksweKlgff0AvXaytHyy4U99wLZkBVpbsWzPYot1DgF2sesPNJc643NOMNfvCc8/94ncXedJTJ455UcFPkWNbDcY0oJVNHSqPUwXPzNWG2411WzrmtRoarBVTqoBcvCW5FT0gfUZT8oZoBLAsfUgWLfAE0sUdY6+CtCBL/4vvg7d2RmPfhzGW7aWrTf+cu14hSdqpU2eq27SXsQAhJmUaiy/2bEQOvBimZLYPib3MiBlcv41+WUIwbFAwLIomFtiDUYjBgVmOklJIlKwyV+m6LI8cxerlRYwsARyZvbAROM4vXeCwgMkJphP8gQPDwn4RU7+0CYBBalAspGZToWkGmCRV9Bcx90vkZeejNHmK0ym7/cE/uj3V45v3j15yErY3t/Rs8iVJQ5PQNd5XBSHCMAs7RgMMY4YKjWggkREdLeFCw19ERWHsBzfbmpG19xobjAljz7rbGBPQ1/H3FshsxHWJm2aPKPTwJVBu+91XcGU15w4m1hguGqvmeo0g0552jT1uOv+83mhTAK8yywWWluZ5bYuU/8fc+tJyO35KprewbFvf3PY11muvvfLjH//k/U8/fvnVV6adxay9ojrRb+/IbrdfwaxfplU8Owari59cuUTyk27rP3XGFT9uePBIkts4HX63mx9tff+qzJ6+s7u/4w3F0sri8tEFP/x14AX4kVrgm1qrMAru3eys35SEnHrx+efuHPn7Dz/8cHXlFQVhuPr0qYCYj4ax7aR63ce8vrE+NWPDp47KaESfdwO4UXGW3GlHJe1OX9k56NrF5wQXXNLvsaC2RMwT5dA3Nmgx01QFTrn2ub0MWKrvv9DoDDwps8EmCYE0TWkLiHZPA2K5ECgV3JGodLB0DMRhkQTXg8z4Bh6XD5pLGFYGu2ajuW9m1H7a+Hty8wHhlvHF2vqtLDAhdGGUhC+hzaX0GJIoBKkHLIpT1dWOGJXGtpaqlmozhxilZDAIEuDZAKaoKanRJ0mOJUDo/xuJv8wJQJWlNtVvajwx5ERtpkWRBQhjkhOUPRmZPfmZQJcW7WEXJ2APXhzgMwUOWcDkPArLkIaisf67vMZzaPRFABpDTtAdO+9Q19DajgfEoRgMuMAkGGO6tRWr0WgtrMc3Z10+CBnHgQZx0ztqL3JGg7PJkazctu9vjgo9w+BJZmsIMgGUYYOGRgCTECjFgceloC2G81eyLtq3oA99mynoKWRtpzuNiqIWxf6M5gFcRWFGcYapbk82b+y/9PILK6urb73/7ndvfffcieNT9dK7rOSdzRPWzoz2RGOzfWFm2prUnrR3Id7j7my5EMk0WS/VuXBG+sqgToSwrXVe/ktuvRWecrRm4ehx2+ULXl/YrJqqDa56n0ECn+ddpx+n3Kujq1N+tkwr/PKXv7zw1HmUNnZUp/W9Wo1rdrM1D2Wqq5cEpqN24RpHZCNIbadNHcNUTLCVr8MzqSJJdeczroUTJwGmCry8OUrNjRfcKe3Fw2h0SiEBkgIz0ONlpDW1ZPbTIcuqtqjnzQH27tGn7cKlStOgYj1CHHW0AxDrZn5fklVx1vamIJktmX6Yz8f0UzQ0Cl0IyiQZBhYobYrqkUIWSyAxhjeqEQhgcc/qQLLkphShISrWSgajEwf+A4+Vq1uYIvfkYwFf5gTQ7QgQE2soDUKQaZWQhSD4tPqA/MsH0+TkRrs4qh9FUzf+UYjvS6OwNLJBSJ/2DoBYyW4GAuG+7JDJEqMXYwxlkqlMkiWNkKgLEnEfRWDexGhEQ4JlbyiJCnHXXvKbCgPb0LUSLPo2wg1NE0RbfJUlGOtPC9htOoml4OuAdx+Td9q3oKNtoVac6srZo7BV1Lxo87pqxdKzPBGvN/oiIdvNfm9xprbaZ51DVREcpg9W53a2t9y89sKrL/3XH/308s3rZ04dp5S1agENz25uY20voIOaVbpm2f7u/orCedWc3Yx67vHcMRpjSlFkVZw7Vv3LxxZXji3NLXhLzPOV265pAI156EjtBXH99Q589s5pGyhnzrz33nv01uvietKqGuPX0Ivb92Layewx5SVwa9WadAUtyNkJWWsvH13l7rPW1naMwc5+M0ccOjJLYXhvCZSUK+dn7Y9oYnVIKYwJAAEuGDEW8anTZ/1AmJercq2lEXiAMCtgaarL8+Y1CJMYFss9iYDRtJ5WYxxcS43d+hYMO8tNV2pbN2PP9Zs3UKIREAuZAPwOWgTKTZAMgIYKMSOLoXUhuQBCUkUoewHBjao6VciqTzabSYBBKQCCFIcs8jt7hPyBx7E29veCfA6bv8wJgB19dMW+oWUd060c0itJb+ZO8AWB+8qPGexM3X2mil7FKIdF0JM+k3dIYNBSmhWNmCjlFffxQJGkELykMJRwGEYMmZgXQF8+uvn0LMQIt/8NYwjSjkZAY4ha8zYN0TKSQ3Utk/vnRe1kRZyvj75iQNShNKS4M9IYjkUoV9tCWdVWhYAiHE8AYIOOPe2lQ/PMVWDbypwredwiS+4+Sdg8sn4o7+Lb3zojaoY4YjVbM9Gdun9NAWsauH1keWmJf3RG8KVXXv6bH/10zWkZvml/TyPZInHa0g8Z2BlxNNKFZ2yktnaxb7vbvrYUqGC/U0D1QyxHao1c3/Xer/6dYFzwqRhv7hW2FwQElYtpX0iYC9oGlsnGQ8edmYOlhWU/B/bBpd+oJep8aObp647rg9pOjgSnX48C+0f4cTBJZ06cVEwHlRiJDA3DUqsU8aUq49r1m2JX99is16+0NYAc3QHANaphAM/Lo8tVHEL0Oh9ngC3qeWfCYbhRXh6NdpecW6hTQzCZKhCfOnWcDfWA0nw9vbw5ybbh1RtitsU+MBp5aKoC24tilrDQFwYrq0dppAgN7biQlYXtoSRJLGQKAMYAUBIrGfvF2DHKBSOQK4ZMEqVQJrUAEOQKESvGjgYjEuZFCExYRnMIon8JIYX9IpaWJ5rgP4xRiRM0kh2JXlB9MACxINnQI+EdTi72tETioXAEkug7MhgN1jFDQBMOkx1+kJyOH6rAFXxn75iORx+4S+jEnQYmBQdEfmcx/kMPn5As9kuGvhMDBEVOqXV3ZDAo/bZ4khTh6hUoKwRi40oIe3wtZCjxoqzh3eYeeHKsu+XGjErWxz51GSQkvYsLdbFzZifVZBiHRmwLBYEBSJcxxqNLwhPrFSgJEZIXwhm0KRHZNa5ra6eOgdYjgiuVfeCKrV5K16C1qUMaCbZX+EPtbG/dV2+1nWGO8LWzNxkrK1bf5Z/2do6vrrj25vkXXjBTvf/hB9/5xtec11fs3fputnpjeb2Z+u60HSfdP3/u3NLM6CcVl+bntjdvnVjyTFDL83LFGqU9DSgyOCPA88nRYysLy058cjq7rv+peqtdlHrpalr1vrmdndklhLNbXD5hq11lqhBe1btolpw4cZpDzESbJ4CaIE1/9UY9h1vq4YBAnlpl2tOv7jE1rQutbayD+XHL+U8++ST7+BRJapc9s86RI85u8rmq1jF8l0hXDfv9H9tHe3sYSY5AtWidrid44aBRwAjI0dbEwjCA5d4HVFW0gwB4BSYpdeyXZdLVXpIMIHPXwr7tAqHk6au2nSE+dswEoAYwqiW1Qb6uQxcSBPACZJW0BYwkSBKbxxGFYiEW+SGroo39DN4ISVZglISI0yeb4IrQMDWUjIkiSUFzBhCHsifvCzyI5kH4+wp5iC7m3ZdlAv+Z6iYIOvtoWXdfHY+FjMSuJsAEMgJldfWPrkITPjrxl0vJYGEok/0TmJ6r54F7LiDEKXIveE8iEDp7gGDQpONCdrE66+HeHGn6dHKbyNIraSAVb5s/YATsQhy0YWNQcbVYZFFkgztA2dAoJcGjVeh4eq4B1mxF4i8aASyWjAE9NqgCN6qKGmuiJsbxyfZWoMSW4Bq33lLYH/OOGD3Jvqp1347Jpx0eveNU0vioVMwsF684tlxOnTrmSjXe88T8gg+bvSRQBR4dYkVZq7591jQ7Z4uGm1MDdxbqOI0VvIpWVZ40chnDwM7REsHyl6OrPRtPCvWdwazr4Vio8rn++YUyQ8q1ymtrt1Q+56UsvFj9iM1M3bDGD6IZtdTUTFtcewFgz6jqslcOGlUh9ke0u18b9OyhyNTENYPh4x9bpRVved8WbL9UHbawuORLrlomC759M5Gg5Nkhmac4fKsnBup9XSEmVk0KAHixLaCKx7fGYswSQXFo8xwkZgmT0MeA4GHgBcbDMAAMSQJpzPALZSlIRwIExawWaWRiGEmBhJY/iggBiWWRJkgO404w5ArLBOa/zeSXOQEcrmstofGG7ZFaTos+Vo1r4PvSR+l9s74UJPkTKhRHmEB2XbI6HCCYIX0wiWvgj7ts6EMpRmAYQKqu1BiMZ4EwhqvGRAsI/EUv1yDBDhYM0ZIw9s5ykYnRG+ERm6eEaI867AI6MWnI7Ap3AsiQJVbiyMwQDBkMIJQ5SDM2u812o2jUN1A2+qoKLHaCmMR3cRbwvlPgy7xZtfFTe/Ttk2Ou0stUa3llNPoxcl67B3s+dHKt27tvvOW6yjMXnvGy1T647359e8qfKQ8ZqN35szxb5/Tf/t17tsanjq86slLzBEuQzcx6pmjGK2qzlYLWTIvzHojKmBRNoWTjwOch6Pacx5S6JMeNOCxXb2YXtvOz29u1Byh5a7/O+DK7CCytR6836v2H1uMlxfVhcO8AzSPXcaEWSNgy0/gq17fQOztez5oYD/bKn3LKVG/v7XpQOrZQjnvb19LthTNLLL0t7Tls9igL7QjY76GKqJROU6IkhJa4WjQotQdAVo8xCpKIHfcUR+Bu1XFNS3JNDPCSOmE+AZMkpLHWryMIeUahHZk4KgAoxcwIXhwV4rDLTcACCFIcZAckIyH4Dncg+Lvx5PC9m/NHCdXI+VJCbxU1m8oNZiJJV8d8KXq/aiEpS9fSi9kxE4BhcN8wJIvM1EOHhwSBJyqQWF5DFnxgI9kQyioPRpbBYIR0yYAYg6XLT27I4ONK+A7CsUeCXEAoAZlRkuxyIhMSJlrEkAkhG6dGs44kfFjuyhm9PB6ZSghLlEtcbtA+e3sJ7COAeP/61Kq2LEa/MJXFqTOFnIVgD/q5C89wfL5yUj91CY9fFqOSa/MM0JyFRbvpYmlm7pnzTzFjy69g8vImxfqqoO6bQ8aplORxtZWbb8FslFYomlRRfUGs3s24c7fWNvwusU2VWxubC0srvqvyZTJ6lZw6VDrGk6QqUp8wCqv+xR0ZAoxCahUxdWhCBq90JgC+VRbhyh52ZGlTNOTAexiy1RN1VugMQE8jMhIEEwCkgDcxRvIReDjAi4YiogiJbZCEsC2dUAzG7vkGMSBkTAKjFPCmLN1OAquErYw9CyNKXEJsBsQqAF4EQoBOAJhANqpRZwtZMB0f5EQ8pPlDgCfM68kvy7Yv7QngMw1i+mfSPITgC7I/RPKXnhVTE6evi/VvinopdOXoHXuYu1YMu3inx26MCfs7taIfjpaMExiAEF2SeI062w4jReO1f+TPL9QZmNCjBLRB6gm9DqgIpTHeZ7yBgyxtmNxmQ1BVCMjEySWtI1vmqKA2ZGKP2JMBbCYNv+SldBSKbM4IXG3pu+Nga30ZxcR6JqkXrDZqDsx7gDovzzxnM+vXK8uGrY1N63q7DGs3b2KqRahadwidM28+lys3sXjratfntF9lt/vvXSya+kTsjmcN3yq7FDR26bI20/MEU8VhsBNTLqFz9Zvj9WV/7V61lbRzlgfvvPPet46d4pw9jvCwH7791m9/+9sLL78W1bwYpANGaR3210NJFbkmKhdG2FDxppqZiqICNQoaS3GOcmOrLm5z9wRnXb8x3D4BI1ZFRRrh1v5x1jCOXeJ1wRqN8d2yBJ8DxI/jTYv76A3cGwUskCAwzM5N1XMLVMhCCZDLcVedIG6bjZIo607qtuRHo+ri3MUmBpTVrI2MSeYJ9pj70EdsgMBilORDMqN6ansjJdlNTW7o5SYZgsSyhvRDeCjkv2X4S5sAVG7qN+2Rxug1m6ye/BzAgyR0dZ9D5qOw3LcPPUSpfk/s0NoQGzBdXXIT13Zyo5dE2UOIJeFrLI43DQCQydXp5QowhhYAHtzIawIQyjvG8TV8BhUyNDWk8sQwVedGDDMBR1RESAR2jQHECWyhIsYEgI+oukthnFWOvoUmLeQVwzUtBezvjdaM3ZISYAdfccv9ew7wMpPZvDCXXP02pQM4QW8PnWaXKWxvbD1/4ZkTx497AuBfuFdZXD53VNbWZ1u352zxEwhojxreVLa30e3Hh+vDsbLbxNmeAGgf73+3NyW8p1uTU43Mpp2fbKWY/fiTj373znsvvfZ1Z2lcBX1zbf0f//Efb2xsff+JJ/g7NPqG63bqiGhrOLwJkt5VxCeuuEuuPY6kclKHYn4/BITUd2Jti880IHDOGo58ZuOCkcwEsFQfydWJT7l08bn24u0FYbe0h6kXwlMzkCFTE92kGDlqTTfxjfcVW2GnTUGyMMKrMcQkwPgtzFQOO+FJowuNFw+AKmmb2ODZ2SSMbrGNXnEVpLGIwx7GECQXJiFNIJbsEpKVIg/xneD/BHoNfJkTQISmSVLv4mGyEwTZjfhDBg7b//AuJXeCQJKQIIdZkZwOrQaSBQkjDOsqSQTGFAJBrrEkBhtFwcQLIE5SLDgLibFQTbI4vBnPSSYr7FZmBIIh26K7xlUI4Mnu8uGTRSQVAtFy8RrbU77fagOenVbNY0qk5byY3zBlV7O3JjBcro+pE0HFUN/YWvs6c6kuaq3dRrjFu8tMmeayOLqyV35gva2O20cCNp49AZw+cfL61Uu2Po4uzNWxSPvRdZ1cLbRpLyMt922Pb9fjlEtS3ZVxsO+uiPrqmEkqoOas2qOPWlSj4vhy+/bx5WnHMVtNtrJUub0x//TTT9WqcGTah2bLv/rVL/7LP/zXk0eXn3/+eevf8rC+LRv7KdXS6rNM4kKzKkfDR2t85Wr1w5ZqL8EEYD7LZXA+H6NFKUggBx6MwKMLCeof3sEbLp460wbhngMWlpfmt+c32+2h8CGDznQSRdVY4x4I1t9iMPkdTzi4BwR5yY9eoAuxlmSJCYAEJWLD4nIdMBUQICOkKOrl8OQEQKCgyOKwgJvs+owc0PIrig2xjdgkQwDGlRhwODwoqxT/txS+zAkgDdBrNu2keQCqNHFyxUn+i6jq2Dw0eAhPFAGxMCSQRKNfhjLJHqufdFm54ZKVSgMIOn2SGcntmppRL02uwYbGaDeojCjI6JKsUJfXVyAkKkqdxW87mwjZNshHSzME5YWbEwEbfpamSoOMpCLmZccuqUkdJ9PEeDIHtGPsKRfXmCGLEWubirCOGC3zFZcKy9JSy/HVJc7tKYry3Z2p5YX41ya7uOpmH+YoZvMAZoL921v1FAB95M7i7MzZkyeXjy299/7m+tbm6vLpO3t184FbodvdQfVSYPbI3MH0Eb8+s7HvByA5/n2viPenpr0KqKrzJFEH8GvWcpXquPOyuZQ7ydLeuKpV/8o/FocJZn//xtr6sRMnpmYX17Z3fYL10zfe+O2nt1556YWnzp/ztYGXFnsH9WvJQuNqtxwrsQOXt2uDvn5Tcm5xd9tRn7sdBl67c/Hb5cZrx9wmvttANXc2VUjjYflxNiAwMQRwOYQaU5yybfxaCKBoeOG1M2lrdbNQeWSPAi5knm1HkfSiWCje2VkXqwa8LIl8sZNFJFBBiKqAIQRByFgCyBYQbv3TddPVtVpAKZf9AN+nl/wWJP1NjIVkZMlSCklINRGMuHXIGixCDEMGlsWwwPCBxf8SQ8py2HKlO4z8HJjRBDBUc1j0MBfcCYZAYLkJTAH0WG4IYmKn6cgOhGtYksOYYS7vck9ynOgCx4jR31qm3i+Evuu6C4xP6TTXh6r4xbrmXTEDEx4kP8TFP245KgTL3GTpuMmqkTPY7pRsTBUZPrxfGGOGOMPe8MDFFwAExPBGix+rqhU0X9DGKC1GkReOVmIlzfTDizmr5+dL2rzFEdQ5mTZbWK7ZRc4g5Ft9cGs40uhRn5D6ZqoccZldGzMty9Vz9Y72SN1IwR6vG6luFG3HSckst9upHh0ERTnTEjPl5mAchJkG3BcPx96DmTtbm9t+vXLx2FFvSRlYS//2EKF78S/W1Flgejmw4Bvdhem9ze2D3Vtf//bXfvqrX19bu/XsmQubtzZWjx/z4ODuh6Pziw4D2X62TJ06dfxHP/6vHOcPXv36/totppw+fuLWzRsUtSK3fad68az6lKBGCv+0dn3D5fvLS3WCX8GVUDFUGC3c782N7fXtXdf//+ytd/8/f/135vz/7r/776hQvUSYU9au33AUp/ZhOFxPW23arpOlbeZWq/t79bHurVtrWgcBXYTIvXTlKi8/N+2LhYX1dbr2VlbqZP3s3PzK8lEt7kW0b0SE2yt1F9DVy9dwebLRLhYGbQKpr/Y2N2/Jxa4htQbGo0cXfF5QZ4eqb0x5HtrZrIOq1ax+OnQ59xGZrrSI3y5m3ujJg3nI2OAZk821FVTnU8uha3pk9V6mfZXmtc7xYzXfIFO3fs3Njl9bEE2bjSjqgUZBUvG1LHpAE14TjMByBEQJUTTqn83vB0ZPglxJe4CSYHHCCK52vRvQjxIDyrvZD4bCeFg+I+/LpAj3xT8IedewB1FM4OsCw0cJo/I+9hPAfQ1S/mEVhOa+lN20h+d2st8bMLR/qFQfkuwl6mZ3YEj8cHiCZSJ5mDcmIeu2Be54SSEDxniIBBgAmsqaaS88K1VJ/gWxhbCYey3s4IEal9656zdpOaz2ZqL91FdRyYqWIRwt7lA2B1hnSgqq6/aeCzHJaHOkpWPjTS6kGSW0JRBnLoGYqUuSK7MWeiWKebWctHifqk+i+DUDigf05RlGlvpdrfITvlmbsm9Und7blOkpP0lI/P6xE8em5o/cqs+gPDDM7rmUZp5PqfeN3HSxzcy9e/ni1Vs3v3nhueU6TlPnKP3KJDmqikZ3rJXNI78RuDaZjtyZqZmnptRpO2uY6g1F21J36dvLX//21s7u6vGF//f//B+270y/+NpL9n98pcxLaiC+jAtWCq6N4yv3NN7Bs92mJv16mIDMNCz2dVVVwkEdujdtMKdm4Ba0lL/YZaExo4CxCG6sliQBjblYrspUaa3eai6RZABGEgA+E2dbNRx33Z6B4MEJ3sUXY/sQzC4T+U3tlGcN+NgfS5iH5WB3tDCSJciqInn5cXRFLtU8uFhWjhhUJbfuOlQagcgwxmyYkKWfR2yQRHUacJM3iorgHsQw8x4Y5QTvPdl/vIkvNAGkAVI5vTF6XaVChzQ9C9CrOwQPIhuyfKVwNyCGdfN0rm7tMKvTP6JVeIfs4XqIkJ4FCGNX1CRVpN8ndAwAvZEWYrmGriRUaGC4rbydqwGZqaIN3fDyCGgMbhLqvoV7XX+EMIgCmzf01IkVP2LS7mtATOauXRbHP9ozAVuwwCcO0NbwJbx8ebsKtBb1deQSaS0bLez9NApP4XXnqWN+9bHWegLyZldpicCGqWcakkuEnfiZaZvavgawQ3H96jV4Lo8f8aOQ3Nft7dqEqd9Hm5l+9913qXjhhRcIiUBZxHIxtPsWDW8Ppa7KUT/9GNUSBVVVFF9Wphw9L/mzn/3MBXCWxz/4wQ844vJ57XI9T07oo8V2F70pF09Xod1EXxVYP4xZkpslezu75S4RmwU32xcAqgbMgCa4TRrNfcNw0G4xhY8WMjj65rVLlcYFy6UFsUDtVPtJ0aigNqsEBLII8WyHrM1x1Q9hGCqrcY9qID42ZUlbJFe1oidKFkzjLZlgxfE/gREFgBzZ0Prk0MhkJVYnpHWZWBJ6iSRRRmPFLQnzmSEsn0n2R0ZwTy9/lLKp38M1BZN6H0o4TDbMPQyH/rCcw5S/H8zIkrb1E41fxLbwDuNRpY3WmA8sE5Zh4A0lUYuNop5lXCVJbB9jdu8la7SMJ4DkwmQrKcOGEPhuQVgK2d6IAuKJAFEhDg2Wtl4vY8CQLdRQ59rBQdKCQGg67N3v15WZtY7ONMOh79+8sWZ5nfUmdlc7YCccmF0mosCmFQB61YCAZMYIhHNSDnvuOcV05/bJk6fsI/nYFUtdCOEmoHKv9o/qx62mF+bsLF28eNE1Bi5O8ICBzP6K3TAlbWvk2jkhky6hGV72A8s/ztSDgVfb9cnwuOC25i32P7lyw61q/+k//TU5T5079/wzz7qhCBuZApn8GmsJmV+qqxeyPE8rpBRis4j30yRz1lw2Lit6l8HxlVbqkNoDmWcmsBfddIFReqpgrQ8ROP1RnddR3no0xGvOoG5hwWZaXYoXy2OY4sOITb4kY6EUhoXHml75BEKKg185ejS+Hr0OlywxZIepqNzWDWgv8a0nQDJpNHG1STeUkD3ggmRJ7ISPHBhCelJuCEIPnyQgZID7hs5139wvjoy1X1zOVy3hsSeABxnU6x3BsPBD/IN4/5Dx9+1GCpVO/NVZ3usNkEAjIKOOXnC0q20hdvbxFoKwMLYdWecxjYoRsd2IxlfLajsbPJoN9pJpbIrbkUfu1qmfUlPyZXP3Pquq4YuXQzU6mxNv32gVWeEt+q27DogkrH0Xyu3GHrEB7LUtaw1wDtsZ9PaO2Be79qDr53aLgKc4qAMtC0sLTolM1+UxowonHqwSzBZxKETVq+WqG5dK11q1fUxgV6jklMOt2a6MRin4Sazt/b2PPr14c23tG9/4hqI7JqMS6OV2WRgjUQYuuVUlaqhU++3JNEGVtLm2IrhzxFzy3HPPHZm7/MMf/tD1n+j/6i//EiUD+GCvuKngYhGTzAXzxbE/6mhXiORy99xmyHhbxGgk5cZOdkimogihxUwAIzc0kgLVPojLFCKXtQggzRaZA4gFmI5o9OAiqd67VShpFwA7e3VcikbBJ4M0JpTFijpeEBTcXhfjKjl4WldpFVUTtoCmoUcRgYGSGzvB8KwdsBcVfAjApbiJCrKyHz+QgD18ASLz8SX9S+V47Amg19ewxNUU48bo+Met0Ejo7P/swOPa/3CDSVPAHoe4kg/YpIz2kA1rJhI6O6BTAgLHEUSdgY8mYynEaGQJGUuALi1IcX+pG5FGI6IJSlxGOOdnjUdUhFfcZgHDv+hbwk4APBvqQy6bQ1XkOp1abwjrZ1eKrnRaXZabKqfjz+LS3PLS0aXZqZXl2gGv9981hRHVVv3t0QMZyQnEcIB+S959cbdufsL3rx4/wTA/O75k2e5HWjxA1HHNqRu3br374fvo/RQWpBWsyWYspq7riVhxmTYueMFTfnhrwUGa2v335YGiAOhtzyVPP/2U5fdv33l349a6/X4PBCRw/TwoLRyxolJEPpeaq5K50V4E7hYaAeTcfF3qgNLC2TQI48csY4/Kqd2x9iRhya9WSUYsN04zuvAqOx/cqqVNj62EGFOiNBnJkpCxJP2kmruZGprGN+pmCAQEUQqmTpOkoiTr2FR309Ui9QQg+OCu2rUdFpKMVeSwM/JjVVSDUaIRiGcGIGRg7MEghkySohBIBoklcPATcc8N8BDKCcY/suQXmgB6q6iUwzU4zD1caxP0nXgCf5jxK8J0AyK/m2EdMqGxZ03gH558XC79PiZNxE4NwSR0UwnPSMvAyGAgofDNBaBHbOufD6sFv11vr0qt1dsZHGRCk+aWyxps/q8kL1eXbs5wJPOzfi9bK5s2SBld0F/zBOLp2zP1+nY03kwI7chQc9OFq0CYeiTKBn1T5PSRReJtH2YZxly7rS1TlUwPBu0Epp8CmF9cWT7t9k2XgNZHRmTV74gRppicEI14S3jD0ODtAXt4548/+NCZ+TMvnPZIsX2wOb3g3L+7Go44C7R7++D6rRuXr122/UOCWvIjueSwRVLN8MOAscNpxtrvCcavdC07rjq6zsyuE21F6szV7t7R1ePHt/e///3v//Cnv7RD7wXG3OzoB3jJt8pGZsUdF+Z8DiTeODhILo9XTYnUPtffiYO3SJ9tn2+bTyzw5cKri/hiVlWzarDmZLM1pAo7XknUVRTFvUq2boZv2nYZY7wbB8NXoVpQI0yatWPX5viS34I5I2QkmABwYZGrPoKv0rVVPKQAicY0U/TNp7fVQJSUYdgFNAKAfPEou00wqRkY7GIsQmlpIcngh1x3FwgdOwbw4RqnvuS/X53kL9fQzzMBDBsm1sCkVZI1jB9UEcEfFvXlFu/RpcWSw9amXEM5ocnSaYj/TBjjsLwjXYNePpRgzAyr0agIJitHWRknWLrNADTwkWOQM94Wh0GScRID6mzQ2BeYACI2WZEwFB7KbjbiwowcYo1PG/R8M0awgJILABjALMm9DyO9HER9GdT8rNP+7cBJ23yqnXXDmvAZ74CR1WZ37QBwXsTZgXAmqPxJfQFQpUOpeqKuJWmoglje7xG2f3Dp4uWt20dOrZ5wd8KuzSDbO34JQMnnZ90Ovemw/d7uhRMnW/G9BXW/Zp0vpE6z0tW03Nc11PH5anrPLC0051+Fthjlsr0J+Nqrr7z62ss/+dVv+WUXx9Xuin33o0fJt/JHSTgJzfzyZZpJESBJliu2KIYUkyZLnXor0M5e1vY3PMnpflULbUMMl8AAuTDto4ra4vMEQG/IQqnao5QEBHJNvZkkYIDIQoCrQrvbIRaWMS2gwaJWpQipOXmMJxA7pBIhC0EJ3KutKixCVUU9BtVznv0oShD0gOtwCG+0iMuu1tm6FnWCC57MZCWu1cEjB7yEPDL5HwPhaAI4XOxexUqZ9ggQfIqeugYD0p8CSwqBtXeIJ+IJjaGfoHmUZOQ3haNFRKzNuDosQW63TW7MEPeuM0Q24qxY70oKS6+HJDvXREHkdoKICEHH6/eBQ5YOHXiIxxWNOV0jS1KMvoZUeyTvqiE1B48A4GjCy7/WjryH6/ILB26JceC+siTbqt+lCzWs7KLEh9ffejdAkZACcr9kuiis8EZL/UTJnOHea7sMM/JrL7m97cyhGWJKk+MptSlROip4akCqe9Q6lEewwuUZEPKxPJlTlTub6y89c35lcZ4r5J1yTNJMoGg7u9ti9+hQTTRTzRgWpbt7B0d2937yjz965tgJnwTfurm2unJ0f3fLQ4nPypyBtSa+sX5rabV+CV3W7vbm1OpRddD6RR1xaQXkJetXNpWyzPXrwn5bxpH5lRVGslat+3C5vlj2KqTi2gnxcwUOkrql889/8Kf/v7/78dtvv/Wv/81/v3b1uiyvgtMobX8/K9z6/QC1wBsqgti8ySQwvCcdC3y52nHHvXV+aWDaddPbeX3CJPQ3btyA8Su+KFVa5baDAGVTe0RQpVwrIWyOIlxZMZuQCKELXvW1ibZ6lN+PIUoWvPLS7jlGsppvHOSElxZkgqKJi6y9J0hvwa5rBkawMFfPEDTiIgnGpdroJQV4SCxCyBAESTLzUDIeZQRGHVgZS2s7/iTZhBUNaZBFVkd1K0iKu50oi60FyODFoRznTP4d5g7hSbo/+HQ3/oFPAKkRBQmA4eG1E4ldboi7kK+uQmiM0h7rOoEfV2kvIPZY/vnkPJZePX5YyemXD683uSFgXsaDuCNJUwN3CRA1sva3WhOAxnDqdgZTbPWccXeLKTJrI7/JFBuAkHZ+evB60KxCauHHekMvGRWRX0bWAwNPMXIW8HUiqD0xoDTgjeBwIa5jku2nacxUJEV+PDJGWd0GcFNkH2naZ7K/e/Pdm1dvXjhzbtFh/nb7Qgmq+adtWLPT/RDK6UhM+9WaGDkRj4WnL1XptJQpoerPZFKzo7mhpoeEyqp5tzJ8vfXEiSU1rBRxXpp1LLDqX0lZhID/khWarfr9lvU461QR9hAjW1k9hqsdximlXDMuodqGHY2ySqlx2wvx7i7pxSimCJlSoAl9MO0lUTliNMSSFoJqDvRae9z68C2rCNJvS3cLEQhkEpjB1cHGTpbkTgAWUIoAyEhjecNU5QjgxKEMb8sZUSYXWQ/sDwHMWL6/7WxYJxoAoQnisLQB4R85+NkTQK+Ah1fT4dxhFXchXzrQW51kcDV584aPq6hbm4L04ox81SOIG7EcYohVDxIQvV1dyFIEWT3clx0XygzdPpFgQZwxA7bvn1DI8itT7fLHqa39ukCGX+2SOQCIppEPqdM+8vyrpwDeuQ0wwsCcIEoa6x1AcxwlCnnzh14ToClHUzNFMWgWNrQBf9unaQypOUOeqaXmgCLp+0glqHxsuRIrXw6xfgagGdaOwFZpnDQpm8ZuokE4POFMOwT5i1/8wp05z52/4MZ/n/0y0XPI7H7tOe/4mvn2HatmU43rGbwh8Mah7Klfo6zQZFa5haa0VtPNeOvQmaX2WSy1yKqQVYb2tzg99uw5GurcvqOlfpNgfW0NLKcaqW3NWVFLgktmGT3y44oJOb9bp324zmJJdqMp5sZSE0DjQ8A2NQzgaJNLJqAqp03GgZEVpj3ApRQhaypG0wBh9ERaNUur1XA1yW1BkM81mig2wCtLpwyxWDARxrbKHft96jCFILHcbIIpFBiBIItkITRBFmULAKH6VSMTB4MM0LnAYUys5kI2EcvtEnoWTKR1zB898MAJ4HDJU18PqqBhbT6I5rDML44Z6v0i0nqH6MBn9ob7FjPIblWE9ORhCw1IyHD1GKBDTxB3ybKMMbnEDskQ9JDcktB+yqOAFoqgDRArrxqobfD3LJhIqKPubTAUeXMKntGR1VAra0djrxwnR9SQIiytOGU5UWzrlI2rKW/EBbWJpawpTK09OVBbOtwaIfKd/OFJORQbMFWB9Wa6Fp7e1nIReJDx6TW7eLdQu0AlyWbLb37zxuKR6eeevuDuBW+u67A+7jtHPEe4+gfZiu+ErYt39zwiuCKj9N8bWtkLBRCaK6t9Encxm0bUmRfdlFVe++SN/0HVmmXObo4NlvPnz3/w6WVaeOVIiQYYNYNv7daafa3Ukn0hZUGXmaApLiYA+iz2vQawyTP6CcnWPfL0kOovSxp9tKh5yWpNk+I4SKo994FGbCgh88QQS/ymZBb+chEX/X59caafsYSk1t/SCyLgbhw9aTt1hdfMqZsJuDRs2EMGM1yalIoWsIPxFkvrjcGLGZCAABA8IMlmGPCegOae9L2J8Ibm4ZT38v1RpR5jAnh4uVODqdNQBr5vwyAYUj5c8mfmRtSXKPAzNT7IfpUwcmiPIqLRHDZ72Bc73MnK6w2el6NHbqeECSxuQHnrDNlG1nZcaiQ3VsPfEGr+1HCDdGEZDBUCH11w4zakwVaw8FwGj1pHDHnCdvBm1I3aiI0BcQQO3gjeWzR5FblRqGTW40UhKa+JgHOvQ/yeA8ph7e74xavZE8dMAMdrgOcNgvNI7egndoHYHkvhkuQ43v7dOx9+8NGFs0+eO35ma+NWPReYAOpnA2oOqBcF7Vd26yKCutbfbw6whgWqg9Os+S+ixC3ov3WzNUvbBNDuI2raq2Djqm62tPszCNy/7ZcsT504+e6HH3GDB7utxhqxOslwoIX3t3cPwz8mNgGgUoQSW2pH8ygM1W76bJjaw8GeXLHDQJJYYjnATM1yfhxG2dBIhqAKP146yINMiLQUGKYxjqK8YMgkFpQaRePFRXiLq0ERSJQAnpBmGoNJbmKFDKviR2mSLEQc+8GRNrJmYHO09xhl2IMBj5J3S9lp/0/gbg08xgSQBr7LegiaINAAE5hDHF8VYtT2jyO+s3TgsYwfcoHxdkyAB0kbDXhEbRy1vwNHMEYO2TtNWGQNc4eF5lbv2jHO6FwQEVVTxNiXJVdcA68e4g2gGkMGpDEWRX2wFXF7zZjlIrK4pz5usWLpDgLeGrMLIRvMm1HBE5Yxda7cgtH18cd8WuWTVj/dUo6xaGqEN/rMHLGu3CX7OJF6npmbe/vtd51ofP4733Sd0cbuvleNXLzCcPd20HM5momCJQ7nmG+4WTJT/CpOCw1TNacS6mu18kiuCK2Xom3uq9cJTG4euxiqDHsHKEYbZUdqkrZCr4NA7QNgNEQxMkWQXF6p0y9ZHVv487O+V5Abb9hmipoAhJhhK6zW5u1FDfdPo6oW0Atl57jXRchIVJsawQJRyOKIh5h8/AVDJqkmm1BGsppqxCUfu6w4YUnwRMCv4BiVC0E9qbW3BZTaqgpxZ0QM0+1JcYIkJMTR2JOQ2BPAIQ4SPEzepclBtIi7N0bTEeEdYnrWHzfwwAmg10Wv1ofXUScb1lcXMkR+uTAVgi4iZoOY/MCPpagzhosooeBBLxkKTG64hniwrPviJ8iGyZGuhgp7StRpeonkCvAwAiCYngxyxNhKUMRJjytHqj6lbQG9YVpCRi6gQDkV1z4H913DfuRlRq62ZoKEusDTDyzKdxKsLaQ9/NfC88i+DBszBJX3tcKv3ZJmLWtqUmj7KGV3cyttH8eBJAtxl9ecOnnixPFj9KoHXqn4q8jNzbWnFseHrHRjAzSgKKenL129snv7yNlTp12N6bSmLaByjvXy84hjmIpowe3mZ/RHl5a59D233bTQfM1o26GJraGRyuSb7ETxjE4i+XSCMaP6DGeLqxzt6mbWluusd8y7DuqcO3WWZAi5rSy1eBfMUmP6erZIc8MQRnuPUdr550+dOgqSMSzLAhnGHIOGfDAhRU93m61haqMldd76ZJM/8uN38c1NS97FDPp8JLeHirKNfEKanMZwbwQf4wHdqmAiJ+SyBJ+hIFMcMDwglcB4AQa+C0zRJEf2DCyERBwtkd+TyerIIXDfrAkhQ/o/VvgzJgA1oqbEgioQ37fi/hlrRy9hVWJmMC8WxuDHMiyMKWYYq7xj5/lYoh6dWIeOqWJBRx8aAGYVfBdonATO8AgBmi4HptOXzx3ThwulUDT2YMbVFaS9cojIIaFXad7tRk65E7fGI/Vx1rQNoTuu7yGOUyzv7OfBW7Dbnu2aodKWc48/qpLXGC87yHcbJ3p28bYnj68eXZ7f39upgzVlGb+rkFyFT9sgqpbAtRYewz7o9SzAIdIxtzi3tbPpqyai+WN+0PULTgx6GnDRnE0SeusBYGYqGyUxu5nSTK4tKideFbYMUtAZtOWl20+JjUpV2W3/qj0V1DPC7JG9HXf6q/TWju463r59snZjeHAYXxDw9Wq4FsgH+xb1AqXKjsa8VtdU+BWzTGZtrCEO/W6bBlyGWiv0tsrGoo3YQgKWcEnWflcLvThSI5PbFBWY0iqPlmpPeJKkOTNFbBhxWZ6rrSZMg5Y2xoRAOmRilYDHPRJM8VXgiBFmfJQTS5ndTCWlM4JlkRkLGYMmKqiWKzQba8KWJRnjkwycOFnBJ6blMFlniQ2HpQ3xnfiPGLj7JfpEIdMYHdnb7EEVNKzrB9F0aQAN1lmGwKPwDuV4uZRkuRH/6SfpKw9w3HntSQulYqFL62aMBI6yR8MJMizJ1dkLGI2skVKIYR+NwC5WliCZsUe8pEV25piSxJhIbUf3kAn8CpbGWlHb0m60dVimBr/1rTFfP6XVQlk9BkjjbYLvcfL5mwBi8jU3KSR2a0MvyQ+ArStByHi7+llcbPUbLA6+1660/Rb+pPbzZbe9Gekmv9bL9UuObHKGka/ggw6c3S6503bi60Gk5pH9vf2lhTlL5tWjS889ff6J08fn/bLA1vbBzAKnXQUu7XUYxb/iqNprqkDl88iuLEfpTx5dunzz+pMvnzWdbdy8fvzOzOL83I397c2ZI6d8HXFn6tblSzsb62fOnmSs++vtSjHeG17LdKdsFNH/bkG+tXnLxT8u/3Et9dLM4tLKyp4pyrNNve9NRZU5dQ1pO+mzv+MOnxm373Dkdo1848wdloNz7YUGZI1jQm0HzPHU1fmleFJPFjT6ys1UWvVk18sJUT9Wtl0/ApxW4A39WJnZQvM7KsrxwyMzU5Lu1KUDpaRVnaqZ2uGqaUaVVTFIH/UfvntPw9Xc7NGoBbmt36jE6jX6FFM0NXYB0vckRejUVC3Zy5y6Gbp90EtKceEzB5Q9dZ0RrtKvCO3RxA0QegIuz0Piakj/qhld1VTSFKHEt7vqApgqNKKrsCXLvMauKpJU3CqR/9tsASkwI/3NVA8WSNYbSkF1nBEATpY47C3/nqgqcBzCCyPQcg/dvWJlRfIEzR9+8jOeAL66AqjTw8J/D5XYVXTgvpYctu2xMJFJBSCKxAHISZd9iECUxjwCQI2ocV3ptRHSMWjAArIOB0gX70ohBUnEAZKVmEnw8uwmyC2J45CkWCgyXpc7r2sl2iQINibbi0HGGX9WlDLivMqhlONug7BNV0gYFsfk9k8y6yHLSc02dRv8J1ZdQLnMNVsjm/ssOsvFkMJ4f1uMoRhbQcSlQ1zm7X/jta/9u//pf7l268YtP82yvfmEa/RvbDF7f47LmXUGdH5m3h1pZh5PAM0v25iqhWcPBrrX4bQym2QGe8jgyDwHyCiyOo+U6RZjYOf96/de1C6PW6j2yLC0tMLB+ZVhDg4fJ5VGAQPYDMCTAJZwOJU6bx7YHGIWyMkK2vRRxG0ZjgDevIRMbxHLITMfi8VvSjepxYReDG8CMM3BC1EB73uEYILstnnFoxZY1lq9NCZLHEDRBBLqeWHGy9uaY6IrU2XExry0HkzsQeaJrZ6HmmHKSCb7JAlLAaMxw0GWX/WRK6TDBxbnySnEhFAnSLJNLKARywLE8oZ+YPQoNA9k/peT8dgTwJdVL0M5aZtU2hD/VVRjdHWN1EVjx3xBpZHWhXSxerMsnRImPRs8JIYfJjMMOrEsAYst3i68A7IiP+oke1YwPdmB4HsMKAVNBZrAQyDzUAbVUFdtktROSf3hFDGSVJjMW+2LAcIFmWJ441zpBAd/UhVRB5bl6Oex1RMcjgsReIPoQkBm4iZsVFfByBLgjfbXX//68uzUW2+99fqLLzGED/KM6McOHaB0IdzezsHicv3QitW0ZWaEh7dZWHJq7ik7R+dtyuCFunin+aBqRHaUL2mhki3RWPjeYo5DrN+zHBMig09h8YHLW463v+FhCt86SSTH5cG3XzOe5iYJ8QQgVyukIcCROUxiEbCLPdCEICpgasesr42bptZeNZNVqpbyCjQqX5VuXO1DoGjaIlpMcjw44pk79bQapFhQewGquVuQxCIEHzjCQwNDoDoEdEXEpsZS0mQlN7HcWCuZQDWAljFi9HeCbCL3v7XkAyeAr7oi0lEmtGit30Pz9D7Rdd3XmAnbPl+y68JOiwCADF5SVw4y+A53daEMe+O7p0OjD0sfYEP5XcgE0Lkm8OSbAiAjc0gWTKfvVhnIsmqjx9qz+aYYWZNbhVGpC7o3GN32whW/HFKt/zmLfVsny/aAVpa3t9btDbs/wCK9yakoSiM/AjsSQJTNFucv/+ov/9Xf/R9/f+XKlWefu7C5vbMyv3B7p9aYnjsccrU5sn5z7ehyXepwe3fHynncICqWmJGd3If1em2olzOd9rhgh6MV9m4xSml5U2gymhOv3aOa1bD0tW0YIjlFgJFEmbJIBk+EJ4b6Zqp9wAxZhWoBgKw9c5WKPBDAuPoiZAiEgttTQmTyfjAJMM22EgNDqhjm/9/evfbYcRxnAJZILm+2SFFcSiJFRlIMIci3wF8MJEbyIYH+ooH8ifiPBFASSbGDBEhiW6ZMySvxutzlJU/Ve07t8HBJSbE3CmU3yN7q6qq3qntmqvv09MxgU3T+KPrhg65VpYbCOX7MJ8DqEEsIyknoIJAMR7HWeax9dVoLFiBGmyaaygMcgbuMNYg6REI/f2IRE3JoBJwVRP9hpTzrNBaDk3x5XUSALELtyC+J8MkM8RzhpeILSj9zAOgz45BGPavjDhH9w2ZtdJT+lHJiTdXyXNygc0noQlrpyHCWcXQDJ2LDDDHqamMiROjhYEZ+ZWUdB0cgzismxVbnHS36MhQJqLvYx4cRLtiOI9aPa4yxyry60muhw3adhGE+KmJU5PKzwkfK+wkvOHE7fsIPcryNM5j1qoTdu+//3d/++z9+8C8ff3T23Nk3z7+6e/+Bd0TXJqPeEWQNfffuvctvXbEKZAONFYduOm0R4aB3Ifck2vDzkqFCXG7T9fbqeOLnRSm461TOGQZqGazmocdsBj123tKT7xXfu0NYe8b/uB2HQ7fdAkF0c3onT98aVRQN9+oFGQ89XCb3XqD8vBit9qoU1crxaxW/h0NFI1MxOnEDTUxDq6qFS93C/eNHJ4/1kku9k7swJAJq67DlXy8F4cdiLZOR0afHfCOhXnEqmbl71RKCDHPuNaCpsN9264M8qpIwS6YTmQgUSidbY4mFj4HIwJCP3dMNLBm0fHnzPJzgx9bXzzdgo4j59RFeLMlnDgBH3YxD+zRH7qhNsxLrc7APdeZ/58azoJzrANVKHEhCj5XwU0S7HsjQWiqWzCJIBTB55NFr7NJNUT6E2tAxnWLXl2+I9Z2z8FZXV/HXaMFfVWvRmqL+ROoakJh1m1qf13J5bXmU5yKnipZ3qyyf1PucvRLH3NmCvdWUjiRkKmrAiXAMQohLKaoq6w8f37l9870fvPv+++//9B9++uFHH13+8d/c3rvlqSsB5PH+AwH6xo0b+urihdcaUOTm1xyX9qc8qtR+egDY97ZOb7kl3U88FJM/0+yOgzotrtLimOWKc+degWutSdiqeyLrlhZu03wIkUa1rQpzOUcUtQ4UGRGS21LXlpYUrRBL4XCiS703RRzIQ43dYnUqnLYFvFMhSxB67uy5jfIqicYQZNA4xAijtdQAEJnuBKtNtewTsYxbNWA86XzCemDlYAPoUweIWAlTsVrUKSCRD22QRiRFZmrX7IPaDc5GMYqM4gdqQ+C7VHzmAKDlR9rOJX76+kjNDfjYigNLN0bmdyEGcAyFkM/pi5ZI5joZczj4KYaWS+GkKmsqI4MgACecZY4fK5ghluCpTVW0IuNqXoIsVdBTJBPHTH2HiZOklksdFwqsJMSUXlzClyq+V5SpSiquazHV3pD9vYc3v7x1+9bdU6dd73bU7J08wdCqjQ1TGbX0SswxZJJtkDICeJTZ5tEf/eWPPvrwn3/9y1/9x3//59tvXKkNKD5FsL976vTZz3e+sB3z4oULAnqpFVrBEFmmRB+15v7GD+OW+FaLQgexvzBritwpCPb5eOHpS1snzp/7vqfM9u7v1s6fThEILVdkIrqKPImAHF3rTd1v+kq7RH8zXLG7fxj4rM3qJwXhFujpdtZwlHE7BXyZY6+LzNVIVdP0tm4PJ1Mrbb9l9Er76gWhVFaIiz8qI6w2PuDoJTQ/5dOBBBppNWAEYzAzZhDACTM0hCUBOd3l8KYVkxND545OrMeBGJpOjnxMyMdiWf0DTk9c7ct+SPc9nS9lfhd6jscS5P/gqIyJIQ71ZOnVN6LTY1QCO1bCcYKOOcSyuGGFYqAig8YRGiI2sIPmRFcrRZGW5Eo4NKkKeNQHDXjrHWTUU4j/kY/ueLJUH7Ew5VziW5JAlvt7YEm2v9UiRXFTcLr/YP/m7Vu3790VjOxUqS2UvaI9Do3pcBTHPTi6zChy64svXtu+8OO//qvjJ7f+6aMPT73yvXsPRWGftbGX5pSppfcXuQdAk1c8lOK2fJ1UcZ1H/Qqg2ppJxldo1Cfir0fc3gBZTak5et+HfPTYvs5X3ck4S6smyJNydGKR2+nMFJND1xX4y54xR56jEBV59ZjvJNz3pYRVQByV1K4bchB88atX12cdIimS69KqPzc6fGqHYD1N4Iml/8RxLcWMtyQhp2832hiQmCBMjCL/EaoCe/HiRS9VFdZVYWomK1LAI7P03ACpNyQy0ydjdzyJV8mjvpEfWnUoc0PxBS3WVgTNmzQnYo7c0bUqx3sDnxsbnN970akzmMs2xvSSs6RTu3RvWTuACFGA2CQckpKTMnSECWDqfEV0qvQJZjjogMThguhEgsCSGTEXxlpkNZ0MbEwEXz6Jn7mKcunSjfU5LjgjjFAEGJUIQyZshqu2IqXaDkx5tNZ7PPHrWYXWqub03PnM6e8BCc6spAAEpgkmejdv3v7Zz//t9Uvbb11+47UL57zKn2txhoDE88wHA4KOz2RME5V8vWxv//5f/PCHp06e+clP/v6Dn/3rn7/3Zw/3Hp3aOv3Z5zuf/XbnT995u77sXsnJkPOfowcHQtN5beQi8eqFc6dOb+3u3nMfuPug9TqrtumZ0nvsV4X3tXlp825/zl7wevva1Z3PPvfCUWv4PPTGN65aqXAmSBrCfz5LwORAiBl49JpqsYyKo2NNX9XtO70kUrtL69NsdNMPbgJLJdZnFKY24ZRYpTpkbaSy6qjj9aEYQbrfhlSu1zudavNSLy75TUOutiOtxqf6gsM6xU/I5D0ZzUPN0ShjKiX8+nCNXVe9J7XE+s1O0SbASaMbH9J2P62oe3kfWG5MJ6TWrRqS06jQik6FCMtDRBE4E1K1sQEjwLriJALoiBFQG5AlP8JL8NTiD3ODjsrXyZcIS/kxsWQeHT3msrC4MhQuF6f66Dz4I3J6YPp8OkT/Jy0FQuM7YZd86oMQOsVhUhmaYmgE/uQBTB5+qkZYMdfVXJODiYO2ZFB5X35FrC/d0NaCcWpPTV9+S3NoTPHHZe+v+btRwVOvt27f+XznSzdBfRDYs8aiSSF0UKNCeH1XtlqRixxTOvFSx6bHXkRx/K0/uXbp0vYvPv3N5beuff/lLVW7vge2/+jSa5e8wghaPcu2TuVGuVdDQng6u0NZBZSKKn3XU/xJDOE3lqpalPNiID9YfDWzoq3O9ZrSl73M7he//lSUrF09+fbWeoLMT4pzaEIrkjO6kecJ97RRq23zAStWYhoM0NTlEo74hijdjnRlqOWXhwB+TJDxSdGlfDXZ/3VUJVacTksxaOEvDRFIQ+RTyw8yOAa5jP/BAYljkAUVNDtrNWpnZ4du1ENouEReHn7ai8YxmiKYiJOTRzLFqV0yR3JDZoN/1MXnuHTUpg/FPxgAxjPdJ03xULU/Mp/VA7ouVcsOHObTWksxtdX166S4rMUu9c6W/KERoeWEu1QX80qxlA9SLstUjaTqQ4WjFrEgR7LoWicpRyMTdbmr3eVaYaPHg77qqzkVc9ddFKh6oMzijdsCPUgIzWZzJoCKD/Z2X3n3agcfEaEia0JDW9dG/2I2/QadUD3CZde8feQXL21fvnb1g48/vnL16nvbV05unfSkMUNvvP66Owtc8mBu63OzwpboL8isELsrBCm/KpA8b6OIqX+C0J9mvkIVD+3i9KTb5Tdf/+DDDwXDra2ThoH8agkI0wma1Tt9sFiHwAlDp79qcRIolWru3NuN9BV+wj9Cqi1U6xQOwOAXu5f4cQq8U49Xpvg6tZ7ZLvOd/A6Q0rru1eoaPQJTPUC1aBgJx9XM3vaj6FiTCb7PzIUoZ2p77EEiQ7+GgTYQqEEOfvtSXUxMlUQsKiyqPYBbU2EmD3LyJWct+8RfYocCPiH0VYVnIcSHr9L+9uvrRxYvNCMpHr0o3n/7/XdkHswhePq44CzNLo/g8FeHcx1cBg2xTCP/lYTrkCKxWEfnOn9Onig25kiGMyAxCjCXuhm0GOrLv1T8CLh7z/sa7tkCkyggCE4gIFYxsSfCwQ+mGOHVA4/cSn6075FRs8Vrb79z7+GDX924URP0Y1u/+exznxmwPG8JyKbR6p5+zUTU152mmZZFqr02I+anhs2rmLVO0s92VSC286f/QTYMmlezziWrXlpq6Lty5c17d+/MOkmm8JpAhuSqyfn91Pl0bLqF9fStYoQJLBsbbyO89rz+jrCqAUE8LUk4TLVxKSoRDia0EZvawOJriwORI6tpBBwaUKOCUMQcnKjoFgtH3oiXcVFtwNPk4JOEiaMq6vhLZPSySEyK86GnNsVlvhQb/qHMqf1OEgfThyNq3nOOwRFZ/HZhcw4tW/37PatyqUwbAy53mW0wlz5M1RCHeoUpgIzMEsF1qJhEgGSuTJEuRVVLzJEc4dpuWcsragSIikf+t0Xk6govCrM/auXCd8tPmDhTD+GuTlTykzZMUIR66sSW1zCfOnNy90Eto197953zF7dv7HzBqGiy8+UXP3j3XS848x7QO/u7J06dsHM0UbDRyjnLFEVXSHrkRq7FbnG/u70nye3h0xmvwqRa48dLL735+rYfEJ9++ulr25cU8d2oROg3g0pa1MLVCTmsTHakMzuvdX+xlTzJWgs60Z9a7GcCDH0ZSMhoLBkEWKnofloYcphytKQKOF1CxKs2Wzxb3lAn4HLTQF/v6exOIJ/1q5KOCVWQeqXOgh0VRq39Va27Jsf73Ue4zSeWdjHNYTIInmhRe1QuDYFOCsfAgKAi141UGKpW9/oYyaCNykr5m/+Bv4H2zTFeYI2DpT0dOn2aTnmBm/Xiuz6HYOO44CelianNgRs6xQisxessl6Y4Mjj4o9tSh2QjMESEAthhq672wc+McsAXiCsZnIaqtY7QrnDvbJBnUi6IiIDXr1+3m55AgiZAUUBkhz8mIFBK0Hmwv+cJLPHi9JkzFoIubF/0/a+bd+8Iaju//dIeQh9rtFEkFuWZ6Y/bIbC1Baxpe0JPj1gVXkcyYbWeIzAE9ijIh8S79ufBuXPn3njj0vVPPllFw751QQCghJCgDaaiFgGhvkxk8IkNEyfCckxVUhwLMcijEjENiG4E0ORVMbqRRnEEtEIKDkXyUUdAIxZORiZ0PIl60MKJAzl2+BuwoFRJAQzaQAVWcZmmFWGmGDreLoWHPrTqUOaoHEowd2g6VBjzUGHMZ8kfNX/1Ag0tXzb+W3ToqBt81Pi6Mb2XPL06zKetq0paahFbqkfrac6IIYBMHvmpjWKYS3oEUpWry2pGihv504obnA35+COa4Xd8sMRfItFa6Zp+Z1aoarUJp+eXngTuT8c82t3z3Ja3MFi3ETTHRLQGLXyYLiNbI71r0+zey8m0SECpr86bme4/+uSTT06dPbO9vf349k2v6ydGwMuKrIQPwpigKIgZdQSj+w/ubr3sSeBYGJEnCHU2zJw8fuLhg4e+eyymun1w9erV6zd2Eh/js8ksQiIfIjksHAOCMc8zEZmaF6cejuttsg9rySs3eCmP7cRKRW0BVfzWKpz0LZQJ9BGIrT4qVVWxul6jTd5PgGzNClpx+rcCQiKWHFFdt25CGejlIMdofcR7bFv/OiSsIS2zAoFTzdnfN9Mv8+3S5GqpNLsspi04xgNv5YsP0BDyERv1JSf0c/JBGIvPEf7uVdUAkA7VtnTo9Mh3r7X/D1ukz6WlY+n/OS6pHaaf7YQVhxMCs5GegIpkwEcsxY08VjYQFEcLsaQH2VWZGnkWiToy9GuBXZwd1lf3iXtavVY8CAS1e/9x7RNamatPvdQEUIB48Gjv7uOa7wsBIp1LVC6Jy2rFFCmACA54eejLD18+feb0jVtf2h1Tcb93jnu/kNjh7UBnz9tZfnb/3h2AJ86chrv8KjKoSWksW5DX/VANHYENwsAlaHmCq6NoHQtL3xcvXvivX16nxVuJ/9B4okUCHxkceaAKvSf7Yq6DybTRgoDXP0hoio/2aiGFAn4VK62OESom3BpnRRFsjykFW3Lrmf5qzWt9wjjIqnQIMZqVdwp+ftxgTHtTu+SMChk+KEol30c/OJqDgc83hKECzSt8UHEvRCm2ZFSo44PFjG7Xr2SGJrMy2rqKqpbMkXwO8U3lnwP1olT9D+fyjSgaMrteAAAAAElFTkSuQmCC\n", "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAMAAgADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDySikNFaiAUtJinAUAApRQBSgUAOBpw6U0CnAUDHA5pwpg608UAOFOFNAp4oEWIOtXAflFU4e/pVsfdUd6l7msdmSA5pjt+8A/uj+dPA6VCnOWPJYkmmhE6/pUg61EvQVIKiRcR8g3RZxyvzCou9Sk4ibJ7GowKIhPoOHNSoTkVEBUqDnNDCC1uTg1NE2GHvxVdc5qaMZYY9ah7G8XqWWGBvAPy/MADg8c17ZpdvaW2mwpZIqwMokXBzu3fNuJ7k5614th2ZUiRpJXYJGi9WYnAUfU17Po1i+m6LY2Mj73t4FjZh0LAc49s9Paph1IxPQvUUUVRyFXUTixk5xnA/Wsa30+S+ZlTaoH8TdK1tSyYo4lGWkcKBVy0t1tIAgOSeWPqaxlDnlrsehRxDoUNN29DmbnQ5oGXc8RycKN2C30qqdOnjDMYDheSQM07xDPNNqzq+VSPiMe3r+NaWl3NxqtpPAVClUx5v8AeJ6A+/vXNKCcmker7StClGpJpp2v5GQrMCCpII710ejSNJYZdicOQCT24rnXjZHKspVgcFT2rodF4sOBj5jRhb89jLM7OjfzRpGvOviLYCO7tNSD/LKvkMpOBuUFgfyyK7XVtXtNHtDc3blQTtRVGWdvRR/kCvLvEfieXxEUiMQhtY2LLHuyWPIyT649K9FI8KCd7mXBp0moLLHYwNJcIu/ZGPmAHf35I4o2shaOQbZFO117g+h9K634c2qm+1C52YKxJGrduWJP8hWf4ymkn8TSCS2EIijCBuN0oJyGbH447gfpLWh0U5vmsclcwlTwDz0NUz1wa2XQMpU8iqVzbZUuv3h+tVCVtGKrSvqiiRimGpT8y5xUR9K1ucrQhOBnt1NSwIz7UHLMf51ARubHYcn3rR0wL9oYHqEyPzobshxV3Y0lQRoEHCqMCkJpx6VG7BRk1mbPQjlcIhPf0rNmkLHJNTzuWPWqknNXFGUncjJyakB8uPcerfypirudVPQnFE5yx9BTfYI6K5C7Fjk03vTj700nHSmSRsajJpznFRFuMk8UABPNRu4VTUTz9h+dRFy3U0ANJySaSkNFIAzTSaUmmmgAzRmkzRmgBc0ZpKWmAGg9D9KDQeh+lIpbnW2uk2EtrDI1suWRWPJ6kD3qcaPp/wDz7L+Z/wAat6bBLcQW0EEbSyGNQqqMsfl7CtNtE1RVy2nXQA7+U1eJOpUu7Nn2MKOHUI80Ve3kYY0iwHS2T8c0yfTbUW0ojt41cocELznFaZQhtpVt2cYxzmrEujamluZ30+6EQGS5iIAHr0pKpO97s0lQoJWaSv6HnvlHftwRzg8dKay7JCg5wcV0sejyXeobY1lmaRvlhUE5P0HWr8+jTafII7mze3cjIEkeCR6813vFpapHhRypuTi5Wf6HFhXLKAjE+mDVtLO5YZ8pgPVuK7S10LUbyHzbaxlkjzjcBwcdcHvUN9ompWdtJPcWU8caqSWZeB9T2qPrreiRtHKaKTUp3ZxYqRRuIAqP+tXLSB5c7FyB1Y8AV3uSSuzxIU5TlyxV2LEmOD2qwDubFQ52kqccEjipY+SKnfUcvd90mA6VAg+Ue1TO4Rc9T2HqaiUbVAz0qkQyRTUqnmq+cGnh6louLsTuCVGBnnOBTVIPfH1GKRHJqwjcVOqL91sVEzz1p4jPoaAiMc7QD6jj+VSiNDjKg/XmpbZokgWM5xVqKLDKoVmdiFRVUszH0AHJNV0jSM/KNoP90kVs6Bq0uiXzXEEUMjsMEzJuIHordV/CoavuVeyuldnb+EfCT6a66lqSg3pGIocgiBT1Oe7HuegHA7muwrG0LxHba2rIEMNyg3NEW3Ar03Ke4/UVs1oklscUpScry3CiiigkqX8TSWxdOHjO5SOvFWbS5W6tllGATww9GHWnGsqB/wCztTaFjiCbBXP8J7H+lZt8sr9GdNNe0puHVar0LOpaTFqIViQsi9DjqPQ1as7SKxthDEuAOWPdj6mpqCapRSfMlqQ69SUFTb0XQzdW09bmNp4wFlUZP+0Kj0hdtm3XlyadcXhvpDaWhyvSSUdAPQf40t/dRaNo9xdHhLeMt9T2H4kis4xXtOZG9SrJUFTnve68keb+Nb1rvW7hSxZID5Ma9gAPmI+rZ/IelcsQB2q/cSPcTNLJyzEk57knJNUZVYnYvBPGfT3rZO5ly2SPT/AFj5Gim6YndcMeP9lTgf1q7r/hO31ydblZ2t7pVCFgu5WUdNwyORk8g1W8F61ZXWkWunK4S7giCtG3BbHVl9fX1FdVTZjzSUro8yvfAur2qs8QhulHOIWKt/3y3X8DXLOOoPbgj3r3avIvGlsth4mvdqhY5UW4UDplgd3/AI8pP41LXY3p1XJ2ZxzABmx03HH51A+c4HU8CpjwoB645qPqxNbIxluIFCjirNk/l3SHsx2n8agPHJq7ZWbs6zSgqqnKqepPqfanJ6aiim3oaRqs5yanduKrsc1nE0mytKOarOKtydKrOK0RkyAgg5HUUsvzHcO/NKw603nJU9OooBPSxERUTVMRULigRXlbAqpIxarUw+WqjDJoAiNJmnEUmKAGk03NOIppoAQmmk0pNNoAWkopKAFBpQabSjrQBIaQ9D9KU96KCluereBSP+Eg0nPcD/0A16Fp2qX9x4yu7FpR9lhRmCBBnsBz1715n4QvIbDUdOvLjd5USAnaMn7pAwPrXV6N4isrfxLe6hceYkU4IU4yRyDyB9O1eG3aVr9T6itQlOPMlf3Vb1Lnhm3h1HxhqepSAMIHZkGP4mJAP4BT+NYumeMdUm8XwSS3chtri4ETW5OYwjNtAC+2RzTdK8QPpGsTXMSZtJWO+HgErkkHPqM0ljp3h+z1oaq2r+bbRyedDaiFhJuByoPbg+nXFFOSTbZGIw83L3k2rJK2ttNvI29L0+LSviW0UQHkyh3iHoCpOB9CCKZDbnXrGbS725aS/hdpbeVmLE4OGQ9wMjgfT0qO38Q6fK8OqXDmHUbaR9qBSfNjJJAz2IyfzrNvfEyvasmn2xs55XLzzK/LHOePTk5qOfozT2NWU07WaSV/NdfO5c1G6utP0rSLaKeSGLymLGPhshjn8gelZPiPW7q3tNTsRcGS1MAUGT5mbKrzu9yfpV1tc07UdMt4NSW5W4hyRLEoO4nr19eM+9Y+szaPJpkqW1vcyuVOWmwAoxwRg9c1MfiR0RprkalHXXppr1ucDawJMQ00qxRDuT8zfQf1roIRCsK+TjywOCOlcuo4HGCRzW3pLbrNkP8AC5H5gV6mJi3HmueTlVSKqOFt1v1M8SfMxPUsen1qZHPGBt9yP6VVTjge/wDOrCHmutKyR5M3ebbLCxttJ3bj6nvSU6NsYx0PallXDBv71JOzsNxTV0RE0gbmlIqPODVGZZQ81YjbnrVJGwasI/TpUyRUWXAalU1XU1KDWbN0ywG4p6NhgR1qAGn7ulJoq5p2Gpy2F9FcwMVlhYH2I7qfYjivTdD8WWOsyi3Ktb3RBKxuch8cna3f6cGvIC5WTcDwVAP4E1ZguHR0dHKyKwZGU4KsDkEU1ojKcFL1PdaK5TQPGkF+Y7XUFWC6YhVkH3JD/wCyk+h49D2rq6aOaUWnZhWbrNv5tqJAPmjPP+6a0qR0V0KMMhhtI9qUo80WjSjU9nNT7GVY6zGlvsunYMowrBclh6fWopLq51mUwW4MVsPvMepHv/hWjBp1tbnKIGP95uTVlESMEIiqCckAY5rJQk0k3odMq9GMnOnHXpfZEdtbRWkIjjUADqe5rlvHOoxpZppq4aSYiRx/dUHj8yP0rrmIAySABySewrx/WNQbUtSubw52yMdgJ6IOFH5AH8a0dkrIwpp1J3evUzJm5OKqs2aklYknA61AAQDk9acTWT1GiZ4bhXjdldfmVlOCD7GvZ/CmpT6r4ctbm5YNN8yO394qxGT7kYrxNz+9JOMACva/Clk+neGLKGRcSlDKy+jMS2P1FWznmN1vxVpmhsY55GlucZ8iIAsB23E8L+J/CvLvEmuv4h1A3JgWBViWJUD7jtDE5JwOee1ULmWSeaWaV2aR3ZnZupYnJNVycA9OlIqMUipKeTTACSAASSeAKHOWq9YQAAzN1PC+wrS9kQleViS1sljIkmwX6hey/wCJq0X9KaWppNRq9zXRKyFZvfpUDNTnbsOtRE+tUkZSkIx+U1XfrUxNROKqxm2RGo+rMfTAqQ1Gv3cjqcmgaENV5Dg1YaoXXIoAqyDKniqpU1eK8EVWZRk0AVytNIwMmpiB7VA4JJyeKAIy3PFMJpTmkNAxp60lBooEJRS0YoASlFJilFAEpppNBJz1ptA1ueiaDFHPa26ys6p5G4si5IwM/wBK0WSNbeZtkm9CuNxHzKTjOB0bPbOKp+FTmGDkDNqQMnGSUIAyfc1rLKqo4FvCCVaULhsblyFzls5ILYHfivn5q82fdU5NQivJERjhS6kt5wWghYglQAzKBkMW+mBgf3uM1nyrtll8okxKx2t6jPy59+laYdSkySaeoMcQVwu8MCSMEkknHoPp2qUQq7NB5KiB2ARcEEEqTGQepY8rk8HP0xPWyKU7K7M57eD7dFBHeB45FBMpTAQnPB54x3OaaiW6zOXlaSFcEFVKs46Ern0OOvUVbiNpFNZGSGHb5TeaCOCwJAzzwSAOvrTbZo5YyjW8CyNtQMMggkkEjJweBj23CmUpaX1Ks0JinkjU+YqgOHXgFGAKnB57j86guR/oc/8AuN/I1oRxtJbmXKLCCA58sFgDyDz94A54GMcVn3rD7JcAE42Ng4xng0RV5ClL3Gn2OKjUsFCgkkAYA5rZsFe1tJXkUr827BPoKqafCVuPnTG1MqT0NWdRkKwKgb7x5HsP8ivUqycpKklufO4OEaNOWJb1V7IzQT1NTIagFTJ93612Hjt3dyeM5I55qeYEFPxz+lQRYDAnpViYZCt7kVD3NI/CyIjNMK85xUlGM1VyLXIgKlRyDSbaNuKLhaxZR+lTo3FUkYirCMCalo0jItA08GoVY/hUqnIzUM0WohILEj6VIjYxzmmbMdOlKBzxTVrEu9y9ExZcZIJ4r2fRrs32i2V0xy0sKsx/2sYP6g14nA3Fdz4Q8TraLDpV4oEJcrBOD90schWHpk4DDpkA+tJaMVWLcU10PQaSiimcoUUUUAYPi+9e08PypGxWS5IgBHBCtncf++QR+NeX3BwABxXo/jeB5NJhnVSyQSlnwM7VZcbj7A4z9a82uMhgD3qJb2OygkoNrcrOM1C5CqSeg9anI+XNV5x8je/FVEJE2iWzalrVjbIgJmnVTx/CDlif+Ag171wDkDAByBXjfgFQ3jG0A6LHK3/jp/xr2ImqZzTep4hr1mbHXb62xgJO23/dJ3D9CKxlJ3EHvXbfEK3EfiJZQMCa3Vj9QSv9BXDv8kxPvmmi09EyBwQze1aqEJCijHCgVmzrhgR360sF1tZo3Py/wn+lN6oI6NpmgTnrSFuMCs43rJIwG1k64PBqRNQt34LbD/tf400iG2WCeaaaTzoyMiRCPXcKZJcQxqSZB9ByapEMcTyajkdF+86qfc1QmvXfITKr+p/Gq2cknqaLgkX2uIzkBx9aaJY9oAccCqRPWkI7UirF8lSMgioy6YqoAM/Sn5O3GelA1ZAzZJxwKjJNPPWmkUARmmmpvLJppQigLEZAPUA/UVGY0bqi/hxUpFNNAiu9qCMofwNVnRkbDDBrQFIyq67SMimKxm4pwFPkjKMQenamgUCEIoAp1KBQAw9aKD1ooA6/RIzFpceeSxLD2B6Vpg1yEWtXcUKRx+UAqhQSuTx+NB1q/b/lsF/3VUV5ksJUnJvTU+opZth6VNQ1dklsdhvIOQxz9aC7Y+8fzrjv7Wvyf+Pl/wBP8KlTVb1l2mcn32j/AAqXgZ90V/bdB9Ga9zfSm4MVtIF2g7iAOTS2F/c7mMspK5wBgDnv0rKtmIcsTk4xn60rTNAhjK9jsYd/rXRLDxUVFLU4qOPk6jqTk0tdOhqPrRZsJACFOAS3B9+lRvqssiMhiQKwI4Y1lxnjirKfNitVhqa6HLLNMRLr+BMh3Rg+np61Dd7m2uzZOMDIqZAFUjPeopxnCn64rVRV7nI6kuVq+jKqjd/u/wA6lBppFKKoxJFbirMQByGIK+h5xVQE5yKmjfIqZIuMrFvyI36Daf8AZOKY0DpyDuHp3/8Ar06N8Y9Ksp8yjHSou0bJRZSGCAR0oK0902TOoGBw350AZqrmbVnYj2EGnoCORU6wlhwM0kzW9sP388UR7bnAP5UXGovckjO8e9WY1zWel/aZzG8kv/XOFmH8qmTUrZDkpcqPVrd/8KlpvZGsWupcC9RQV+lRRalYTvsS6i3dNrHa35HFWivas7tMuyaCHrVpAWBUHBIwCO3vVZRhulXrSJp7mKFHVWldY1ZuiliACfzobuFrLU9e0a9fUNFtLqQYeWIF/wDeHB/UGrtQ2VpHY2MFpDny4UCLnqcdz7nrU9aHnvfQSiiigBHVXUoyhlYEEEZBB7EV5j4s8OHSJhcWwJspGwvfym/un29D+Fen1Wv7KPUbGe0mXckyFT7HsfwOD+FJq5cJuLPEyvAqrccL9a0JY2Rip4ZSVP1HBqsEV51DchQWx2JqYs65IseGbh9K1+11KRGaCLcGUHDMrKV4zx3zXqtn4o0e+KpHepHKf+Wc/wC7b9eD+BryoHPQg/SoZ4xJGwHBxVX1MpUkzoPiFcpLr0So6sI7dRkHI+ZmP+FcrZrp0pYX0ksRDqQykkMufmXAB+buD0qq48oMMAEZzV6fTI5dau7ZJFt44mVTxkqNyrnkj1ZuvbtmqukQo2VhbhdE/spXW5k+1AsSpJy3zKAMbcD5csMdyQelMlttBF3Jsu2aDz1VGLEfKyHLdBna3J9sfWkbw6A+yS/jVyGZVAU5UMoXHzcllYsB7DGecSP4Rhmd4YNVjaUXTwgFMjasZcHgnkgYx0znn5TRzIGmMW08PSMPMvDGpDEtvJxmUBfxCA/gR3qA2nhtrRy10wnECsAHP395yvT+7j9DjrVUaAH01rz7emPsZuFXZ0YMFKsc8DJwCM5ParCeEN981t/aMYZNpYMuCQS4LLz8w+VSOmQw6cZLruTZ9hmnaVo1wl60l2oEUrLFvmCllCscj1Gcc+3509HTTp4bg6hIUVQm1t+1sHJO1f4j93jtn2p1zosSeJf7Ktp5HiDrE0rAfeC7mwB6dB71buPCscVwypdS/MrNGrIpK4ZVAPPJIOR0yOfWq5gsxs9voXkny7xVlVG3ATZUuwLLjI5UHCk57jPOSJEi0GG7s5Y51kjYOzpI+5flwF3ccbiCcY79KSLwfDLc+S2olWZnCZVcMFYDHXqVO788ZFZeu6da6U0UVvNLLIUDSFsYBIUgDHQ53Ag+lHNfQVjSaz0gyWbRXI2STMswaUAhSx2noAo2gk+xHrUzaXojBwmoKjFm2FpgRtC7Vz77vmx/dPU4NNHhKDzrGKS7nWScKzrsXhcfNjPPUgDPfpmkHhNDawyG/YvJE7hfLwMgZQcnI3DPvkHFHMh2fYS4ttEiWB7e43hkZpFaTO35lCg49ix/CiS20PEgjumO0qiEvy2d3zdOcZXI6ccdeVufDEFusjnVAwVVbOwDG5toY/N90qGOfz95bfwzBJcmMXhyZtnlsVUlecMpOcjG05x2YdaV0Fn2EFn4eWQobxmUStzk5KheOQvTcOO+Kgew0dYdy3zmQJ91sYLYB9P94enA/GFbK0kutSSGV2hgDCI7vmZt6qp6cg/Ma2ovDNmt9Gk8+RvLMrSquUXOSe4yChB9Nx+juBgXcFvFNst3aRVABZhjJ74HpVV1z1Fbb6XB9lgkjn+ZmjRtzA8szHGB91goXIJ656cZfPoiNMUtpSFEjIzOchQqg5OMY5x/30Ocg0XGcw6EduKjKkdRW+2i3HkecGXb5YlOVIIUjPI9eOlQ3Oi3VtDJLIg8tOS2QAeccZOT+VUpE2MMilqV0weKjIpgRypvX3HSqhXBq7jiqzDLE0EsjxSgU8J7VNb2/nPjOFAyaHpqNRbdkUSeeBmnCmZpwOaCRwpwpopwoAUU9GwwpgpwoGXYnCn2PWrLBZF2Hp2I7VnIxx1q7A25cdSKlrqbQlfRkY3IxVuo/Wp4nwR6UToWj3fxKM/X1qskhGKad0RKNmaasGUYxTJ1OA3JAHNQJIpxzg1ZSRgRnkUBZtFYkeo/OlCnGdrbfXacVoKkbYYIp98CpNvHFFxWMwD8qenDVNcRbCHHQ9aiUcihgiwnODVuHkVTjPSppryGxhEkzHJOFRRlnb0Ud6zaN46aj3jdp3OOMDB/Cq32hWcx2sLXUo4IU4Vfq3Sni3nuYzPqTiC36i2Ru3+03c+w4qvNq5RRDZRrFGvAIXB/Adq1hSb1Y3Zalv7FcSrvvr0RR/8APKA7R+LHk/pTY5tIsGJhhVn7sq7mP/AjWK8jytukdmb1Y5pma3UYrZE8xvP4hHSO3JH+03+Apq6+xPzW4x/st/8AWrEoHFOwczOgGo2F6uy4jXB7TKGH51Mmm+WofT7t4FPRc+ZGfwPT8DXNA1atbya1YGNyF7qfun6ik4xe6GpdzcGoT2ZA1C22p/z3gyyf8CX7y/qK2LOVJmilgdXUspVlbIzuGMY96oWNwl4gaMlXHDKe3/1qkawe2ulurB1tLyJll27cxSMDkbl6EZ7iueeH6xNFJ27nvh+831NIa8/0L4pWk0y2XiKAaZdjjz1O6CT3z1XPvke9d8kiSxrJG6vGw3KysGVh6gjgioaa3OJprcWiilqRBSUtJQB5p4u0VtN1JrmMA210zMn+y3Vl/qPY+1cusYe8iRhlWdVPbgnmvYdf006tpE9suPN+/ET/AHh0H48j8a8oi0+S8vvsyyGGVdzEkcqVPp6g1EtGdlOXNGz3Qk2nKc+Xkkbj8x4ABYEkgccLnHftyQC19Kuxn5xgHGdrHOG2nAAyTnkDqefTlksd9A8sbXLMUZlb5jztAP44wMfQVA5vSrhrmQAKdw3McgcEfr/OlzIajIil0+Rrl4WZVYTLEWIJUlgCv55Uf8CFRnw7cMJyZiWiYLuKHBfbucMc8BVPJPOSAQCafNDcrdNFJO7SyOyvycsw9SeTnNVJm1KNXSN7logSjkswVstt2/MepLdD61UXczlFrclXwvdy21rLHNEy3AUkMhG0sQB65/iP0XPeoLTwnqFzNGI5rdcsVJJb5QHZSTgcgMo6f3h05qylv4kfyo43lRlOYozKFK7Sq5HP8JbHqMHpUCQ+KB5ckLXKoxVVJlUqd5GARnGGOCfXimn5ktLsVT4a1MJLI5ijCwiUgsRnIJ29PvbVLY9BmoH8JX9mtwZ7mCNbYrlgxIyx2+2MYbk46DsQas/ZfFs5lkjkuR5nl7maZV3ANtUEk9mzgdutU7vT/EDaSby4nkNkCsYDzgbgpwqhScnac8Y4wTTXqRZdi1F4TnmsbaQX6q0yozrsJ2q+4q2QfmJ2jHrn0GaSLwdeTPZRtexCS6ZcgqSVDKrKevzfeYcf3fyoQxa+bWOWD+0PIh+ZGSQ7YsruyMH5flGfpU0OleJ2BmX7VClvAsqTPNtVUCkqFbOPus3APGSKfzF8h0PhW5ntlkS9hDNOIXJRtqgqG3EjsAec4x+NT23gu+urbzHu4Ig0C3B3BiAG3EEkZOBtHIB+8KqaNaa5fpH9huWjiW4RcfaAoVzghiv4Dn2HpT2sPFEUDHdeLbRwMrMJRtWIEqUHPT5fujtg4xij5h8iaPw9e6lFbiLUlm82Jpm37gFCllXnnOdrY9KU+EdTClpLu3Vw0jMu5jtVMjdnH94Eeo/SmQaN4nhkEUTSxTw7hFH56qVPyltvOP4x/wB9H3pFtPEZAeOS8YiVdrJODmRmKq3B7spGfan8w+Rah8E6jJIySXEClcFiAzYLNgcDnpg5xjtnvVO00P7TDKwuwJonWLYEyGLMoUA56ncT07dz0iN54gs7hbU3V1HOrrhTKPlaQZB64BIIye3GcGn2+g+ICB5MDKGLYUOBkpxkjPUEnHfOcUterDTojUHhSVp0QXyENKyK+w4Cqm5nxnld2V/L1xTB4ZmbyE+1RAzQLMNynKk7Bg4PTLkAjOdvvVcWHijKmM3JLhRu8/k7t2Bnd7sD7k560kWm+J51jVfNG5I1QmQAKpyVAPYDaPcYX2p69w+RpJ4UlDOXvoxicxthCcrj7w55PPI4AAPNFv4XmkdUN1EoJAYhCQoJYevP3f8Ax7rjrl20us3F1Jax30gljaQn9/hSyjDYIHOc4x0NTiPxBFazXAuZVECO7L5u5sbirEAZzypJ7Dg9xRr3HoRC1d5JY0mZiqKyrtwX3FcDr6sKtxeGL2QsJWWJ1kVSrqSMMxXdn0BweM8HPakg0vVfOunFzG9wJFWXaM5BAbPI6DjoM9MVJOPEUtus4muZVaJZD5T8MGBO0KMdgcjGO1AzM1LTpNPZElK5ZNwUdVGSAD78Z/GssnFWr83ME0sd2riZTtYOdzA47n6VQ3EmrRLH7snioymCT2NPQc5NSxRiSUIemcn6CnewRi20kS21mpQPIu4tyFPQCrBkiQkKq7j1CimzmRgRwB0CjvUKgxAsTnNZ76s6vh0S+Zgk04GmHrSitDiJg2frSiogaeGzQBIKUU0UtAyVDVyAjmqKHDVZRiBxQyoOzuXlPr+NZx+Ryo7EirqtkAjvVGbImf8A3s1C3NKuqTJEfpmrMcuMA/d/lVEGpFerauZxlY1YpShBB4P61eRg6gise3fPyn8M1fhcq3qKi9ty2rq6LLruQrjqMVnA5P8AStUYIyOaoOqxyyliFVSWLHsOtUSlcjmuEs4fMdSzMdqIv3nbsBU9lYm23alqTBrkjgdol9F9/el0W0N5KdUuFIXlbVG/hXu31P8AKpNXs7y4l/druhX7qqec+prWFOyuzZKyuZV7evey5bKxj7q+n/16q1LJbzRMVeNlI9VqPYx6KfyrQh3b1G0m4bgmfmIyBTijj+FvyqtbwTz3U90o/c24CuSPU44/n9KTkluCTeiJ3OxCwGdozilRg6hlOQaecLyy5UdR6j0qXUNPfS5lxua1lw0Mw7g8hW9xn8aTmk0n1HytptbIhAPvV6x02e9mWNAFB/iY4FLYXttAym5s1lUfxKcEfUV1Nrqum3MHlIiBe6Ff5960HFJ9Rtp4eNooljfdOv8ADn5W9q1QEuISDlZF6g/eU1i3WqTWBzG+6A9OdxT6nuPft3qnNrksjLKnyTJwe6sPQ1LZpdItarbLNE0bBQwBKsVzj3Ht6iue0rxd4g8H3Rhtrowxk58lvngk9wp6fhg10JvI9TtmZPlkAyyHqp9vauXv2R3a1ukBY8qG43D1B9azlFNGc0meq6B8adNvCsWt2bWUh4M8BMsWfcfeX/x6vSrG/s9TtVubC6huYGGRJC4Zf06fjXy9oT6ZpOpquq6TDqenSHktlZY/91lYZPseD2wa9x0TwX4Tnt49T8PNc2YkGVmsrx1bPowJOCO6kVg1ZmElY7iiqVjaXlqxWbUZLyLHHnxKHX/gS4B/Ffxq9UEkUsiQxNJI6pGqlmZjgKB1JNeW6veRXviuW50yKTypkWNpMbQ8h+XcD2BGBk4zjNb3jO8lmvlsQxEESK7KOjMckE+uOw9cmuMe4nt5AyHhWV9p6MVORnv1waiTvodNKm0uYRhdsHxbthSwJI5O3Ib3Jx/SqqrqDk/6MSrAgkqcc/j7fpUsWrXNupQIjKdxw2eNwAOMHjp+p+tIdanWUuLaI5zn5mHU569euf8AvoipSNryKMkt+L6NDGv2jcGjOAd27p3xila41ifzUFtI53BXYQAglGyBkDBwwPHPU0T3kst/HeGNVMe3aoJIO31PvT01yZCVe3Vl81pFG7GFbO5c46ck54Oec9qpIiVxX1HxDNKDHA4mjDKoS3G5QcFscd8qT65FV/7W15oo1SFjEuzZ/o3B2n5STjpuH6cVag8RS2wjbyFkaNCud2MjaoBAA4xsB75zUD+JpPOkzaABipba2MhXL8ZXodxGOgBB600vIzd+4kWq+KCzeTbMTHksPsi9mIOeOfmJz75PqazZdT8QX8Hnh2lggG1iqL8xY8lhj5iT7ce2avXfiZrzTmtVtpVuGVk8xZGClWYs3ygc9sZzjBOeTWfp2vvpFvLbLbRuWYvukdlKkjHIB5GOmehppeRL9Rqaj4hhVraGKeFWKxsFt+R8oVRuI4JUAfXNJcav4nlsPskq3KW5hKBEt1X5PukABcgcYOOn41NbeMbq1RRHbwbVb5dzsdpC7RznsMn6k9uKanji+iZfLht8xoEUEsRtG3GeeT8vJ7+no9ewrlDT5dbslH2K1k2M6sN0GdzBSRyR0ABb04q7LqPitluYntJUjdP3riBl8rKhW2tnC7iMtnqTnABxSHx1foEi+z27BCpAJYfdXbg4PcdcYOTwahv/ABhc6ppaWE1tErKNpkUnJAx29cqMn9Bmnr2FoXZL3xa2px3BsWS4VGdEWFduNq7jgk5OAvHXtjnFQ/aPE0SyCPT59qqu4tCRtYSMynaOM7mYEcjBHHQ1UtvGGpWzhyYpWEIhUSAnA+X5uvLHaM+tTy+NL1rcxrbR72bezZJ6SF+B25ODz0APB5oswK0qa7dXs16NNmWRphM0fkkKu35gMHnGAPrircGr+KRqscSxMt22/wAuKSBVxuOWI3Y7jufX3qIeNb/7VdTRW8Q8/wDgwTtAQrwe/wApzz3HpkGO48XXF7q1tqZt4hLboyhQxIcHdyf++s/X0p2fYLovpfeLwjIlnIFRRwsIDKEBfhQfRug6qMAcGmwa54thnEYsmLwqGaFrfG1cHBxkHGAxA+tQp4/v0ummhtoFLOrBSWYKQhTjnuDn6gVHd+K7y6a7mjthF5yIoYM3ybUZTg+4Zsj3H4nyFp3GadPqqNJc29i0+9mVmCFgGbBPQ9emM8c1d+0eIJ4Lgf2fKEmhKlljYcO2SynPVj1+nQVR0bxJc6TatFFaJIruGZ23cdAOnHbg1pt4svHgWFbaFFWMx8Enj+HGehAyPfJ/BsaQttca3BfS3X2SWN5vmdRHjAUAZXd0OAPep/7X1ZZcQ2DRgIsYTyn2gK24cE+px9GqufE167lzFFlg4bGcfNgZx7AAe/env4muXaRzCqljkFW6HduPBHIPHHbFIqxmXMF1cSyXFykgaV2ZmZSoLE84zVNogjbcZI9+BW5f6+99bLAbcqA+7JfcOpwBx79fasoIdxY8k8mncfLciWN3ztXgdTnFWoIDECzEbjxx2FPi2rAGwQOSfzqA3DM2ABik23obqMIWb3JJHAOOtVLiYBevPoaZPJhSO/XrVFmZjy2acYmdWrfRFU0opDk+gpOTwen0qzlHinA4pg4+lPXlhjoOaAJBTqaKcKAFFTI2RUNOQ4oKRejfhQTzUE5BmOPbNMSTblurdAKaTk5JzQlrcuUrxsKKcDTBThQZk6MQQRWjC25Qe9Zic/WtC2PyilI0g9bGlbt1X05FZ2pIbzUYNMQkCch5iOyL1/PFX7f/AFn4VX010bU9Sv5PuqwhQ/7KjnH40QV2kaKPvGpe38enQqiopbbhE6AAVmHxC5jYeUokAzkdB6VlXt09xO8rnljwPQCq44Kp3Y7m/D/IrobByd9DVXVrlYwhZWPUswycnrSWusTQRYEcbbiWLMOTk/8A6qzZGwp+lKAFUD0GKE9SU2W7/Wp3t2UhV3DbhRyfaur8PeHXn0kWRXMk6M0xx3Yc/l0Fcfo9m2o6zGCuYomDEHuew/Ac17boFl9ltBIww78/QVwYuq7pI7MPGyc5eh4nPby2d1Nazj97C5R/fHQ/iOa6bQpbbVtJbTboKXgBVSwyCp6ZHcDofwrc+IPhozoNXs0PmxjEyqPvL1z9R1+ma89sL57C+juoxnacOo/iU9RWl/b0tN0TB+znrs/yLuqaBeaXIfKRpIgA23OWVT6H+IfrWUkqvh0YgjoQeR7V6vps1tqtkiMFkRl3RN3A7j8P8RXP6z4I892uLRtkvXco+9/vL3+o5rOlinF8sy6uGW8Dk0v5AMSHcOmf8arvMYHDbt0LHAx/D7fSi9tbvTJfLvoWjzwHHKt9DUAIwduCrDBXqDXcpKavFnHJOLsy7FcvDMssbbSP8/lV3Uo49V0/z41xKnO0Hoe4rDgcqxiYnK8rnuK0bO5NvMCfuNww9qSaejBO+hlJOJY2hkOdwI5/z+Ndz4I8Q6to8L38SNJbQyeVcY+4w6qJcfdJGdshHUEHIrhtbtvsd+THwj/Oh7f55rU8J+Krzwzq6X9sVKsnlTwt92VSclW9Oeh7GsZLp1RDvsfTOjaxZ67pkd/YyB4XyCDjcrDqrDsw/wDr9DV41h+Fr3RdU0o6josMUUdw26dEUKyyAAEMo4DAY57jBrbrIyZg+I9DbUkFxbY+0xptKngSL1x9Rzj64rzu5tyXZWVlZSVZSMEEdQR617ERWVqvh+y1XLyKY5yMCVOp9MjoamUb6o2pVeXR7HkMsA3ZwcVEYxnbjnrivR4/AUXnBp792jB+7HGFJ+pJP6Cq3i3Q7Wz0e2ezt1iWGQqwUctuHUnqTlRyalxaVzdVYuSS6nnjr1GKrPF1q+64fpUbx4HAoTNHG5Fp10unzTz7ishi2RjZuGWYbj+Cg9euanHiBEOBFMI1lVlXcC21UwFz67gCexHoRVOWMVSlXGTirWphKNnc0JfECJ4iXUVSVhFGI41yFbG3bz2xkk496bd+JYL6GaGaByJY9rE45bduLcHuGYcfd7ZBIFgy6Umox27JA9rHA0XnlCVZ2VcscfMRnPPbjGOTVd5PDztOrpGpdGVHEbYVvMJBUDHG3AyQDwPoXYzuyE67pRv53ks2+zs6Miqi5YKCNrDOMdD9QMg9aafFVgps1S2bNs25mZVycFMEc/eITknual1K98NNpE8dnZKt4zfI5iIKqZN3XOOFG3p0IHY1UhufDZhiE6bW86Z5cQkttKsqBT7ZU46Ag+1NITbEi8QaKvkRS2bYQ7mdYFLKRv2sMnr8+Tnuo6jo3VPE2n6jbXQS2EcrRqiHyVG47gzZb7wAYMw5/iPcczG78KvbRA28Rn+xxpIRGygyqy7gMdCy7stUsUvgmK5YsiyRiSPaGjk+7tKuCPYgMPXJHNOxOo+LxbokF1byxWtyoRFDhY1GCpJXbzwPmZT04PrWJoWvxaRqN3cyRysJl+UR7c53hsHPbjmtK1n8HC0skuUQSK2ZsxMSRtcckdeRGce/1qpLc+F2tovLtws32dlk+ViPNAXa34kNn03fSmkF2LoPiOw0lZWkimkLO+xVVSpDBAA2T/s89aup4u0lLGS3jt7kK9mLNwUUblXcFYkNngMRgepyTgVVF14SDTAWy7d8jR7kflSmFU+mGPH0B+tpZ/BBlY+VGFDcArIMr5RH578H0PBpNIE2VR4h0pbq4nEMw3XEdzGwRcqUXaAef73PHrVyLxxZqxBs5BEZGfaAuV3RBWxzg5ZdxHTmob+XwatjGYEid1Lb0TcrP+6UDB7fvPm/76rhwTTUUwbaOy1XxXBqWlizhtnhYrCjksNpEecY79x1J6DvycWO4TABNZiKzHpVlIzxmqUUgUmaqENjBFP28cVSibYODVjzz2FS0aJrqThQOlI7BVJJHSoBIzMqqSSTgVdS3jh+c/M3q1J6bmkE5bbCsyLAELZwuOKrlUC8EZp89yiKQOSe2aoGYlic4zRFOxVScU+4sqk8dqqsBU5b5T1IqAtkn1rRHLJq5TNJSsMMQe1NoIHg4IqwgWT1B9aq1JG+00DRZ8l+qkN+lN5BwQVPoafFNlgBVtkE0eOM9j6GhuxSSexTHWngYFMH5GlLYGAPmoEID8zfWnCmgYH9acKYhRThTRTgKAJE7Vp2y8VnxKSwrVhXavHU9KiTNaa1uWEbYrP2UE/lWTFJ5WiQJn5psyv+JJ/wq9ev5Wm3LA8rC3/oJrHkmUqEH3YkVPyUVVLc0bsV5HBkwTwBz9SeKWB/Ommk/hB2r+HWsy7uCu3BwzNu/DtWlZKVs4werDcfxrRO7Mk7slc5IHqQKJm2qc9PSkJ/eov1NTWkJu9Xt7cDIyGYew5/niicuWLZUU27Lqdv4I0U71eROg3ynGeT2/kPoK759UK5SHTNSlC8ZWAKD9NzLVfw9Yiz0yMkfPINzfj0/StXgda8ac+aVz0+WySWyK0FxcXXyyWEluhHPnOpb8lJ/nXmHjHwjJplzJf2MZazclmVR/qj3OP7v8vpXpl21+jiS18mWMfehkyrH/dbpn2I/GpwfOh/eIyhhyrjke1VTqypyuiZQUlZni3h7XW0m5CSuwt2bduHPlt/e+nr+der215Fd2X2mFDI4A3RxkHJPQjnGD1rmtf+HkV0zXOkssEpOWgb7jfT+7/KuVt5/EXg24V5bOX7OOGVvmjI74Yfd/zxW1RQre9F2fYzjKVNcslddz0ea1u79THLbWUMDfeWVTMx/DIUfma5LV/hsx3T6VcKsh5MTLtU/Qc4rXg8SX/iGBR4ZsPtEqgee07bEhP90n+I/SobjU/G+hN52raNBcWQ5d7QglR6nB4/EY96iEakdVoE6lOWj1PLdTt7vSrwQ31s0M8bdG6MvTI9R9KtAhlDA5BGc16Vrctj4q8G3txbxrKRCzIWX5kdRnHseP1ryfSrjzIvKYjcoyPda7aNRz0e5zVKahLR6Mu6iBeaPnrLbHI9Sp4P5Vk2bEyNjBIUuO+CMH+laMkogZS33WYo3P8ACwx/MA1kwwXCrLNHGzRw4EjAZC7jtGT2yeKuT11MpPU91bR7/wAFLF4r8NI1xpk0Sy3+mZ+7Gw3Fk9lycd191yK9J0nVbPW9Lt9RsJfNtp03I2MEeoI7EHII9RXKeCPFNvNpunaHqcE+m6vDbpEILtCnnhVA3RseGyADjrz3p3haybw14v1jQY8jTrpBqVkp6R5bbIg9gdvHpisE3ezM3qjtqSlopkiYrK8RWpu9BvI1GXVPMQe6/N/Q1rUh+mfakxp2d0eI3KAncDwRkVG67lBHcVu67ph03U57UA+WDuiJ7o3I/LkfhWE5Kjpke3UVjqtD1E01ddSpKlUpV5NaMhVhwwqnKo5q4sxmjMlzznrVKRea0pVyTVYW8k8yQwxvLLIwVERdzMx6ACtos5pIzJTtBqmEaRtqgsx6ADJ/KvaPDXwotljS78QkyzH5haI2EX2Zhyx9hgfWu9t9K0rSYGa3sbW2ijUsWSJVwAMk5AzTbRm2fM0Wg6vcDMOl3kgPdYGP9Kn/AOEP8RsMjRL/AP78NX0jPrWm290Laa+iSVoTcBWYgeWCBuJ6Ac/z9DUiX9nL5vl3MLGIEyAOCVAzkt6AYPPtS5mI+ZZPCuvxjL6Lfj/t3b/CqM+m3lrn7RaXEX/XSJl/mK+o4tb0qVFePULZlYgAhx1JIAPpnB6+h9Ke+qaYYS8t7amLbuLPIpXbjOefYg/Qj1FHO+wz5P2nrjP0ppU+lfUOq+CfDeuRlrnS7cO44mgHlt9cr1/HNeV+K/hPfaRDLfaU7X1ogLOm3EqL64HDAe3PtVKSYHmaRlz6Cp1iVe1SBMdKcFpgIBinikApRQBIDzS54pmeKlto/PmVO3U/Sh6alRTbSRbsICzmZshV4Uep9addznftXOBxmpGmKMRwF6Ko9qoStlix6mpSu7s3lJRjyohZsmmk0pNWbXT3nw8mUj7Du1W2lqzCMZTdkVjKMYxzikigkmbaik+54FbQjtrZRhVXHtk1VnvScrENo/vd6lNvZGkqUY/EzDcfMcUzFWp4HTLbSV9RzVcjIpmDTWjGU4UEUCgB6NhhjrWnE2F61lrwavxcRjvTZUXZkdwCsxx0OGqMd6fK25z3xxTBQthS3HinU0EEZFOHpTEOFSKKaBmpUA70gRYgTnJ/Or6dj27VSRlUD09Kto+cAZqJam8dEQaxKI9Llz/Hhf6n9BXNwSk2Ujk/MzEfia1/EkmLRUzzwce7H/BT+dc4X26cMHkyEfp/9enB2uTJ6kLuZ7jA7kKPp0rplXagUdAMVz2mpvvVJ6L8x/CugLbY8+grWns2THuVw268x6J/Wuj8IWgm1e9uWGRFEsa/7zH/APVXJwt/xMihP8GP613nhSCZPDus3NuN1xvOz6qoNY15fu/VnRh1eafa52174gurjUn0Xw7apdXkIAnmkO2G2HQBj3b2FcnZJqPiTxJHb31/qN1pKzmCa7tFMVusvZdwP3c4G73BxzXUeGrNbD4X3E9sM3c1hNdSSdWeVkY5J7kf0rx1p9etdH+xie9TTpMSGASMsbMQGBK5wfug/UCuanTjZ2KqVJuVj2q58DTaUoudBv7uGePnyJ52kil9VYN0z69q27eXzreNyjKWUEqwwVPcH3B4q9oLXDeGdN+2KwuDaReaGzndtGc57+vvVaQgTPt6bjXPUWpvRldWDFZ2u3BstBv7oKGMMDuo9SFOP1xWhmoLu3ivLOa2nXdHMjI6+oIwazW+ps720PJ/AepQ6b420SGwubiaO+hEeoowIXzTuJIz12/KfwPPJA91LI46AGvMPCXgiLQNcn1K7u4pGXK2wAICqeNzE9GxkYHqa7o30SthGDH1B4/OuuVVX0OOGHk1qtTmrfRIdO1vXYLZQtpM0bLGPuozRksoHQDkce9eDWqvBOJxjaspjYe3+f5V9KgLvZ+rSPudv7xPf+Q/Cvn02w+x3Q2gH7ZIAf8AdVv/AK1OjO8myq9JpRXa5FqZUBkJ5K7h9Q3+Ga6HwFLbXFzrOk3KKw1HTWhjBIB85TuQgdzuXPFcrq7MdRhUggqqkg+5q9o2nnUZoIY5o4JHn2rM+QFJ6EkcgZxz2yTXVJ3OOW59R/YbfWdCt4NVsY5FeFGeCVc7G2jOD1Vgc8ggiqdl4eurLWrW5Gpvc2dvHKkaXSlpkD7flEn8SjaPvDPua8907xl4p8EXsWn+L7WW5tG+WOckMxA7pJnbJ/uthq9X03UrPVrCK+sbhZ7aZdyunQ+oI6gg8EHkVnYz2LdFLSUCCiiigDF8Q6GusWqmMqt1FkxsejA9VPsf0Neb6hYz2MhS6heI5/jXAP0PQ/nXsVIUR12yKrIeqsMgj6VLimb0q8oK26PDHgQjjp1qjPbjB459QcV0mpacbSSRkidQHYPGE4UhiDjHbp+FZUqB1zWSdmdllNXRiPGR0Y/Q8133wu0ZHa+1iZVZ0f7PbnH3flBdh7nco+gNcTOu0nivTvhfOj+GJ4R/rIbt94/3grA/l/Kt4u6OSqrI6m9vYLCJXmZhuYIiqpZnY9FUDkngn6Amliu7ee1aVm2Q7miLSfKCQxXv6npVfVTY28lvfX1yIBCWVGZwqksuCOe+M4xzWfHomm3EEL2VzI0cSsiPFMsi8sxYgkEbtx+994EDmgxKcvh3S7+Rrm7u/OY2Yt925QsabV+ZeMqeA2ckc+h51o7ZES4iF2/lOrL5bOuIsgbj0z33fNkDd0ANUpdFsJ4YYpLxnjZtoUuuJCIghXgc/KuTjnPPFNTw/aR30eoG9kd43kZndl+8yqhOeildo/Mii4EcXh+wsI47kXsoClZBKXRVJwwUgY2j75P1CnryUl8P6LcMpGoyRyr+6BW5UFWaMKOo+8VVSM9cE9M1rXsFu9qlsbiK2ZhtjLKnOARwp4P3ugA6jpWOnhGxtd1xHft5waJj5mxlyqlGyp4JYNznoTxQB0B1GxguUs3uY1nK/KhbkgMF/PcQMev0NW45EkXdG6uoJG5WDDIOCMj0NYGpaFp2qqJXmRJIlcpKNvytuVlbI7Kw6cDkg9a1NItDZaVBbGZZmRcGRVChiSTwB9aQHhnxL0GLRPFkptkCW12guEVRgKSSGUe24Z/GuLJwcAEmvT/jTOja1pduCPMS2Zm9gzcf+gmvMQMVrHYBPm7kLTNx7Fj7k4pXbPHakqhChjjk81e02QLcNnupqjUtu+y4QnnnB/HiiSurF03aSZccl5Djjjn2FV5G5q3MVUsq8ActTILNpQXkJVeo9TUppK7NJRbdlqQ2kInu0Q9M5P0FaU04UMqEADq3+FVlEUTM0acHgFjzUErs5OenoKGru41Pki0txJZSzc1Cacc0hq9jFu5ZgmxlWA9Mnr+NWI4oMMmxRu5II4NV0Kv1H4ikJZWGCQVPFZNXOmM7WvqireWLQuWTlD09vaqBUqxUjBHBrpEZLiMqw56EelY17Dsm3jnJIP504yb0ZFanFax2ZXQZNX4gGTA4461TQDFWYWYNtHzD0q2YxdhjpsIGcimValhZssBnjpVbGDz1FCYmrMVOM/Wnj2pg71Ig7mgRIowPenZpBS0APVuRVyJ/m4JqgKtoSFOBzjj69qTRUWZniJsxRHP3mZh9B8o/qfxrnC7eWE7bt344rqNYt/tF6LdRxDbcfU5x/SuV74PWo6FT3NPS12xyyHvhRWrK2EAH8RArJjfy7VV+rGrnm+ZLEo9C36VvF2VhLYoyymO/LjqGP5dK9P8Ah9eqTd2LHlttwmf4lI2t+RA/OvPZdMZ7SW5jBZ1c591HWr3h/UbjT54LyIFjCcEdmU5yv4jNc9Rc8WkbUW6U03se32Uq6VbrDASIl3bF7Kuc7fpk1RTw7on28XY0yPzQwcxq7CMsDkEpnb1APTrVi0kivrWK5hcNHIodT/n/ADkVZS2XIJGT1yeua83mlHZnquFOSu0az6nJKuMAE+hzioAcnPeoVTA4qQHFK7e5HLGOxIGrKu7e8XWra6tn3QMvlXEbNgBRkhgPXJFaQyegJprMByflHvxQhx0Y14w45qL7NgALwB0AHSnQX9lPctbRXlvJcKMtEsqsyj1IBzVsLSasXGdtitFEUI5OMjivFtQtVgtVjIw0k1zLgcdSVX+Yr3Irn868K8X6kq61MYuTG8iovqxkPP0AUfjXRh7t2MMRJct2c9qbC41ycxtuWEAZ9doA/nmrukb4jJjBKksB6grn9aybdglwFJzvG1mPqe/510FgpS3ivShMauI3zjBIGQP0IrueiseWneVz2bwXrGn+JdKl8NatEtyBHujWbnfGMAqT2dScZHOMEdKm8NaNc+C/Gr6NDO8+japBJcW+/lopYyu4HsflYc9xtzyDniPDUv8AZ3jWyEIyraisSMByQzMjLn/dKn8q92MSNIkjIrSICEYjlc9cHtnAqNiJKz0H0lKaKCRKWikoAWkNLSGkBynidRZXC3I3CKdSGIP3XUcH8V/Va88KnZk5DNkkemea7zxq+66tIiMqsTydeCSwX+lcPcnYpJPJrGfxaHo4f4LsyblfmIGTWv4J15PD2uMLp9tldqI5WPRGB+VvoMkH2PtWa6jk/rVG4GF9K0iyKsbo95vbI3ktvPHMqmHcy5QODuXGR6HHQ88E8c1l/wBkGyt4bK2W5liMbK7NN8ijnIK5ySSxOPpzhQK8w8P+OtV8PILcbbyyXhYJmIKD/Zbqo9iCPpXd2HxN8P3aqLp57CQ9ROm5R/wJcj88Vpa5yNNFGw+H9zZz28sdyEKyQyyb9r4IDK6qNpVfvZHGMgHrk10kXh8i1kglud5KMilhuDEybyzDjcThQfoSCM4Fm38S6HdAGDWdPfPpcKD+RIou/EOi2Nu09zqtlHGoyT56sT9ACST7AUWJuyrrfhqDWIwkiqcQlN29lbo2Bke7ck84yP4jWcfCM6x30aXKslwIsZJUfLKWwQoBIC4AyfQdsllt8T/ClxKyNfy24U4DTwMqt7gjP64q5L8QvCUaF2121I9EDM35Bc0WAZ/wiDSW8cMl0QF+1DKkk/vc7WGe4ySecnpk1tGWy8P6M81zLFb20AaSRgMKuWLEAfU4A78VwGr/ABj02BWTSLC4vJOgkn/dR/XHLH8hXmOu+KNX8TTCTU7otGpykCDbEn0X19zk+9NRbGkHibXZPEniG61SRSqysFiQ/wAEajCr9ccn3JrILdMYyaWmllztGM+1aJWGMYYbHUYoAJOACT7UoVncKBlicACuisbIWkWThnYZY/0pSkoo0pUnUdlsc8Y34+Rh+FWYLKdpUJQoCd2TWy53MGkOMchRUUlwqcgZ+tRzt7I29hCOsmJ9nRATIcknPPb/AOvVa4uQ/wAq/d/nU4R5xvlO1Ow7mmGa3gyI0BPr/wDXoW/dlTV1povxZVCTvyI2PvjimtBcDqhH4VbGo4HKc+xqCS5eRj/CPQVacn0MJKmlo7sh2yA4KfjQQR1GPxp27uTTS2Sc1RjoQRSlT149K0AolhDAkkdiayAeeOtXbW42HBPBqZLqjSlJJ2exZG4KroOV4I9aqXYD5AyNxJq+SEbeD8rdainti7B4yD6ioTV9TWcG42RkKWHBB9DVmJtpyajmRo5iCCMjP9KVMVpuc9mnYsiY7sjp6VZCR3CAsgyPzFUgewqzbPh8HvSsNO+4ye1ESF0JKjJYHk1GgworT4I7VnsipIyrnapwKaYpK2oAUopByKdigkQDLD61dgUNIgJxlh/P/wCtVVR8wq3Dw6n0ah7FR3Ioh5ur3bnkF1jH0Vcn+VctqluINXuIkB2htw9gRn+tdVYg/aZ+eTcSZH4Gsy9gD3Oq3BGTvWJD+Wf6VCNZK6uY8rYXHsBVrTTumLn+FAtUpj0+tWrRvLtpn7gcflVp6mSep22mQJLo1s6gZaR1YnuWY4/UD86rWllDbX3kyIBa3asq9ijjoP54+tV/Dms2Z05rC7mWJtx2szYBzyDnoCDW1OkN3alftMJlJ3LIjggMOjdeOf5muOTak13PWioTgn1SNTwtfzaJMtpeHNlM5VJD0ifOMH0B/n9a9DUDFeb6XdxXlsynY5yUnj4YBu49x6Gu50qeJrSOONjhFCgM2SAO2TXPV1dzSKSirPQ0SOK4y78UyrrV7aNb3Pk28nlqbeVULYHJZmVj36KB+NdmDXJavozR6zNdKuYrra3A+7IBgg/UAEfjUwaT1KjFSaTZWfW43+YaVKzEf8vOpTN+i7RWXe61qMETS22naRGV+b5rVpW/76djW0mnOQAEP5VMdEeVCAFyeMGtFUsaywtO2v5nK+DLVb34gLqUckbE2zyzLHCIgjEbdu0cDk/j1r1sVxngLRfsK6hqLqB9rmIhH/TJScN9GOSPbFdkTioqO8jmhFRTSK9/dpYWFxdyMFSGNnJPsM185lTLPJdSuZJZGLZzkLu5wPzrs/iV42W+d9E02TMCNi4lU8OR/CD6DufWuIsX3w7D1Xj8K68PBxV31OHE1FJ2XQz3+VvpXV6W7T+Epcq2wXsEZ2jJYkNnA7nB6Vy80UiMGkRlDjcpYEBh6j1FfSPwr8IJpHhG0l1K2U3csxvFWReYiQApx67Rn2zW0nY5E7F/wh4Mi020tb6/iJ1BZ5rpFJ4h8xVUKR3YKi/Qk+ldlUN9qVlp8JmvbuC2i6b55FRc/UmqFl4k0TUZhDZavYzyHoiTqWb6DOT+FQJpmrSUfWimIKWiigApDS1x3iLW5JJpbO2kaOCMlZGU4Z27gEdFHQ46nPYcqTSV2XCLm7Iq+MLmC4v4EhkWR442SXac7TuBAJ9eDx2ri7hi7HjCj9au3EhCkDCjPAHYVnyH5T2rBu7uejThyRsVn79KoXJ4IxVyV8ECqEvzVpFGdRlRl59qhcEVbK89qgkTHNapnO0UZFDdVB+ozUOxVPCqPoAKtOtQMKtGbIjx04pjscYzUpFQuOaaAZTcbSSOh6inYooEICD0qMpnLEHnp609sAEntzSjlQT1xTEFuzLMp/iB4rpy37kvjtkVztnB9ou0jJIHU49BW7cqY7bEZwq4OPWsqlnJI7sNzKDfQrPJs+c8sexpiruzPNjA5ApI1Lne3Trj1qK4nLttBwo6Y700uiJlKy5pfJDbi5aQkDhfSqpNOY88Uw1olbY5ZScndi0fWpFAUdRSHDHtTJGZpcGngKPSk4oEZ4YFsHCn9D/hTwCp5GD70r25GdoyPQ1ErPHwOVH8LdP/AK1K47F6G4KjYeVNW4ptrBSeMcH+VZ0BSeREXckrHaFYZBPsR/hU4jLkKrxt2G1x+HWplFM1jOSLOoQrJAXwdyHPHp3rMCKGzjGPStcOHVo9q4CkPudeP1rJdJIW2sAxxkbWBpQutGVXs3dDgamicqwIqsJFyAeCex4qVPU1djC5oRzg/fwPemvbKxLh8A8+oqsGpyuQCvODSt2KUlazROtoSeH49xU32MEcOc+44qKGYpjPSryEMARyDUybRpGMWtikYnjkCuOvII6Gp0XvgVPcKHtmB4IwVPoc8U1FIGCQT6ihSuJxs9CtbKV1G4yMDzVcfRlIP61D5O6G4B6vegH6blrTSINIQcjd0bHQ8cH9KfJpzpLIw+aN3SQHH3WDDOfyFS3ZlpXRw1zZy+dcKFz5BYuPQBtuf1FNTK2sqnrgV3EWmpb+KIZrtP8AQNSLW8jY4VmGCD7glT+OawPEPh658P6lNaTIfLZfkYcgjGQPriqUk2ZyjY58EBhnpnmiRdrsABjORxT3ikRUdlIVxlTjhhnBx9DxTjGZo8gZdRyPUUEFjSNWn0i8E0PKnh4z0dfT6+hr1TRtaiu7dbm0lyD95SfmU+jCvHBwau6bePYXsc4eVY24cxsQcev4deayqU1JX6nTh8Q6bs9j6CstaimUJL8jevatT5JoypCurDkHkGvHv7X1SzjEqrHewEbgwXa2PXjg/gKt6d8S7e2k2zR3EeOGGAw/SuSVJvVHe6kE9XY9Q+yKCdsrgHsQGx+JFPFsmMOzOPRjgH8BXN2HxC8PXqqGv44nPaTK/wAxWnP4p0K3tjPJq1oIwM5WVWJ+gHJqOSS3RXtE1v8AibBZI1LEqqqMkngACvJfHPxI+0iXS9DlPknKzXSnBb1Ce3v37etZ/izxtfeKZP7M0dJY7B3EZ7NOx6A+g46fn6VxS6betMIRZ3BlJwEEbbicZxjHXHNdNKjbWRw1sQ37sNu5AoyCR26irunLNJc+XBE8rFGYqiljtUFicDsACT7VNBoero3nDSblo42G/fA236N04NfQekeGfDHgqE668aWTeUN7TS7ljJU7lUnkk5IwM5wOK6W7HGUfCHgy217wX4fOuWykafI1xEdwy6lmYIT3Qgqx+mPWtk+OI9c8QS6F4duY2aFDJc6gV3IgBA2xjozZPU/KP9qvMPF/j65123bTNMRtP0VV2CJRtaZR03Y+6v8Asj8c9KT4TXCW/i9ozgedbso+oKsP5UKN9WFu56wfC2mt5lxcxG8vWUn7Tdt5r56jGeFHsoAq9qWi6brNqYL6zhlRuQWUblPqrDlT9KvUiH5R7DFKwXuYFpHrXhZQsU0+taSv/LGUg3MC/wCw3/LRQP4Tg+ldRp2pWmrWSXdjOs0DZAZeoI6qw6qw7g8ioM1zmradf6VfP4g8PpuueDe2AOFvkHUgdpQOjd+hzQDVztaSqOj6vZ67pUGo2Mm+CYcZGGVh95WHZgeCKqa/rX9nQiKDa1044yMhB/eI/kKlu25MYtuyLWrarBpdm8kjr5xU+TH1Z2xxgemcZPQV5tLIyoATnA556nufz5qaaR5pHlmkaSRuWZmyT+P9OlUZWDtx0FYTlc76NLk1e5XlYsc55qnMfmwD0qzIwA4qnK2O350om8nZFWVsk1Vfk81LPKiAszACs2WaeXOzEEf95hlj9F7fj+VbxRyyepNLLHEu+R1RfVmxVU39q3SQt7qjH+QoTTw7byrM39+Xlj9B/wDqqytlEgydzN7sR+gqtEZ6lEvHKSI3DN6YIP5GoWHNLegQ3WwklMbl/vLVlU86HJADDgmrvbUlK+hQYdagchRzVmQbc+1VguTvPXt7CqRmxmGb/ZH60FSOjH8akppYdBz7CgRExGCCME/rTm//AFCnYycn8qVFBmVT0JH86Bmho1szSm4JIC5VRjqe5rQugJMR7uDywHcelFgR9jQAABRjFV5XYMXONzcjFYNtyuejFqFNLuRXMiqNg4I6+1UT0JqWZstjPuauaTp0l7KXAAAO1Cw43f3vovX64rW6jG7OSTdWVkMaxRCUKlmX5WJcjnvwB65H4VJaaZDdXKxEbdwJ3b2PQVZvoVt7ySFclVIAJOSflHX3p2lH/iZRfQ/yoi243BxSlaxOPDEHGZD/AN9N/jTv+EXt/wDno35t/wDFVtinip5pdy+SPYwR4Yt/75P/AAJv8aePDNsOpz9Wb/GtwUoxScn3GoR7HnO0HpzTHt1kHTB9RTYI7lGCmGUxt91ih4q2I3AyUYD3U1qcy1KFqjRalbhv+eqkH15qW1MbTQYV1YMucnIPIqzEqte26kc+YtUoEKXUJdGUF1wdpHcfSkyo6FuU+RPKM/NvYAgdMNVe/ZzdMrsCAxx8uKnvZ5LfUp4mkYRiZwVblfvHtTdSaQTyNG6NGrlSAoO3noaSeqG9UylgEcigAp904Hp2pBK+TlYz/wAAFOD56xofpkf1rQxJFkHQjaf0qSoAUbgIw+jA/wAxSoCvRuPRhikBaXOOKuQSFcDPHpWejYPPHPFXIFZ2wMZpPYuDaehddm4Axgc5pyj1o8pmUFW5x909D/hT0+bnBBHBB7Gs0zZ73JkXPB6HrW3pyvIBGql3JAUDqxJwB9ax4lrqPCEccniDTxMcKJww92CkqP8AvrFS9Sk7Js9CufB+mXvhwaPcQgLjd5qABll/vg+oJP4cVkar4QXWtPFtqsJeZYhFJPCBiQLnbKvdWBJJU9QzAZyK7cdKXFDOXmaPBH8IHw00ukeJ7NrjRLg7oNTgUn7M/QMSBlQRgMp9jzisbVfhlrelEXumY1Ky+/FPbEMxXrnA6/hmvpJkV1ZHUMrDDKRkEehqlaaNYWEzSWVuLbcdzpCSqMfUr93PuADQmHMfOD+D28RaRJqehxj7dbnbfaeBhkb+8innafTscj0rl7HTLi91KLTFjZZ5pBEqMpyrE45HXjvX1pc6Bp9zfLf+R5N8vC3UB2SY9CR94ezAiorvRNGimXWLq0t/tVojP9qKYZRj5jx1OP8A61O4+ZHiFnol94fu5PD+reW08KLLEyNuVom6EH2IIqrqfhC0vy0kbGKb1UdfqO9aHi3xPHq3jrT7qC1uIIY4hasbhNjNuZjnHYDIrTB6VhPmi7nqUGqlK0lex5xL4K1NGwpRl/vKT/KrNl4JlVjJfSRrGvJ+fHHfOP8AGu/3YzkgDGfpVzRNDfxDOlzKCLBWyin/AJakfxEf3Qeg79fSqjKUnYipTo01dr5GJ4c8NLJNFei32QxZFrFtwSTwZGHqR0B7c967WTw39stdk4ZTkMrqcMjDoynsRXVW2n29qgWNBkd6tBV9K6E0lZHBKbbueBa34+1+0vbzTYntovJdoWnSPLPt43HJwCR7Vzd3eX+oiKTUb24upEKqhmkLBRkDCjoOKt+K7Fk8T6tLtOxbx4z7HqP0FUmUlCB1xx9aq1gaB/u1c8PX39m+IbG63bVWZVc56K3yn+f6VUJDqCOjDNQHnIPHFNEs+ooJ1ngSQH7w5+vf9aYLtElSM9WdlH4AmuX8Ea0dQ0O2MjZkKYb/AHl+Vv1GfxqW7uWOtQIp4W4dv/HKlR1GlqdcKcDVa0nFxbJIOdwqwKlqwHJ6qZPBmrS+IbKNm0u7YDU7ZeiOeFuFHbnAb1BzWfc3ZupWuJJA7SfMWBzn6e1dtcxpLBLFMiyQSKUkVuhUjBH0rzGytW0a/utCmYsIGL2zsc+ZCT8v4r0NZVE2rm2Ha5rdS5K+5eOlU5Gxmrc7ALgHk8YqhIPU1znctivKzE9cCqUpPOCfxq26iq0oOO+K0iZSKRjVmyTz645FAijQ7lGW/vHk0rjBNNzz71oYseainlSCJpJG2qo5NQXGoQ2/yli8n91eT+Pp+NYl1dvcPvmZQFOVTPyr7n1NXGDZnKSRKWaeZpnGGfhVP8Kj1/z3q/EMKSAQG5H0wMfyqDT7Ka6AkChY+u6T5Q34dSKuXH2a35mv40OOVVR/UmtHGT2WgRaWrMu84LYFVn3EcYHr7fSrEt5p8shSOe4mb0RB/hUTxbgTEtyD/tbKq1tzOWruhhX15+tJjj2pD50YzJGdvqBg/wCH605GWRdynIpXJsJinqvel4UZJwKA6jGA34KaAsX7CchmhIIDAkEetOuflYjqcYNQ2Xz3KgIw2nO4jArWlszMnH3jzzWTaUrnTHmlC3Yx7W0e9uhGuQo5dv7oru7CzjsLdCVCs2FRfTPRfr3NVtH06KytvNkAUY3Mzd8dz7CtCJXuL2C4kBVVZvLU9ht+8fc5/AfjWFSfM7LY6KVPkV3uzl9cUJq023oVQj/vkf4VBpZxqUP4/wAjVjXxjU8/3olP8x/SqumnGpQ/739DXTD4Uc0/jfqdQKcKYKeKgsUU6m06kMwbQkWkQ3NkIOhqyc7gpZsYPf6VjpdSpGqDyiFAGQx/wqYX02V3IpIz0f2+lb2Oa9i+6bigLNt3DODTEg2yHDycYxlyT+tV/tzkYMP5OKT7ewJPkMT/ALwosPmRNeIkij7SzSrhsiQ7h90kHn3xXIaxE9hrV0YdyxtIxQj7rLnpj+ldJPeNPFsMDr153DuMf1rC1CcyXtxFcLmMyMVJGSpz1Ht7UrCbTKSGO4xt2pIf4T91voe30pNpUkEEEdQRzSTWckXzBcg8/LyCPUeo/WpILgOAk/zAcK6/eX6+op3ItcBnIPvipBUrWjNGWQhlI4ZeRn39KiBwcHrTTuDTW44AHtVm2k8pxnJXp7ioFqZOv+ND1CLs7mzGQcc9qcUG8MP4hyPp0NQ2h3xhRyV6VcMRXnJZep9R/iKw2Z0JNxugiXJ71r6c7ROHQlZFKsp9GByP1AqhFEDgg8da0rVQikk4HU1MmXTi+p7Np96mo6fb3kYIWZA2D2Pcfgcj8Ks1meHLZ7Tw7YxSDD+XuIPbcxbH5MK06o45WT0ClopRQSJWN4sZx4V1EqMt5WOmeNyg/pWnd3ltYWkt1dzxwW8S7nlkYKqj3JryDxT8QrrxFN9g0KKRdLR1M87Da06hgcc/dXjp95vYcVUU2VFXY3W5YLW3nuLhPMWI5xxyc4HX61i22tW1wW+V1AbbvIymfTd/kVa8XyL/AGHcZJBdlXH/AALP9Ky7Y21lpccU7xgbBvDHgkjJz+da+yVRanTGs6b0NSREnmFszbVZGZ+M5HQDr6nP4ViWnivUPCt9EtpKZdpHnRSsxjZegGD0JzkEdMVVXXra3h3xyBpIXZYRkksuDgsfRckY759qz4lN7ctdSktuJYFurMerH+lOhSsrMmtVVR3R9CaB4gsPEWmreWMgZfuuhI3Rt3Vh/Xoa1D0r540zXLvw9fHULBwpGFdG5SVc9GHf2PUV7PoXiy01uxWYxS2c4GZIJ12svuCfvD0IonScWYNHDX+h/wBsX3iWBFAlluC8bHsygkf59686KsjFHUq6kqynqrDgg/jXuXh6zdmu7+VCpuZ2ZQw5K9M1w/xF8OGwuv7atk/0eZgtwo/gfoG+jdD749aT7Fs8/U7XaM9PvL9PT8DUb/K1TSpvXIOGXlTUBkWRSp+WReqmkJnd/DnU/Lmmsi2CrrKv0OFb+Q/Ou363VzOx+ZJJCvt8oFeM6JqTaZrEFypwA21+f4Twfy4P4V6xNehtNe4GAXf5sf7yg1SKidR4fucpLbk8qdyj26Vo2l4GvLizkb97GdyH+8p/w6VyGkagYtURyNqs21gT2bp/Sr+uzvZatb3UJ2uF4PY47H27UnG7sDWp1p5FcZ4x013lguICEuFJNu56bwOUP+yy/qK6qwvY7+0S4j4DcMvdW7g1HqtgupWEtsTtY/Mjf3WHKt+dRboyYtxdzy8+INOaJTPdRQSjh4XfDIw4KkdeDVd9d0pjxext/uhj/Sue+IukvE0WqhDFIzm3u1XjbIBwfxA/lXA+Y/8Afb/vo1l7GPc6HiWtLHqsuuWABxKzf7sbf1FZ1z4itkHyIzf7zqv+NeclmPVmP1NIBk8DJqlTijOVeTOyn8SqScPCn0y5/pVGXXUkbaZJpAewwq/kOf1rBS3kbsFX1YgVOI44sAMruehLYUfrWkUuxm5Se5oSXbsuFVVB7Diq6XkVvKJJQs8i8qrH5FP070sFnE7Bru8iZiflijbP8v6VpQQW0EqpLA0WfuM64Vv8D9au4kmylJqWqam20NJs/ur8qgVLBpKj57lt7ddqnA/PvWyYwBjGBUD5HB69j60nJsu1tyH5YVCRIqqOyjFRFiepqYioyO1SJirI2NpO4HjnqKiuI2tnFwvzA43gdGH9761KqO52oMmrcse+2ZG2q20hh1AGOtS3ZlRV1qQIm6TPoM9fWp0Qs2DxUsFmwXdzyByfTAAH+fWrkFupJBH0BqXIuMAsLY+YWI+nvW7bRKzEtt8teWJ6fSq6II02AdOpFbek6cJ9PuJJU+URMEQ/3iDyff8AlWEm2zqilCOowQtfQTzMGWCJAyKR/rDxyf8AZx0Hfr6Vdl4vI8Djc38quogbQsqAN1vnPqdtZksg+223qyseD6qKiRcZXOY8RDF7C3rD/JmrPsDi/gP+2K1fE237VbkDAMbD8nP+NZFkcXsB/wBsV10/hRx1NJs6sU4GmCnA1JQ4UtIDRmkM5DClR8uSO+KcOCMICc+ntU0SySQRShVw6BsbTxkZoKy7h8i8c9DXRc5rMi5PVF/L/wCtScf3V/MipSZQeUH6im73B5RvwJ/wouA0nAYjsP72apajbBppGwfmZj+OSKvmQ7Wyj/dPalu1BfJH8TdvepuNIwIoGcGB2IbG6Jgcc+h+v6GogqRz4uEb3K8N/ga2hbAtt24P3kPoadPYG4USGIlW9uh7jP1p6BysoyQPbRrcWk5aNuxHb3qEyRTH94pif+8vKk+47Vv2mnKtgqkkrkkq3Uc84/nVW50V/vwkMDzgnn/69TGS2Zcotq6MoxPFgkZU9GXlTU0OSw5FIILi2YgAr6rjIP4VLGEYgnETH3+Vv8KrmMuXsaFodkgJyATtP41rKoHQHNZkCsrBHUqx5Ge/uPWteJN6hlyuR2PFYT3OuknawlsnysOANzYA7DNX0Vyq7AoGQTuXIbB6Y9DVZ08kCRQSB94DuPX6j9auROjoCpBGO1Q3c0UbaHoWh+L0v5ktb6NILhuEdCfLY+nPKn0ySD611NeM54yOK7nTvGdpb+H57rVpxHJZpmRsfNKOilR3Y8DHrVRlfRnJWpcuq2OsZlRWdmCqo3MzHAA9Sewrida+JulWczWWio2s6j0CW7YhQ+rSdMfTP4VnnTdQ8aqL7xFLPbaW53W+jwuVBX+FpmHLMeuOg9qzPESWWkW8sWn20VtFGu1UjXaM/wBeSOtbRjd2ZiomDcS6p4uujea/d+ZFG5ENpDlYUx1IXufc5PvVi6WG00y42IqIsTY7AcVLZxfZ7SOP+6vP1rF1zVUaV7APtjAAuCPvNkZEY+o5J9OO9bxj0RpokZmo6nNr4CQqY7RXDB3X75HoPT61j6ncKk2DK0s/qzZ/ToB7CtGZnlTYD5EeMbVxux/SuflaI6jFbwICocb25JY5HU1o4qCsiG76sht4le4AmdoyxyGx79Paug/s+Qr+7vpWB7SKCP05pPFOkJZa5ewD5VWcspA+6rfMPw5/SqlnfyWsn2a8GNvAb2/wog0tH1Haxv8Ah2e007Ui+s2RnhBHlTQncIT6lDy3rnqK9esLO21G1W6tL22ubdvutH8wPsfQ+xwa8bDqwDBlYdjmug+HM93ceMJY7MsLVbdjdMPusf4Se2c8A9cZpVYJK6Yz1coIUAkkXgdhj8hWVqc1vcWs1pLb+fFKhR1bhWB7VrHT1ckvLIxPodtJ/ZdoOse73LE/1rmT7gfPGr6Xc6HqBtLgExNloJezr6Z/vDuPxrMngWUZHBr6G13wlpuuac9pMhUHlGHJVuzD0NeKeI/COoeGZf3r+db5ws6KePQMOx/Q07hucq7vCxSTlT3xyPqK9H0LVl1Hw9bwFsyxypHID3ORz+IA/WvP5CrrtkAPueKfpl5JpGowzh2MAdd4B6gH+lEXZiWjPWYZMXTJnGUDD6gkH+la2tXn2mxtZ+p28n3rnFnR7q3njYNHICqsDwQwyP5VaubgjT2Q87H4Hsf/ANda21uUbejaodNuwWJMD4WRR29GHuP5V3QZXUMrBlYZBByCPWvMFbKgg9RXQaFrZsytrcuTAT8rH+D/AOt/KpnG+qE1cteMPCqeINHvoogBPNDgDszryrfXIx9DXzE6PG7JIpV1JVlIwQRwRX2ErBlDAggjIIPWvG/iN8N7m61/+1NHSIR3pJnR3ChZe5Hs3X659ayTJ3PHqMketdNf/D/xNYxmQ6cZowMloHWT9Ac/pXMuHRmRwyspwVYYIpitYTkn1NKIpG6LQkjL0ANTpOh65U0JLqBLYyy2UvmIkTMOhcZI+npW5DrccylLlCu7gg/MprDBBGQcinA1a02BNo6lAAgaE7oiMhQc7R/s+3t+XpTXw6bg2RjKkVjadeNbzBMnYx6ehrdkVNv2iLiNj86/3WP8X0Pf86mSsap3RVxkdPwppXNSMMHJPBpQhY8dam4rBE6xI395jge9Tw27uwZ1YKevv9akt4VLAkc1pxRtjIwB9cVnKVjeEL7jUKIpB5B9R+tSogZgFTkYbHr6U8wpgM5HoM1b0iNm1aNGRgodR83H6Vk2dEY23NGw0xzJ5lwCqlGdR0IIwP611NpGiwtEANodlI/4EapXzLCm8kKuGXJ92WqT3ryQykh0jdiyoOGbcc4b0HXjqe9TclpyY5b0DTY7aHDHZ5bv1C9Rj3OO351QjJP2Lkk/MpJPJ+Xv+VOB/eMjfKBtKqOAvY8fh+tOiXLWzAhh5jcjngq1TJmsY2MDxMCJLbPXEg/8eB/rWLbHF1Ef9pf51t+Jh88Hs8o/VTWHCcTRk/3h/Ouml8KOOr8bOsHSlJ96YGHofyo3j0b8jQVYlHfJNLn0qBJDlhsY8/3falMhHRG/KgRmCztxGoEShQoAGO1OW1t+f3SflUxHShBgnFaIzaIxaW//ADxT/vkUn2O2P/LGP/vmrApaYWRWNlbf88I/ypslnCVOEAPsSP61bpp6UwsilaWKT6hbwM7qsj7MhicZBweffFWbK3uYTNDIUEiuWKuh+ZT0YEH1BFPsjjVrIntOn/oQrrr/AE5bmGz2DbIPMwwHOMk49x7VjUlZ2NKcUzlCJw+GhjIPdHwfyI/rVdk2OXhyrE/NC/A+oPb+X0rSDYmaGVdkykgjs2DyVPcfqKDCScBwFJyRjk//AFqheRbRVRIpwUZVJHDIw+YH3FRSaNbyHKq0bHup4/I1LNZSIQ9o5QqMbRjp6DPb/ZyPbFPhvEVglwjRMBztUsv445H40arYEk9ynHo9xEQqFZIifuHp9R6H6VbjilhXbtYEdUl4YfQ9/wDPNa9hJBcSK0MyuofkKwODWtLbJImyRFYdwRms5TezNIxS1Ry6SozBDlX/ALrDB/D1/CoogYJ3RCNuNyqeMjoQPof51qappAS2aWNyyqQTG/zL17HqKwo5jFcKsjHKkrhzyBj9RwOfzojqrobfc1o3Drkc/jVSSBNV8RaPpLrujknE0o/2FycfjinCTbh9ygEZJ/Cl8IP9q8fPckhkhszt9tzbR+mTV01d3MartGx6de3iWiAtgF2CqPTNebeIZ/tk0CHJM1xuI/2QST/IV0ms3zXOnJMBh1Zgy+jq3I/8dNcxEgv9cJ3fu4Yd64/2m4/QGuymranKW0RnAAHAFcXq9lLY+I55pCPLuCZY26+gI/D+or0aK3eaQRQxlmPRV9Pf0rmviFYx2WmxF5i2oo6vEi/dA6suO4x1PrgVpGVpaA9jhdT1Hy1aGNsueCR2qrpNuRdwyOBlnUD/AL6FOs9PeZvPm5B5we9dB4bsBqXiywtR/q42Er4/urz/ADAq227yZG7Nnx1bg6+WK4Etuu7PfBZf6CuTEKXlsYZsiWE7d46+x+lemfEbT0S1s78EAqxgYeob5lP5g/nXmUrsLndCMvgK6+vpUwfNFGj3IdPsNSvNVh0m0y807hUCnAPqc9gBkn2FfRHhXwza+FtIFnARJM2GnnIwZGx19gOgHp9TXiWnyT6dLb3MBxcwuJEOf4gc/r0r37TdRg1bTbe/tjmKdA6g9V9VPuDkH6VnVTVuxDVi1TG9lJPsKkNJWIylPPMikpaSv9Cv+NcrrNxa3hktr6yPzDayuucg+tduelcR4kUf20+P7qk/lWkLN2CJ5Fr+gLp0zvalpLMn5QwO6P2PqPf8655oiucdK9fvYVuLZ4j0Ycexrib/AMOs8JnsxhhkvD+edv8AhRKFtimjP0XWXs0NnO2YSQ0LE/6tgcgH/ZP6Zrt3lW4hZ4+VkRWHsfSvM2XazKQQQcEEcg+lbmha4bEi3uWLW7cKx52fX/Z/lTjLowTO8tH32sTeqirANUNNcNagAg7XZcg+9XRWq2EbGl65Pp+2N8y2/wDdJ5X/AHT/AErqfMtNXsWVX3RuMHBwynt7gg81wANPhvZLGQTROyEEDj+L2x3qJQT1QNGlPqMmkXZt7pMbeVYggMPUHpVKfTtC8ZyPb3OmAyAE/aEG1lP+8O/sc108FvJqlusmp28SqcMkGCdvufc+lSLfabbTfZY5YVkzjy0AHPpx3qNOw73Pm3xV4dn8L69Np0rGRAA8Mu3G9D0P17H3FYw5HNew/Fi2j1Wztbi1Xzri2k2EJ8zFW9hnjIFeTT6dfWqb7izuIk/vSRMo/MipIasLbQCcqkUm2U9Fbo30P9DUjpLbvsnRo2/2hwfoagtyzSBACT1GOorq7F01CxAnUOy/KwYZyfX8RSvbUcUnoc4G7g4ro9OuA8QBwVdcMO2e4rMv9Ie1DS2254hyyHllHqPUUaZNwyA9MMP61d00EbxlqaXzBih5KsVye/ofyxVmKPOMk4/KouHmLjOWUE/XkVcjQ4AHJrKTsbRWpLEoXG0YNadlGX6kKoODjknmqcMZdgoHJrWsLYtuUjDK2SMdj3/rWEpHVTjqaenWsJhW42ZkOfmbnHPQelSKixasspxgursQMnGPb8KmtMxKyOAqliV5GOe3+FNhbzr+Qqy7VQLlT3wc1jfW5s10J7uQ3eVkXEZbcqt35HLf4fnVcoHAkOcbmwPbDD86mLfOCBk4yF9fmB/lj86jVTOPKU4jGQWHc9wvp9fyprUmyRUucurNCgYRRkOzH5cgg4x3PX6VNFEIJbdASQJMZP8AutU1woWxlUAYEJx+bf4Cmsf31ufWXH/jrU3sCOe8UDEkX/XWT/0FDXPpxIv+8P510XikYaM/9Nm/9AWudBww+orppfCjjq/GzrAeKWmA5Ap2aCxE+8/1H8qUmqUupWMEkiTXUSMCAVLcjj0qJtc0xBk3sWPbJ/pTsS5JGeb2Uf8ALy34xj/CkGoyITm5H4xCu9k8OaU8pQWoUbc/K7Dv9agfwnpZPyxuv/AzT50RyyOLGqOOtwv/AH7H+NOGqtjmZf8Avgf41t6xpFrprwiBD8wbduO7pis3auOgH4VSaepLTWhW/tY/89U/FP8A69H9q5H+si/I/wCNWNo9TSCMEj52/MUxaiabeibV7NN6km4Tgf7wr06Lk22egSQ/+PV5taIqajZsOonT09a9Dici72bsiOBVI9yc1z1d0b0tmUbvTYdSjukbKyrMzIy8FSAOh7VzXny2dx9mvhtbPyS9FYds+h/T6V2FuwZ7gjH+tYH9KoX9lDeW0UEq53Jww6qfUVnGVn5GzjdGUOOBSMiuQSPmHRgSGH0I5rPZ7jSJxb3WXgP3JR2Hp9P1H0rRTBUEcgjqDW2jV0Z7OzEtpWsrkO43gsAXCfMR1Ctj9D9M9c11iBHUOpyGAIPtXKSgNBKpUEEDg+xWunitmtFCQqWgHRM/Mg9Fz1Hsen6Vz1EjRCXcHn2ssYxuZSB9e1c3qmlBIi4yd3zbj2bHX2rqklSUkIwyvDKeGH1B5FQXsSPayLIMjaSPyqItplOzOIdlC/fLIMll/iAHXkdR2q74KAXxBqz7VG2CFQBjgEZ7U2Cx+2Bi3ESsVA/vEcdfTt+dS+FkWHxDrqIAFVIMAD/ZNdVJq9jnqp2LWvTG01BkBIhuvnx6SLwSPqMflR4K0m4vZL52O2JWWJZSM5VQTge/zY9OlR+KFa/utN0y1G6+mnHlD+6Mck+3f8K9I0zTIdJ06GzgyUjXliOWY8lj7k810uVo2OduxRvZrDw1o89242xRLuZjyzN0Az3J6V4ld39zrmpTapeNlnYiNM/Ki56Cu2+KlxfXkttplpbXMtrDia5eKNmXcfuqSB2HP4ivOHvWjURiNo2AwFYFSPwIrWgktWQyS9uBEpUfebpiu5+FWklhe6rInJ2wxkj23MR+YH4Vj+GPBKa1po1PULqVEkZhGsYGWUHG4k+pBxj0r0jw1FFp1lqCCRnht2UliqrhQg4444AFKrO6aQRRiePbO41aAWtuGZoQWRV/ilxuwfoo/wDHq8zsBE8LTAYYsS2ex/pXuNhbsweecZk7+m5sM35ZVf8AgNc/pXwysIdXur69Yy27zNJBZjhFBORu/vd+OmKVOagrMps43SPDmq67hrG22wE4NxL8qfh3b8Pzr1rwvobeHtGWwa5a5bzGlZiNqgtjIUdhx+prWjRI0CIqqqjCqowAPQCn5qJzctyb3FopM0lQMCeK4XXpRJrFwQchcLn6Cu0vLlbS1knc4VFLfX0FedSyNI7OxyzEsfqa0px6jiQytgVnBcPIO27+Yq3O5zgVDIgVCR16k1qxo4bxjHHb3MFxHhZZd2//AGgMYP1rJgRGjDl2Yt0wcDFT+N7gvriw5+WKJRj3PJ/pWJBePHCUAyw+6fTNc09ZOxN0nqdb4X19NMaS2umY2sj7kbr5Z6cj06fSu/ilSaNZInV0YZVlOQRXisU5Xhjx2NbWlazdaZIHt3zGTlo25Vv8D7itYysrMSZ6mK0tGtIp79XmIIQgqp6Cua0bXLXVYwY22TqPniY8j3HqPetpLxbMNIeSqk4z1qm7rQo3NZ1cvK1nauVCjMrjggdlHuf0Fc5puiv4h1Fo0JisYH/fSrwWbsin9SapW7XN+0FlCwN1dOWdz0UHlm+gGB+VdbNqEOkWUemaXwIl2tJ1IPc+7E8k0rW0Q/JGqW0nQIgg8uJsYComWP5c/nU0rLqdhJHLbSNBKjKyyLncpGDxWR4b00XdxJfXILhGwm7nLev4V1pAAwBxWUkk7Ceh8qJo19p2spHd2VxbqspAM0TKCATg5IxV+1Q2WsyW4H7uT7o9+o/9mFe66r4u0uAy2ylrsoSrrGgZVPoxPH868c8YG3XVoNQtIPIieRWEfA2kH5hwTwc5/OizcRx01JmQbRwc96w7m1FrqYeNdscmQwHQE10RXII6YqlfQK8W8g7gV2/XcP8AGs4uzNpxuiLT1ZpuFJwoJArVEA5ZOVP6VV0qL97O+MqH2qfpWsqFG3R4JY5K9j/9epqP3jWlHS7JbSADDY54OD3FbVsoB3D6fhWdbhWXKk7c9MVqxDAB74rnlqdUdFoTBSylSzbTxg8ijaI2IUYBUDC+nOf0NSIDjA6UkmQc/wCye9KwNjHi3mTdggAnb29Bn16fSrEYG4kd3P8AIU1RuLjAz06fX/GmF3RmUAAbs7jz2HaghkNwwNlcKWCnYFBPqf8A9dN3b3t32lR5/CnsMMKJo1D5LFmLEZJ4ADAcDoOKYTjyfa4x/wCPEUMEY3inlUPpOf1jX/CuZ/iH1rp/E/Mf0nX9U/8ArVzB611UvhOSt8bOqQ5VfpTs1HGcov0FPoGb2kadYXWmI89lbSuXfLPErE/Me5FQReHdIe/v9+nWzYkUqDGMKCinAH1zUmk6xplnpqx3OoW0Ugd8q0gBHzHqKjPibRIry7c6nblXKkFSTnCgHoKepk7XMkeKL3cWIiLEYztoPie8PQRD6JXHizvWwQ9yR7Z/wp/2C+/vXX4A1doi5pHRXmpTX7K0zqdoIUAYxmq2fcZrGFhfnobs/gaf/Z2oYyftXHsaqyQmzVzRu5HtWP8AY7ru9xj8f8aT7LcDrLP+Tf40WFc3bbnULIetwo/Wu8hMpvpWIBi+7nuMKo5/WvMdIiddasmd5WAnXhs4616fbSbpp0C8CVlLe+BXPW3OijqRIzx/aG5GXYg+uSR/MCo9zPJGCpG1WGelPkY+W2eBuI/8iDFLOXLllG4qOAO/X/AVznSV763iureVJkDLtPboQOo965vRiRZlCSdpGMn1Ga6WSVDCyBxuZWYA8f561zOkf6pueyn/AMdrSm7JkVNWjQkx5cvH8I/pXcBPlGK4Zz+7k/3R/wChEV3gGAPSs6gIqzwQzACVFYj7rdCPoRyPwrNv7a5gtZ3S4EsQQ7lm+8Bjsw+vcGtl03Dpz2zVDVVI0u45/gx+o4qFe5RzKThkSFGaF1UAKcYbHoeh/nVPRLoWuva2xyd6wjOPRTVLV7kw6POyk5wFUjggkgA/UVmi+d7XV7qMsZWESqW6ltoWuqmrO5jVfQ734dWT6trGpeJrkZUMbW0z2A+8w/DC/ia9HNZfh3TU0Tw7YaeoGYYVDn+8xGWP/fRNaBet2cTd2OIBGDyPSs670TTb3P2myhl/3kBq8X9qY06L944oTYFa2060063WO3gWOKNcKijAUDnAFYerWdxZ6LcRNLGrXsiJIyp0LMNzFs88AgcVvzzxPBIolUFlIHOOcVnX+pRTrpLmRFjluVZwcnkIxAzjH3gO/ajUFcvWdqIIEUjGOQvpkk5PvzVocVVn1G1t0LSToAPQ5JrBvPFDNlLRAo/vv/QVSi2HK2dNLcRwIXldUA7scVlzeJrCJiqM0h/2RxXFXd7NcTfvJGkkP948CgYAq1TXUvlXU6weK7d/uRkDPVm4FMvfFIghzbJHNLjJGSAPbPeuPJ8ufH8L/wA6fn8qfIg5UW7rWrnVlDyyDyxyqKMKD/j9aqM3BqpKrWspmQExMf3ijsf7w/rUrPuXcCCCOCK0VkrILDB88pPOFpZfuGiJSFJPc0P80kaerZP0FIDyTxVJ5nia+OeA4X8gBWVF3qzrMnna3fP2a4c/+PGqsX3j9K5vtGb3JqkjkaM8cr6VHS1QGlbXTI6ywuySKchlOCDXV2niZby3W3vnEcoIxIOFbHr6H9K4EEqcg4NTpcfKQ/Bx1pptbDTses+F7gpDe3SOGkkfyI2HO2NeuD6kmthRj61h+GLP7DotrEVAZl81/wDebn+WK3Qa1RZ3OgII9Ggx1bLH8TWV441qbS9FFvZti+vWMUJHVRj5m/AVd8PXsctgtuHUywjBXvg9K4rV7ptW8R3NyW3Rwk21uOwAPzMPq38q5qj5btl0qfPOxiaZ4LhvDsAleXO57lnIKn1H+Fc7450LVdGMX2o+fabiIrlRgEnHDejcfjXtVharZ2ccQADYyx9SetOvLOC/tJbW6hWaCVdrowyCP8964liJKWuqO6pRjKNoqx5GrblDdcjNMdFcBWGRkHH6/wA61tZ0CXQJUj3NLZOcQTHkj0Vv9oDof4h75rNHJwe/6VvGSaujFq2jG2MclvuiRQyqSV5wcE5wfWteBWYYKbfxFVYY0Rt5JJ/z2q7FyRzxipk7mkFZWLMAyxBFaES/L+HeqdumSOOlXwyxxl3ZVRRksTgAd81mzUm3Kql2baF6saQkSngMMBgQylSCMggg8g5qW3Mdpbtq9+CkMI3QRMOc9mI/vHPyj+H69MC01y51G5uLm5j2xO5kYqDthIXG1j/tAKM+o96SV72JbN9B949eR/IVXuWxKR6Y/mtEU7bFVV+8u4M3HYduv8qhdQxkkclmZR16DDHoPwFAWIb2cKyYVnJZsKg3E8g1XFxNKsbCIKgnVss3Iyc9APerr484EYxubjFQjCRADpuT+S0XCxl+JPmhk9pIz+akVy5rp/EGfs8+f70VcweldNLY5Ky946WE5hT/AHR/KpM/WoLc5gjP+yP5VKTVDRzd3obz3c8ySIA0jHBUg1RbSZUjdyy/KxU4J7H6V1Q+/J/v5/QVQueLe6x2LH+tNNkuC3PVpGCwyHP8B7+1V4uIo+f4B39q88Piy6KlfMkIIwcMDUR8STkdJCOnLYqVTZKkjr9VI+2k99i5rPc4Q/Q1gDxA7dYiT6ls0h1wsCDERkY+9VWByRcGNo+lNIFUxqSYHyN6daBqCHojfmKsm5YtRjUrPI/5bqP/AB6u5hYpJMR3nbj8BXBWlwJNSsgFI/fx9f8AeruoziRwOhncmuetujow6u2N80tbDKfMwBAXkE5B/pU0FwkzHaeSQRkYOMH+uaqoSLeNenzY/Wg5M0ePlbB5HXsa5zrcQuQFtZPVWbHsCpP9a5zR+I+euF/9Brcu5GxMpBKhM5A4yF5/TFYelHCfgh/8dNaR2ZhNWaL7/cPqdv6tXeZ65rgkEk0ypHGznKE4IzgNk/yrrzqSKObe4H/AAf5GomgRcJ/KsvXW26TNg8naP1qY6raj7zuh/wBqNh/SqGr3kFxp5S3njdy6/KrZbHPOOtKK1GcFrzk6SMEHMiZ/PP8ASqWiFJJBFJnbJewr9fmBrS1y3ZNPVJFYvvU7WBHrWLpcywxx3B4EN1DKx9gwzXXT+E56vxfI+ii3zH60maTIPIOQeRRWhyi5FIQMdPzrMvdZtbdim5pHHUKcAfU1hXeorcE4hUA+sjH+tNRbBI6W5jtdpMpRf+B7a4zWpI1sZI45g32WfzUUHIK53fyZh+FQOMknaB/wI1Vljk3fuyilhghj8p9Af1H41oo2LSsTBxIoYNuB6GoppdmEXlj2rHAvIJTFE6kxAYCMSCp+7weo7fUVZhvVU4nRlfuwH9Ooq0yrl6JNgLE5Y9TT2cKMk4pkUqSjMbq30NJOnmRsuecdaYmJOhkiO3hhyp9xRFIJIw46MM4pkEhdCjcOpwwpIx5czp2b5l/qP8+tAic8gg8g1UCm1k2E/uWPyH+6fT6VaprorqUYZBFMBM4FRI482SQ/dRcD+ZpoZkzG/JAyrf3h/jUd232fSrp/7sLtn/gJpNgeLTP5s0jnqzFvzNEPLgVH2qSI7W3AZxXKtzInIxRTwVdeKay4NWMSk479O9LSUCPZ7C4intYpIWDIVAGO2B0+tXDKqKWJwAMmvLdD1uS0VUW4WKRePm+647Z966lPEsNxA0c4WN2XAZW3Kf6itVJGqdzqbDUZdOikuwxVmVnYD6ZA/AYqKxHlJCW5IIZvck5P6k1XvZU/sm4k3qsZiJ3Z+UD1zVmJ1dVZWVlPIIOQR7VyYl7I7sIlqzuIZ47iMPGwYH9KkzXHW13LavujfHqOxretNXhuMJLiN/foa4JRaOmSaLt1bQXlrJbXMaywyLtZW6Ef5715trOhz6HdKrFpbSQ4hnPr/db/AGvQ9/rXpwOenSmXFvDeW8lvcRrJFIu1lYZBFOE3F+RlKKZ5YpJI9TV63UMwzmpdZ0SXRJt5ZpLJjhJm5KZ/hf8Ao3Q9+erbRJHYRwp5srDcq5xhf7zH+FffueADzjobTV0TFNOzLokitYWlmdY41+8zHAFXdItX1aUXU6MlmpDQRsMNIezMPT0H4mix8LXVxcie+2sE5VpVwin/AGI85P8AvMcntxXSwWcEc32iS5llKjCqSAi/RQOv1JrJyS0RorvocP45mvZtUsbSL5bWNtwHUu+OCR9eB9DV+XTxpPhK5s4UVmmiZ7iRmH3sEDGepyDgD096rarqEd943t7YhTFbMHbjvyQD+JrO8T3gTVIJUdcxwPwx4I5yP1J+tUk2kloNpJNm0hIkXJPC/wA8f/XqtLdxZ8pW3ykYCKNzfez26fjSyxhkDl2YMpIAO0YA9BU0YSIQ+XHtA28KuOxpXItcpzyTsu9UWMEOwLHc35dP1NRxRsIkkkdmbeuctgcNjoOO1WJFleNSI2xgjkjuw96YyOkAypGHB6j+9RcLFDxDzDcD08o/rXLGur18fu7of7Ebf+PVyp6n610Utjmr/Eb9qc2sX+6KlqCyObOL/dFTGrEiIf6yQe4P6VQuW2w3eeg3fyq+P9dJ9FP86oXKb47tBjnI/NRSW4PY51proAZdeuPurSo87gMX79lA/pWmbVD9M9KfHboOiitLmPKyAQkgNvfBH9404Qn+83/fRq4IwBQY/cUXK5Ssqe7f99GrCRA/xN/30aVYeByKmVCGouLlHWiBL+0YFuJ0PJ/2hXdoAWZjn/XOB+Zrh4RtubdsdJUP/jwruozlunBlk/mawrdDow+jZXOFCoOBvZR+tKxKzJz0BzTJg7SlUHzKzNz09P600MWkXPDFDkVgdq2EuXBguQDwEYf+O1z+mNhR7oo/8dNbs+0W1zg4yrZ/75rn9OPyp/uqf/Ha0p7M56vxI2bGd4LoOoQkKfvZ9T6Vrf2tJ3ihP/AmFYlk+ZycfwD+ZrSVv84pSSEkWhqrEc28X4Pj+lQTXEc/+stVY9iJckfpSDmlCj0OfY1NkM5zxGysm8oyspj+8c/xY4/OuXghAmu7EnCzxtsP+fQ10vittscgA6LGf/Hq5y8RmRLmPAliIZcnGR3FdNPY56vxXPYPAviFdc8OxiZ83tqPKuFPByvAY/UD+dJrfiAsWtrJ8Do8o/kP8a81uU1DwvcpqIjkSC6jUXsC9VJAIb9fpnI710FtcxXUCTwurxsMhhXRCKbuc9kTkkkkkk+p5pCAeoFJmg1sA0ovYsPoxFMdXwdkzg9snIB7e9RyNcKxKBWX0xzQl0hO2T5G6YNJgRXyyyywXRaIxRqyOnlAMVJGQWGM4Izz708qqKBIA8fq3JX/AOtUmNrsOquM+2R1/MfypIR95DnKnb9R2/SpS6AIbGJiHRmU9iDmpES4iAy4lHvwamHAGKdmrsBWmVlZZ0U7lGGX+8vpTmKsiyqcgcg+oqxUaw4DoB8rZIHoe9IA7UGmQtlMHqp2mnmmBFMm9cA4Ycg+9ZGvXWzwzfuOCYWXHoT8pH61rTBgBIATt6gdxXO+J2iTS7pZJNsNyq/MOzBhnH1GPyNS9mB5YR6VLHwDmryyafDnFu8p7Fjip7ixjm04X1vH5eOWjBz8ucZrm2M7GvonhQ+I9FkuNNmVb+2bZLBI2FkB5Uqf4SRkYPHHasO7tLmyuGtbyB4Z14ZXGD/n3rqfhddvD4lltwfkuLdsjPdSGB/LP516frfh2w8Q2ZgvYv3ij93MvDofUH09jxWLquErPY6I0lOF1ufPxG04NJW14k8OXvhu+FvdrujbJhmUfLIv9D6isWuhSUldGEouLsxCKTFOpUUuwUdT60xFqDVr62sZ7JJ2NtMpV4mOV+o9DxXSeGob1rHztM1bDKcSW0qZUH8+h9RXIyxvDI0ciMrqcMrDBBq5o2qvpOoLcLkxn5ZF/vL/AIjrUSV0aU5csk2eixa/c2rBNVsWjH/Pe3y6fiOoratry2vIhJbTJKp7q2cf4VkGeOe3SeNgyOoZWHcGiHTLO7ZZRut7jkefA21j9ex/Edq5pRW56MKjWj1OsstVmtSFJ3x/3T/SugtNQgu1GxwG7qetefA6pY/61VvoB/HEu2UD3Xo34c+1XLW+huF3wSglTyBwyn0I6g1lKF9UbXTO9liSeJo5EV42G1lYZDD0I9Kx9I0y30GO4uYdxS5uA6o3PloOFUE8kYBIz0yPSqtrrUoQwyfNuG0MTyM1oa1cotokSMPm+7g9MdKizWncXLrqSanq6C8gsIXWN5id0rDIjRfvNjuewHTJyeKhuYfD8cLu0ks0uDhhO+9j6Ag4H5YFcNrNvLfw/Z4QwnRgVkLEBPfP9Ks6fp6WSEmSWWVvvSO2SfYDsPaq5LK6YWu7dCnaab9g1idmleVpk8xXc5Y84IJ7kcfnUWp26XkskhOfLCxKOxJPI/8AHsVoahIYhFIgBlXIQdjnjB9uh/Cq1ugmv7KxJLMG+0SnHULzz9WIrS7buNpJNdDbmhu2ZVxEAvyjDdunXbTTFf5CoYyV29X9vpVyVsAfiamH+ufGOQv8qgxMF5NTjhGUiKllXO7/AGvp7U15L/7KHKxYwG6g9wfSr1y37jHpKv8A6FUT82OP9j+lMZn6sZvLufPVCWgLfKx/hYev1rmDtLHKydfauu1hd8Mh9beUf+gmuRJ5relsY1WrmnaXDJbIogkYAYDcc81MbxQOYpB9VP8AhTLI/wCioPr/ADqxV2ITXYpPexCY4kiUkAFWYqe/bFRGcFpSCjBzkEOPQCru1WmcMqsCq9Rn1qjLYQSyTZjUEEYxx29qNR6MaVJ705EO0cmpCnNKF65qjMaFPqaXYfU/nUgFOC0BYhCcH6nvTvL5/wDr1OqjB4pdvt0pisRRqFmhJB/1i9z/AHhXcocnI7yuK4owTXEsMFsyrPLMiRM33QxYYJ9q1NFtWbVrq11jXLxbqGQ7PIYIhPTOCv14x3rGqrm9C93ZG4uPPfvwTg/U1DK4E654BXrUj2moWN/O9yhmsvLXyrqNM7sEk71GSpwRzjHHbpUMzJO0bq6sjEDKnIPP/wBauc6lJNaEcjZtJcAgYb+Vc9Yn5UOf4B/KuhI22zKF+Vlbv9a5myfbEMdkHf2rWk73Ma26Ne2jZ5gEDklV+6cetaY068IyIbn86q6Oc3q56dP5f4122BlWGc7yeP8AgVKTsyW7HKjTr0AZjuh+GaSNZorrypTKDt3bXXH07V2CZwp5+6vc+jVg6t/yFl46xD+TUk7iUrs4rxawJlHokP8A6Eaq+GrCLV9ctraeaOO2hCzTlnC7gD8qD1JI59gauazbvqOrCwgilnmmeNRHCoLFV5YjPAx6niu703wNa29rsNtbQMwywP75if8AaY4yfoMeldNJe7qYVpJOwviuzjuLRLgqrr/q3BAIZTnGfbqPxryu4tbrw7dG509/9Cc5eOQkqp9+4Ho3bvXb6np2oaN5sEbEwyc+QWOxhnIK5+6fbp61kTMk0RIGVIIZWHIPcEV0RWhiloQ2Ou210ywzA21wwyI5CMMPVW6MPpWrXFSwR6dcCzukWXTZmzEzf8sWPbPYf/r9a1rWC+sm22dz5sa/8sLg9v8AZbt+NUmwN5lJHBwf0qFwsnySLhvf/PNFtcNMoEkTRSd0bkfgRwanZFdcEf8A1qoRRZXg+4crnIBzwf8ACpw4DpIPusNp9vT9ePxpxV1BBG5fXHP41WmUpE20kowPT+E9j9M4pPTUaNAU6q1nP58AY43gDd78ZBqyKpO4hRT0OJFJ6Z5plHWgCKVDBfSxHhWG5f8AP5U4jNWdVT9xbXgHYBvp0NQRI80ipGpZmIVQO5pJjGoMgj3rD1/Sft+nS24OA3zRnsrDp+H+Ndjquktp3kMOVZQrH/aHWsp1DqVIyDSTTQbniEtrJa3LW86MkittZT2rqrYIIVgABjK7dvqDwa3/ABN4fTULRp4VJuoQWTaBlh/d/wAK88e6mnkVWkKDdjjIC/1rnnGzJWjOp+G9qw8ZSdxbwy5P4hR/OvZUxtyemccd68g8LXaaHem7tQLiORBHOoOW25zuX39u9et2ksd5DHNC4aJ1DKy9wa4az5ndHoU6bpx16k97oVl4k0e40+8jJBGUfHzI2OCPQivnjX9DvPDmsTadeph0OVcD5ZF7MPY19S6cgEe4AAkc4/rXFfEzw0niDR5HhjH220UyQt3YdWX6EfqBSoVXGVnszKrDnvbdHz6OtTWxxdREjjeAR7VAODzx7VZtU3XMQHXdXo9DjR6NH4ds/FnhuGQsItStl8nzgPvbfuhh3G3HPUV51qml3mkXrWt7C0cq8juCPUHuK9Q8GyNBfXFqekkYkA91OP5EflW14k8P23iDTXt5gFmQEwzY5Rv/AIk9xXKqnJKz2OyVJThdbnmfhXU2aJ9PdicZaLPb1Wuy0p9z7TyN2R+R/wDrV5giXGj60sdwhjmt5QHU/Xn8CK9Q0YZjZsdCefqf/rGqqJWuLDyb0fQ2c54/Kql1Yw3DiU7o5gOJoztYfj3Hscipiw7g4ppf8awWh2NlE3ctiQt7gxE4W4UYX23D+E+/StJZmmQEvuCjA56Cq7lXVlcBgwwVI4NUIYJ9NbZbN51sTkQs2Gj9lY9R7H86drgpNPU2CwHJyaYW71REl7O5ENssY7tO4AH/AAFck/pTP7P1WRv3s1pImeAAy/mOc0rF86GXd2jZmcqsMYLBj39/8Kfo0dxbFtTuEAF0MbXIUxKPujJ45ByQe59qvQaMjSrJduJWU7ljVcIp7Eg/eI9+Patu0gTbKSN28bSC2R9MdMdaHJJWREndlOS4hdVw4XI43cA/j0q1Ewad8YIKqeKpXen2URHl5tGPeE4XHuvQ/lms8Ga3dmVNwyMNGu1sdiR0Pf8AwpKzJaLtxzC3/XQf+hD/ABqFzi0b/cP8qqfbg8ewOpZnB2tlG+9zwf8A61OluUWB0YFG2MAGGM8Hp607BcfqZ3RKP7ySD80z/SuOJ6fQV2VyNyQ5HJLL+cZrizwR/uj+VbUuphW3Rr2J/wBFH1P86smqmnnNt/wI1ZPetDNDR/rm/wBxf5mo8fvpv+A/yqGe/gtJyshYsUGAozxk1Rl1qNJZmRGYFVx25ANKw+ZLcupLCxybvjP8MBOaSRoj9y6mGP7sGP51bVUUcKB+FL8o6BfyouGhR2Fvu3Nzz/sCk+zyHpcXP/fA/wAav7vTNNd1QZJAFF2KyKgt5Bk/aLnJ/wBlf8aQ27oN0l7Kq++Mn6Dmp97scKNo9SMn8u1ORAjburd2PJ/OmkwaQmkQB/EGnARXUyrOGdpmIVVAOWIHIxnqaseJbaDTteiubG4lmju2ZZN7birAdQ3cdPpXReFnt7i0v7WEgXykNIrcboyMKQfTOQff61y19ZCG4Z5IWlaF2WSFiSWXn7o9V647jNYSk3No6qUUo3RsaP43bTJfJvrhZYQNxZnzIvsv976V013pNhrVqt9pV19mkkxKrxDMch9WX37kYauGS2tmgJto4o9y5VkQD6Gtjw9rCWVvKJiyRq3zKBkKxPOB9f5is5K2q3NpU23clnuZ9NmFtqtsYGY7UnXLQyfRux9jzXN25IiU4YdRyMHrXpljqFhrNrLGhE0f3ZI5F4/EGsLX/DNvZ2Bu9MhZFhO6WFWLAp3ZQScFeuB1Ge+KdOok7NWuZVIt79DI028FvKkpjZlBOQCB6ev0rpE8TRYUG1lG3J+8p9ff3rmbO0ae2DwyrncwKsOD7gikcywuUdFypwcVryxbM2tFc61PFEAwDBKAABwq9h9feqV9qcN5fCaNZFVYwvzLjnn0PvXPrO3dB+dOaR5EMceFkf5VJIwCeAfwzn8KfIKyWp23gXTkW0udZkj/ANIvnIRm5IiU4UD0BIz+Vdb0rk4/Fei6Lp8FmJt6wRqgESljgDHYY/XFVG8brqVqJNNTbGwIDscsO3QdDW6i3ojikm3cs+LdQjZUsowrSKdzN/d9vxri7hCSZoxlsYdR/EB/Udvyq+xZ2LsSzMckk9ailQ43AfN/Ot4qysNKxj3ttFf2TxthkdTg+h7H8Kg0CZrq0ezuCVurV9hYdcfwn8uPwq7OrQZmC5jb5nA52/7X+P51mp/ofiaGRSPLvIyh9Cy8ihq2oG/FK6MI5hhjwrDo3/16tCmFBJGMgEEcg05BtXGSR71QmOqJ4g2SPlJ/I/UVLRQIw3lewWN2KqEmETMegU9M+xBX8q14blJVXnaSOhP8jUU8Ec7Mki5SVRn6r0P6/pTIYIXBMZ29QyrjAIODx259KlXTHuXqUVWVJYuhDr6A4x+FL9oTdtZ9p9HG3+dVcLHV2un22paItsLqMy4Py5GVJ7EVZ0TQDpzedcurzAbUC9FHr9a44Z3BgSD6itC21S9t/uXDkejHcP1qGn0YWudXrsIm0mbIG5AGH4GuJIpdb8brZ2phu5lJcfcRcsw+nYe9crJ46sxkJZ3DemWVaIppWYrpbnRuQoLHgDrXm3i+zs4NSWW1YCWYs0sa9FP972zz+Wa6OfXbrUYALeEWysPvO25vwHSk8N+H9Pv9auINRTz2khEsRZ26gkOOvJ5B/Oiq+WDbWw0ueSijkfDlte3uv2ltYqzStIAyjptz8xb2xXvOmaUmmvNFGWEbkOFbordCR6Z4P1+tWtD8P6fo0ObS0ihLDkquD+fWrMrw/wBpNEJFMwRWMYI3BT0OPrmvIqVed3SO6knCPI3fqa1kgEeAOfryaz71B50g3kLg9ulaVowMZ6ccZzjmq2p4WMsCAR+HHfNZii3zO582+NdIXSvFFyka7YZgJ0AHA3dR+BzVLRoDNqEIxkA5P04rsPiXbtPNZ6hn93IzRR8dVCg7vxbdj2xWN4atseZcMOg2rn9a9KnK9NNnLKP7yyOw8Nx7vEwwMBbdycfUCuwlUxjkdeayvAmmvMt1qzqQs2IoAe6KeW/Fv5Vs6iFDEKcADjFclSV5WO6kvdPJfiPZL9utb2NQJJQYmx3I5U/kcV1OmAx6bESeWG78Og/l+tY3iVP7U8Q2enqchBvfH8IPXP8AwEfqK3nYKiquAoGAPStZP3UjKMbTbQ159rEA8e9N89WAGcVXdsk9xVdpCCSOlJRLcrF93bHFMFwR19etUDO5PDGnfacDnmnyiUkacVwd3AOKvxSA4x0rm/t7k4Xj3rQtLtn4JyR79alouMkzeSTc3X2p7OxZQHZQc52nGapRSgkDv61YB+ZTn1qGiyQIplWQ8vkgseSeOOaUEGR8gdjUZfGO3zUqNmV/oKQFZ4I5VjSRFYbiORn1qnPpaqjC3meMbM7G+ZTx6GrhkPnBR2kYc/SnN8zc8dqeqEYkrXtvHbkqGUkspUFh909V+8PwzXOmOVidqK5XghGyR/wE4IrsGBa1tRkfKSM/8BYVy16o+2TZAJ3Eg1tTlqZVY6Jk2nSIsLIzBX3n5W+U9uxq8TWZD5jsqbyw/uuAw6e/P61J5W1jlGQ5xmByP/HTWvMYLYW5t0nlLFAxAAyR2rLns4t7AIvC8Y4xVlrnbMyJdLuGAVnQqT+IxUUs0hYs0DbSuNykMDRcGk0a5Y4zmml8EDJJ9AMn8qZkk8v/AN8jA/xoAwpA4B7DgVJVl1JN52nPB7Dv+PpUaj5sswJx1z/Kk2KRj/61MeL5wVXsaaQN9kWQw9R+dKHX+8PzqsI29O9OVGVuQP8AJp3Erkg1H+zLyHUISxlhJDBerRn7y/lz9RWzqrie4F/ESysquWXqVxww9xXN3MU0vlW9vA008jfLGvJKgEt+lbFpp+q6VpDLJ5X7tGkSCRyzxr1xleCOvH69qzqJb9TejKSbVtCEuILgOhBgl+YFegJ7/Q5/P61c/s+KV95LYY7iucDPTP1rNs4C4Z5No86NWaNV2qpYEkAVr2jkKInOWUdf7w9azZ1xd0XrTNoytbny2UYBXjj0+ldZpuopexFWAWVR8y9iPUVyS+gq5YTGK7jYYHzY/CspK6G0mPu/Ct1CZf7HvooI3cssUqEhc9QGHOPTjiss+EPEsjZbVLBSerbHYn9K7lG+Y1KDUqrJGMqaZwieBtZY/vdeiX/rnbE/zNTr8P2Yfv8AXr5vaNFQV2maTNDrz7i9nHsec3fgu0sZj5yPOD915ZGbcPpnFQizTSm+0WcQWL/ltCgwGX+8B/eH6jI9K9DvYFuLZkYDIGQfQ1yMgwxHoa1p1ZXvfUv2cZRtYWN0kRXRgysAysDkEHoaU81mRuNNlKk4tJGyD2hYn9FJ/I+x40yeK9OE1NXR5k4OErMrFFIkUevT61y+r7rF4mIOyGVZYj/dww3L+RJHtXUlsyuPZf61la1FDLZSpOwVChyzfw8dab1RBuxcrgcjtSSlkG4Ln9KqaRcefpVpOTktEpJ98YP8q2YTbFT5xXBGMGi4mZwuEx825f8AeHH5inhlYZVlYeoOaW5SFGP2d2Zc9COR+NUZVAO42zZ/vKyg/wAxTuIszhgm5RllO4D19R+WaznuHtbt3jAaKbay/wC8Rgj8cA/nVG/1+CxJUyzK46KWVv0yTWDP4ruZYnijt4tj5DGRBgj/AHR/jSvqHMludmNWhQZkSRPX5cioZfEmkxoVluVx0KsAf0rzd5JpVCTTyyAfws5I/KmqioMBQo9hiizJdTsjr73xNpyg/YIpy5/iQmNf8/hWWfFOrlSouVUHodilh+OKxSwBwTz6d6NzHov50yXJsdI7zSNJI7PIxyzMckn3NWrG3Rn3zOqovZjjNVEhkkV2BOFGflGK2LERLbq8aKGPU9ST9aqKuwSuW1vbZZBEjMz4yFVCTj1qSO7v0mjmtIHhmjYFJXcAqfXHORjqO4plxZtsWeI/6RHyD/e9VPtVuzmW4t1kXjcOnoe4rTl5rxZSVj0rwt4ug1nFldqttqSrnySflkHqh7/TqPetq+8NadrAjnu7c/aFyEnjco6gHjDDt7GvHLmAyIGTiVTuVgcEEehHSvQvBnjRpkisNXlXLELBdtxuPTZJ6N6N0PsevlYjCOm3KGx1Rq30e5oXGieIdKTOma4Z4gPlhvolY5z/AHlwT+NVorDW75i+vX0HkK2fslmpVX9C7Hlh/sjg989K7a7+ZVyeDnPtXNalqFvZnyzuluDysEQ3SN/wHsPdsCuPmb0RrGz3PPfikwcaVZwrmRpWYD2Axn8z+lZ2gaFLqzrYQbltY8C5nHb/AGVPdj+grprjw5Nresf2jqspijVdkVrC2WVep3P6k5zt/Ouv0vTobZIrW2iEUa8BVXAHrW3tVCCS3B03zOT2L9lYx2+nqkaBIoUCoq8AADgVy2u30dlby3EpyFGAqjJYnooHck8Yrub5XXTXSBVLFeAzbQR9a4SayBuVuLhvNlUnZxhY+x2j1/2jz9Kxi0ndl025XsclpmnTW7T398uL66O51/55r2X+WfwHarErdAOlX77KTsOnesmd+WINdCd3dhJKKsiCR8E4Oaqu5PfipJH684NVHYnpWiRhKQpfmmNIQOtRs2O/5VEHDttyQe2RirsTzFqA72welbFsqhQQOSKyLZG3A9PWtVCVUZPWokb0y8jlSOeK2baMTxs27BUAj8R/9aufywijc9HXcvr1xWxZXccIl8xwq7VP41i0a3LBhyyKH+8cg46dP8akSArNIC3IwOntVGXUoAyiN9xX+79B/gaa2sbp5GETZJXqfY0rMaYS5W5Yejt/Knn9agnlBJmGCG3MMHPb/wCtUqNvQN0yAaAK0qlIYwe0vH0JP+NcvqGReye+D+ldTeuqWwYsF/eLyfrXLahJG91mN92Rjj61dN6k1VeAyByrlgBkCpHuWYtkdTmqvKjIJ5qMysPfNbHMtCyjgF8gNnBwfXFMSCLzlYbkJLD5GK9Mfh61EkoXrnnmpUdTtOeMsaALOyRcAgMM/eUf0pwwc45I6irBHBpjKpJJ64zn0ouUNANHIpnz5IVjj+8eaTeBgs7D1B4z+lFx2RKCO38qC4Xr19O9R71OQAzH/aJA/WpowqjORk00JsW3urjTb1b+O3E22JozFuww3EHcD0z8uMVLbTX+vi7FxvtwsRdIlZtu7PBb+906Y4HTpTMg9xW14Wbbqcn3fuZAP1qJJLXqOMpfDfQzLZ870aNoplwHicYK+n1Hoe9WACWBBwR0PpXRXOjW2p2Fu0gKyr92VDhl4J4P9ORWG+hapHK0dteQz4XcPPTaeuOSv+FZ3TOqNTSzJEn4+fgjuOlSpcBWVlYEg56Vg3L6xb3ItytmpIB3ruYc9scVVu01dANt/nK5ZYo1X8s5o5bg6ySukzu01y4HJCkfSph4hkHWJD+deaQPOlwGub68YY5UylcfgKuG72jMWp3Sj/aw2PzXNDoiVZPdHoX/AAkMmOIU/M1G2vXBHCIv4ZrgVv79VzHqMT+0luP6EVKNV1ZeSthIPXLrn+dL2I/bQ7HXT6pczKVMhAPZeKpFs9axrbVL+dWJsIflbadtxj+a1dSa7dQf7OlIPdZEb+oo5LFKrFrQsOFZWVgGDDBBGQRVBbl9LYRTtusjgRzE8xeit7ejfgama4uF66Ze/wDAYw38jVHz2udTVLvT7wW6geWrW7FWc92Ht27d61pScXdGNbllHzLst9BbRzTyuAu/auOSxA6AdznNLp/hi68QSpPqfmxW7EGO2Q4bHqzfw/hyPar+kaGx1Y3t2i7VYrbR9RGOpYj+8T6dBXa2AC7MbQVxnHf3orV3sjCFLS7OCtrF9EubrRX3f6K5MLN/FCxLK2e/dT7irDMqqWYjA5JJxiu71/QItZijkjk+z3kIIhn27hg9VYd1Jx7gjIrxHx7pmt6RqtvZalepNa3EZlj8hSiHBwylepIOOvrWlGupJJ7mE4uOvQ0dR8X2lsWjs1+0yDgspwin/e7/AIVy97reo3xIkuGSM/wRfKPz6n86zwAq8YAFNEgZiEG4jqegrrOdybFCgdBQSFHJAFG126vgei8U10VFBHXcOT1oJHAsfur+LcUbCerH6DipKKLARqqo5AAAIz+tOFNcYdT9R/n8qljXdIB6mmgNK1iCQgEcsMmmaeuyYwk8K5A+nUVOD6UkifZ57eTsy4b6jn+RrR6WZobVUUf7FqRQ8Q3J3L6K/cfjV0cgVX1G2NzaOq/fX5lPuKtp2ugZfFQOwt2Z2XdA/Eq4zj/a/wAah0y9+2Wqlj+9X5XHv6/jV0gEYIyD60fEhnUaR4mdzb6Xqty7QNhbW53kAk9EkIPJ/usevQ8810i2qw7kjjVB3CrjP1ryZSsDGxnXdbTDEe7t/s/1Feg+DNba9P8AYuoSl7uJd1vM3WeIdj6svf1GD615OLw/L78duqOuhWtozcSIg4KnJx6cV0OnQFELnDZ4FVEsm8zJAyTnJ71rxII41UYwBXnvY0qzurIh1FttowK7gRgjdj8feuPuo9qgkc+hOfrXT6ijNL5hUsm3H0/D+tc1dAliDlfp2FGxVCNkc5qi/NuAOcVhSgtwP0ro78FgQPSsQQMH3MNo7e9dEJaGk43ZmyxMoyelQPE45x2q/cDrzVG4uFWIqPvEYFaxk2YyjFblKVuCAaYkZIDdqikfb16n0qW3nGdp6Hua16GCs2aVth8ZPbnNTTXGxVXHJHbtVRLhI3OSAO9Rm8jbPJ3bh2rO1zZSSRdhnwq5zzzz2qSa53Pk4yO1VQwwmCCB3FNkAD5zkmiyKu7GvYTI7FSqk9c4rSO1IRgDBx/OuYhnZJAQcdjiteK8326oEkcjgsq8DnnmokiossxLutoQeRjBqaBwLWIn+6AB39KqQyTCFF8ngdSzj+masW2Gt84G4Fhn6E1DNEinqnKqjuN2dxReQvpk9zXKS8OecnOc11mqTqAY9hz1BxXMTx9SV59+KIuzLlC8dBEcMvJ5HUUx+ntUJyjZB5HcUNIWXB61umcco2Hnb1PHFPSRVXABbvxUtnHA7HPLBl69xmtKK3QKCPRe/rn/AAocrBGLY4h8/wDLNR/tPn+QphQk5Myn2CH/ABpx+ySnNvdo3+zMNjf4H86HheIZkRlB/iI4P49KYadBhXt5n/jn/wBemuu1QyuGPcbSOKf246U0imBHuUnkFf8AeGB+fSnhB24+lLSBAp4yv06flQKw8Kw/iz9a09Dme2vzIqhsLyPbNZwP0q9pjETuQuSEJ681MthxXvI7bTbmC4sVAwCoPH/Af8KilAgv+jMDFk7eT1qjatmyLK5VhjAYcfdFTGadr5jtXcIx0br8xrA2Sszn9XIOpkAspKZHHP61kyecEGWEh6j+Fv8ACtXW2xqaMVKkr0zx0rJfbtDHOeuK0iV0Kc8pY/PGwP8AeIzioC+cEHBz+f4VakYb+uBxg/jSLcQxqY5IgyHPIHzGtOa2yMnBN6uxX39qeGy3B4qJemT6YpyfeNaHMa2mHKn/AHv6VtwIhjGWAOSOT71haaxEZHuP5V0Gn26TsxYtw4BwccEZrGb1OmnsizFGgHDrnPSrkIIOCTj1Bqwmm2ogDlpVOcN8+ADjrz2ppSFX2wymRcc55wfr3rK5onctQgbQTgdtwPI+ta1rFlVeNycNyQMfSsiLbtwSQfStWyUllwxUcDj/ABrOQS0RtAkoAR8xGDXhfxR1xNc8QR21rtFtppaIzAZMkpxu2/7K4A+ua9b8U6qdH8M6heo2JUgKxe8jfKv6kH8K+etQURSrbg7hEgUn+83c/icn8a6sJTTbk+hw1paWM/y16tlj6tzSxDlz6tin02L7mfUk/rXdbU5R9Ry/cH+8P51LUUv+rP1H86HsIlpKWimAxhkZ/u81NAv7wZ7UxF3MFP8AF8v5jFSwDJU98ZprcaNO3TzHA7d6n1FN1qzjqhDfh3/Q0WKYjLHqTirLoHQoejAg/jW1rotbC2Unm2sbZ5xg/UVYrK0hyqyQt1U9Ppwa0ZZghVAN0jfdUd/f6U07ofQy5g2mal9pUE28nEgH8Of85/OtsMGUMDkEZBHSoDCrwmN/mDD5ie9VNMlaCV7CVstH80ZPdfT8KSXK7dGLYvTwJcRNHIOD0I6g9iPeq9vc3EUqhZGivrZxJFKvUMOjD2PQj61exxVW8tjMoeL5Z4+UPr6qfY05RUlqM9p8JeIbfxLpK3Kqsd3C3l3MAP8Aq5Mdv9kjkH0+hroCDjGc18++HfEcvh3WI9WiVmgYeVewDq0eeSB/eU8j8R3r323uIbu1iuYJFkilQOjqchlIyCPwrwcTRdKXk9jaLuVtTdVtjl9uf1rlLlgw6bQa6DUbhmibBULn5Wzkn8K5q6YgEk81y3uz0KEbR1Mi9YHandup9BVCbG08c1Zu2wzHHPSs55yAwPTHBroitC5MqSgsTnFY92vIwOOnWtS5mWMD19BWNPIZHJ6DsK3gctVq1ipIMnAFNAIqQip7S3899h4Zvuk59K0ckkYxi27IrBj6mnIrOcLyauf2XcjBaJlDdCf8K1rHR2jhEz8E/KV7ispVYpXOinh5SexmW6eUgyee/tUM9z858sg4/WmXh23cijgK2MKeKrZ5qlrqRJ290sJcM02AvBPHPSr9hqYg3JICwb5uOx9KykjkkyURmOCflGcY605Sd3AxQ9RxbR1MV8hiUMGXcxHTp9auac6yRbNygl2wO+N3+Fc1BOzKse4KBWrp5CMJSQvXOe9Yy0R001do0L+IHccZZh1rlb1QHIBPHYmtrUtUZYykfVu/pXPOS7ZOTU0092bVZK1kVyvegKT9anEZY9KnSEp25rVysc8aTZBCpViwOCBUiXM8YwGIAxjPPTpVpIiVyaPs4OSQKnnXU1+ru2hmSaPfwZ8mZJQOgJ2n/CmJqOo6a3zLNEO5H3T/AEqWLWrhMeZGknuMqf8ACr0Wt2zjbIjpnruG4fpXTr1PKVujIoPEMUxAuLeFyf4l/dt+nB/Kr6T2c4zHMyE/wyj/ANmH+FVmstKv8kJEGP8AFG20/l/9aqsvhuVPmtLrI7LJwfzH+FFkUpP1NUwvt3ABl/vKdwpgHpWKYtXsW3GGTA/iT5v1FSw6+7NtnjWQjruXaw/EUWKU+5r5+WrFo5QyupAZUGM8jqaoR39nOOHaIns3zD8xV23QkS4ZWBVQGU5By1RLYqLuzq7OVTaNE67XOCFPQ4AHB/ClUbr6QoxUiMdfck1XyHtVJwR5bMD75FOgDNcykyZYRryQOeprFHQjJ1tiNQiYkHgdqr3Nuptg+3DHaPxNTa0zPfW4O3kgZB68irN1EFsoyAR8y/zpt2sXGzuc/Fp7vdxIFY7nApdasjazEMu1889q2rSFxqEDAHIdTgVZ8RWklzcyOUb5U+UFeme9S6rVRJ7Gnsk6bS3OMX5mGeB0qwIMcg9fWiazktwGcYBPANLG2/GW6V0819Uefy2dmieyk2OyYPStSGVkmLK7K2ByrEVisGQhwTz+lX7aQuoJbJxUy11NYu2h0ltN5q5Zix7bjmr8XIHPNYtnuUZ5x6VuQAMMrnAGT9Kwk7G1i1EeuDWtpw+YZ3fgOP8A69VbSweYkbCPRs/L7itK2s3gbexCnoR/SobuRKStY5D4m3f7nStODf62driQeqxrkf8AjzD8q8buHMtxI5P3mJr0b4i3W7xTKM8Wunqo9mdmY/oBXmnevSw8bU15nm1XeQUkX+rX6UtJH/q1+lbdTIfUc3+rapKZKP3TfQ03sA+g0A5A+lFAh8Ks0yBRk7hUsSlHdP7rlf1q1p1vtBkYcnp9KidMX8q9iwb8wKq1tSkjYt12QIvtU1Rg4FRz3Cwpnqx4UVteyK2KMkwtNQlcckkYUdyQOK0rSF0y8h3Tvyx/uj0HtWPbRuz/AG1+cuAm71PG6ugiTaozyT1PrUx1BDwuBWXq8bxGO8i4eNuT7e/+e9a1RTxLPC8Z6MpFXJXVgYtpcJdWyTJ0YdPQ9xUxrnNKumsr5raU4VycZ7MOtdFSg7rzBamdexeS5uVHyNxKP5N/jXefDDxC0Eknhq5kzGQ0tizHovVo/wAPvD2zXJMoZSpGQRgg96ygZ7G6T7PI0dxAwltpB2Knj8uh9QawxNFVINFRdnc941FkklKqTgDAwMc96wrtRtPoKl0TW4/EGiwX8eFZsrLGP+Wcg+8v58j2IonTKletfOtOMrPoezSs4qxzl0vX0NY86HcSB+tbt6m3I5GKx7gHn0rogxTRjXQz2NZzjc3Hete4TIINZ0qYY4P5iuiLOScdSo64JGea6CwRraAu6eYSi7SMkckcZH+etYZHWpbe4nt5A0UjKQQcZ4yOmRSmm1Yui1B3O/gtz9mUyIN+F4PfpXNazrjJNJb2xyOhkznPritO/wBcA0EuhAmdjGrK3BIHzMO+K4lssx55rmo07tuR1169koxZGSSSScn1NJj3pSKehZTlcZIx0zXW2cCV2IAR0JH0NSKDnuSaeFJUAgZ9hUiR/MMHBqHI6I0whRtwx1q6qSJzI5Vew9aXyzFKHI75FKqNLIOTuPJNZuVzojTsQThZmBChT3CjrSLbKCM96vS2wjfAUkjBpUhJIJ/Wp5tNC/Z66kENsqvzyana33AEAVbS0YEEHj1q2bbYowvJ9RWbmdEYJKxkrEFG0ClMeK0pLUDnBHHTFVzByKnmuaKJx7wc4x1x/WojDxnHbNbzWfzL8vXH/oRpj6cSpwP7wr0lJHzjps59oyD0OakjvLuDHlzuAOxOR+taEtk6bcjG5vr2zTl0sN1mQZ/2Wz/KnzIjlfQZb+IbmM4liWQeqnaf8KunVdKvRtu7cKx/iden/AhVdtNto1zJc4H+6R/Oqkq2EfCrLKfbgUaPYq7W7NFtFsbkb7C+2nspYMP8RVVtO1XTyWjQyL3MTZz+HWs0ozuvk2zIxzg7jnp61attYv7FsF2dRwVkG4fn1osxKSvqrGtZeK5If3NzExwNvXBA9MV0ljrFndNKYZxuZFCq2AcgHIrnU1zStRQJqNoqk8biNwH/AAIcilbw9aXQ8zS9QUdwrNuH59RWbivQ2jJ9Hc3dTj82+s+4ZwPyxWjfgixRTxtdR+tceP7d0l43mg+0QxNuUg71/Mcj8a14/Fllf2ojmRrebep+blTg889vxrOUW7W1NoVFrfRmrp8RbUID/wBNB1PvXR6npzOGljUliu3BPQ1iaR5c15BIjqybwdytkY/CvQJ7bfHjbg4xx6Vx1bqSOj2vKeTazaXMlorFFZVG5nUYKnuK56M4bivR9bjaC2kRoy0a5wo/h98dx69686UYbAGD3rtoSbjY5cQlzKSLIUPHtB5PAp9vJjGflwabE2whiOB1pWZRMXjwqk9MVb7Ci+pu2ThlVO55+lb+mXgtZtkgLRyYBUNgcdCfXFcnZzHcADW/aATKWCNlTncoz271zVWkdcI8y1PRraOPZvjBwxzkjGe3SpJYt3X8Kq6VMZrVcuXIA5OO46Vf3Jn5iMKfm9hWcXc4Zpxk0eA+OZ/M8Ra64PAuFtx9EVR/PNcVW1rd4LzzrkH/AI+ryafPqC7Y/TFY1e3TVoJHDJ3k2A60IPlX6Uqjcyj1NC/dH0qiBaY4yhHsafTSMgigBEOYwfYVPbxGaUL2HJqvDzCv0qZHeM5ViKIiNxAFAAFUbr5L5W/vIP0P/wBeoFv5l9DUct08k0bMB8oIGKpyTKujYmuVhXnliOB61SjR76facncMtj+Fc/1/xqqHadyWY4AyxHYD/OK3rG38iEEjDty3t6D8OlXG8n5FbkOqr5Okv5fBQqRj2IrQt5VngjkXoyhhVTU13abcD/Yz+tV9An32jQk8xtx/unn+eaq9pWDqbFIaWg1Yzm9bt2jufNTgt86kf3h1rX0q8W8slfPzr8rCm6rB51kzAZaP5h/X9KwdNu/sN9gn90/B+n+eaxb5ZX6MWzOtNVb63NxCDGcSodyH39PoelWQQQCDkUGtXqDG+EvEA0TVC8zFdPvCEuAf+WLjhX/D7re3PavUplyMjH1HIxXjN7EtvceYQPs852yeiseA30PQ10vhjxcdNCaVqzk2qfLBcNyY17K3qo7Ht346ePjcK2+eK16nZhMQo+7LY6i/hO0sB171z86/Ma7V7dJow6lWRhkMpyCD0IPcViXum7WbI565A4rhpzS0Z6MlzbHKyr1zzVOWJD2FblzZFAT271lyoVJz1rpjK5zyi0Z0sQGcVCF+UsRjBxV11yTUBj5wM464p3JUSJ2d1VATtUfKCc4pqQM7ACr8Vk8kMkoU7U68U+C3fsOvepc0tjaNJtpsoS2rxHlfYHsafBaPI64U5zXUW+l/bLMxybvMQZUnt0q9p2hGyfz5mVio4FYyrpJ33N44ePN5HN3OnmBlQqC20HA/rRBabnAxyOa1buPzruRyAoJ6Ci1tyAz4OSdq8f57VHtHbU6fZpMiFoszMCMkD86t22km3TewGTxW9pukllUsuAec1Z1G3CNGkYyF5PvWMqjvZAnHmscy9lmbPqeTTDapvOAcf0rXaBiWIGAeKkFiQoIBzRzM0fKZ0cHzAAZNaEFsXyX6D+dXILDa7ZXOOM/1q6kZC4C53Z69/epcrkOolsc/Lbszk7eQajSwZm6cselbxs2ZgCpx1NTx2mATtOc9hRew/ao4JoPmUEdMf+hVaFmpz8o+8ay5l1bRbpFuVfUrFmwk6qBMv+yy5+Y/z/St+zuLe9hM9tIskZbGR1U+hHUH2NepUhKG54tOrGfqY0tkGkTAHynPT/ZNRnQ9QucvFcQRxkkDe2D/ACrZMYD89iP5Guw0PRNPvNKjmlgVpdzBmOTnDHHes3NrYqSilqeYt4Vu1K+ZfIQzBdyrnBP4+xoTwncucC+Bz0+THH5163deH7GSE29vbwxSHD7tnYcVj3ujDS2hCsrBw3CjAGMe9Q6s+4oRpN2secHwrfoC8c0bHOcEEZFULnSLu2Dia3fG77yjcvP0r09IgYhkAkKeo9zVhoVLN8q/fWkq8k9SpUoHir2aMSVGGHXmoPIlik3RsysD1HB/MV7TPomn3iky2sTNgYbbg5x6iua1/wAK2tnDFPbySKWmVCrYZQD+vb1raOIT0aMnQ6o46017VbLALiVR2cZ/XrWmNY0bVABqNgIpf+esfX65GD+dK2gTPuZWT75yTkcf5zVeTQpkt1mktn8vGBIFypP1HSr54P1EozWj2NC30Vo3+06Bq+GXnaW5/T+oro7Hx1rulYj1qwW5iHDTw8Nj19D+OK4AWjxyb4ZCpB4ZW6Y9xWjb65qdmoWV1mTpiRc/qOaUqfN5/mNW6qx0+t+JbXV4ZHsblirnJiwVcYAzuHbqenpXMwQE/MRkZyc/WpTeaRqDK1xaG1l/vxnA/Mf1FW0tZo1MlpPFexf3WIVwPY9D+NTH3Fa1jSyla5UuIwigAN/QVCpJVl4/rV4lLkGNSyyDrHINrf8A1/wqr5OxtpBBzg57U1LTUrl10JIJSrADp3rorO6dYv3eVBXaeOtc+IXChiCA33SR1rotOTEC70JBOAf581hVaaOyirKzOz8O3DvGAx+XGAoIAz3JFbOoSNFpd5ICoKwSMCe2FY1z2gxlZlZlALAdMj+vSm+NfFen6Ppd3YM7S389s6pBFyyhlI3Meirz35PYVNKLk7I8/E2UmeA3DfurWIHOyFc/U8mq9KzbmZ+3Cj8BSV7Z5jHwjMo9sn9KYPuj6VJB95j6Kx/SmdhTELRRRQBFFwmPQkfrUtMj/iH+0f50+hbCCmt2PpTqaSByelAF6yUGeOHqSQ7/ANB/M10IrA0Zd1wXPUgt/hW+DW1Pa5cSG+G6xuB/0zb+VYOiz+TfqCeJBtP16iuguBvt5V9VYfpXIRMylXXquCPrU1HaSYM7gGlqGCUTQpIvRlDVNW1yhCAQQRkHiuPv7cwTyRjqpyp9R2/SuwNYmu2/+ruAP9lv6VnUV0Jk+iXv2i18pj88Y491/wDrdPyrU61xllcNZ3yuM7epHqO4rsVZXUMDkMMgjuKVOV1Z9ATuhk0STxNHIu5WGCKw3R13W8hzND91j/Gp6H+h963zVDUYC6rPGuZIskAfxL3X/D3qpRuriZc8NeK7zQWEYDXOnE/PbMfmj9ShPT/d6H2r022vbPWLBbyxlWWJuD2ZT3Vh2I9K8Tc7CJk5VgCR6j1rS0rVrrSLsXdjIFLAB0bO2RfRh/XqK8zEYNT96Gj/ADOqhiXDSWqPQr+ALuJGTXPXMXzHjFdDZavZ+ILLzLc7J1H72BjlkP8AUehrPubN9xGDkGvPTcXaWjR6sUqiTWqMU2zbRIR8pqZNJlktRcKAVJxirn2d3YJzxnANdnomkbdNRZBks+RUzqtGjhGCuznLTTpBpQtmUo7N3/iFXrXw4ylWdlyMEVsXNugYE8hcjpVy0CSoHXJJ6g9BWEpscp2imiuLSOIBVRQAM8jpVG5EZXy885x7fjWvdo3ktszurENvlSxBzuIwemKj1Lpaq9ylJpzMwQKNzHJI7itWw0hWIyAApzx0q1YWjOw+bJIxn09q2jB5EQCjj1o5myK1e2i3K6RqihFx+VQT2nmvk/L2x3rQgt8tk/jTrm33AEcH1oSZyKpaWjME2SiTZkkA81P5IHAAPGKmMZB/rWNrevwaMixhGuLyQExW6dSP7zH+Fff8quMXJ2Ru6tldsv3DJBA7yOkajqzsAo+pNc9ceMNMtWYRNLdtjGYhhfpuP9M1x13fPrd0z6xqaqqt8tvACwT2CgHn3OTWZqn2SeeK1tI7hU27pJp2O7bnoq5wPyrqhhl9o5ZYiWyOjv8A4j3O8xxeRbD2HmufxPA/KsCfxg9ypFylzd8kkvO6j/vlcAVRMMEUbNGiqWzgAdBmup8NfJpd2wwMOSP++RW/JCCukY885OzZsR3CXtn86h0kUbl6Z7/gff2rONq63xdJfJvgpaO5VfluFHVZFHDEd+/cU7y/7N1GS0JPlD5o8nqp6fip4/Kp5UFzEU3FXU7kcdVYdGH9favQspI867jLUs2V2l3KbaZPIvlwzQlshh/eRv4l/Ud67HQJroaa0dvDE2yZwxeQr1wegB9a86I/tK3CybobuF/laM4aNx3U+h6j1BxXReEvFltYrd2uu3UFndF1ZGY7VmGMFl9OgyO1cNWi1rHY7IVuZWludoJL9rkgx2qyKgx87EEMT7e1VNX+0SGATiIEFsbC3933qu3izw8t40h1uwKtGoyJgecn/wCtVa+8V+HbhoSmt2LbWbOJenH0rncZPobRcU7gkZCY7bTipiv3vqD/ACql/wAJN4eAH/E4szj0Yn+lB8UeHQpH9sWufq3+FRyS7GjqR7mlFGc9fb9Kx/FCH+zosAE/aE4/OrCeK/Dwb/kL23X1b0+lZ+t+INEvLOJLfU7aV/PUlVYjA5yeRTVOSd7Bzx2uZRTZbk4zxuwT/tGuu0K3Z9HtS58sMCy8cE8muYslg1J1s1u4vNZAFZW3DOcnOAcADP6V6BYtbrCLSFH8uFVX5sY+6MsAece+KlxbVmgnUSSsUrnw9pl0peaxt27lgoVvrlcGsW68BadPkwSzwt/dbDqPzwf1reXxDpIlltZrlLaWNijJKpTb1xkkY56g56GtKJ4JIVlhuInRhgOrBlJyfSi0o6ptEKo+p5LqPgS8tmLxIs6joYc7v++T/TNYMNk6zYjdlcEg5OCCPpXuEqJGC7Fdqjdn2615UYPtF5NIqYLOxwB1ya0hWbumdFKkp6lMtc7Al3Esqdiw5H0NWrOBLm5SKWVjEwIVmG5lOOMN1x7GtM2m63QOuHU7R6txSwWJVgwYEA9O4pe0TR0+wSKkLqEMEjho1OUOOQfb2rZtUXyYyuMHOD3BPtUU2itsW4hDYY4I/u/hXN63rslqZdL0yTbc52z3C9IR3VfVv5fXooQdWVo7jq1YU4czZra14xk02SXTtHdWvh8ss+Ay2/sOzN7dB39K4HUZvItJneR5Jpm+eR23M7HqzE8k4zU8MSQRhIxgdSSckn1J7msPU7g3F0EU/JH8o9z3NexSoRoxt1Z4Faq6srjTgIig5AGT9TTaKK0MCSHpJ/uNTBT4j8sv+6abQAUUUlAEcZ+Y/wC8wqWoEPyk+jn+dT0ogIahnYhCB1bgfjUxqCT5po19802I3NGUBpCB0UCtcGsrRxhZD7itMnHXpW8PhNFsK7KI2JIC4OSeMVyNvBLcYWCJ5W/2ELYrtdGtDqMovJV/0RD+6Uj/AFrD+I/7I7ep5rtNK0tbpi7oFgU8gDG4+lcOIxKTslex10sI5rmk7I8906C+t9PRZrKY7SQAihmC9sjrVk3AT/WQ3Mf+9Aw/pXr0cMcShY0VQOgUYqQE9Mn86545hNaWTNXhI9Gzxo39oOs6qf8AaBH86FSLV2Flbusry/LhWBK/7XtjrXsjwRSr+8iRwezKD/OoItNsbeYyw2dvFIeC6RqrEfUCqeYNpqxKwivq9DzWXwppiWotjAQwH+uzh8+uf6dKybWKWxlfT7g7miG6NuzIe/4GvUtV0zz1aeFf3g5ZR/EP8a4XxDbkWiXqLmS1YMcDkoeGH5c/hSw9dqWr3Nq9CMoXirNFE0yT7pqs2o2+dsPmXDdlhQtn8elc/qmuXy3D24jNsVwCDgtyM8noK9J1orqeY07XsaUsao7RkYU/Mn0J5H4H+dUYnMEvktnnJT/D+tZMF66SiUuzMD824kkjuK07t0NuswbkYZCO561mpJ6og0or17CZbqCZoZV+6ynnnt7g+hr0jRrifV9Ft7u5gWKSUE7V6MAcBh6ZxnFeb+FdEm8VahGkgZbK1w9zKvA5/hHux4+mT2r2uzswQqqgVFAVVUcADgY9sV5WOqQbSS1PVwCmk5PYzrTRmluVJXKnAz6DPNddIIrK0L7AVVQFH8qbbQLBz/EeKr3+92Mak7V689TXmt31Omc/aSS6FBonuM+YSobooPerNlGtvCIwckkt0qUW7IiqSDtBbr+lPto1aQkqB+PSpd2VKacbdBZIXkAyMAjms6eyZpFRAWPYDpit8AdB260qoituCgE07amMK7gV9OsPsqknG49FA4FW5YmkPHQVKo704YBOO9XymEqjcrsSOMIoHU4602RMqeM1MO1VNSvrfTNOnvbptsEKlnPUn0A9STgD3NNRvoZ31uc/rt+1iqQWyCW+uMrBGx446s3oq9/Xp3ry/wARXRiupdNtJ2mvJGH268b7zMf4F9AB1x0HFdHrWrXNhC966qdc1IiKCMnIgXqFHsoO5j3auEiKRhnV2dckK7feck5Zj7sefpgV20qfKrluTehYghisoVihGABye7H1NZU9yczzA8swRPoP/r5qe7u2SB3BJbGB9azLk7Wjgz90YP16n/PvW68zNvoiYykhgT8qqAPxrs/Dfzabdr6N/wCy1wrt973ZV/lXb+Fm3W10p/vKf0Iqamw6b943/EMKT2K3ca4mtcyDHVlx8y/iOfqKzLe4R1QhtwYcN61etb1HAYtuVgCOeCDXLRSG2aW16eTIyJk5JUcr+hFb0JWVmc+Ihdpo0b1zBdLex5UBQsgH931/4CTn6Gk1G1i1a2VxtWRSGRiM7Gz6dx6j0NbVhpCXEQ+2XUUe4coo3N+pArTtPClgsapDqUuRkYKLjbkkDr2zitJVIpmahKx5/pjabeSTW1zpFrDfwHEiheG/2gPT/EHoeNCO0sVkyNK09scfNBu/rW/rPw+uZ7mG+03ULZb2E4/eoyiRe6sRmsnXFufDU1sdQtiI7hiqyxsGQEDu39Dg96zvFvQ1i3bUYLK2OMadpyn2tQf5mpk0yF/+XayX/dso/wCoNSWlxBeW6zwOHRsjcPUdRV+BcAZ60mVZDINFtyRmO2/Czh/+Jre0zw9bPKpMcXHXFvCv8kFQ2UbOyqBnn8q66yt1t4hkAMRzUsTshkugaTJAY5LGFl9x/hWHd+GtKtcXulW0VtqFufMhaNmXcw52tzgq3Qg9jXTSvheCBx1NY127RKzEqcg5IqdRRIvENxPc+HY/EGlIrlIRJLAwLLNCfvKwGMlTn34Ncna6tDLJbX9jHFaLkrBKqY8tuhilH8Sns2OhH1rpfA1+jtq+jS/N9lnLqrHIMUozj8G3D8a5WK0j0fxFe6TMoa1mbygp7hgfLYf+g591qZKyua0nduLO3s78a1ps6eUbe9iGye3Y8xk9we6nse9YL6RJZtG5Cndkc9/wpNMe6JVoXX+07JcQs3AuoTyUb6gHHoR9a6GC6h1WyW5h3eW4wFYfMpHBU+4IIrhqxtrHY7cNVcHylC2tojazPJGMBcAqecjtT7HTYLhTIGKsrYIPTA705rJ1DOrsu3nHTNOsWxK4UspZs7ccdKyUuh1SbabTOf8AHmsjRdPhsdP3JfXwO2TOfLQcM315wP8A61eaxRpEgRQcDueST6n3rvfiXZsJtM1Dhhh7Z2XopOGX89rVwMrrGjMxwAM17mAjFU7rd7niYqUnOz6EF9deRCQp+duF9veseGIusj44UU65laVzI34D0Har9pAEtNpHzMMn8a692cxn0UpGCQe1IaQhA+1mUd15pw5FQodzyH3C/lUw6CkAtFFFAECDKSD/AG2qZTuUH1FRRdG/3j/OnxnCkehIpIBxqE83K+wNTGoR/wAfGf8AZP8AOmxG5pTYSX6j+VaVrbf2pdtb5It48Gdhxuz0QH37+31rBS7FlYSS8F2bag9Tiu50Wy+wabDCeZCN0rd2Y8k/0/Cs61XkjZbs7MLSU5a7I1baAyvFBEgUcKqgYAH+FdjBClvAsUY4UY+vvWNoVuMvcEdPlX+tboryJyu7HqPsKKUdeKSpIhlsnovNZktiuNp2+lNoJySTRTADXOavYiKbzUX93J1HYNXRmobm3W4geM9xwfQ9qcXZji7M4iSFQpAAA9BXkXiGQP4gvWHQSkfkMV7LOpjZgwwV6/hXiUyTahf3EkUUkpeRm2ohY8k+ldtHds5se9Eir0Oa3/C3hrUvF2px2VluESYMs7Z2RL6n39B3roPCXwp1nxDMk+oRSabpucs8q4kkH+yp5/E8fWvedL0XTfDekLYaXbiKNRnjlnbuzHufelWxCgrR1ZxUqLm9djntO0Ox0Kwi0rT1It4fmd2xulc4yze/8hxWu00WlaTPqNyypFEhb5jjjsB7k4H40qLG0wR22lsn6n0rm/Fepm51ddJT5rWyVZ7gH7rSEZVT/uj5j7kV59KEq09dT1K8lSgooxrvxJrFvbLqOqapNbGY7obS0VVCr2GSNxPqTWbbeLhcN+81DUAxOAJbhl/9BOK5jWdUk1bUWmOSo+WNR2Xt+da+h6IYR9qvFHmHlEI+6PU+/wDKvYVCEY7I8vnk3udKby7ALG/vMEc/6U/+NV38SXaNsi1K+3A9RNu/mDXOa7rXz/ZrZuF+8w7n0rB+2zhgwcAg5yABzWMox2SRor2u2d8PGGqwOqtq0qlvmXzY0dT7EbQf1Fd54a8QnX7Vg0ax3cLhJ1U5UgjIZSf4SPxBBFeBvezSYDsSAMAHtmuz+HfiF7DXYkmcC3uMW8hY8Ak/I34Nx/wKsKtJNXSNeZNaHuAHFBzuGKBz1pwGOK4rXJAA4rhfFuoJe+IIdNZwLLTUF5dlvutIc+Wp9QoBYj6V3Y7D1OK8D8Ra21xNfpGWMupXjyOV5IiViiqPrt/IH1ralG7DzZT1S+k1CaW/kLCS7DR2ynrFbg/M31bp+JrNJwMDgDjA7V1NloCKRe63KsRYKsdojcxqBwrVqjVNMslEdlYROMYLMoGa6720RSXU82kJlu0TqqDe2D+X9KpSPvuZH6gZ/nXZeIZbOe0kuYbGO2nyAzREbWB4+YY6jPUVx0ULyB/LRmLE4CjJ68VaZm9xSclfeSup8OXLR/aFB+8qnH44rATSr92TFpNwxblccfjW9o2m38EsnmWpCsuFJdV5zUTlG25UIyvsT2+pQ28pi81TGSSnzjgehqC/mjTUllDqYpk2uQwJVlGA35H9K9N+zhyCUt93qYFP9Ktw2kw5CW2PeBavZ3JburHDaTewXcCu0qBskYLjJI9s9K2fmRcxuwI5HzcGupGnLIuJIbNs+sAqtJ4VtJNzIq27t/HbsyH8uh/EUmCn3KdpqLuqktljwc9/euZ8cavZ6loD26ufMikWeKcD5Ny5yAe+QSMjIzWnceF9dnka2F3aR2hBDTMjB2H+6OD+ePwro7Lwno1iY7h7f7XclQTPON5yOPlX7qgY4AHAxQrLUltPY8h0HWzBaRwtbwtBF80jpIFxk9SD3z6kV12n3D32HhtphEwBWRgAGyO3OTjpnpVrxp4Biv8AdqmgxrbaipDPAq7VnweoB4DD8jXnzeJdftl2fbzCykqU2KrKwOCpBGQQe1aLXYm9tz2rTLRbdA8n3j29K0WukAxyPpXz3L4r8RuSP7augP8AZcD+Qqs/iPXi2X1q957/AGhh/Wn7NkuSZ9BTalHExUqzY5OBWTf3yzxt5aMAFJ6V4gfEOqshR9Yu25yczsefzq3Z6R4o1pS1rb6jLER9+Z2VT+LEZo5Latgpdkdn4U1Q2vxNZdwKXSm2bB43Y3L+RX9a6H4iWLJqNjeJ8q3SG1kbH3WzlT+ZH5Vy/hD4fa/Br1hf3BitoradZX+bczYPI47kcde9ereKNHbWdDkto9olyHhZvuhh0z7dqzk1cqMmpXPPbbUTc2sN15qxXMTASE9Bk7Wz7A4b863tKvozfC4jdVt79yrx/wDPK6UYYf8AAgv5j3rlh4S8UW7TeZYrKskYLGCVWO8DBOCQeRiregWd+l/d6dfWdzafao1likljIVZlwcg9M8Z68gGsJQi4tJnUpptNbnoAdNu07uevvUYtl80Oi5DDv1rj7vxleWFysd3ZRRkSiKZY5BJtOMk8dMehrXS8c4kEjsGHGXOMewFcyoSe5v7VLY0PE2jrqPhTUbdVAl8lpYf9l1+Zcf8AfOPxr59vLn7QwC8IAD9TXv0NwZkKSMxjdSrjzG5UjBHX0rxfxZ4dfw3q7W6M0lnKC9tKf4lz90/7S9D+B716ODvC8WzgxHvNM59F824SPtnJrZHAAHas3Tl3PJKex2j+taNehHucxm3K7Jm9DyKgJwCfSr14mVDjqODWZcNthb1PFJ6EhB/q8nqxJqZegqJBtRR6CpV+7UoQ6kpabVARxfcz6k/zp68OR6gGmRf6pfx/nTjwwP4UlshjjUWQJSTwNtSGn2Fg+qXphXIiUDzWHYen1NKUlFXZUYuTSW5m/aDcajAP+WayKFH4jJ/GvY1GGP1rzzWPDttYWwu7YupjYFlLbhjIr0iyT7RdRIOjMPy61wVp82p6mEpyptp+R1dhD5FnEmMHbk/U81bFMAwOOlSCuFu50MBUo+WL3Y/pUQGSAO9SufmwOi8UEsbRRRQMKO1FBoA4/wAZA2Wm3l0vH7hiP97GP6iux8E6PF4f8GabaCNEl8hZJ2UYLOw3Ek9T1x+Fcn4xX7e2l6IgzLqF2qHHaNTuY/TArtry8KYRPugcD2qqk+WCRjOPtJpdkXDcb5cA9aeWDDNY9vc5lxnOa0lk3CuZSuOUeUwvESmCMTRswfqirwzMOgH1OK88ikV9Luj5GoS3l2Xeado2O5iSOeOgAArvNSuEu/F1raOxFvY25uptrclmJVAR6AAn8RVc65YQQGMTpvVics4BYe1dVGTpapXbFUj7VJN7Hm1hZ21nKZTFLPOORuUKF+gbH+NPvr7VJ4ylrHFErcEs/wA2Py4NL411VbjWo57aUSI8IVlRjkEH+IDr19fWuctJIru9hjlKqjsFZguCPxJrui5zSbdjjlywbVtiR9Lv1JJjUnrneDUf9m324gW7Mf8AZwa330fSUj3tdSbQBkKMEHOOm7kdOgPXpVaeysLS184Tzs5HCqwwD6H5s0/ZyI9rF9GY7WF4pANtMCf9mr2laXeyzMhtpTGwKthGz9Rx2ptveypMSskqheV3O3rwOtd94NuLnUpXFz53kquC3mfKzZwAMYNZVW4K7OilGM3ZXN/wf4zuLi7h0TV4Sl6B5ccoBBlKqTllPQkDORxn0rpfFGuf8I94eutTEYlaIKqITgMzMFXPtk5P0rkrm3stH1e01W2RB5JKyEgtgMcMT3JwTz1zUuv6wPF9vL4f02BWimKl7tyQqqrAllA68rgE9a5LRck0tOpc6TTsjjLP4sa3Zz3U2oSR3avFiGDasao5PBBAzjGfXtXD2WrG3vvtJdTIoAQsfunuR79efevStY8F+HdNhdJriOW9TBwjncSDypPOPy49a4eaz0ZLqX92yMhUIpk3licluqkDjGPx9q6Yzg9kZOnJa3Ldtq8dwxVn3P8AeOWzmraXSSsREGcjrtXIH1PQfiaw4hZ2xJgtFLZzumbec+uOBSy3Mk5xLIWA6L0X/vkcU210LUXbUsajObxxZRMrBmBfa27vwMjjr9a6rTE06xgig3bpFXonXPoT0H1NcSi5bggDkkgdqeLmYYw5UD+7x/KomnJWNIWTuehPepIuI7mK3UDnC+Y358AfrVA3enFgJJpbk5/idgD+AwK5GO+uEcMWLdgG5Fb9t/at3CAunRqmOGf5VP51k4cvU3TTPQHuYbcB5pVjHqzAVIviGxRcRyGXH/PJWb+QrBtJ7VOTbCSUn7z/ADE/ia1UvJSPlVUHsOldjOBx7l4a/uI8nTr2QHoRHtH64qQa3fkfLpEyn/alRf61SEzMAd2TSiVu5OaA5UWob6+M20WapJId2Guhz+Q9q0UOpttZhBGO48xmx+grmLhgupWs5UYY7C3oQcj9Ca24rqQMN00gXPIBzUO4ONkrGmiTTriaVlB+8qqAD+Jya5Pxd4ctdSs59SFrE95Aubpdo/fRr1cf7ajr/eXI7Ct+wuz9lVmdnPIO72JFPluSJBKFG5SDtPQ+o/KkpNMXLc8rg0LT5CMWdswIypZeD6c81Zh0S2XBFtpyn0WMNj86p+J7e/0LxDcQQ3l0tpK2+2Ysu1Uboo4z8pyv4VmvcaqkuyTUJSwYqMS46AHqQPWq5m+poopq6R1A0phMrLJDEyncBHbrkHsea24LjUY2UtqssmP4ZI1wfyxXnEL3NwzvcSzSurMpLSHoD0qwqL3jb8Xz/WsZzadrndSwilFPue8aHqEl9ZlpVRWRtuVGFIx15q/c52oNu4ZJ2g4zx61538P5zb6LdqIFZXuGwxZsjCqPWu5knFpof2gjG1Gc5PTg0OXu6nn1afLUaXcz7i+iilClGJUkMN20D296oX+rpLDLDsZYv728Db71wt5qd/qE8kpmeNWY4RGKgD3x1NauiWr3VlNBNJIyD5vmY/Me+f0rNxcVds6Y00UdctptTtX1KyVf3Vwq3UMThWYAbVYN16demc+1XbbULVYEjZ/IZFCmOVSjKQMYwfpQJUsotViRVAkhjVVxgElgDx9AfzqPS72a7XypHkMuAqsAfmA4B+o6H6VcZaWFKLWpcTU7T/Vrcxsy87VO4/kOaxta+zeIrWW0vZW0+3hy0M1xEVZ36ZUNjC47dT+Fd4UniiVkGPlGdmSQfXBHrS7Yr+CCHUYI5YmkCyCUAqw2nGQemGANNTs7oyaTWp4INOu9KY2t9bPFJuJViPlkH95W70pr21YdOvnfQ76GOeydc2pbn5QMbd3ZhxgjnkVwfinwBf6KXutNWS+sB8xUDM0Q9x/EPcc+orso4uL92ejOepQa1WqOKlXfGy+orCuTuljj98mt4OjrlWBrOtNIv9UvLt7K2edbWIyy7BnaoP3vf8K6ZySV2YWvsQCnJ0P1powQCDkGnIfmI9qZA+mnpTqaehpgRQ/6lfpSsflP51atNH1O6t43ht1WNlyrO4AI9cda2bPwqgYPfz+bj/lmnyr+J6msZVYxW50Qw9Sey0MSysrjVJdlsCsYOHmI+UfT1NdlYWEOn2qwQrgDlmPVj3Jq1HEkMapGioijAVRgCnYrkqVZTeux6dHDxpLuyhqsBn0u5jAyTG2PqBkfyrrPCw+0PFKf4YFY/Ugf/XrBK54rqPCKD7LO4HAKoPoF/wDr1jN+6atWdzpBTqaKcK5yRycNu9KWkHTFLQAUUUUAFMY08nisXxJrCaHodzetzIq7Yl7s54UD8f5U4q7sS2krsztCH9tfELUdSyWt9KiFpAe3mty5H0GR+NddOu/O3g56VieDtJm8P+GbeGaIm6mJuLls8+Y3JB+gwK2jMrIz8qwPY80VVd2XQinda9zORniuthPPtWzC+VGayDEjzeZ5qKc8ZVq0EuIgABJHn6MP6VgoSNajTSOU8Usll4m0uSKHLXAmMxUAsw2qAOeuMcCuYuda00IiXOmpKpX7yuylcHABHTNbvj+ZWu9IljdWZXZSACMAleckV5297cIzKNrDuGRWGfoRXbSjeKuc8nYfd/Z7x90I8lc8LuLY5461UGlockOp99wqb+0XYYa3tTz/AM8FB/QVNFeMCCLC1bt/qBW6utjFpSeqIBpzEABkwOwxSjTHJ4ZfxK/41eF9nrpdof8Atlini+A/5hVqP+2dHNIpQj2IbTR/Nb95cwoF5+ZwM+1djp2rW2mwrbx3Vqu3qFBIPuea5hL4H/mGW2PZR/hU6XZdQ/2GJQeBgAH+VZTTlubU7R2Ne61uS+1MwPc+Zp8SmWdbfKs+cgR5OeD39ifSobzW7i2YLEPso7mP5d2Bwo7hQOAPqe9UIZk3PKyhXllCqvHRF6fTcc1Rurh2kJJGc85GTWbSvZI0T0uxk97MxbajAHks3JPv71li3eaWRxheWfc3AIAHHufarzSv3Y/lVeRnbAJbbncAfy/oKuOmxErO1ysFJHTPOOadsx1GKkJx3/Ok5YgAnJOKq5PKIflXA/i5/DtU9lYz3s6xQJuJ6k8BR6k0xUaa4CIMljtUewrrtLgS0hCIOTyx7tWc58q03LhG+5b0zRbTTgGCLNP3lZc4P+yO1N8Q3lxaWgMc/lyNwqqOT6nJ6VqWzIYmnZhtXIz246muH1u+a+vpJMkIvyoPQVhTTnK7NajUY6HSq5yK6ezuY5YY1B+Y8BR1zXJK43V0OglFdppCAFX7x/hHc16JxzStc6FNORhukdgT2Xt/jWddRG3mMZOe4PqK8z8UfFLVJ7+S30KcWtpGxUTBFZ5cfxZIO0egFWvCHjW/1q+ay1WVZZvLzHLtCs23qDjg8c/hVctjmjNN2O73KQNwBAOeexqwJvTn6c1TjYFuQD3GatB+OtSzQktm2q4yeHbtjvn+tWVbJGaz45P3kg/2/wCgrH8X+IH0Lw9LcQOFupCIoT12serY9gCfrily3dhOVtWWPH6XkmhWq2gZpGuBEyqQNyspbBzxwVzXADTNcklSSS14Gd3zYJ4A6g+3am+HNU1ibUVivbq8uvlW4WKSUvtOSAcE9cMfzrsDf6ngH7PGqnoGdQf50ONtCoSurnK22j61EHAtVbcxblume1TjS9c3Y+yQg+8ldKl/fuAPNt1Hcb1/+vUyXF0rczWrDHUtWbim7tHTHE1IxST0NrwrFJp/h+C2uVjFwzvI+05GWbIAP0xWx4tvRD4cjgRxumKpwewGT+lcvBfzRspZ7ZgM5Csaq63qT3s1vA23ESZG08ZY/wCAqXHUxu5Su9ypEoVRxwea6rR7vT4GXTBeQ/bmiEpg3DcQeen0/SuXB+Ug8D1rjrPV2n8c6bcsoXy7tS5B67mORx22kClKHOaOdrJHc6zGEu5R3JCj8zSWMpsrC1ugAWS4bIxzt7/oW/Kn61cKNSCs6qWyBk9xkVUT/kCrEz4Ms7Lu+qtUJ6I1aurM76ylhijWSS4dSuMKrEdPqaZq9xC9iptnYD7QoO7tkHj6Yz+tYenSGXTbR2zuaJSfc9D+opmuTSxadEsbsrNJkY65Cn/Gmc6WpXsC0i27RgKVuWVe2CYywA/FRXfW04nt45QfvKDXBaTPHDp1qzhlkXUUZ9390KwOB19a67Q5RJp6lX3KvAJ4yMVjNG0le5ka/wDDzRvEEj3EatY3rctPbqMMf9peh+vB96seBPA6+EEvmluo7ye6ZfnWPaAqg4XBJ6kkmujQ7T1xVgSBFyeAOpoVafLyN6HPKCvdLU+dfEHg630vxjqWlEyxKzfaLRkbAMTc4weDg5H4VTPhRh0v5B/vRqa9P+KFk1zp1vr9rGTc6W+ZB3aFjhh+B5/E1z0DRXEEc0eGjkUMp9QeldkasnFNM0pUaclaS1RyQ8LOTzqDfhCv+NTR+FbbP726uX9gwUfoK6ny0/uilCKOgFN1ZvqbLD0l0KdtaJBbxwxghI1CruOeB71KYmHarGPajFQbbaIqlCO1IRVsqCORUTJ6UgIDXU+CtzeGbec9ZmeT8NxA/QVyd6/kWc8n91Gb8hXa+FI/K8JaSnQ/ZkY/iM/1qanwkN+9Y2BThSClFYAOpaQUtABQelFNJoAaTk1xaMvi/wAdrCAH0nRW3ueqzT9h7gY/Q+taPjLXH0jSRDaAvqV63kWqL94s3Bb8M/nirfhjRE8N6FFZAhp2/eTyf3pD1P0HQfStYq0b/cZTd3yr5nSmddpB71TnaMElNxx+VQtLzwaIr1IgdyKwYYJbn8ql6go21RVd/m4AqMuc8CpblVx5iY2t2zVUuV+n1pJGlzjfHczie2RATtXcB6Hd1/T9a5YywldxJ3E5K7QQP1zXpWr2MGoW5WVcsvKnuK4mfw3KkhMLqQezVvBpKxlOLbuiLTtIn1VWeGayhRTjdcOUz9K3bTwhd7Sv2/T2Y/3dzfyrNi0OfyQC4WQcHB7VLHoV8CGjnVc9cMRmhvzEom5/whV+cH7ZZEYzna/NMPg/UcDFxZe3yuP6Vnpo+p5GLthjoBIf8ak/sjVeD9pJ7nLn/Gld9ykg1HRLnSIo5LmW1IkbaPLyT096yHulV9qOGHsgAP41qPoeqTKqS3O5VyVBYnB9earP4euIQS8gIFCt1YNvocrqmoTJJZIh2yK7ysR3ZmOB9K2be/tprdJXt1feM/N2PcVlanp5uPENrYxsCzxjDAHsSf6VHbb7W8ls5MggllBGCDnDD/PpWkknHQxhOSk77G59ug3DbZxL7YFOh1fZAsZtomCjGemf0rPIB6GmDjI96y5Ua8zuacmpxyKVNpGue4Iz/wCg1mOE3bxhcZbG7POOOwpDUMr7Qfpxj/PtTStsDk3uaWlRBI2uDgE/KpP61dSW5t7hWklEseMA427T/hXFa7cyGeK0DERQquQD1YjOTU2iapLFKLWZy0MnyruOdrdse1OVJuPMTHERUuS3zO+fUM6THbRthmZg/suf8c1iPArMSRnPvTDMI1ZpD9frVOa/kYlYgF9+prKEWtjaco9TqC+M1JrepNp/g26eNissyrEpHUbjg/pmqrNyay/GdwF0ewts/fkMh+ir/wDXruS1RxVJaM53w34el8Q6mYAxjgQbpZP7q9gPc/8A166hvDltoms6dfafO7RpcKkn7wOrKx27gR7kA1m7TYaTa6LG7Ry3y/aLxk4Yqc7UH4Dp36d6p6NdSWNzcaVI26KdC0J7CQDcpH1xj8qt7nOkketo2DVhX4rOjvInVWjLSbgDhELdffp+tSPcSIu5xHbqejTsM/8AfI/xqGalpW/fS/UfyFcD43uRqHiTT9M5aK2XzZRngluf/QQP++q7OMs+SrSzMx5IXYv4Zx/M15w8i3PirUbplyGmKKQ2QMHBGf8AgNC6sUtbIIVluvEFwltFIz+WRtQdgwB6fhWuNJ1AgE27qf8AaYf41i2l09nr0k8chRnEqkg4yNwOK1X16UkA37fQvUtvoNW1uWk0u+7hV/4EKsR6Vdg4Lp/30ayjrp73ufxNM/t8ZObxR9UY/wBKVmyrxOkg0e5dsGSMD6moUTZqM8e/d5bbS2PQY/xrETxKisMXnI9I2qbTtREpkkV87mPLKQW560mnbUcZK+hrX1x5FjcOWwQhAJ9SMD+dcXpAV9QiuMjLXowfYdK1/EGpbdNZQV3ZyMA9ecdffFYujMEt7JmGf9IB/WhK0RuScj0jW75Uma5hTcrHaGCnAJwM578/hWZeyNFDpiAklzLM35YH8zVzxFdG5sdPgjB3TMAoK46dP6ViaxcJ/bDxq+6KC3KJjoCAQcfjmueKukdSdnY1dG1u7urSKGNwoi+TAXn1/rW3NDKYIFmkO9jncxyRnJIx26ZrltAmuWtZI7dBhbhlDYGcmr4ncwFrm/LSq7bU+Zsf0HFU0THoaiPEpKbyd1yFBPPAVv8AGtPTLebeu+dkUc4Dda5rS7xLy6jQcYlLHPsprqIZPmGM5rKS6G620OjgkSP5VLMT1JbOfxqwb1lUICpHTCisOJncAFiF9KuIQg4qUrGLinuW5I47qCSGaMNFKrI6HkFSMEH8DXkNvZS+H9Yu/D87FlhPm2bt/HCx4/EHr+NesiQ+vWuS8faVLdabFq9kub3TSZQB1ki/jX8ufwNa05Wdu5OsZKRiUVFa3Md5axXELZjkUMp/p+HSpq0Oq99UJRQaWgQUhFLS0hmP4ibZoN4w6lNv5kCvSNMi+z6TZw9NkCL+SivN/ESGTT47cdZ54oh+LCvTzhAF7DgVNT4UjPeT9ESCnCmKc08OBWAxQaWm7h2pQaAFNRTSpBC8srhI0UszHooAyTUma4/x3cTXMNl4ftHK3GpzBGYdViXlj/n0NVFXdhSdo3KvhqKTxL4gn8VXaMLeMtDp0TfwqOC+PXr+JPpXYu/+RUdrbQ2NlDaW6BYYUCIvoBTXfg1cnd6bGcVZa7jHfk+tQM/WiVveqbuR3zQolXNWzvLfymt7hdob7rqOR9azrl1SRsNuA6cdaqNMc9RVi0eO4LRTPkAYUnqPpVKJN7FY3GGPIxVW4QZ3p37Ut9C9u+RyrdDjFVVuPU1aiLmELlTzU0U4GM9KgfDcjrUO4qep4o5QUjaidXHykfjU6tjHIrDjnKnjir8V2GA3EA+oqHEakXy+cdPpmqV44ZCOtSGUY7c+1UbqQ7SM/rQkDehw2p3T2Hi61uQAWWI7Qemfm/xqo9wk9/FLKSv79ldlHOGGQam8Sgre2tx1CtsbjHB5/wAazZw9vM+VyA6uPwIB/nW6V0crbTfqdA9tE+Db3UbjHRhtP+FVmtrtGLeUxTGcqu4fmKgDL6imea8bEo7L7q2KyN2SedzgryOwPP5VFPIuADlW6YIqb+0LgjEjJKvpKit+pGf1qN5oJAd0IQ9cxsR+hyKpITbsYeoo0msTDHzMygfkK0xpsT6Q7xOPPhYs2Bzx3z7j+VULs7tYLgH5gGGeudvH610Bia3l2Bf3c0KxE56PjIP481t9lHGkuZtkBlN1ZRygg7gN316GrFosKLvLBQCA8rLkKeyqP4mPp+JwOaztImjWOeKYMVhc4VepBzx+dEk7SvuI2qv3FXov+fWsGrNo7E00n1Z1pDPlVRiSPTA/Ouc13fceIbWzl5KpGoUNkAswJ/SupjnjZwqtlunQ1yck4uPiGrHDBbyNBj0XA/pXSjlnK43VZzP4mvHV9ojlWJGz93bhRj8RVK6kMcttdFAHRyGHuCGx9PvfhVi5t3bVLgfxS3Tg59AxqG/T/R2O7I3q+cf3uD+tUZnq0Eb3MKO13IImUFUgwgxjgZ6/kRVuC3t4DujiVW/vHlj/AMCPP61j6Fdb9CsmJzmMDPuOP6VeNyVGThR6scCsmjYuzziC3lnJ4jRnP4An+leQWLyKVlJODIGIJ4O7rXdeJdQePw7esrDDR7M7WwdxC9fxri4oibGVFT5k25Poc/8A16pL3SW/eHyytDqSOqgsJ5EAPAOVFXjdXTf8sUPuNxrG1S48iVZwCSs6y4HuoNWx4vtgMG2lP4ilZtBdJu7LwluSP9UP++T/AFNHmXKnPkj/AL5H/wAVWefGEA6WTn6yAf0ph8YAn5LEfjL/APWpWfYOePc2InspkZL63niZuA6AY/IVHbzpZsY0cbSeu4ZxjjvwayT4nuZVKiyjCnrliazLvUHQAi3iUt/dJOKai+oOolqjS1+8SWBUjbdlwSQf8+9TaKT5emKCMmUN0/2v/rVy5u5JpY9+NqtnAFdCt1JpNpp1yqKzKqkK+cZILA8c/wAQokrKyFGSbbO01+/aK+0qMSBZArMuf4eQoOKybhVaadS+7bGqk/XP+Ncrd6tdarfpeX8hlK4CqBgADkAAdBmtXw+z3Bvl4YsqsF98nisvZ8quzohV5pWRNYa3KkJjtlZSzli59+OPwqRXuBL5xdpG6Nk9RVDQrZ5lZgDy1dZaaYr439O+KppIVNydiXQg815G0YbCfebHbBGP1ruLdNmOcnuTWPYpHaqEjUD+taMdxxnIHHauaWr0OtPQ1o2AAqdXHrWUtxnoanSfpg81FgZpK4p+QykHkHgg9DVJJSRUyPxTRLPOLiwPhrxFLpvIsLwtPZk9FbPzR/1FXK6bxTog17RJLdDtuoz5ttJ3WReV/Pp+NcbpV9/aGnxzsu2UEpKn9114I/P+dbp3Vx05W937i5RSkUmKRqKKTtS0UDMnV2C32jE/d/tCLd+dd3qd6sE0CZ5ZwK4TxFC76Q80WfMt2WdceqnP8s1taldjVdHS8t2yZIRIpHY4yP1yKUo3sRFe+0zr4H3xBuxFTA1g+GtSS9sUGfm2hh9D1/I1uZrCSs7FND81SudRWG6FupBcKGf2BOBVl5FjRnbooya4ewvXvdS1G6ZiQ0wVPZVGP604xuCR3obKg9sVx9mp1T4h6lfNkxabAtpF6b2GWP5Z/OuptJQ9nG57Lz+Fcn4EkFxpd/enl7m/lkZu55AH6VdNWuZVN0jq2bjvzVZ2GDkdKkdsA4NVJJOvf0ppEEcj8nBxVOVjzntUkr5x/KqsknB5wKtITYx3561CZGRgyuVYcgimSScnPWq7Sc9a0UTNyNoN/aNuQBHvVcMMfN9RWNd2VxaAO65U9/T61HHdyW8yyRsNw7HofrWs96LyNHhQsSMOufun0+lPlsLmuYqTdqfvDDmm31q8H71UZVPJXrt/Gqize+KfLcSkXcA+lOAwchiKqCcil+0DualxKUjQE7KOeR6ioLibcnB/+vVQ3AycnH0qCeUSRMobBpco3MxvEO24sZEH3lw4GfT/ACawrhlntJHDMT5W4BvpyfzFal6HCsOcYwQa5idpIVaJlPcA9sGtYx0OactS7Yak7fJIwbjueT71f3xSH720n1+X/wCsa5gZHIyKsR3ciDBbcvoabimRGq0rM32jlXlTuFRGUqcOuPrxWfFekfdcqfQHFW01ByMOqSL7jBqXE0VRMhc79VhI7lf/AELFdFeXBSESEj5ztUf3SDgcfgea5uWRHv4JETYAVGOOoNXb+4ceZA33lbcp7Dv/AFqrbEJ6srWTldQuEJ+8rZHv1q0Ce3U1TLLDrQLkBSwyScDkVcZrdRkXcBHbD8/lWc1qa05K1mzq7IzLdAygbD3ChQK47SJjP4st5T1e8DfmxrsLq4W2tJ5XkVdqMR8wGTg4/WuB0aTytasnPadCfzrboYN6o6nUSYvE0jBPlWdvxJANZd0GOm7iDuCMD7bWB/xrc1qJf+EhnJHyrLGxHsQAaqeIreO2tFMPCOjkY99p/nSvsNrRm14ZvGfRYULsFUMo2gA9fWtR7qKBTKVjjx1klbJH4npXmtprt/aWXkWxSIDJ3Fck9+/ArPn1G6un33MrSt23kkD6DpRyh7RJHW+JPEdtf2wsoWaUtIpaTGF4PQZ5NS6dhtSubZh8kw3A+hH/ANcGuELMW3EknrXa3DvbQ2moRBWLBRt7ksCVH50NaWFGV3dmXrKj7UYiwYbmOQeMKWX+WKygkan/AOvWhrcJtr6KEkFlgXeR3Ykk1mlqqK0Jk9SQPEvb9KUTxjop/Kq5HpRtJ707CuTG5jHRD+NQXMolVSBgilEee5NOW3yfWlYLtlQcHPeul1vcdN0tMfeiVvyjUVkrp+/oGrZjt5rjyzPI8hjUKm4/dUDGAOgpNaplRdk13MuK2dyMAgVr2FjMpIR5EVsBgrEbh+H1q9BaKuMKPrWnBFgDAH5VMmjWEXuT6fax20SqgAx2FbETBcdKzouMVcRgelYSuzqi0i+kn0zVpJOmaz0PT19asI5Bxk5qOUvmNFJPbIqykmOv86zEfPfPH+eatxEHOMD3xQ4j5jTjkHbg1bQgnrzWbET1zyeuauIx/P0qGguXAcivOtUtv7H8bTxqAttqifaEA6CZeGH49fxr0AOcc/oa4z4grhdFuVOJY75VXjkhhyP0FXT3t3Jbs0+wyihhtYj3opnULRRQePr6UDGuiyI0bDKsCpHseKyfC8siaLJbOMiGZ40OeozWjeXC2tnNcN0jRm/IVneF7dx4dhdjh5maU++WP+FV9lkf8vF6MfotzJpuoS2xYqVfzIye6k9PwruI9ZiK/vFKt6CuG1C1kJiuYlJlhbOB1ZT1H9a2AxI61nKKepaXR9C7rOtkWE7oNqqpbnuccVk6LbtbabGHGHf52z6mnXdubpUjb/V7wzj+8Bzj8TirYNNKysh21N7Rpg0MsR6Lz+B61zHgpX06XWdHkbLWt2XXP91uQf0ra0iTZebezKR/Ws26X7D8QQwO1L6ywfdkb/ClHdruYVY7M6B3qnK/BzUjuT34qpK/UfpVJGbZHLJycHFVJJBTpXyOelU5HPrWiRnKQ2V+arO3WnO/XBqu781aRi2DvSRXLwSh425HY9KiZs1EX54qrE3OqsbhLmM4O4H7ysOMntWXqmjvCzT2qs0XVl6lfp6is23u3tZfMjIz0IIyCPet621OWdE8qOI8EEb+fbPFDTWw+a5zgc9Cajd2APNbN7Yy3ku9LZYpP4iGG1uPTsaw5keJykisrLwQw5FFribsMeU+pqIye9I/Pv8AWoWOCeafKS5Dptsq4PB9RWNdwFW5AI/StIuf8mo3wwKkZzVJWIk7mIyL6D8KheAHpWlPbFcsnK+neqhXFUZsoNGy0gdk+nvV0rnrUbRg9KVgITPyrfxKQa6gQRXNjczHBfygwb1+Uf1WuVljKgnFaen6g6W4gPzCRfLA9Of8CahouD11KWpNuu2HcAA/kKp1LdP5l1I+erGoc0yW7sUVLBIYp43HVWDD8DUVA60CPQdflX+155AeWjjdffvWFqt002nMr8NEdqn1ViMf+g1emLX1rp1ypP7628piOfmTgj8sVU8QxLDaogPLTbceyj/E0kat3TZjdAB6CqTrtcj8qumo3iV+vX1FW0ZFTNd34ekjv7C1iYgtHyQecFeh/Va437Jk8Mfyq3ZPdWazJBOyCZdj7RyR9e1JxbHF2ZLqtwL/AFa4nTmPdtT3VRgH9M1VERParKQhVAAp4X2ppWBu7uVhATT1t89qtrET16VOseOnUe1MCmlpnGRVmO2XoFyfpVmOFnPA4q/DbqmMgE+9JjSK0NoTgkY9qvxW4GOKkVQP/rVKuB6VDZpFWHxxhewqYHb2qENkYA/GpB1yOTUtGqlYnQ5PWrMbDoTVNW6ZNWEfHrmpcSlIuozYzyKmVuPX61UVuhPNTIxz1II9KTRSkXo2LYwevTFXYmyc8n6ms2M7iBxj1q/EfTOSe3FQ0WmaETc8ZH0q0jDj+hqhE3GcLz6Vbjbnjjn1qGh3LQbjjOPpxXH+LnW48RaDaDB2tJcMPZVwP1rrA4HHGfrXE3Tm98f3snVbG0SIezMdx/SnFa3Fu0vMsXB2bT781FHKHDAkZUkEVJN84K1kl3g1dFJ/dzJjHoy8/qD+lFjtOhsIg8hdh8q9Pc1Hesv2p8dOM/WoBO6rtVyB6CoyxPJqba3L6GP4qlc6SLaM/vLqRYl/E/8A6q6KC3S0sordBhYkVB+AxXNz4vfFWlQcNHErXB9Djp+oFdTLwuK0eiSMY6yb+RXIyaUDFBoqS7iinCmilzSHctWLbbuJv9oCofFI8rW/D9yMgi4eIkejLRC21gR2OaTxm3GiOOv9oIR+INJfEjKr8LNBmOPWqczE+9TuRVWU9u1apHK2VpGxnA6GqkhyKnlb3/8ArVVkPBx9atIzkyB35Oaruxp0jfNULtVpGbY1nqMtQzVGWq7ENilvSp7S9ezl3pgg8Mp6GqhNNLelOwrnY2zpdxiWLYwPJLclT6H0pl/YR3se2QBZOisvJH19q5i0vZLKYPGw9Cp6GurtLqC6iVhtYMcEsOc9cGoasXGSejOOvbSaymMcq4/ut/Cw9RVRjuBz+dehXWnRXsJidWYHoCB8vuD2ridS0yawkbKs0YJAbGPz9KqLTIlGxlvlScn3phOB0/CpScjnp6GoWBXnqKqxAFs8VXmgV+RgMam4PpTTkUxGe6FTgjFMK1oOgYc81WkhK5I5FBJUdNynPNVkk+zl1ZAxIypPY+tXSMUySJZFwcH371LVwvYzSabU8ls6k7eRURRlOCpFTYBTRRuFGVIxQB1vhPUIzbyWEzhSrebEzdAcYNV/Elwk19BBGciNS7H/AGj/APWFYFu0ySq8SklTkZHH41e2yzTNNM4aRzlj/T6U1HW5XNpYiC5qVYye1TLGBTwAOgqxEYiAHNSqirwBmgCngHP+FACBcnpTwAOoFNxUiISf60AOA7c4qzFFuOSPzpsahRmpg4GPSgaJ0AXH9KmVsduarK/p/Onh+OufapsNMsh/fP404PVYMT0I/OnBuep/KlYpSLIkp4k9TwKqhj6nFPDHuRSsO5bV+c9KmR+eaoh8H1I9amRz9fYUmilI0kcHkn+lToxfgY9az4pMjAPXvmrkTMWyT1P1xUtGikX4mG44O7J+mauxthRn0wBWejHA6+w46Vchf5vlx7EGoaLTNGIhsjgY9RVpCM5BP0xWfE3OCec1bD9Sefb0qGi0yyG4wSQO/tXE6C5nTVdTPW8vHKk/3V+Vf610mr3n2PRb25B/1ULsOO+3j9cVgaTAbTw5p8B4PkqzfVvmP86Foi6SvP0Jz1rPv7ZnuLaZekcqsw9uQf5ir5NGARg0jrIxj3zVa/maO1YRj96/yJj+8eP061a2YGOtRvB5kqOfurkge57/AJUluU9VoZmjRA+KrkjkW9mka/ic/wBK6aU/L+NYGhkHxJrQ7r5K/htNb033R9aqW5jT2fqQ0UUtSWApaKKAHR96h8UuJF8Px5OWvFbH0Wpk6Gs7VZvtHibQrQc+RFJcOPwwKIq8kZ1naDNkufXNVpWA6HpUjNxxxUErcHHU+1bJHG2VpTkHHTtVWRhyamkb7wOKpyORx/WqSIkyGQ/UVXc+1SO3pVd+M8/pVpGTY1jz0zTCfrQ3X29qjPH/ANYVZNwLU0t1zSE+vWkJ96Yrhu9OtXLG/azmDdVPUdx7j3qgW9etG70pWFc9A0y9huVxG6tkbuOvvn3rRe1glRhJGrbhhiw6ivNrK9ksrgSxPg9DjuPSu50rWor4Kjsqy4yMHhvceh9qzlG2qNYyvozndd8KvbbrmxVpIurJ1Zf8RXLEEEgg5HavYsZ/xrntb8MQairT24WK4xnIGFb6+/vVRl0ZEodUecsPT8qbn1q1d2k1nO0NwjJIvUGqxFWZjT600jilJ5ppoEMeNWz2PtVZkKf/AFquGmEZoApnng00oO1WmiByRxUZQqaAKaWKA8szfTirCQRp91QD71Lj0pwX3pJAIE9+KcBilC09UJPApgMAz7mnhSetSCPHWpABjgUARhMdqft455pwGTSj260ANEeTzUowoGKTHalAoGOBJI604H0pAmTz196eBjuKBjhkj1p/I46H2qMZIyT/AC4p3JHH50DJQQOB1pQ2PaogcjgDr2PFKDk9QaQXJQwz2yKUNnqT+FRFsjv+JpATk5P4nigLloMcHrT1cHjuOnHWqoYHOCBjsaejAnI+uc80rFJmgjfN1wfSr0U42qBtJ/vHjHP61ko5GM55571Mkw29Bx27VLRUZWNxHBII2qME8dqvQMBnBGQcEE46d6worjc3dsnjBwePSr8U5wM5A9OBgVDiaxkbMb8D5s5HQ1ZVuigYz17YrLin6gEjtk8Y+tW1kAXJGPQZrNo0TMzxnKR4Yu0HWVliBx/eYCrFygjEcYGAqhR+AxWd4tcNptsvUPewqTk/3q0rz/XH60nsjahq2/Qr0gpaKk6RcUuKSloHcx9IPl+L9YT+/FE4/LFdBN938a5uEmHx03YT2X5lW/8ArV0Uhyv41UuhjS2a82RUtJS1JqKKWkpaQDk+6awNPl+2+M9VuQcrbQpbIffq2PyNbk1wlpaS3MhwsSM5+gGawPBkTf2PNey/6y8maVifTOB/Wrgt2c2IltH5nQMeec4x3qCRuDx09Kkc4zg4qB2/yDVpHM2QSfe/+v1qnKSG/wDr1afBb/Cqs4ycj86tESKr8dTUBPJ6fQ1O7cEDHNVnP0q0ZMjbr0zTCf8APSlLc+9MYgH3FUIQ/kO/NMJ/OlJHamE9O9MQE46/jSZpCabnmgQ/NPSd42V1Ygqdw5xzUOaN3FAHd6F4kS7XyLlgsqjAYnlv/r10W4HkHNeRhmVldWww5B9DXZeHNX+1/u7l1Eyjg7jlh6+mPpWco9UaRlfRmxq2kWurQbJlKyKPlkUfMp/qPauDv9Ek0y6Edy48th8kipkMfTqMGvTM7hg1DdWsF7bNBcxrJE3BVh39R6H3pKVinFM87m0ZbhYntzH+8XJ8pTww4IIJ4H5fjWRd2NzYy7LmIo2OD1B+hrodZ0s6HdpLZ3LGNz90t8yn39RV6y1Gy1aBba+KFtu3aw2rge+eo7fWtL9TJrocMaQ1v6v4fNqrXFo4mt+p2nJX8uorBI9aNyWrDTSYBpTSfWmIaBzTlQtTgnrTwKBCKg70/tijil3CgYoPpgGnDk9aZkn1/GlHXgk5oAcD6Hvil/AfjTT9cU4KAD94AntQA4DA5GT+lODH+6MdqYCwOQefrzS54HWgY89evOfypQ5HIB45z0poJ6DGR3FKQoOOc9CBQMeXOSCSMdeKQyEMeBkelM3DjgYHTnpQRkg7ie+R0oAkDbQQW5zgjPFIXYgNuwPamgnscketITzgMc8cD+tAAzN2Ykdu1JuHPrTSxY5J/Wg44xz9RQBL5rDHIqRJypyefwz+FVhwRkD+tSFS7Ej1/GgC9HPuG7IBGOOtTLMcA7+MZJ9PSqOGAHzEjnPap4i2ORjGMZ6A1LRSZfjYb/m42nv2rQhbcBkDHbd/hWOjOrHJ6nnBq/FkHPmE5/2T0qWi4s2ELfeBYZ6D/PFXYmwvGRz+NZMUjlRgc+taMT5XGDjPccms2jVMyfGDbNJimznyruJjnqPmrauzmUn15rI8WRNN4avFA5VQ4H0INXobgXWn2lwDnzIVb81Gf1qJLRHRh37zXoLRSClqDqFFFFFAGJffuvFmjy/89FliJ/4DkfzroHOQK5/Xj5d5o9x/cvFUn2YYrePXFN7IiGkmhKUUgpaRoLSikFOFIDnvGV06aRHYQ5M97IsSgdduef6Cti0gSysYLWP7sSBBz6D/ABzXOqf7Y8du/wB6301ML6Fz/wDXJ/75rpJGI45x6Gtoq0Ujz6kuabfyBmP0NVmbPQ81I7cEYJIzxVd25PT6HpVIzbGu3zdR6VXlOV6j8akdskZ6CoS2c4H4A00S2VnJyearMBnGRUzkZOMH1qF/bP8AKtEZshcnOT+RqInuOKexOewqNhzwDVCELdfWmn8RSEkNxxSZBHFBIhNNJ96Ce/WkJoAM0ufemZozQIfu9KVJHjcOjFWU5BHUGo91JmgZ3Xh3xCb1ha3bqswHyMTgv7fX+ddMMEev1615AHZWDBipU5BB5BrsvD/iVrmVLa7dRJjCseN/1P8Ae/nUSj1RpGXRnWkBhhgD7Vyuu+G0mka4sYis5+ZkAwrfTsG9q6hGDqGGcEZGRindqlNotpM4XTta+xTG21OEh0TaCF2lVHYr0696s3nh6y1iE3unttDZIKjCsc9cHHvXQ6lpFrqafvk/egYWReGH+I9q495dS8M3ISVJJbcE7d7HY2R/Dj0qk76rchq2+xzd7ZzWNyYJlUOvPysCDVevT5LWw8SWJe3EO5gNzFQWX646H8a47VfC97YTSNHG0kCkANkFuR1wKalfczcWtjEOAefWlBz05pSP8+tKPaqJAAkc9KXGD6UUo6HigAxx1pfTvRR06jAoAB0P+NPUnPIz75pg6/8A16XceT+fNAx2e2Sccdf5U4bd2AT/AJ+tM3dOw6etIT6DK9OaAJC5IzkkDk5NKGJ4B4HGc1GX4+nbNBbqSf0oAflcYAPtwelG/DcEj8P0qMOeM4OPemliRzzQBKzHPXJpC5I6jA9OlRls9/yNNz1zQBITz6UA/TPrTe/GDR0I5waAJRngn9e9SqPlPJA/WqwbAHQVIHO7OcmgZbRiN2D39qmVyQOc8c/T61TDbnG0c9s1Ou5cA9SehNIaZbQAccnPcVYiYg5yOO+aqRtub7uOc89auhBnA5PQ8EYpMpGjbuQMAleM8CtKJwxwx5HXI/Wsi3Zl25YDjqT/AErTi6cFvf3rORrFk13ALuxngI4lRlA7cisPwtcGfw5BGx+e2ZoXHpg5H6GuiRs56n0rldLB07xPqunHhJsXMX49f5/pUSV0bUpWmvPQ6CiiiszuFFFIKWkMwvFY26VFKOsVzG3610JOST71g+Kxnw7cnupVv/HhW4p3Ip9QD+lU/hRnH436IKUUClFQaAKr6neLp2mXF43SJCQPVugH54q0K5fxZI99d2GhQn5rhxJLjso6f1P4VUVd2M6s+SLZL4Qs2ttGNzMCZrtzKxPoen9T+NbbNxyfl9aUKsUSqigIqhQPQYwKY2BwBzW+556WhG+WPJ6fnVZuuAx/DoanYjJwcE1XlYkjH4ChCZE3c8fSozyp9KczjnKnioi2FPYnp71SIbIJQQcZI98VWbkdhUznJJwM1C+CTjnvzxVIlkD4JOCajbuSR9akckjJ6VEx57iqJGMOOOTTN2MjpTieo/l/hTHJxzxQIXPpx+NMJpM44B/pSE+nFAhT+lJmkzSZoAUmjPpSE89aQmgBxPFIGIOc4NNJpCaAOl0bxRPazhLxmmiYBS7N8y46exrv43WRFkVgykZBUgj8xXjmTW3oniGbTN0LENAwIBK5KE9wO/0qZRvqi4ytoz0uobm3hu4GhmjDxsOVP8x6H3qHTr1L60WZWUk9QpyPqM9j/wDWq3njjpWZrucNfaTf6FemfTzK1vywKkttx/e6D19a6HRtetNVZY5UENyOFRjkNgckH8+K1nAZSpAKkYOa5HW/DqqslzCQoHzYjQ7QcHJK9fTkflVb6Mm1tUcTjrRx160HH4/SlyecYrQwF+nApM8+9GfxozkdeKAHfTFJx2/SkJ9TSZ/MUDFJH+TSlvfimbuTzQSD6UAOD45z09qN3TPH0phbv3+tGTQA8uSMZppYn3NNpR2OaAHDnignmm/rTvfIFACZ9KX8aAfzp2SD1/HigBvf2pdvpx704A54pdpzzkGgBEQs2Bn8BmpFicjPT8aEbaMFu3I9amSQ8DjGKBipCQ3U4HHrVhVzjGB6mmB/l5YEdBwKmR+uCqjj3oBE0afNkEjPt+VW0A4wP6VXSU56rlvwx9atIMjICjuRnNSy0WIl5GBjFX4nUY4B+oqnEoBJLdPUc9PSrkR4GDwfWs2aRLiN14x9KwPFKGyuLHWoxk20gSYdyjdf6/nW8gY5JBPbvxSX9qmoafPayAlZkKgkdPQ/nip6mnoRKyuoZWDKwBBHcHoaWsTwtdPLpjWk2RcWTmFweuAfl/qPwrbrKSs7HoRalFNBS0lLSGY/igZ8OXnsoP8A48K14Dm3jPqi/wAhWT4oOPDl57qo/wDHhWtAMW8Q9FX+QpvYhfG/RElKKBSipNBRgDJOAOST2rlPDwOreINR1qQExq3kwZ/uj/62PzNavie+On6BcupxJIvlJjrubj+Wal0LT/7N0W2tmUCQLufnHzHk/wCH4VrTVlc48RK8lHtqW3+929eeoqF8fxH9KncfMOTn6VA/GSR1Pr+lWYMrsee/WoHPHTHGeufyqZumcc571BJyxAPHoKaIZE5GWA45xUJYjrz9akdicD2JxUJAwcdB6d6tEMicHIySPQ1A/PSrDAbjyePWoJASeOQKYmV25PsefWojj6kVKynkHgVE3Tk9elUSMY8HJzjtUbdPb69akI54/Q5qJxhjzQIZn/8AXSE/NzQfWkoEKDSGmmjNAC5oJpDRmgBaQ+/6UmaTNAh2c/SjNMzS596ANHTdXuNNlDRuxjDbiucc+o9/0PevQdL1u31WAtE4WVR8yd/rj0/z6E+WZqe0u5rO4SeBysinII/kfapcblRlY9bQjcwBzjg5P61J/Oub0rxJaXsStJiO4GAyZ656keo/lXRKwZcg1DVjZO546WBJ9aC3ekz/AJNBPOa1OcXcfoPalyc9aYOtBPTOaAHEj2zSE+1JuoPXnmgBScnnpSfpRx+FH1oAM0Uc9KPyoAOnSjvSdqXp3xQMB7cUvOff3owT70n55oAeCO344oHToKTPPNLn/wDVQA/Izk8/UdaduBGOmfamAkZGcZpwGSAOaAHEluAM/WnBGAHuenahVxwQR+HFToGGMcH16YoGNAbnAKk5yTUqIMknIGRz1o2jI6nP8OeP8anUMTkfNjPXg0AhImcEAE8deevpmtKCTLEbue1UggLEA8nHP+etToxVhwdvQ/L6+tSy0aCMBjkk+jVct3xjJwMdQMn8jVBGJHA6dcVbjO1slsZ9ev41DNEX0fkHJ3Hvn8OtWUOQST1qlEw5wf8AGtCJCwOHDN+P51Ei4nJ3sf8AY3jCO56WupL5bnsJB0/p+ZrepnirSjqOgTrH/r4h50R7hl56+4z+lVtHvhqOlW91n5nTDD0YcN+oqJaq51YeVrx+ZcpaQ9aKg6DG8UnOgzIOruij8WFbqrtUL6DFYfiEeaun2w6zXkYx7Dk1u9zTeyIj8TfoAFOHWkFOA96k0Ob1UDVfFmn6ZjdFbKbmZexP8I/l+ddKy8jIJx681z3hZPtup6xrDDKyy+VETz8q/wCVrpCMA4G3sTn9K3WiSPNk+aTfcrsvBA49D7VWc5yQeST7Yq665yo4OSCB1/I1VkXJYLjPXOfWmiWUmyRnd2zz/jUMq7lwB07CrLoFz83PTCiq7bjj5V5HQGqRLKb56E4+vpTd2SeAf0NTnlmwQM84xweO1QbSSCADjrk1Rmxj8jn8BULhTzxgfjipmBwRzuPXtioX5LEE49MUwZAwAJ2gflgioWU9uKkdicAdPQVGcNnpjPNMkibJPPftmonG5u34VKQjegxyfWomHfj8aYiPHocfhScD+VPOTnnj3pOQueg/WgRGfYUmacVI696aTz/WgANJSE0ZoELSGjNJmgBc0ZFIaSgB1IfakpM0APR2Rg6sVZTkEdQa7DwzrW4C3d2EoJJQsdrj1AxwfYVxmaUMVYMCQRyCDgihq5UZWY459KBz0ppPejPpQSOzSd+1J9aKAF+maP5Uc0d+KADvSmkJ4pRwKADH0pOPrS0hzQAUd6UfWgcUAL9ePwo5NJ7daP0oAd+hpe3akFA9qBjh7jrTgcZx1+lMxTgRkZ/KgCdGxgDqOKmU7uRntyTUCHjKkhj2FWY23D7xBoGiUKwcMG3HPPHH0qYEkHAIX1Jz+VRqoOAMH1qZFVW+UqAO3OKQ0KrbWA25xwDjqKsKQOowTUKDcQNxxnjjirQQ57nOenFJlIkjZgevQdqtR8Yz09u9Vli2g8kHPrwKtJ1x3AxxxUMtFmE/MO2a1LYLuyBjoR2NZaEbuuD71q2zI/I9Oc9qiRpEuAAqQefbqD7Vw+kxHSdd1PRzkR7vtEAP909QP0/Ku4HIJwfTg1zHiqD7Hd6frSDiF/JnPrG3GfwP86la3RpF2kmXKKB060VmdxkXX+keKdNgHIgje4b6/dWt0CsTRf8ATNY1PUOsYZbaI+oXliPxrdpvsRT1TfdgBVfUZjb6XdzjqkLMPrg1dtoGuJ1jXqep9BU/imyFv4V1Bo16W7ZqOZKSRcnaLMfwrZ/ZfDNigUhnj81j7sc/yIrUbqAMkHBJ5/D6060RU0+3C4ULCigdgNop5yCSMDnkZ/XFbt6nnWsrFVwccgkcjkYIqnKDuYBhyMAAccVckfZyVOcc59PSqUrHbyrDB4/z+VNEsry7gwYg7cdAOg+tVpFLAqOSPlxxx9c1ZdkDFWXgZ429qglTaxQOSeuMDBI/nVIllaQDk5yPcdun41E4OeNzKeANvUD+tWSzNuAAw3qenuPyqvM2SDhS2cdcDP07d6ohkbsSORtGcls54qu7MBnvyScGpiFI4AHPbJ6VXJBxlSR3wxx+FUiWRklWKgYPTnrUMmCeeT25/nUrsRknHHftULgjBO3HQFe9MCuwUHgqVHY9qaRkEk4A9BmpXyckkjnnjpUJLHCk/wBBTJYwnJ5GTn1ppwB74pT9eaTjkg/p1oEI+MccHqaac5OevvSknHJ/PrTD9OvNAAfekzQTSGgQuaQmkzS0AGaKSigBaSikoAWgGkooAXvS0lAoAUdaCeB6UUfyoAX9KP5UmfzooAKdmm96OPSgBaPeiigBev0pO1FLQAfjilo780goAWlyO3T160mRnvS5/GgBQcen07Uuc4pACTjvTxG3XoO5oGKrYHNWIyMY4HPfoaiRAcDBPsKsIrbQAvH86Bk8bkA9j0H/ANapw5xyQQeeBiq6ISOe3rUoQ8jn27CkCLUToGwcHgDhqtoFJGPrxxVBEcENjHpxWhEDgdqlmkS0iADgn8qkVBwSOnvSRLvYAfeNT7GVuRg/WoLQIuB0yPWrts7REY71WRSTir1tEMBn4A5wamTLiiwjyPwc5z2p9/pY1PSrm0fJEsbIMjuRwfzxV23jUrwg3VYJaNQuDnoCayctdDVLTU4LQ7h7nR4Gkz5qAxSA9dynaf5VJq872ukXU8fEiRMVPoemf1zTII/sev61ZY2gXAuEX0WRd386sXMaXFrJFJ9x1ZW+hFD3OmDcoeYzQLdLTRLWJTn5AzN6s3JP61o9TVHRmLaNZk8nyVH1xxV4cEZoe7NI25VY39FtdkTTuMFuF9hV7UbQX+m3Vo2MTRNH/wB9KRUkAUQIVxggEVUn1e3tbO9u5m2xWZYMT32gHj8Tiua7crilqtTm9DuftOgWTlW3LCI2z/eX5T+q1YkJUDjjODlsHFVPD2/+wLV2Xy3kVpWX03MzY/JhVyUAKDg+wHeuzqcHQgcBUYMNoGAcZ5qm5UOcAf3tuO464q65AG4tnA+lZj/MzMScgntkZ7c1SIkJJsJIEmM8DAzgf/rqA/OozhQoPQcnPtTnJDHbjk4yDj61XPLcIOuSpPPHvVIhsiOA+1SNrEDb93p79qhkY7RhgAqnjjH/ANepnfPX7oHOW/zzVeTJJUAgZ5wKpEsacBCBkknoRzVYgbjksAPU5xUjSbQAAqkjOQcVGwKrjdjnPHTpVEsZIdzEnLA9ycAD+lVWIB7LjB75NSFuN3y+vB/pUZc7924HJz14/OmSyJ2b1zjoc1Ceo5GT19ae5JHJP41GWOCueuOMUxAzAk9SCe/X86aSSxOM+1IcngHJpp69OtAAT2xyPwpCR/nvQTmm5NAAaSg0UCA0UlFAC0lFJQAtGc0maKAClpKBQAvelooHtQAfSj9aKOvWgBaPpSZpaACiiigApaAe+aKBhS/Wk70d+KBCg4//AF0tNpelAw704YxSdDQKBDxUqEE9ahGR0/SngnoaBltQg5zmpAwx2A71TDkYxwaesm3kYzQMuq43ZGD6VYR+2enFZvmnOTTxO+Rk80rAmayzFsAsSKsxuAcnANYiXJxz/OrKXOf4vwpNFqRvRygEENzUwnBPXOaxopt3fn3q3G24gDioaLUjTSdVOCAfSr8V68rLEiqpY44rFQcZzir2m2pvL6OIZ253MfQCokkaRbOwsonjhAfbn0znFTlF3ZIGR0NSIgVQoGMdKUoTtHHpXO9Wbnn2tFR45nCc/wCgxeZjs247f0rP1u4MViIkJElwwiUjsD94/lmn2U/2++1LU263NyyqPRE+VR+hqPVY982n4PIuAuPYg5/lWmzSNoJqnfubUSJHCiINqKoVQOwAwKlAzUScRqO+0VdsovOuo0xxkZqG+psdNaIY7KJD1VRXA+KbO5N/ZaLIT9hvbpriST++FG7Yf8+npXogGFArnPF6IINNuG4MN9EVOOm7Kn9DWVN+8ZVNYsaMBQNoAxwAOAOnFMfK5IJA6+ppRxkdcenamnDDkbsY55H5V1HIyq5wSMgEHrjt7/lVKVcHGSByQBjpitGYjYeSBjrWXJlmLEKRkj2qomcitIdzBjnv26H2quwGMrnI6Z4/SrEpGSQeB7VATnPJ561aM2ROAM4JxjOPw6VXc7gTj6E5FWWYleTkD0qu49OP500SyCVQxIwOOhPNRuqEDBOcdxT3yByfxxULHA44qkJkDgEnA6d81FKSTk4x29KmcgMQMgk/hUEhxzn8xVEsiOemAD+VRsCx7knmnkHBORjOCaYenB+tAhu3kgA8dqYf1p5xnjpTW65PNADTSHig9aQ+1AgNFFIaAA0ZpKKACiiigAooooAKBRRQAtH40p/WigBKWiigAo+lGKWgAooooAKKKKAF780UUCgBR0opKWgAB9KXoev1pPegUAOBp4PHHT0pg74pf50APz0zSg/5NNH504Y6UDHAZ7inBT1BpozSg85NADgCP/11IuQOtNB96cD3A5oGXbVzuANacTHryax4D8w6VsQMMc4JqJFxLIYBRgA+prpvC5jWK4cY8zcAf93Fcz9e9WLSd7WdZI2KkdTWcldWNouzPRElGPelMgxkdRzVW2mS4hSVOVYZHrUxJx9fSuexsecS2x0bX7rT2z5Fw7XNo3baxyy/VTn8KbJ++1myjA4iV5T+W0fqTW749QjRBdIQJLWZJUOOeu0j8Q1YmmATX13c9QCsKH/dGW/Vv0qt1c2pyuuXsaw+8B6VsaJCWnaQjhR+prIQZYmun0WLZY7+7MT+XFZzdkbM0QK5zxopGiRyAZEd3CzDHbeB/WukxWV4lt2u/DmoRJ98wMyf7y/MP1FZwdpJkS1i0ZgA3EjjPtSnjJHTrUMEonhjlXOJUVuT0BAP9akK4GAea6jkKdxnHTOeASazpQN2N3TuOK0LtdxGPzx0rOlXbwG6e2KuJnIqSn5s4HPeomOQQOBTpDk+mfeoi3X+daIzYwtzgAdKic84GD9aczYOev41DKy9jx600iWyN2Gc1XckkEEcdvWldgOnX1qNpGxjPH+NUTcY5JbIPTiq8j5BHSpy/XBIX61XZmV9wxxzyM0xMjLYJI5Ocgmm/dOCPfDDFBHOO3vSE56nGB6daBDSewPFIcr1xn65oI5pD+lAhD70UUh9aAD3pKWkNACGilxSUAFFGKKACiiigAoooFAH/9k=\n" }, "metadata": {}, "execution_count": 5 } ] }, { "cell_type": "code", "source": [ "# @title \t⚄ Create a savefile-set from the entire range of pre-encoded items\n", "\n", "# @markdown 📥 Load the data (only required one time)\n", "load_the_data = True # @param {type:\"boolean\"}\n", "\n", "import math\n", "from safetensors.torch import load_file\n", "import json , os , torch\n", "import pandas as pd\n", "from PIL import Image\n", "import requests\n", "\n", "def my_mkdirs(folder):\n", " if os.path.exists(folder)==False:\n", " os.makedirs(folder)\n", "\n", "# @markdown ⚖️ Set the value for C in the reference

sim = C* text_enc + image_enc*(1-C)

\n", "\n", "C = 0.5 # @param {type:\"slider\", min:0, max:1, step:0.01}\n", "\n", "# @markdown 🚫 Penalize similarity to this prompt(optional)\n", "if(load_the_data):\n", " target_prompts , target_text_encodings , urls , target_image_encodings , NUM_ITEMS = getPromptsAndLinks('/content/text-to-image-prompts/fusion')\n", " from transformers import AutoTokenizer\n", " tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n", " from transformers import CLIPProcessor, CLIPModel\n", " processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n", " model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n", " logit_scale = model.logit_scale.exp() #logit_scale = 100.00000762939453\n", "#---------#\n", "\n", "filename = 'blank.json'\n", "path = '/content/text-to-image-prompts/fusion/'\n", "print(f'reading {filename}....')\n", "_index = 0\n", "%cd {path}\n", "with open(f'{filename}', 'r') as f:\n", " data = json.load(f)\n", "#------#\n", "_df = pd.DataFrame({'count': data})['count']\n", "_blank = {\n", " key : value for key, value in _df.items()\n", "}\n", "#------#\n", "\n", "root_savefile_name = 'fusion_C05_X7_'\n", "\n", "%cd /content/\n", "output_folder = '/content/output/savefiles/'\n", "my_mkdirs(output_folder)\n", "\n", "\n", "\n", "NEG = '' # @param {type:'string'}\n", "strength = 1 # @param {type:\"slider\", min:-5, max:5, step:0.1}\n", "\n", "for index in range(1667):\n", "\n", " PROMPT_INDEX = index\n", " prompt = target_prompts[f'{index}']\n", " url = urls[f'{index}']\n", " if url.find('perchance')>-1:\n", " image = Image.open(requests.get(url, stream=True).raw)\n", " else: continue #print(\"(No image for this ID)\")\n", "\n", " print(f\"no. {PROMPT_INDEX} : '{prompt}'\")\n", " text_features_A = target_text_encodings[f'{index}']\n", " image_features_A = target_image_encodings[f'{index}']\n", " # text-similarity\n", " sims = C * torch.matmul(text_tensor, text_features_A.t())\n", "\n", " neg_sims = 0*sims\n", " if(NEG != ''):\n", " # Get text features for user input\n", " inputs = tokenizer(text = NEG, padding=True, return_tensors=\"pt\")\n", " text_features_NEG = model.get_text_features(**inputs)\n", " text_features_NEG = text_features_A/text_features_A.norm(p=2, dim=-1, keepdim=True)\n", " # text-similarity\n", " neg_sims = strength*torch.matmul(text_tensor, text_features_NEG.t())\n", " #------#\n", "\n", " # plus image-similarity\n", " sims = sims + (1-C) * torch.matmul(text_tensor, image_features_A.t()) * logit_scale\n", "\n", " # minus NEG-similarity\n", " sims = sims - neg_sims\n", "\n", " # Sort the items\n", " sorted , indices = torch.sort(sims,dim=0 , descending=True)\n", "\n", " # @markdown Repeat output N times\n", " RANGE = 1000\n", " NUM_CHUNKS = 10\n", " separator = '|'\n", " _savefiles = {}\n", " #-----#\n", " for chunk in range(NUM_CHUNKS):\n", " start_at_index = chunk * RANGE\n", " _prompts = ''\n", " for _index in range(start_at_index + RANGE):\n", " if _index < start_at_index : continue\n", " index = indices[_index].item()\n", " prompt = prompts[f'{index}']\n", " _prompts = _prompts.replace(prompt + separator,'')\n", " _prompts = _prompts + prompt + separator\n", " #------#\n", " _prompts = fix_bad_symbols(_prompts)\n", " _prompts = ('{' + _prompts + '}').replace(separator + '}', '}')\n", " _savefiles[f'{chunk}'] = _prompts\n", " #---------#\n", " save_filename = f'{root_savefile_name}{PROMPT_INDEX}.json'\n", " %cd {output_folder}\n", " print(f'Saving savefile {save_filename} to {output_folder}...')\n", " with open(save_filename, 'w') as f:\n", " json.dump(_savefiles, f)\n", " #---------#\n", " continue\n", "#-----------#" ], "metadata": { "id": "NZy2HrkZ1Rto", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "87c30400-5f95-403f-dcb9-f601991ab2df" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "reading prompts-14.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-14.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-47.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-47.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-68.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-68.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-82.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-82.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-91.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-91.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-95.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-95.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-65.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-65.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-89.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-89.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-51.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-51.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-34.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-34.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-50.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-50.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-90.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-90.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-36.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-36.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-28.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-28.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-4.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-4.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-2.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-2.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-27.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-27.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-22.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-22.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-30.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-30.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-76.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-76.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-56.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-56.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-13.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-13.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-9.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-9.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-12.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-12.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-80.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-80.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-73.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-73.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-78.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-78.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-11.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-11.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-72.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-72.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-97.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-97.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-26.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-26.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-59.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-59.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-53.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-53.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-79.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-79.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-31.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-31.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-71.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-71.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-49.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-49.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-5.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-5.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-66.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-66.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-94.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-94.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-32.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-32.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-44.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-44.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-98.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-98.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-18.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-18.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-41.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-41.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-92.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-92.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-6.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-6.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-52.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-52.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-20.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-20.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-21.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-21.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-35.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-35.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-86.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-86.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-87.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-87.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-67.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-67.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-77.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-77.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-7.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-7.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-69.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-69.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-74.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-74.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-3.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-3.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-58.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-58.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-84.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-84.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-96.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-96.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-45.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-45.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-19.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-19.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-17.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-17.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-16.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-16.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-48.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-48.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-54.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-54.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-70.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-70.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-55.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-55.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-10.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-10.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-25.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-25.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-85.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-85.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-42.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-42.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-60.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-60.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-40.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-40.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-57.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-57.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-37.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-37.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-24.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-24.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-33.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-33.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-61.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-61.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-23.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-23.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-81.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-81.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-29.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-29.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-46.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-46.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-75.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-75.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-15.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-15.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-38.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-38.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-39.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-39.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-88.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-88.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-43.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-43.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-62.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-62.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-1.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-1.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-83.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-83.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-8.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-8.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-63.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-63.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-64.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-64.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading prompts-93.json.json...\n", "/content/text-to-image-prompts/fusion/text\n", "reading links-93.json..\n", "/content/text-to-image-prompts/fusion/images\n", "/content/text-to-image-prompts/fusion/text_encodings\n", "/content/text-to-image-prompts/fusion/image_encodings\n", "reading blank.json....\n", "/content/text-to-image-prompts/fusion\n", "/content\n", "no. 1 : 'The Tarzan is running.'\n", "/content/output/savefiles\n", "Saving savefile fusion_C05_X7_1.json to /content/output/savefiles/...\n", "no. 2 : 'The greek man is running on street'\n", "/content/output/savefiles\n", "Saving savefile fusion_C05_X7_2.json to /content/output/savefiles/...\n", "no. 3 : 'Preacher by Garth Ennis and Steve Dillonrape_face simple_background parody_focus completely_obscured smirk generic completely_obscured suggestive simple_background '\n" ] } ] }, { "cell_type": "code", "source": [ "# Determine if this notebook is running on Colab or Kaggle\n", "#Use https://www.kaggle.com/ if Google Colab GPU is busy\n", "home_directory = '/content/'\n", "using_Kaggle = os.environ.get('KAGGLE_URL_BASE','')\n", "if using_Kaggle : home_directory = '/kaggle/working/'\n", "%cd {home_directory}\n", "#-------#\n", "\n", "# @title Download the text_encodings as .zip\n", "import os\n", "%cd {home_directory}\n", "#os.remove(f'{home_directory}results.zip')\n", "root_output_folder = home_directory + 'output/'\n", "zip_dest = f'{home_directory}results.zip'\n", "!zip -r {zip_dest} {root_output_folder}" ], "metadata": { "id": "DaV1ynRs1XeS" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# @title ⚙️📝 Print the results (Advanced)\n", "list_size = 1000 # @param {type:'number'}\n", "start_at_index = 0 # @param {type:'number'}\n", "print_Similarity = True # @param {type:\"boolean\"}\n", "print_Prompts = True # @param {type:\"boolean\"}\n", "print_Descriptions = True # @param {type:\"boolean\"}\n", "compact_Output = True # @param {type:\"boolean\"}\n", "newline_Separator = False # @param {type:\"boolean\"}\n", "\n", "import random\n", "# @markdown -----------\n", "# @markdown Mix with...\n", "list_size2 = 1000 # @param {type:'number'}\n", "start_at_index2 = 10000 # @param {type:'number'}\n", "rate_percent = 0 # @param {type:\"slider\", min:0, max:100, step:1}\n", "\n", "# @markdown -----------\n", "# @markdown Repeat output N times\n", "N = 6 # @param {type:\"slider\", min:0, max:10, step:1}\n", "\n", "# title Show the 100 most similiar suffix and prefix text-encodings to the text encoding\n", "RANGE = list_size\n", "separator = '|'\n", "if newline_Separator : separator = separator + '\\n'\n", "\n", "_prompts = ''\n", "_sims = ''\n", "for _index in range(start_at_index + RANGE):\n", " if _index < start_at_index : continue\n", " index = indices[_index].item()\n", "\n", " prompt = prompts[f'{index}']\n", " if rate_percent >= random.randint(0,100) : prompt = prompts[f'{random.randint(start_at_index2 , start_at_index2 + list_size2)}']\n", "\n", " #Remove duplicates\n", " if _prompts.find(prompt + separator)<=-1:\n", " _sims = _sims + f'{round(100*sims[index].item(), 2)} %' + separator\n", " #-------#\n", " _prompts = _prompts.replace(prompt + separator,'')\n", " _prompts = _prompts + prompt + separator\n", " #------#\n", "#------#\n", "__prompts = fix_bad_symbols(__prompts)\n", "__prompts = ('{' + _prompts + '}').replace(separator + '}', '}')\n", "__sims = ('{' + _sims + '}').replace(separator + '}', '}')\n", "#------#\n", "\n", "if(not print_Prompts): __prompts = ''\n", "if(not print_Similarity): __sims = ''\n", "\n", "if(not compact_Output):\n", " if(print_Descriptions):\n", " print(f'The {start_at_index}-{start_at_index + RANGE} most similiar items to prompt : \\n\\n ')\n", " for i in range(N) : print(__prompts)\n", " print(f'The {start_at_index}-{start_at_index + RANGE} similarity % for items : \\n\\n' + __sims)\n", " print('')\n", " else:\n", " for i in range(N) : print(__prompts)\n", "else:\n", " for i in range(N) : print(__prompts)\n", "#-------#" ], "metadata": { "id": "Qz05kRtU236V" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# @title Quick fix to created json files above\n", "output_folder = '/content/output/fusion-gen-savefiles/'\n", "index = 0\n", "path = '/content/text-to-image-prompts/fusion-gen-savefiles'\n", "\n", "def my_mkdirs(folder):\n", " if os.path.exists(folder)==False:\n", " os.makedirs(folder)\n", "\n", "my_mkdirs(output_folder)\n", "for filename in os.listdir(f'{path}'):\n", " if filename.find('fusion_C05_X7_1000_')<=-1: continue\n", " print(f'reading {filename}...')\n", " %cd {path}\n", " with open(f'{filename}', 'r') as f:\n", " data = json.load(f)\n", " _df = pd.DataFrame({'count': data})['count']\n", " _savefile = {\n", " key : value for key, value in _df.items()\n", " }\n", "\n", " _savefile2 = {}\n", "\n", " for key in _savefile:\n", " _savefile2[key] = _savefile[key]\n", " if(key == \"_main\") :\n", " _savefile2[key] = \"Prompt input only ✏️\"\n", " print(\"changed\")\n", " #----------#\n", "\n", " save_filename = f'fusion_C05_X7_1000_{index}.json'\n", " index = index + 1\n", "\n", " %cd {output_folder}\n", " print(f'Saving savefile {save_filename} to {output_folder}...')\n", " with open(save_filename, 'w') as f:\n", " json.dump(_savefile2, f)" ], "metadata": { "id": "mRhTZ6wS1g0m" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# @title 📝 Get Prompt text_encoding similarity to the pre-calc. text_encodings\n", "prompt = \"pixar animation\" # @param {\"type\":\"string\",\"placeholder\":\"Write a prompt\"}\n", "\n", "use_negatives = False # @param {type:\"boolean\"}\n", "\n", "from transformers import AutoTokenizer\n", "tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n", "from transformers import CLIPProcessor, CLIPModel\n", "processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n", "model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n", "logit_scale = model.logit_scale.exp()\n", "\n", "# Get text features for user input\n", "inputs = tokenizer(text = prompt, padding=True, return_tensors=\"pt\")\n", "text_features_A = model.get_text_features(**inputs)\n", "text_features_A = text_features_A/text_features_A.norm(p=2, dim=-1, keepdim=True)\n", "name_A = prompt\n", "#------#\n", "\n", "penalty_NEG = 0\n", "image_penalty_NEG = 0\n", "\n", "#------#\n", "try: strength_NEG\n", "except: strength_NEG = 1\n", "\n", "try: strength_image_NEG\n", "except: strength_image_NEG = 1\n", "#------#\n", "\n", "if using_NEG and use_negatives:\n", " penalty_NEG = strength_NEG* torch.nn.functional.cosine_similarity(text_features_A, text_features_NEG)\n", "if using_image_NEG and use_negatives:\n", " torch.matmul(text_features_A, image_features_NEG.t()) * logit_scale\n", " image_penalty_NEG = strength_image_NEG* torch.nn.functional.cosine_similarity(text_features_A, image_features_NEG)\n", "#-------#\n", "\n", "sims = torch.zeros(NUM_VOCAB_ITEMS)\n", "for index in range(NUM_VOCAB_ITEMS):\n", " if index<2: continue\n", " text_features = text_encodings[f'{index}']\n", " sims[index] = torch.nn.functional.cosine_similarity(text_features, text_features_A) - penalty_NEG - image_penalty_NEG\n", " #------#\n", "\n", "#------#\n", "\n", "sorted , indices = torch.sort(sims,dim=0 , descending=True)" ], "metadata": { "id": "xc-PbIYF428y" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# @title ⚙️📝 Print the results (Advanced)\n", "list_size = 1000 # @param {type:'number'}\n", "start_at_index = 0 # @param {type:'number'}\n", "print_Similarity = True # @param {type:\"boolean\"}\n", "print_Prompts = True # @param {type:\"boolean\"}\n", "print_Prefix = True # @param {type:\"boolean\"}\n", "print_Descriptions = True # @param {type:\"boolean\"}\n", "compact_Output = True # @param {type:\"boolean\"}\n", "newline_Separator = False # @param {type:\"boolean\"}\n", "\n", "import random\n", "# @markdown -----------\n", "# @markdown Mix with...\n", "list_size2 = 1000 # @param {type:'number'}\n", "start_at_index2 = 10000 # @param {type:'number'}\n", "rate_percent = 0 # @param {type:\"slider\", min:0, max:100, step:1}\n", "\n", "# @markdown -----------\n", "# @markdown Repeat output N times\n", "N = 6 # @param {type:\"slider\", min:0, max:10, step:1}\n", "\n", "# title Show the 100 most similiar suffix and prefix text-encodings to the text encoding\n", "RANGE = list_size\n", "separator = '|'\n", "if newline_Separator : separator = separator + '\\n'\n", "\n", "_prompts = '{'\n", "_sims = '{'\n", "for _index in range(start_at_index + RANGE):\n", " if _index < start_at_index : continue\n", " index = indices[_index]\n", "\n", " prompt = prompts[f'{index}']\n", " if rate_percent >= random.randint(0,100) : prompt = prompts[f'{random.randint(start_at_index2 , start_at_index2 + list_size2)}']\n", "\n", " #Remove duplicates\n", " if _prompts.find(prompt + separator)<=-1:\n", " _sims = _sims + f'{round(100*sims[index].item(), 2)} %' + separator\n", " #-------#\n", " _prompts = _prompts.replace(prompt + separator,'')\n", " _prompts = _prompts + prompt + separator\n", " #------#\n", "#------#\n", "__prompts = (_prompts + '}').replace(separator + '}', '}')\n", "__sims = (_sims + '}').replace(separator + '}', '}')\n", "#------#\n", "\n", "if(not print_Prompts): __prompts = ''\n", "if(not print_Similarity): __sims = ''\n", "\n", "if(not compact_Output):\n", " if(print_Descriptions):\n", " print(f'The {start_at_index}-{start_at_index + RANGE} most similiar items to prompt : \\n\\n ')\n", " for i in range(N) : print(__prompts)\n", " print(f'The {start_at_index}-{start_at_index + RANGE} similarity % for items : \\n\\n' + __sims)\n", " print('')\n", " else:\n", " for i in range(N) : print(__prompts)\n", "else:\n", " for i in range(N) : print(__prompts)\n", "#-------#" ], "metadata": { "id": "ifblBRcXoB6t", "cellView": "form" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# @title 📝🚫 Penalize similarity to Prompt text_encoding (optional)\n", "neg_prompt = \"a drawing of a cat \" # @param {\"type\":\"string\",\"placeholder\":\"Write something to avoid\"}\n", "\n", "neg_strength = 1 # @param {type:\"slider\", min:0, max:5, step:0.01}\n", "\n", "enable = True # @param {\"type\":\"boolean\",\"placeholder\":\"😃\"}\n", "\n", "using_NEG = enable\n", "\n", "from transformers import AutoTokenizer\n", "tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n", "from transformers import CLIPProcessor, CLIPModel\n", "processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n", "model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n", "\n", "\n", "name_NEG = ''\n", "strength_NEG = 1\n", "if enable:\n", " # Get text features for user input\n", " inputs = tokenizer(text = neg_prompt, padding=True, return_tensors=\"pt\")\n", " text_features_NEG = model.get_text_features(**inputs)\n", " text_features_NEG = text_features_NEG/text_features_NEG.norm(p=2, dim=-1, keepdim=True)\n", " name_NEG = neg_prompt\n", " strength_NEG = neg_strength\n", " #------#" ], "metadata": { "id": "sX2JGqOH5B8g", "cellView": "form" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# @title 🖼️🚫 Penalize similarity to Prompt image_encoding (optional)\n", "from google.colab import files\n", "def upload_files():\n", " from google.colab import files\n", " uploaded = files.upload()\n", " for k, v in uploaded.items():\n", " open(k, 'wb').write(v)\n", " return list(uploaded.keys())\n", "\n", "\n", "neg_strength = 1 # @param {type:\"slider\", min:0, max:5, step:0.01}\n", "enable = True # @param {\"type\":\"boolean\",\"placeholder\":\"😃\"}\n", "using_image_NEG = enable\n", "\n", "\n", "colab_image_folder = '/content/text-to-image-prompts/images/'\n", "#Get image\n", "# You can use \"http://images.cocodataset.org/val2017/000000039769.jpg\" for testing\n", "image_url = \"\" # @param {\"type\":\"string\",\"placeholder\":\"leave empty for local upload (scroll down to see it)\"}\n", "colab_image_path = \"imperial.png\" # @param {\"type\":\"string\",\"placeholder\": \"eval. as '/content/sd_tokens/' + **your input**\"}\n", "# @markdown --------------------------\n", "\n", "image_path = \"\"\n", "\n", "from PIL import Image\n", "import requests\n", "image_NEG = \"\"\n", "image_features_NEG = \"\"\n", "strength_image_NEG = 1\n", "\n", "#----#\n", "if enable :\n", " strength_image_NEG = neg_strength\n", " if image_url == \"\":\n", " import cv2\n", " from google.colab.patches import cv2_imshow\n", " # Open the image.\n", " if colab_image_path == \"\":\n", " keys = upload_files()\n", " for key in keys:\n", " image_NEG = cv2.imread(colab_image_folder + key)\n", " colab_image_path = colab_image_folder + key\n", " image_path = colab_image_folder + key\n", " else:\n", " image_NEG = cv2.imread(colab_image_folder + colab_image_path)\n", " else:\n", " image_NEG = Image.open(requests.get(image_url, stream=True).raw)\n", " #------#\n", " from google.colab.patches import cv2_imshow\n", " cv2_imshow(image_NEG)\n", "\n", " inputs = processor(images=image_NEG, return_tensors=\"pt\")\n", " image_features_NEG = model.get_image_features(**inputs)\n", " image_features_NEG = image_features_NEG / image_features_NEG.norm(p=2, dim=-1, keepdim=True)" ], "metadata": { "id": "oCJ97b-B7927", "cellView": "form" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# @title 📝 Print the results\n", "list_size = 1000 # @param {type:'number'}\n", "start_at_index = 0 # @param {type:'number'}\n", "print_Similarity = True # @param {type:\"boolean\"}\n", "print_Prompts = True # @param {type:\"boolean\"}\n", "print_Prefix = True # @param {type:\"boolean\"}\n", "print_Descriptions = True # @param {type:\"boolean\"}\n", "compact_Output = True # @param {type:\"boolean\"}\n", "newline_Separator = True # @param {type:\"boolean\"}\n", "\n", "# title Show the 100 most similiar suffix and prefix text-encodings to the text encoding\n", "RANGE = list_size\n", "separator = '|'\n", "if newline_Separator : separator = separator + '\\n'\n", "\n", "_prompts = '{'\n", "_sims = '{'\n", "for _index in range(start_at_index + RANGE):\n", " if _index < start_at_index : continue\n", " index = indices[_index]\n", " #Remove duplicates\n", " if _prompts.find(prompts[f'{index}'] + separator)<=-1:\n", " _sims = _sims + f'{round(100*sims[index].item(), 2)} %' + separator\n", " #-------#\n", " _prompts = _prompts.replace(prompts[f'{index}'] + separator,'')\n", " _prompts = _prompts + prompts[f'{index}'] + separator\n", " #------#\n", "#------#\n", "__prompts = (_prompts + '}').replace(separator + '}', '}')\n", "__sims = (_sims + '}').replace(separator + '}', '}')\n", "#------#\n", "\n", "if(not print_Prompts): __prompts = ''\n", "if(not print_Similarity): __sims = ''\n", "\n", "if(not compact_Output):\n", " if(print_Descriptions):\n", " print(f'The {start_at_index}-{start_at_index + RANGE} most similiar items to prompt : \\n\\n ' + __prompts)\n", " print(f'The {start_at_index}-{start_at_index + RANGE} similarity % for items : \\n\\n' + __sims)\n", " print('')\n", " else:\n", " print(__prompts)\n", "else:\n", " print(__prompts)\n", "#-------#" ], "metadata": { "id": "_vnVbxcFf7WV", "cellView": "form" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "# Below are the Image interrogators" ], "metadata": { "id": "qZvLkJCtGC89" } }, { "cell_type": "code", "source": [ "# @title 🖼️ Upload an image\n", "def upload_files():\n", " from google.colab import files\n", " uploaded = files.upload()\n", " for k, v in uploaded.items():\n", " open(k, 'wb').write(v)\n", " return list(uploaded.keys())\n", "\n", "\n", "colab_image_folder = '/content/text-to-image-prompts/images/'\n", "#Get image\n", "# You can use \"http://images.cocodataset.org/val2017/000000039769.jpg\" for testing\n", "image_url = \"\" # @param {\"type\":\"string\",\"placeholder\":\"leave empty for local upload (scroll down to see it)\"}\n", "colab_image_path = \"imperial.png\" # @param {\"type\":\"string\",\"placeholder\": \"eval. as '/content/sd_tokens/' + **your input**\"}\n", "# @markdown --------------------------\n", "\n", "image_path = \"\"\n", "\n", "from PIL import Image\n", "import requests\n", "image_A = \"\"\n", "#----#\n", "if image_url == \"\":\n", " import cv2\n", " from google.colab.patches import cv2_imshow\n", " # Open the image.\n", " if colab_image_path == \"\":\n", " keys = upload_files()\n", " for key in keys:\n", " image_A = cv2.imread(colab_image_folder + key)\n", " colab_image_path = colab_image_folder + key\n", " image_path = colab_image_folder + key\n", " else:\n", " image_A = cv2.imread(colab_image_folder + colab_image_path)\n", " #---------#\n", "else:\n", " image_A = Image.open(requests.get(image_url, stream=True).raw)\n", " image_A\n", "#------#\n", "if image_url == \"\":\n", " from google.colab.patches import cv2_imshow\n", " cv2_imshow(image_A)\n", "#------#\n", "image_A\n", "\n" ], "metadata": { "id": "ke6mZ1RZDOeB", "cellView": "form" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "from transformers import AutoTokenizer\n", "tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n", "from transformers import CLIPProcessor, CLIPModel\n", "processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n", "model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n", "\n", "# Get image features\n", "inputs = processor(images=image_A, return_tensors=\"pt\")\n", "image_features = model.get_image_features(**inputs)\n", "image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True)\n", "name_A = \"the image\"\n", "#-----#" ], "metadata": { "id": "gAqsRQaZVf1A" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "#'/content/text-to-image-prompts/fusion/image_encodings/links-1.safetensors'\n", "path = '/content/text-to-image-prompts/fusion/image_encodings/'\n", "filename = 'links-1'\n", "#------#\n", "from safetensors.torch import load_file\n", "import json , os , shelve , torch\n", "import pandas as pd\n", "\n", "\n", "%cd {path}\n", "_image_encodings = load_file(f'{filename}.safetensors')\n", "#Store text_encodings for the header items" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "SEPUbRwpVwRQ", "outputId": "b058be19-2fe5-4de2-ff3c-3e821043a177" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "/content/text-to-image-prompts/fusion/image_encodings\n" ] } ] }, { "cell_type": "code", "source": [ "_image_encoding = _image_encodings[f'{16}']\n", "sim = torch.nn.functional.cosine_similarity(image_features, _image_encoding)\n", "print(sim.item())" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "5oXvYS1aXdjt", "outputId": "00491826-4329-4c02-d038-bc3b221937b1" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "1.0\n" ] } ] }, { "cell_type": "code", "source": [ "# @title 🖼️ Get image_encoding similarity to the pre-calc. text_encodings\n", "\n", "use_negatives = False # @param {type:\"boolean\"}\n", "\n", "from transformers import AutoTokenizer\n", "tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n", "from transformers import CLIPProcessor, CLIPModel\n", "processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n", "model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n", "\n", "# Get image features\n", "inputs = processor(images=image_A, return_tensors=\"pt\")\n", "image_features = model.get_image_features(**inputs)\n", "image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True)\n", "name_A = \"the image\"\n", "#-----#\n", "\n", "sims = torch.zeros(NUM_VOCAB_ITEMS)\n", "logit_scale = model.logit_scale.exp()\n", "for index in range(NUM_VOCAB_ITEMS):\n", " text_features = text_encodings[f'{index}']\n", "\n", " torch.matmul(text_features, image_features.t()) * logit_scale\n", " sims[index] = torch.nn.functional.cosine_similarity(text_features, image_features)\n", " if using_NEG and use_negatives :\n", " torch.matmul(text_features_NEG, image_features.t()) * logit_scale\n", "\n", " sims[index] = sims[index] - neg_strength* torch.nn.functional.cosine_similarity(text_features_NEG, image_features)\n", " if using_image_NEG and use_negatives :\n", " sims[index] = sims[index] - neg_strength* torch.nn.functional.cosine_similarity(image_features, image_features_NEG)\n", "#-------#\n", "sorted , indices = torch.sort(sims,dim=0 , descending=True)" ], "metadata": { "id": "rebogpoyOG8k" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# @title 🖼️ Print the results\n", "list_size = 1000 # @param {type:'number'}\n", "start_at_index = 0 # @param {type:'number'}\n", "print_Similarity = True # @param {type:\"boolean\"}\n", "print_Prompts = True # @param {type:\"boolean\"}\n", "print_Prefix = True # @param {type:\"boolean\"}\n", "print_Descriptions = True # @param {type:\"boolean\"}\n", "compact_Output = True # @param {type:\"boolean\"}\n", "newline_Separator = True # @param {type:\"boolean\"}\n", "\n", "# title Show the 100 most similiar suffix and prefix text-encodings to the text encoding\n", "RANGE = list_size\n", "separator = '|'\n", "if newline_Separator : separator = separator + '\\n'\n", "\n", "_prompts = '{'\n", "_sims = '{'\n", "for _index in range(start_at_index + RANGE):\n", " if _index < start_at_index : continue\n", " index = indices[_index]\n", " _prompts = _prompts + prompts[f'{index}'] + separator\n", " _sims = _sims + f'{round(100*sims[index].item(), 2)} %' + separator\n", "#------#\n", "__prompts = (_prompts + '}').replace(separator + '}', '}')\n", "__sims = (_sims + '}').replace(separator + '}', '}')\n", "#------#\n", "\n", "if(not print_Prompts): __prompts = ''\n", "if(not print_Similarity): __sims = ''\n", "\n", "if(not compact_Output):\n", " if(print_Descriptions):\n", " print(f'The {start_at_index}-{start_at_index + RANGE} most similiar items to prompt : \\n\\n ' + __prompts)\n", " print(f'The {start_at_index}-{start_at_index + RANGE} similarity % for items : \\n\\n' + __sims)\n", " print('')\n", " if name_NEG != '': print(f'Using negatives at {strength_NEG} strength for this text : {name_NEG}')\n", " else:\n", " print(__prompts)\n", "else:\n", " print(__prompts)\n", "#-------#" ], "metadata": { "id": "JkzncP8SgKtS" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# @title ⚙️🖼️ Print the results (Advanced)\n", "list_size = 1000 # @param {type:'number'}\n", "start_at_index = 0 # @param {type:'number'}\n", "print_Similarity = True # @param {type:\"boolean\"}\n", "print_Prompts = True # @param {type:\"boolean\"}\n", "print_Prefix = True # @param {type:\"boolean\"}\n", "print_Descriptions = True # @param {type:\"boolean\"}\n", "compact_Output = True # @param {type:\"boolean\"}\n", "newline_Separator = True # @param {type:\"boolean\"}\n", "\n", "\n", "import random\n", "# @markdown -----------\n", "# @markdown Mix with...\n", "list_size2 = 1000 # @param {type:'number'}\n", "start_at_index2 = 10000 # @param {type:'number'}\n", "rate_percent = 50 # @param {type:\"slider\", min:0, max:100, step:1}\n", "\n", "# @markdown -----------\n", "# @markdown Repeat output N times\n", "\n", "N = 6 # @param {type:\"slider\", min:0, max:10, step:1}\n", "\n", "# title Show the 100 most similiar suffix and prefix text-encodings to the text encoding\n", "RANGE = list_size\n", "separator = '|'\n", "if newline_Separator : separator = separator + '\\n'\n", "\n", "_prompts = '{'\n", "_sims = '{'\n", "for _index in range(start_at_index + RANGE):\n", " if _index < start_at_index : continue\n", " index = indices[_index]\n", "\n", " prompt = prompts[f'{index}']\n", " if rate_percent >= random.randint(0,100) : prompt = prompts[f'{random.randint(start_at_index2 , start_at_index2 + list_size2)}']\n", "\n", " #Remove duplicates\n", " if _prompts.find(prompt + separator)<=-1:\n", " _sims = _sims + f'{round(100*sims[index].item(), 2)} %' + separator\n", " #-------#\n", " _prompts = _prompts.replace(prompt + separator,'')\n", " _prompts = _prompts + prompt + separator\n", " #------#\n", "#------#\n", "__prompts = (_prompts + '}').replace(separator + '}', '}')\n", "__sims = (_sims + '}').replace(separator + '}', '}')\n", "#------#\n", "\n", "if(not print_Prompts): __prompts = ''\n", "if(not print_Similarity): __sims = ''\n", "\n", "if(not compact_Output):\n", " if(print_Descriptions):\n", " print(f'The {start_at_index}-{start_at_index + RANGE} most similiar items to prompt : \\n\\n ')\n", " for i in range(N) : print(__prompts)\n", " print(f'The {start_at_index}-{start_at_index + RANGE} similarity % for items : \\n\\n' + __sims)\n", " print('')\n", " else:\n", " for i in range(N) : print(__prompts)\n", "else:\n", " for i in range(N) : print(__prompts)\n", "#-------#\n", "\n", "\n" ], "metadata": { "id": "6FEmV02tArrh" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# @title 💫 Compare Text encodings\n", "prompt_A = \"banana\" # @param {\"type\":\"string\",\"placeholder\":\"Write a prompt\"}\n", "prompt_B = \"bike \" # @param {\"type\":\"string\",\"placeholder\":\"Write a prompt\"}\n", "use_token_padding = True # param {type:\"boolean\"} <----- Enabled by default\n", "#-----#\n", "from transformers import AutoTokenizer\n", "tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\",\n", "clean_up_tokenization_spaces = False)\n", "#-----#\n", "from transformers import CLIPProcessor, CLIPModel\n", "processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n", "model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n", "#----#\n", "inputs = tokenizer(text = prompt_A, padding=True, return_tensors=\"pt\")\n", "text_features_A = model.get_text_features(**inputs)\n", "text_features_A = text_features_A / text_features_A.norm(p=2, dim=-1, keepdim=True)\n", "name_A = prompt_A\n", "#----#\n", "inputs = tokenizer(text = prompt_B, padding=True, return_tensors=\"pt\")\n", "text_features_B = model.get_text_features(**inputs)\n", "text_features_B = text_features_B / text_features_B.norm(p=2, dim=-1, keepdim=True)\n", "name_B = prompt_B\n", "#----#\n", "import torch\n", "sim_AB = torch.nn.functional.cosine_similarity(text_features_A, text_features_B)\n", "#----#\n", "print(f'The similarity between the text_encoding for A:\"{prompt_A}\" and B: \"{prompt_B}\" is {round(sim_AB.item()*100,2)} %')" ], "metadata": { "id": "QQOjh5BvnG8M", "collapsed": true, "cellView": "form" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# @title Quick Fix\n", "#Imports\n", "#!pip install safetensors\n", "from safetensors.torch import load_file\n", "import json , os , shelve , torch\n", "import pandas as pd\n", "#----#\n", "\n", "def my_mkdirs(folder):\n", " if os.path.exists(folder)==False:\n", " os.makedirs(folder)\n", "\n", "\n", "def doFixPrompts(_path):\n", " output_folder = '/content/outputs/text'\n", " my_mkdirs(output_folder)\n", " path = _path + '/text'\n", " #-----#\n", " index = 0\n", " file_index = 0\n", " prompts = {}\n", " text_encodings = {}\n", " _text_encodings = {}\n", " #-----#\n", " for filename in os.listdir(f'{path}'):\n", " print(f'reading {filename}....')\n", " _index = 0\n", " %cd {path}\n", " with open(f'{filename}', 'r') as f:\n", " data = json.load(f)\n", " #------#\n", " _df = pd.DataFrame({'count': data})['count']\n", " _prompts = {\n", " key : value for key, value in _df.items()\n", " }\n", " #-----#\n", " text_encoding_filename = _prompts['1']\n", " links_encoding_filename = _prompts['1'].replace('prompts','links')\n", " _prompts['0'] = links_encoding_filename\n", " #-----#\n", " %cd {output_folder}\n", " print(f'Saving segment {filename} to {output_folder}...')\n", " with open(filename, 'w') as f:\n", " json.dump(_prompts, f)\n", " #-------#\n", " #--------#\n", "#----------#\n", "\n", "\n", "def doFixLinks(_path):\n", " output_folder = '/content/outputs/images'\n", " my_mkdirs(output_folder)\n", " path = _path + '/images'\n", " #-----#\n", " index = 0\n", " file_index = 0\n", " prompts = {}\n", " text_encodings = {}\n", " _text_encodings = {}\n", " #-----#\n", " for filename in os.listdir(f'{path}'):\n", " print(f'reading {filename}....')\n", " _index = 0\n", " %cd {path}\n", " with open(f'{filename}', 'r') as f:\n", " data = json.load(f)\n", " #------#\n", " _df = pd.DataFrame({'count': data})['count']\n", " _links = {\n", " key : value for key, value in _df.items()\n", " }\n", " #-----#\n", " links_encoding_filename = _links['1']\n", " text_encoding_filename = _links['1'].replace('links','prompts')\n", " _links['0'] = links_encoding_filename\n", " _links['1'] = text_encoding_filename\n", " #-----#\n", " %cd {output_folder}\n", " print(f'Saving segment {filename} to {output_folder}...')\n", " with open(filename, 'w') as f:\n", " json.dump(_links, f)\n", " #-------#\n", " #--------#" ], "metadata": { "cellView": "form", "id": "Cbt78mgJYHgr" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "You can write an url or upload a file locally from your device to use as reference. The image will by saved in the 'sd_tokens' folder. Note that the 'sd_tokens' folder will be deleted upon exiting this runtime." ], "metadata": { "id": "hyK423TQCRup" } }, { "cell_type": "code", "source": [ "# @title Process the raw vocab into json + .safetensor pair\n", "\n", "# NOTE : although they have 1x768 dimension , these are not text_encodings , but token vectors\n", "import json\n", "import pandas as pd\n", "import os\n", "import shelve\n", "import torch\n", "from safetensors.torch import save_file , load_file\n", "import json\n", "\n", "home_directory = '/content/'\n", "using_Kaggle = os.environ.get('KAGGLE_URL_BASE','')\n", "if using_Kaggle : home_directory = '/kaggle/working/'\n", "%cd {home_directory}\n", "#-------#\n", "\n", "# Load the data if not already loaded\n", "try:\n", " loaded\n", "except:\n", " %cd {home_directory}\n", " !git clone https://huggingface.co/datasets/codeShare/text-to-image-prompts\n", " loaded = True\n", "#--------#\n", "\n", "# User input\n", "target = home_directory + 'text-to-image-prompts/vocab/'\n", "root_output_folder = home_directory + 'output/'\n", "output_folder = root_output_folder + 'vocab/'\n", "root_filename = 'vocab'\n", "NUM_FILES = 1\n", "#--------#\n", "\n", "# Setup environment\n", "def my_mkdirs(folder):\n", " if os.path.exists(folder)==False:\n", " os.makedirs(folder)\n", "#--------#\n", "output_folder_text = output_folder + 'text/'\n", "output_folder_text = output_folder + 'text/'\n", "output_folder_token_vectors = output_folder + 'token_vectors/'\n", "target_raw = target + 'raw/'\n", "%cd {home_directory}\n", "my_mkdirs(output_folder)\n", "my_mkdirs(output_folder_text)\n", "my_mkdirs(output_folder_token_vectors)\n", "#-------#\n", "\n", "%cd {target_raw}\n", "tokens = torch.load(f'{root_filename}.pt' , weights_only=True)\n", "tokens = model.clone().detach()\n", "\n", "\n", "%cd {target_raw}\n", "with open(f'{root_filename}.json', 'r') as f:\n", " data = json.load(f)\n", "_df = pd.DataFrame({'count': data})['count']\n", "#reverse key and value in the dict\n", "vocab = {\n", " value : key for key, value in _df.items()\n", "}\n", "#------#\n", "\n", "\n", "tensors = {}\n", "for key in vocab:\n", " name = vocab[key]\n", " token = tokens[int(key)]\n", " tensors[key] = token\n", "#-----#\n", "\n", "%cd {output_folder_token_vectors}\n", "save_file(tensors, \"vocab.safetensors\")\n", "\n", "%cd {output_folder_text}\n", "with open('vocab.json', 'w') as f:\n", " json.dump(vocab, f)\n", "\n", "\n" ], "metadata": { "id": "H3JRx5rhWIEo", "cellView": "form" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# @title Do the same but for image encodings (if urls exist)\n", "import json\n", "import pandas as pd\n", "import os\n", "import shelve\n", "import torch\n", "from safetensors.torch import save_file\n", "import json\n", "from PIL import Image\n", "import requests\n", "\n", "# Determine if this notebook is running on Colab or Kaggle\n", "#Use https://www.kaggle.com/ if Google Colab GPU is busy\n", "home_directory = '/content/'\n", "using_Kaggle = os.environ.get('KAGGLE_URL_BASE','')\n", "if using_Kaggle : home_directory = '/kaggle/working/'\n", "%cd {home_directory}\n", "#-------#\n", "\n", "# Load the data if not already loaded\n", "try:\n", " loaded\n", "except:\n", " %cd {home_directory}\n", " !git clone https://huggingface.co/datasets/codeShare/text-to-image-prompts\n", " loaded = True\n", "#--------#\n", "\n", "# User input\n", "target = home_directory + 'text-to-image-prompts/fusion/'\n", "root_output_folder = home_directory + 'output/'\n", "output_folder = root_output_folder + 'fusion/'\n", "root_filename = 'prompts'\n", "root_filename_links = 'links'\n", "NUM_FILES = 1\n", "#--------#\n", "\n", "# Setup environment\n", "def my_mkdirs(folder):\n", " if os.path.exists(folder)==False:\n", " os.makedirs(folder)\n", "#--------#\n", "output_folder_text = output_folder + 'text/'\n", "output_folder_images = output_folder + 'images/'\n", "output_folder_text_encodings = output_folder + 'text_encodings/'\n", "output_folder_image_encodings = output_folder + 'image_encodings/'\n", "target_raw_text = target + 'raw/text/'\n", "target_raw_images = target + 'raw/images/'\n", "%cd {home_directory}\n", "my_mkdirs(output_folder)\n", "my_mkdirs(output_folder_text)\n", "my_mkdirs(output_folder_images)\n", "my_mkdirs(output_folder_text_encodings)\n", "my_mkdirs(output_folder_image_encodings)\n", "#-------#\n", "\n", "\n", "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n", "from transformers import AutoTokenizer\n", "tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n", "from transformers import CLIPProcessor, CLIPModel\n", "processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n", "model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\").to(device)\n", "#---------#\n", "for file_index in range(NUM_FILES + 1):\n", " if (file_index < 1): continue\n", "\n", " # Assign name of JSON file to read\n", " filename = f'{root_filename}{file_index}'\n", " if NUM_FILES == 1 : filename = f'{root_filename}'\n", " #--------#\n", "\n", " # Assign name of JSON file to read\n", " filename_links = f'{root_filename_links}{file_index}'\n", " if NUM_FILES == 1 : filename_links = f'{root_filename_links}'\n", " #--------#\n", "\n", " # Read {filename}.json\n", " %cd {target_raw_text}\n", " with open(filename + '.json', 'r') as f:\n", " data = json.load(f)\n", " _df = pd.DataFrame({'count': data})['count']\n", " prompts = {\n", " key : value.replace(\"\",\" \") for key, value in _df.items()\n", " }\n", " index = 0\n", " for key in prompts:\n", " index = index + 1\n", " #----------#\n", " NUM_ITEMS = index\n", " #------#\n", "\n", " # Read image_urls\n", " %cd {target_raw_images}\n", " with open(filename_links + '.json', 'r') as f:\n", " data = json.load(f)\n", " _df = pd.DataFrame({'count': data})['count']\n", " image_urls = {\n", " key : value.replace(\"\",\" \") for key, value in _df.items()\n", " }\n", " index = 0\n", " for key in image_urls:\n", " index = index + 1\n", " #----------#\n", " NUM_ITEMS2 = index\n", " #------#\n", "\n", " if (NUM_ITEMS != NUM_ITEMS2) :\n", " print(f\"NUM_ITEMS (text) : {NUM_ITEMS}\")\n", " print(f\"NUM_ITEMS (links) : {NUM_ITEMS2}\")\n", "\n", " # Calculate text_encoding for .json file contents and results as .db file\n", " NUM_HEADERS = 2\n", " CHUNKS_SIZE = 20\n", " START_AT = 0 #<---Use this is job was aborted and you wish to continue where you left of. Set the value to 0 otherwise\n", " #--------#\n", " names_dict = {}\n", " image_encoding_dict = {}\n", " text_encoding_dict = {}\n", " segments = {}\n", " index = 0;\n", " subby = 1;\n", " _filename = ''\n", "\n", " print(f'processing batch no {subby}....')\n", " print(f'----------')\n", " for _index in range(NUM_ITEMS2):\n", " if not (f'{_index}' in prompts) : continue\n", " if (prompts[f'{_index}']==\"SKIP\") : continue\n", " if (index % 100 == 0) : print(index)\n", " if (index == 0 and _index>0) : index = index + 2 #make space for headers\n", " if (index % (CHUNKS_SIZE-NUM_HEADERS)> 0 or _index <= 0) :\n", " index = index + 1\n", " else:\n", " if index\",\" \") for key, value in _df.items()\n", " }\n", " index = 0\n", " for key in prompts:\n", " index = index + 1\n", " #----------#\n", " NUM_ITEMS = index\n", " #------#\n", "\n", " # Read image_urls\n", " %cd {target_raw_images}\n", " with open(filename_links + '.json', 'r') as f:\n", " data = json.load(f)\n", " _df = pd.DataFrame({'count': data})['count']\n", " image_urls = {\n", " key : value.replace(\"\",\" \") for key, value in _df.items()\n", " }\n", " index = 0\n", " for key in image_urls:\n", " index = index + 1\n", " #----------#\n", " NUM_ITEMS2 = index\n", " #------#\n", "\n", " if (NUM_ITEMS != NUM_ITEMS2) :\n", " print(f\"NUM_ITEMS (text) : {NUM_ITEMS}\")\n", " print(f\"NUM_ITEMS (links) : {NUM_ITEMS2}\")\n", "\n", " # Calculate text_encoding for .json file contents and results as .db file\n", " NUM_HEADERS = 2\n", " CHUNKS_SIZE = 20\n", " START_AT = 0 #<---Use this is job was aborted and you wish to continue where you left of. Set the value to 0 otherwise\n", " #--------#\n", " names_dict = {}\n", " image_encoding_dict = {}\n", " segments = {}\n", " index = 0;\n", " subby = 1;\n", " _filename = ''\n", "\n", " print(f'processing batch no {subby}....')\n", " print(f'----------')\n", " for _index in range(NUM_ITEMS2):\n", " if not (f'{_index}' in prompts) : continue\n", " if (prompts[f'{_index}']==\"SKIP\") : continue\n", " if (index % 100 == 0) : print(index)\n", " if (index == 0 and _index>0) : index = index + 2 #make space for headers\n", " if (index % (CHUNKS_SIZE-NUM_HEADERS)> 0 or _index <= 0) :\n", " index = index + 1\n", " else:\n", " if index\",\" \") for key, value in _df.items()\n", " }\n", " index = 0\n", " for key in prompts:\n", " index = index + 1\n", " #----------#\n", " NUM_ITEMS = index\n", " #------#\n", "\n", "\n", "\n", " # Read image_urls\n", " %cd {target_raw_images}\n", " with open('links.json', 'r') as f:\n", " data = json.load(f)\n", " _df = pd.DataFrame({'count': data})['count']\n", " image_urls = {\n", " key : value.replace(\"\",\" \") for key, value in _df.items()\n", " }\n", " index = 0\n", " for key in image_urls:\n", " index = index + 1\n", " #----------#\n", " NUM_ITEMS = index\n", " #------#\n", "\n", " # Calculate text_encoding for .json file contents and results as .db file\n", " names_dict = {}\n", " image_encoding_dict = {}\n", " segments = {}\n", " index = 0;\n", " subby = 1;\n", " NUM_HEADERS = 2\n", " CHUNKS_SIZE = 500\n", " _filename = ''\n", " for _index in range(NUM_ITEMS):\n", " if not (f'{_index}' in prompts) : continue\n", " if (prompts[f'{_index}']==\"SKIP\") : continue\n", " if (index % 100 == 0) : print(index)\n", " if (index == 0 and _index>0) : index = index + 2 #make space for headers\n", " if (_index % (CHUNKS_SIZE-NUM_HEADERS) == 0 and _index > 0) :\n", "\n", " # Write headers in the .json\n", " names_dict[f'{0}'] = f'{_index}'\n", " names_dict[f'{1}'] = f'{filename}-{subby}'\n", "\n", " # Encode the headers into text_encoding\n", " inputs = tokenizer(text = '' + names_dict[f'{0}'], padding=True,truncation=True, return_tensors=\"pt\").to(device)\n", " text_features = model.get_text_features(**inputs).to(device)\n", " text_features = text_features/text_features.norm(p=2, dim=-1, keepdim=True)\n", " image_encoding_dict[f'{0}'] = text_features.to(torch.device('cpu'))\n", " inputs = tokenizer(text = '' + names_dict[f'{1}'], padding=True,truncation=True, return_tensors=\"pt\").to(device)\n", " text_features = model.get_text_features(**inputs).to(device)\n", " text_features = text_features/text_features.norm(p=2, dim=-1, keepdim=True)\n", " image_encoding_dict[f'{1}'] = text_features.to(torch.device('cpu'))\n", " #-------#\n", "\n", " Write .json\n", " _filename = f'{filename}-{subby}.json'\n", " %cd {output_folder_images}\n", " print(f'Saving segment {_filename} to {output_folder_images}...')\n", " with open(_filename, 'w') as f:\n", " json.dump(names_dict, f)\n", " #-------#\n", "\n", " # Write .safetensors\n", " _filename = f'{filename}-{subby}.safetensors'\n", " %cd {output_folder_image_encodings}\n", " print(f'Saving segment {_filename} to {output_folder_image_encodings}...')\n", " save_file(image_encoding_dict, _filename)\n", " #--------#\n", "\n", " #Iterate\n", " subby = subby + 1\n", " segments[f'{subby}'] = _filename\n", " image_encoding_dict = {}\n", " names_dict = {}\n", " index = 0\n", " #------#\n", " #------#\n", " else: index = index + 1\n", " #--------#\n", "\n", "\n", " inputs = tokenizer(text = '' + prompts[f'{_index}'], padding=True,truncation=True, return_tensors=\"pt\").to(device)\n", " text_features = model.get_text_features(**inputs).to(device)\n", " text_features = text_features/text_features.norm(p=2, dim=-1, keepdim=True)\n", " text_encoding_dict[f'{index}'] = text_features.to(torch.device('cpu'))\n", "\n", "\n", " names_dict[f'{index}'] = prompts[f'{_index}']\n", " continue\n", " #-----#\n", " #-----#\n", " # Write headers in the .json\n", " names_dict[f'{0}'] = f'{_index}'\n", " names_dict[f'{1}'] = f'{filename}-{subby}'\n", "\n", " # Encode the headers into text_encoding\n", " inputs = tokenizer(text = '' + names_dict[f'{0}'], padding=True,truncation=True, return_tensors=\"pt\").to(device)\n", " text_features = model.get_text_features(**inputs).to(device)\n", " text_features = text_features/text_features.norm(p=2, dim=-1, keepdim=True)\n", " text_encoding_dict[f'{0}'] = text_features.to(torch.device('cpu'))\n", " inputs = tokenizer(text = '' + names_dict[f'{1}'], padding=True,truncation=True, return_tensors=\"pt\").to(device)\n", " text_features = model.get_text_features(**inputs).to(device)\n", " text_features = text_features/text_features.norm(p=2, dim=-1, keepdim=True)\n", " text_encoding_dict[f'{1}'] = text_features.to(torch.device('cpu'))\n", " #-------#\n", "\n", " # Write .json\n", " _filename = f'{filename}-{subby}.json'\n", " %cd {output_folder_text}\n", " print(f'Saving segment {_filename} to {output_folder_text}...')\n", " with open(_filename, 'w') as f:\n", " json.dump(names_dict, f)\n", " #-------#\n", "\n", " # Write .safetensors\n", " _filename = f'{filename}-{subby}.safetensors'\n", " %cd {output_folder_text_encodings}\n", " print(f'Saving segment {_filename} to {output_folder_text_encodings}...')\n", " save_file(text_encoding_dict, _filename)\n", " #--------#\n", "\n", " #Iterate\n", " subby = subby + 1\n", " segments[f'{subby}'] = _filename\n", " text_encoding_dict = {}\n", " names_dict = {}\n", " index = 0\n", " #------#\n", " #----#" ], "metadata": { "id": "Sy5K7c-IDcic", "cellView": "form" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Determine if this notebook is running on Colab or Kaggle\n", "#Use https://www.kaggle.com/ if Google Colab GPU is busy\n", "home_directory = '/content/'\n", "using_Kaggle = os.environ.get('KAGGLE_URL_BASE','')\n", "if using_Kaggle : home_directory = '/kaggle/working/'\n", "%cd {home_directory}\n", "#-------#\n", "\n", "# @title Download the text_encodings as .zip\n", "import os\n", "%cd {home_directory}\n", "#os.remove(f'{home_directory}results.zip')\n", "root_output_folder = home_directory + 'output/'\n", "zip_dest = f'{home_directory}results.zip'\n", "!zip -r {zip_dest} {root_output_folder}" ], "metadata": { "id": "V4YCpmWlkPMG" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# @title Extract tags from the Danbooru website (AI tags)\n", "\n", "import requests\n", "import re\n", "import json\n", "\n", "prompts = {}\n", "index = 0\n", "for url_index in range(10):\n", " url = f'https://danbooru.donmai.us/ai_tags?commit=Search&mode=table&page={url_index}&search%5Bis_posted%5D=true&search%5Border%5D=media_asset_id'\n", " r = requests.get(url)\n", " #-----#\n", " matches = re.findall(\"data-tag-name=.*.* href\", r.text)\n", " for x in matches:\n", " prompts[f'{index}'] = x.replace('data-tag-name=\"','').replace('\" href','')\n", " index = index + 1\n", "\n", "#-------#\n", "with open('danbooru_ai_tags.json', 'w') as f:\n", " json.dump(prompts, f)" ], "metadata": { "cellView": "form", "id": "tBbJnlA5pjd2" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# @title Extract tags from the Danbooru website (Normal tags)\n", "prompts = {}\n", "index = 0\n", "for url_index in range(1000):\n", " url = f'https://danbooru.donmai.us/tags?commit=Search&page={url_index}&search%5Bhide_empty%5D=yes&search%5Border%5D=count'\n", " r = requests.get(url)\n", " #-----#\n", " matches = re.findall('%5D=.*.*\">Related tags', r.text)\n", " for x in matches:\n", " prompts[f'{index}'] = x.replace('\\\">Related tags','').replace('%5D=','')\n", " index = index + 1\n", "\n", "#-------#\n", "with open('danbooru_tags.json', 'w') as f:\n", " json.dump(prompts, f)" ], "metadata": { "cellView": "form", "id": "l8t-4GmsviJt" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "#Remove URL Encoding from the fetched Danbooru tags\n", "danboorus = getJSON('/content/text-to-image-prompts/danbooru/raw/','🎀 fusion-t2i-danbooru-tags.json')\n", "from urllib.parse import unquote\n", "for key in danboorus:\n", " danboorus[key] = unquote(danboorus[key])\n", "%cd /content/\n", "with open(f'🎀 fusion-t2i-danbooru-tags', 'w') as f:\n", " json.dump(danboorus, f)" ], "metadata": { "id": "AjSf585hWWMB" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# @title Download nouns - import data\n", "import os\n", "import json\n", "\n", "# Setup environment\n", "def my_mkdirs(folder):\n", " if os.path.exists(folder)==False:\n", " os.makedirs(folder)\n", "#--------#\n", "\n", "# Determine if this notebook is running on Colab or Kaggle\n", "#Use https://www.kaggle.com/ if Google Colab GPU is busy\n", "home_directory = '/content/'\n", "using_Kaggle = os.environ.get('KAGGLE_URL_BASE','')\n", "if using_Kaggle : home_directory = '/kaggle/working/'\n", "%cd {home_directory}\n", "#-------#\n", "\n", "root_output_folder = home_directory + 'outputs/'\n", "\n", "# @title Extract nouns\n", "my_mkdirs(root_output_folder)\n", "%cd {root_output_folder}\n", "\n", "!pip install datasets\n", "\n", "from datasets import load_dataset\n", "\n", "ds = load_dataset(\"bartoszmaj/nouns_one\")\n", "#ds2 = load_dataset(\"bartoszmaj/nouns_two\")\n", "#ds3 = load_dataset(\"bartoszmaj/nouns_three\")\n", "#ds4 = load_dataset(\"bartoszmaj/nouns_four\")\n", "\n" ], "metadata": { "cellView": "form", "id": "HC72wZW9llzw" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# @title Download nouns - pick three items at random and write in JSONs\n", "import random\n", "my_mkdirs(root_output_folder)\n", "%cd {root_output_folder}\n", "for file_index in range(21):\n", " if file_index <=0: continue\n", " tripple_nouns = {}\n", " for index in range (10000):\n", " word = \"\"\n", " for its in range(3):\n", " _index = random.randint(0,1000000-1)\n", " words = list(ds['train'][_index]['nouns'])\n", " if len(words)>0:\n", " _word = random.choice(words)\n", " word = word + ' ' + _word\n", " #---------#\n", " tripple_nouns[f'{index}'] = word\n", " #--------#\n", " with open(f'tripple_nouns_{file_index}.json', 'w') as f:\n", " json.dump(tripple_nouns, f)\n", " #----------#\n", "\n" ], "metadata": { "cellView": "form", "id": "CWlWk0KpuX55" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "\n", "\n", "# How does this notebook work?\n", "\n", "Similiar vectors = similiar output in the SD 1.5 / SDXL / FLUX model\n", "\n", "CLIP converts the prompt text to vectors (“tensors”) , with float32 values usually ranging from -1 to 1.\n", "\n", "Dimensions are \\[ 1x768 ] tensors for SD 1.5 , and a \\[ 1x768 , 1x1024 ] tensor for SDXL and FLUX.\n", "\n", "The SD models and FLUX converts these vectors to an image.\n", "\n", "This notebook takes an input string , tokenizes it and matches the first token against the 49407 token vectors in the vocab.json : [https://huggingface.co/black-forest-labs/FLUX.1-dev/tree/main/tokenizer](https://www.google.com/url?q=https%3A%2F%2Fhuggingface.co%2Fblack-forest-labs%2FFLUX.1-dev%2Ftree%2Fmain%2Ftokenizer)\n", "\n", "It finds the “most similiar tokens” in the list. Similarity is the theta angle between the token vectors.\n", "\n", "
\n", "\n", "
\n", "\n", "The angle is calculated using cosine similarity , where 1 = 100% similarity (parallell vectors) , and 0 = 0% similarity (perpendicular vectors).\n", "\n", "Negative similarity is also possible.\n", "\n", "# How can I use it?\n", "\n", "If you are bored of prompting “girl” and want something similiar you can run this notebook and use the “chick” token at 21.88% similarity , for example\n", "\n", "You can also run a mixed search , like “cute+girl”/2 , where for example “kpop” has a 16.71% similarity\n", "\n", "There are some strange tokens further down the list you go. Example: tokens similiar to the token \"pewdiepie\" (yes this is an actual token that exists in CLIP)\n", "\n", "
\n", "\n", "
\n", "\n", "Each of these correspond to a unique 1x768 token vector.\n", "\n", "The higher the ID value , the less often the token appeared in the CLIP training data.\n", "\n", "To reiterate; this is the CLIP model training data , not the SD-model training data.\n", "\n", "So for certain models , tokens with high ID can give very consistent results , if the SD model is trained to handle them.\n", "\n", "Example of this can be anime models , where japanese artist names can affect the output greatly. \n", "\n", "Tokens with high ID will often give the \"fun\" output when used in very short prompts.\n", "\n", "# What about token vector length?\n", "\n", "If you are wondering about token magnitude,\n", "Prompt weights like (banana:1.2) will scale the magnitude of the corresponding 1x768 tensor(s) by 1.2 . So thats how prompt token magnitude works.\n", "\n", "Source: [https://huggingface.co/docs/diffusers/main/en/using-diffusers/weighted\\_prompts](https://www.google.com/url?q=https%3A%2F%2Fhuggingface.co%2Fdocs%2Fdiffusers%2Fmain%2Fen%2Fusing-diffusers%2Fweighted_prompts)\\*\n", "\n", "So TLDR; vector direction = “what to generate” , vector magnitude = “prompt weights”\n", "\n", "# How prompting works (technical summary)\n", "\n", " 1. There is no correct way to prompt.\n", "\n", "2. Stable diffusion reads your prompt left to right, one token at a time, finding association _from_ the previous token _to_ the current token _and to_ the image generated thus far (Cross Attention Rule)\n", "\n", "3. Stable Diffusion is an optimization problem that seeks to maximize similarity to prompt and minimize similarity to negatives (Optimization Rule)\n", "\n", "Reference material (covers entire SD , so not good source material really, but the info is there) : https://youtu.be/sFztPP9qPRc?si=ge2Ty7wnpPGmB0gi\n", "\n", "# The SD pipeline\n", "\n", "For every step (20 in total by default) for SD1.5 :\n", "\n", "1. Prompt text => (tokenizer)\n", "2. => Nx768 token vectors =>(CLIP model) =>\n", "3. 1x768 encoding => ( the SD model / Unet ) =>\n", "4. => _Desired_ image per Rule 3 => ( sampler)\n", "5. => Paint a section of the image => (image)\n", "\n", "# Disclaimer /Trivia\n", "\n", "This notebook should be seen as a \"dictionary search tool\" for the vocab.json , which is the same for SD1.5 , SDXL and FLUX. Feel free to verify this by checking the 'tokenizer' folder under each model.\n", "\n", "vocab.json in the FLUX model , for example (1 of 2 copies) : https://huggingface.co/black-forest-labs/FLUX.1-dev/tree/main/tokenizer\n", "\n", "I'm using Clip-vit-large-patch14 , which is used in SD 1.5 , and is one among the two tokenizers for SDXL and FLUX : https://huggingface.co/openai/clip-vit-large-patch14/blob/main/README.md\n", "\n", "This set of tokens has dimension 1x768. \n", "\n", "SDXL and FLUX uses an additional set of tokens of dimension 1x1024.\n", "\n", "These are not included in this notebook. Feel free to include them yourselves (I would appreciate that).\n", "\n", "To do so, you will have to download a FLUX and/or SDXL model\n", "\n", ", and copy the 49407x1024 tensor list that is stored within the model and then save it as a .pt file.\n", "\n", "//---//\n", "\n", "I am aware it is actually the 1x768 text_encoding being processed into an image for the SD models + FLUX.\n", "\n", "As such , I've included text_encoding comparison at the bottom of the Notebook.\n", "\n", "I am also aware thar SDXL and FLUX uses additional encodings , which are not included in this notebook.\n", "\n", "* Clip-vit-bigG for SDXL: https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k/blob/main/README.md\n", "\n", "* And the T5 text encoder for FLUX. I have 0% understanding of FLUX T5 text_encoder.\n", "\n", "//---//\n", "\n", "If you want them , feel free to include them yourself and share the results (cuz I probably won't) :)!\n", "\n", "That being said , being an encoding , I reckon the CLIP Nx768 => 1x768 should be \"linear\" (or whatever one might call it)\n", "\n", "So exchange a few tokens in the Nx768 for something similiar , and the resulting 1x768 ought to be kinda similar to 1x768 we had earlier. Hopefully.\n", "\n", "I feel its important to mention this , in case some wonder why the token-token similarity don't match the text-encoding to text-encoding similarity.\n", "\n", "# Note regarding CLIP text encoding vs. token\n", "\n", "*To make this disclaimer clear; Token-to-token similarity is not the same as text_encoding similarity.*\n", "\n", "I have to say this , since it will otherwise get (even more) confusing , as both the individual tokens , and the text_encoding have dimensions 1x768.\n", "\n", "They are separate things. Separate results. etc.\n", "\n", "As such , you will not get anything useful if you start comparing similarity between a token , and a text-encoding. So don't do that :)!\n", "\n", "# What about the CLIP image encoding?\n", "\n", "The CLIP model can also do an image_encoding of an image, where the output will be a 1x768 tensor. These _can_ be compared with the text_encoding.\n", "\n", "Comparing CLIP image_encoding with the CLIP text_encoding for a bunch of random prompts until you find the \"highest similarity\" , is a method used in the CLIP interrogator : https://huggingface.co/spaces/pharmapsychotic/CLIP-Interrogator\n", "\n", "List of random prompts for CLIP interrogator can be found here, for reference : https://github.com/pharmapsychotic/clip-interrogator/tree/main/clip_interrogator/data\n", "\n", "The CLIP image_encoding is not included in this Notebook.\n", "\n", "If you spot errors / ideas for improvememts; feel free to fix the code in your own notebook and post the results.\n", "\n", "I'd appreciate that over people saying \"your math is wrong you n00b!\" with no constructive feedback.\n", "\n", "//---//\n", "\n", "Regarding output\n", "\n", "# What are the symbols?\n", "\n", "The whitespace symbol indicate if the tokenized item ends with whitespace ( the suffix \"banana\" => \"banana \" ) or not (the prefix \"post\" in \"post-apocalyptic \")\n", "\n", "For ease of reference , I call them prefix-tokens and suffix-tokens.\n", "\n", "Sidenote:\n", "\n", "Prefix tokens have the unique property in that they \"mutate\" suffix tokens\n", "\n", "Example: \"photo of a #prefix#-banana\"\n", "\n", "where #prefix# is a randomly selected prefix-token from the vocab.json\n", "\n", "The hyphen \"-\" exists to guarantee the tokenized text splits into the written #prefix# and #suffix# token respectively. The \"-\" hypen symbol can be replaced by any other special character of your choosing.\n", "\n", " Capital letters work too , e.g \"photo of a #prefix#Abanana\" since the capital letters A-Z are only listed once in the entire vocab.json.\n", "\n", "You can also choose to omit any separator and just rawdog it with the prompt \"photo of a #prefix#banana\" , however know that this may , on occasion , be tokenized as completely different tokens of lower ID:s.\n", "\n", "Curiously , common NSFW terms found online have in the CLIP model have been purposefully fragmented into separate #prefix# and #suffix# counterparts in the vocab.json. Likely for PR-reasons.\n", "\n", "You can verify the results using this online tokenizer: https://sd-tokenizer.rocker.boo/\n", "\n", "
\n", "\n", "\n", "\n", "
\n", "\n", "# What is that gibberish tokens that show up?\n", "\n", "The gibberish tokens like \"ðŁĺħ\\\" are actually emojis!\n", "\n", "Try writing some emojis in this online tokenizer to see the results: https://sd-tokenizer.rocker.boo/\n", "\n", "It is a bit borked as it can't process capital letters properly.\n", "\n", "Also note that this is not reversible.\n", "\n", "If tokenization \"😅\" => ðŁĺħ\n", "\n", "Then you can't prompt \"ðŁĺħ\" and expect to get the same result as the tokenized original emoji , \"😅\".\n", "\n", "SD 1.5 models actually have training for Emojis.\n", "\n", "But you have to set CLIP skip to 1 for this to work is intended.\n", "\n", "A tutorial on stuff you can do with the vocab.list concluded.\n", "\n", "Anyways, have fun with the notebook.\n", "\n", "There might be some updates in the future with features not mentioned here.\n", "\n", "//---//\n", "\n", "https://codeandlife.com/2023/01/26/mastering-the-huggingface-clip-model-how-to-extract-embeddings-and-calculate-similarity-for-text-and-images/\n", "\n", "https://arxiv.org/pdf/2303.03032" ], "metadata": { "id": "njeJx_nSSA8H" } }, { "cell_type": "code", "source": [ "\n", "# @title Create random names from firstname and lastnames\n", "import random\n", "import json\n", "import pandas as pd\n", "import os\n", "import shelve\n", "import torch\n", "from safetensors.torch import save_file\n", "\n", "def my_mkdirs(folder):\n", " if os.path.exists(folder)==False:\n", " os.makedirs(folder)\n", "\n", "\n", "my_mkdirs('/content/female_full_names/')\n", "filename = ''\n", "\n", "filename = '🆔👩_🦰 fusion-t2i-girl-firstname-1'\n", "%cd /content/text-to-image-prompts/names/firstnames/text\n", "with open(filename + '.json', 'r') as f:\n", " data = json.load(f)\n", "_df = pd.DataFrame({'count': data})['count']\n", "firstname = {\n", " key : value for key, value in _df.items()\n", "}\n", "\n", "NUM_FIRSTNAME = 100901\n", "\n", "\n", "NUM_FILES = 9\n", "for file_index in range(NUM_FILES + 1):\n", " if file_index <1: continue\n", " #if file_index >4: break\n", " filename = f'👱_♀️ fusion-t2i-lastnames-{file_index} plugin'\n", " #🦜 fusion-t2i-prompt-features-1.json\n", "\n", " # Read suffix.json\n", " %cd /content/text-to-image-prompts/names/lastnames/text\n", " with open(filename + '.json', 'r') as f:\n", " data = json.load(f)\n", " _df = pd.DataFrame({'count': data})['count']\n", " names = {\n", " key : firstname[f'{random.randint(2,NUM_FIRSTNAME)}'] + ' ' f'{value}' + ' ' for key, value in _df.items()\n", " }\n", "\n", " index = 0\n", "\n", " for key in names:\n", " index = index + 1\n", " #-----#\n", " RANGE = min(index,1000)\n", " output = {}\n", "\n", " for index in range(RANGE):\n", " if index >1000: break\n", " output[f'{index}'] = names[f'{index}']\n", " #-----#\n", " output[f'{1}'] = f'👱_♀️female_fullnames-{file_index}'\n", " output[f'{0}'] = f'{RANGE}'\n", " txt_filename = f'👱_♀️female_fullnames-{file_index}'\n", " %cd /content/female_full_names/\n", " with open(txt_filename + '.txt', 'w') as f:\n", " f.write(str(output))\n", "\n", " #files.download(f'fullnames-{file_index}.txt')\n", "\n", "#firstname[f'{random.randint(2,NUM_FIRSTNAME)}'] + f'{value}'\n", "\n", " #------#\n", "\n", "\n" ], "metadata": { "id": "JR0wl2ecj6RJ" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# @title Create random suffix pairings\n", "import random\n", "import json\n", "import pandas as pd\n", "import os\n", "import shelve\n", "import torch\n", "from safetensors.torch import save_file\n", "\n", "\n", "def my_mkdirs(folder):\n", " if os.path.exists(folder)==False:\n", " os.makedirs(folder)\n", "\n", "\n", "output_folder = '/content/output/prefix_suffix_pairs/'\n", "my_mkdirs(output_folder)\n", "\n", "_prompts = {}\n", "_text_encodings = {}\n", "nA = 0\n", "\n", "try: loaded3\n", "except:\n", " loaded3 = True\n", " if True:\n", " tmp = '/content/text-to-image-prompts/vocab/text_encodings/prefix/'\n", " for item in ['common','average','rare','weird','exotic'] :\n", " url = tmp + item\n", " prefix, text_encodings, PREFIX_NUM_VOCAB_ITEMS = append_from_url(_prompts , _text_encodings, nA , url , '')\n", " #------#\n", "\n", " if True :\n", " tmp = '/content/text-to-image-prompts/vocab/text_encodings/suffix/'\n", " for item in ['common','average','rare','weird','exotic'] :\n", " url = tmp + item\n", " suffix , text_encodings, SUFFIX_NUM_VOCAB_ITEMS = append_from_url(_prompts , _text_encodings, nA , url , '')\n", " #------#\n", "\n", " if False :\n", " url = '/content/text-to-image-prompts/vocab/text_encodings/emoji/'\n", " prompts , emojis_text_encodings, NUM_VOCAB_ITEMS = append_from_url(_prompts , _text_encodings, nA , url , '')\n", " #------#\n", "#--------#\n", "\n", "if False:\n", " item3 = '#uc# '\n", " while (item3.find('#uc#')>-1 or (not item3.isalpha())) :\n", " item3 = prompts[f'{random.randint(0,NUM_VOCAB_ITEMS)}']\n", " item3 = item3.replace('', '')\n", " #------#\n", "\n", " item4 = '#uc# '\n", " while (item4.find('#uc#')>-1 or (not item4.isalpha())) :\n", " item4 = prompts[f'{random.randint(0,NUM_VOCAB_ITEMS)}']\n", " item4 = item4.replace('', '')\n", " #------#\n", "#------#\n", "\n", "\n", "output = ''\n", "%cd {output_folder}\n", "with open('prefix_suffix_pairs' + '.txt', 'w') as f:\n", " for iter in range (200000):\n", " item = '#uc# '\n", " while (not item.isalpha()) :\n", " item = prefix[f'{random.randint(0,PREFIX_NUM_VOCAB_ITEMS)}']\n", " item = item.replace('', '')\n", "\n", " item2 = '#uc# '\n", " while (item2.find('#uc#')>-1 or (not item2.isalpha())) :\n", " item2 = suffix[f'{random.randint(0,SUFFIX_NUM_VOCAB_ITEMS)}']\n", " item2 = item2.replace('', '')\n", "\n", " item3 = '#uc# '\n", " while (item3.find('#uc#')>-1 or (not item3.isalpha())) :\n", " item3 = suffix[f'{random.randint(0,SUFFIX_NUM_VOCAB_ITEMS)}']\n", " item3 = item3.replace('', '')\n", " #------#\n", "\n", " #------#\n", " output = output + item + '-' + item2 + ' ' + item3\n", " # + ' ' + item4\n", " output = output + ' \\n'\n", " #---------#\n", " f.write(str(output))" ], "metadata": { "cellView": "form", "id": "64c0zJDDChN7" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# @title Download the created text_encodings as .zip file\n", "%cd /content/\n", "!zip -r /content/female_full_names.zip /content/female_full_names/" ], "metadata": { "id": "IBenvYVrofil", "cellView": "form" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# @title ⚡+🖼️ -> 📝 Token-Sampling Image interrogator (work in progress)\n", "#-----#\n", "NUM_TOKENS = 49407\n", "import shelve\n", "db_vocab = shelve.open(VOCAB_FILENAME)\n", "print(f'using the tokens found in {VOCAB_FILENAME}.db as the vocab')\n", "# @markdown # What do you want to to mimic?\n", "use = '🖼️image_encoding from image' # @param ['📝text_encoding from prompt', '🖼️image_encoding from image']\n", "# @markdown --------------------------\n", "use_token_padding = True # param {type:\"boolean\"} <---- Enabled by default\n", "prompt = \"photo of a banana\" # @param {\"type\":\"string\",\"placeholder\":\"Write a prompt\"}\n", "#-----#\n", "prompt_A = prompt\n", "if(image_path != \"\") : image_A = cv2.imread(\"/content/sd_tokens/\" + image_path)\n", "#-----#\n", "\n", "from transformers import AutoTokenizer\n", "tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n", "from transformers import CLIPProcessor, CLIPModel\n", "processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n", "model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n", "#-----#\n", "if(use == '🖼️image_encoding from image'):\n", " # Get image features\n", " inputs = processor(images=image_A, return_tensors=\"pt\")\n", " image_features = model.get_image_features(**inputs)\n", " image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True)\n", " name_A = \"the image\"\n", "#-----#\n", "if(use == '📝text_encoding from prompt'):\n", " # Get text features\n", " inputs = tokenizer(text = prompt, padding=True, return_tensors=\"pt\")\n", " text_features_A = model.get_text_features(**inputs)\n", " name_A = prompt\n", "#-----#\n", "# @markdown # The output...\n", "must_start_with = \"\" # @param {\"type\":\"string\",\"placeholder\":\"write a text\"}\n", "must_contain = \"\" # @param {\"type\":\"string\",\"placeholder\":\"write a text\"}\n", "must_end_with = \"\" # @param {\"type\":\"string\",\"placeholder\":\"write a text\"}\n", "# @markdown -----\n", "# @markdown # Use a range of tokens from the vocab.json (slow method)\n", "start_search_at_index = 0 # @param {type:\"slider\", min:0, max: 49407, step:100}\n", "# @markdown The lower the start_index, the more similiar the sampled tokens will be to the target token assigned in the '⚡ Get similiar tokens' cell\". If the cell was not run, then it will use tokens ordered by similarity to the \"girl\\\" token\n", "start_search_at_ID = start_search_at_index\n", "search_range = 1000 # @param {type:\"slider\", min:100, max:49407, step:100}\n", "\n", "samples_per_iter = 10 # @param {type:\"slider\", min:10, max: 100, step:10}\n", "\n", "iterations = 5 # @param {type:\"slider\", min:1, max: 20, step:0}\n", "restrictions = 'None' # @param [\"None\", \"Suffix only\", \"Prefix only\"]\n", "#markdown Limit char size of included token <----- Disabled\n", "min_char_size = 0 #param {type:\"slider\", min:0, max: 20, step:1}\n", "char_range = 50 #param {type:\"slider\", min:0, max: 20, step:1}\n", "# markdown # ...or paste prompt items\n", "# markdown Format must be {item1|item2|...}. You can aquire prompt items using the Randomizer in the fusion gen: https://perchance.org/fusion-ai-image-generator\n", "_enable = False # param {\"type\":\"boolean\"}\n", "prompt_items = \"\" # param {\"type\":\"string\",\"placeholder\":\"{item1|item2|...}\"}\n", "#-----#\n", "#-----#\n", "START = start_search_at_ID\n", "RANGE = min(search_range , max(1,NUM_TOKENS - start_search_at_ID))\n", "#-----#\n", "import math, random\n", "NUM_PERMUTATIONS = 6\n", "ITERS = iterations\n", "#-----#\n", "#LOOP START\n", "#-----#\n", "# Check if original solution is best\n", "best_sim = 0\n", "name = must_start_with + must_contain + must_end_with\n", "ids = processor.tokenizer(text=name, padding=use_token_padding, return_tensors=\"pt\")\n", "text_features = model.get_text_features(**ids)\n", "text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)\n", "#------#\n", "sim = 0\n", "if(use == '🖼️image_encoding from image'):\n", " logit_scale = model.logit_scale.exp()\n", " torch.matmul(text_features, image_features.t()) * logit_scale\n", " sim = torch.nn.functional.cosine_similarity(text_features, image_features) * logit_scale\n", "#-----#\n", "if(use == '📝text_encoding from prompt'):\n", " sim = torch.nn.functional.cosine_similarity(text_features, text_features_A)\n", "#-----#\n", "best_sim = sim\n", "best_name = name\n", "name_B = must_contain\n", "#------#\n", "results_sim = torch.zeros(ITERS*NUM_PERMUTATIONS)\n", "results_name_B = {}\n", "results_name = {}\n", "#-----#\n", "for iter in range(ITERS):\n", " dots = torch.zeros(min(list_size,RANGE))\n", " is_trail = torch.zeros(min(list_size,RANGE))\n", "\n", " #-----#\n", "\n", " for index in range(samples_per_iter):\n", " _start = START\n", " id_C = random.randint(_start , _start + RANGE)\n", " name_C = db_vocab[f'{id_C}']\n", " is_Prefix = 0\n", " #Skip if non-AZ characters are found\n", " #???\n", " #-----#\n", " # Decide if we should process prefix/suffix tokens\n", " if name_C.find('')<=-1:\n", " is_Prefix = 1\n", " if restrictions != \"Prefix only\":\n", " continue\n", " else:\n", " if restrictions == \"Prefix only\":\n", " continue\n", " #-----#\n", " # Decide if char-size is within range\n", " if len(name_C) < min_char_size:\n", " continue\n", " if len(name_C) > min_char_size + char_range:\n", " continue\n", " #-----#\n", " name_CB = must_start_with + name_C + name_B + must_end_with\n", " if is_Prefix>0:\n", " name_CB = must_start_with + ' ' + name_C + '-' + name_B + ' ' + must_end_with\n", " #-----#\n", " if(use == '🖼️image_encoding from image'):\n", " ids_CB = processor.tokenizer(text=name_CB, padding=use_token_padding, return_tensors=\"pt\")\n", " text_features = model.get_text_features(**ids_CB)\n", " text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)\n", " logit_scale = model.logit_scale.exp()\n", " torch.matmul(text_features, image_features.t()) * logit_scale\n", " sim_CB = torch.nn.functional.cosine_similarity(text_features, image_features) * logit_scale\n", " #-----#\n", " if(use == '📝text_encoding from prompt'):\n", " ids_CB = processor.tokenizer(text=name_CB, padding=use_token_padding, return_tensors=\"pt\")\n", " text_features = model.get_text_features(**ids_CB)\n", " text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)\n", " sim_CB = torch.nn.functional.cosine_similarity(text_features, text_features_A)\n", " #-----#\n", " #-----#\n", " if restrictions == \"Prefix only\":\n", " result = sim_CB\n", " result = result.item()\n", " dots[index] = result\n", " continue\n", " #-----#\n", " if(use == '🖼️image_encoding from image'):\n", " name_BC = must_start_with + name_B + name_C + must_end_with\n", " ids_BC = processor.tokenizer(text=name_BC, padding=use_token_padding, return_tensors=\"pt\")\n", " text_features = model.get_text_features(**ids_BC)\n", " text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)\n", " logit_scale = model.logit_scale.exp()\n", " torch.matmul(text_features, image_features.t()) * logit_scale\n", " sim_BC = torch.nn.functional.cosine_similarity(text_features, image_features) * logit_scale\n", " #-----#\n", " if(use == '📝text_encoding from prompt'):\n", " name_BC = must_start_with + name_B + name_C + must_end_with\n", " ids_BC = processor.tokenizer(text=name_BC, padding=use_token_padding, return_tensors=\"pt\")\n", " text_features = model.get_text_features(**ids_BC)\n", " text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)\n", " sim_BC = torch.nn.functional.cosine_similarity(text_features, text_features_A)\n", " #-----#\n", " result = sim_CB\n", " if(sim_BC > sim_CB):\n", " is_trail[index] = 1\n", " result = sim_BC\n", " #-----#\n", " #result = absolute_value(result.item())\n", " result = result.item()\n", " dots[index] = result\n", " #----#\n", " sorted, indices = torch.sort(dots,dim=0 , descending=True)\n", " # @markdown ----------\n", " # @markdown # Print options\n", " list_size = 100 # param {type:'number'}\n", " print_ID = False # @param {type:\"boolean\"}\n", " print_Similarity = True # @param {type:\"boolean\"}\n", " print_Name = True # @param {type:\"boolean\"}\n", " print_Divider = True # @param {type:\"boolean\"}\n", " print_Suggestions = False # @param {type:\"boolean\"}\n", " #----#\n", " if (print_Divider):\n", " print('//---//')\n", " #----#\n", " print('')\n", "\n", " used_reference = f'the text_encoding for {prompt_A}'\n", " if(use == '🖼️image_encoding from image'):\n", " used_reference = 'the image input'\n", " print(f'These token pairings within the range ID = {_start} to ID = {_start + RANGE} most closely match {used_reference}: ')\n", " print('')\n", " #----#\n", " aheads = \"{\"\n", " trails = \"{\"\n", " tmp = \"\"\n", " #----#\n", " max_sim_ahead = 0\n", " max_sim_trail = 0\n", " sim = 0\n", " max_name_ahead = ''\n", " max_name_trail = ''\n", " #----#\n", " for index in range(min(list_size,RANGE)):\n", " id = _start + indices[index].item()\n", " name = db_vocab[f'{id}']\n", " #-----#\n", " if (name.find('')<=-1):\n", " name = name + '-'\n", " if(is_trail[index]>0):\n", " trails = trails + name + \"|\"\n", " else:\n", " aheads = aheads + name + \"|\"\n", " #----#\n", " sim = sorted[index].item()\n", " #----#\n", " if(is_trail[index]>0):\n", " if sim>max_sim_trail:\n", " max_sim_trail = sim\n", " max_name_trail = name\n", " max_name_trail = max_name_trail.strip()\n", "\n", " else:\n", " if sim>max_sim_ahead:\n", " max_sim_ahead = sim\n", " max_name_ahead = name\n", " #------#\n", " trails = (trails + \"&&&&\").replace(\"|&&&&\", \"}\").replace(\"\", \" \").replace(\"{&&&&\", \"\")\n", " aheads = (aheads + \"&&&&\").replace(\"|&&&&\", \"}\").replace(\"\", \" \").replace(\"{&&&&\", \"\")\n", " #-----#\n", "\n", " if(print_Suggestions):\n", " print(f\"place these items ahead of prompt : {aheads}\")\n", " print(\"\")\n", " print(f\"place these items behind the prompt : {trails}\")\n", " print(\"\")\n", "\n", " tmp = must_start_with + ' ' + max_name_ahead + name_B + ' ' + must_end_with\n", " tmp = tmp.strip().replace('', ' ')\n", " print(f\"max_similarity_ahead = {round(max_sim_ahead,2)} % when using '{tmp}' \")\n", " print(\"\")\n", " tmp = must_start_with + ' ' + name_B + max_name_trail + ' ' + must_end_with\n", " tmp = tmp.strip().replace('', ' ')\n", " print(f\"max_similarity_trail = {round(max_sim_trail,2)} % when using '{tmp}' \")\n", " #-----#\n", " #STEP 2\n", " import random\n", " #-----#\n", " for index in range(NUM_PERMUTATIONS):\n", " name_inner = ''\n", " if index == 0 : name_inner = name_B\n", " if index == 1: name_inner = max_name_ahead\n", " if index == 2: name_inner = max_name_trail\n", " if index == 3: name_inner = name_B + max_name_trail\n", " if index == 4: name_inner = max_name_ahead + name_B\n", " if index == 5: name_inner = max_name_ahead + name_B + max_name_trail\n", " if name_inner == '': name_inner = max_name_ahead + name_B + max_name_trail\n", "\n", " name = must_start_with + name_inner + must_end_with\n", " #----#\n", " ids = processor.tokenizer(text=name, padding=use_token_padding, return_tensors=\"pt\")\n", " #----#\n", " sim = 0\n", " if(use == '🖼️image_encoding from image'):\n", " text_features = model.get_text_features(**ids)\n", " text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)\n", " logit_scale = model.logit_scale.exp()\n", " torch.matmul(text_features, image_features.t()) * logit_scale\n", " sim = torch.nn.functional.cosine_similarity(text_features, image_features) * logit_scale\n", " #-----#\n", " if(use == '📝text_encoding from prompt'):\n", " text_features = model.get_text_features(**ids)\n", " text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)\n", " sim = torch.nn.functional.cosine_similarity(text_features, text_features_A)\n", " #-----#\n", " results_name[iter*NUM_PERMUTATIONS + index] = name\n", " results_sim[iter*NUM_PERMUTATIONS + index] = sim\n", " results_name_B[iter*NUM_PERMUTATIONS + index] = name_inner.replace('',' ')\n", " #------#\n", " #name_B = results_name_B[iter*NUM_PERMUTATIONS + random.randint(0,3)]\n", " tmp = iter*NUM_PERMUTATIONS\n", " _name_B=''\n", " if results_sim[tmp+1]>results_sim[tmp+2]: _name_B = results_name_B[tmp + 3]\n", " if results_sim[tmp+2]>results_sim[tmp+1]: _name_B = results_name_B[tmp + 4]\n", "\n", " if _name_B != name_B:\n", " name_B=_name_B\n", " else:\n", " name_B = results_name_B[tmp + 5]\n", "\n", "#--------#\n", "print('')\n", "if(use == '🖼️image_encoding from image' and colab_image_path != \"\"):\n", " from google.colab.patches import cv2_imshow\n", " cv2_imshow(image_A)\n", "#-----#\n", "print('')\n", "sorted, indices = torch.sort(results_sim,dim=0 , descending=True)\n", "\n", "for index in range(ITERS*NUM_PERMUTATIONS):\n", " name_inner = results_name[indices[index].item()]\n", " print(must_start_with + name_inner + must_end_with)\n", " print(f'similiarity = {round(sorted[index].item(),2)} %')\n", " print('------')\n", "#------#\n", "db_vocab.close() #close the file" ], "metadata": { "collapsed": true, "id": "fi0jRruI0-tu", "cellView": "form" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# @title ⚡ Get similiar tokens (not updated yet)\n", "import torch\n", "from transformers import AutoTokenizer\n", "tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n", "\n", "# @markdown Write name of token to match against\n", "token_name = \"banana \" # @param {type:'string',\"placeholder\":\"leave empty for random value token\"}\n", "\n", "prompt = token_name\n", "# @markdown (optional) Mix the token with something else\n", "mix_with = \"\" # @param {\"type\":\"string\",\"placeholder\":\"leave empty for random value token\"}\n", "mix_method = \"None\" # @param [\"None\" , \"Average\", \"Subtract\"] {allow-input: true}\n", "w = 0.5 # @param {type:\"slider\", min:0, max:1, step:0.01}\n", "# @markdown Limit char size of included token\n", "\n", "min_char_size = 0 # param {type:\"slider\", min:0, max: 50, step:1}\n", "char_range = 50 # param {type:\"slider\", min:0, max: 50, step:1}\n", "\n", "tokenizer_output = tokenizer(text = prompt)\n", "input_ids = tokenizer_output['input_ids']\n", "id_A = input_ids[1]\n", "A = torch.tensor(token[id_A])\n", "A = A/A.norm(p=2, dim=-1, keepdim=True)\n", "#-----#\n", "tokenizer_output = tokenizer(text = mix_with)\n", "input_ids = tokenizer_output['input_ids']\n", "id_C = input_ids[1]\n", "C = torch.tensor(token[id_C])\n", "C = C/C.norm(p=2, dim=-1, keepdim=True)\n", "#-----#\n", "sim_AC = torch.dot(A,C)\n", "#-----#\n", "print(input_ids)\n", "#-----#\n", "\n", "#if no imput exists we just randomize the entire thing\n", "if (prompt == \"\"):\n", " id_A = -1\n", " print(\"Tokenized prompt tensor A is a random valued tensor with no ID\")\n", " R = torch.rand(A.shape)\n", " R = R/R.norm(p=2, dim=-1, keepdim=True)\n", " A = R\n", " name_A = 'random_A'\n", "\n", "#if no imput exists we just randomize the entire thing\n", "if (mix_with == \"\"):\n", " id_C = -1\n", " print(\"Tokenized prompt 'mix_with' tensor C is a random valued tensor with no ID\")\n", " R = torch.rand(A.shape)\n", " R = R/R.norm(p=2, dim=-1, keepdim=True)\n", " C = R\n", " name_C = 'random_C'\n", "\n", "name_A = \"A of random type\"\n", "if (id_A>-1):\n", " name_A = vocab(id_A)\n", "\n", "name_C = \"token C of random type\"\n", "if (id_C>-1):\n", " name_C = vocab(id_C)\n", "\n", "print(f\"The similarity between A '{name_A}' and C '{name_C}' is {round(sim_AC.item()*100,2)} %\")\n", "\n", "if (mix_method == \"None\"):\n", " print(\"No operation\")\n", "\n", "if (mix_method == \"Average\"):\n", " A = w*A + (1-w)*C\n", " _A = LA.vector_norm(A, ord=2)\n", " print(f\"Tokenized prompt tensor A '{name_A}' token has been recalculated as A = w*A + (1-w)*C , where C is '{name_C}' token , for w = {w} \")\n", "\n", "if (mix_method == \"Subtract\"):\n", " tmp = w*A - (1-w)*C\n", " tmp = tmp/tmp.norm(p=2, dim=-1, keepdim=True)\n", " A = tmp\n", " #//---//\n", " print(f\"Tokenized prompt tensor A '{name_A}' token has been recalculated as A = _A*norm(w*A - (1-w)*C) , where C is '{name_C}' token , for w = {w} \")\n", "\n", "#OPTIONAL : Add/subtract + normalize above result with another token. Leave field empty to get a random value tensor\n", "\n", "dots = torch.zeros(NUM_TOKENS)\n", "for index in range(NUM_TOKENS):\n", " id_B = index\n", " B = torch.tensor(token[id_B])\n", " B = B/B.norm(p=2, dim=-1, keepdim=True)\n", " sim_AB = torch.dot(A,B)\n", " dots[index] = sim_AB\n", "\n", "\n", "sorted, indices = torch.sort(dots,dim=0 , descending=True)\n", "#----#\n", "if (mix_method == \"Average\"):\n", " print(f'Calculated all cosine-similarities between the average of token {name_A} and {name_C} with Id_A = {id_A} and mixed Id_C = {id_C} as a 1x{sorted.shape[0]} tensor')\n", "if (mix_method == \"Subtract\"):\n", " print(f'Calculated all cosine-similarities between the subtract of token {name_A} and {name_C} with Id_A = {id_A} and mixed Id_C = {id_C} as a 1x{sorted.shape[0]} tensor')\n", "if (mix_method == \"None\"):\n", " print(f'Calculated all cosine-similarities between the token {name_A} with Id_A = {id_A} with the the rest of the {NUM_TOKENS} tokens as a 1x{sorted.shape[0]} tensor')\n", "\n", "#Produce a list id IDs that are most similiar to the prompt ID at positiion 1 based on above result\n", "\n", "# @markdown Set print options\n", "list_size = 100 # @param {type:'number'}\n", "print_ID = False # @param {type:\"boolean\"}\n", "print_Similarity = True # @param {type:\"boolean\"}\n", "print_Name = True # @param {type:\"boolean\"}\n", "print_Divider = True # @param {type:\"boolean\"}\n", "\n", "\n", "if (print_Divider):\n", " print('//---//')\n", "\n", "print('')\n", "print('Here is the result : ')\n", "print('')\n", "\n", "for index in range(list_size):\n", " id = indices[index].item()\n", " if (print_Name):\n", " print(f'{vocab(id)}') # vocab item\n", " if (print_ID):\n", " print(f'ID = {id}') # IDs\n", " if (print_Similarity):\n", " print(f'similiarity = {round(sorted[index].item()*100,2)} %')\n", " if (print_Divider):\n", " print('--------')\n", "\n", "#Print the sorted list from above result\n", "\n", "#The prompt will be enclosed with the <|start-of-text|> and <|end-of-text|> tokens, which is why output will be [49406, ... , 49407].\n", "\n", "#You can leave the 'prompt' field empty to get a random value tensor. Since the tensor is random value, it will not correspond to any tensor in the vocab.json list , and this it will have no ID.\n", "\n", "# Save results as .db file\n", "import shelve\n", "VOCAB_FILENAME = 'tokens_most_similiar_to_' + name_A.replace('','').strip()\n", "d = shelve.open(VOCAB_FILENAME)\n", "#NUM TOKENS == 49407\n", "for index in range(NUM_TOKENS):\n", " #print(d[f'{index}']) #<-----Use this to read values from the .db file\n", " d[f'{index}']= vocab(indices[index].item()) #<---- write values to .db file\n", "#----#\n", "d.close() #close the file\n", "# See this link for additional stuff to do with shelve: https://docs.python.org/3/library/shelve.html" ], "metadata": { "id": "iWeFnT1gAx6A", "cellView": "form" }, "execution_count": null, "outputs": [] } ] }