github-code / github_preprocessing.py
lvwerra's picture
lvwerra HF staff
Create github_preprocessing.py
8552d70
raw
history blame
4.29 kB
import gzip
import multiprocessing
import os
import shutil
import time
from argparse import Namespace
from collections import Counter
import numpy as np
from datasets import load_dataset, utils
import re
from huggingface_hub import Repository
from multiprocessing import Pool
from tqdm import tqdm
# Settings
config = {
"dataset_name": "./data/github",
"num_workers": 96,
"line_max": 1000,
"out_path": "./data/github-code",
"repo_name": "github-code",
"org": "lvwerra",
"shard_size": 1000 << 20}
args = Namespace(**config)
PATTERN = re.compile(r'\s+')
def get_hash(example):
"""Get hash of content field."""
return {"hash": hash(re.sub(PATTERN, '', example["content"]))}
def line_stats(example):
"""Calculates mean and max line length of file."""
line_lengths = [len(line) for line in example["content"].splitlines()]
return {"line_mean": np.mean(line_lengths), "line_max": max(line_lengths)}
def alpha_stats(example):
"""Calculates mean and max line length of file."""
alpha_frac = np.mean([c.isalnum() for c in example["content"]])
return {"alpha_frac": alpha_frac}
def check_uniques(example, uniques):
"""Check if current hash is still in set of unique hashes and remove if true."""
if example["hash"] in uniques:
uniques.remove(example["hash"])
return True
else:
return False
def is_autogenerated(example, scan_width=5):
"""Check if file is autogenerated by looking for keywords in the first few lines of the file."""
keywords = ["auto-generated", "autogenerated", "automatically generated"]
lines = example["content"].splitlines()
for _, line in zip(range(scan_width), lines):
for keyword in keywords:
if keyword in line.lower():
return {"autogenerated": True}
else:
return {"autogenerated": False}
def preprocess(example):
"""Chain all preprocessing steps into one function to not fill cache."""
results = dict()
results.update(get_hash(example))
results.update(line_stats(example))
return results
def filter(example, uniques, args):
"""Filter dataset with heuristics."""
if not check_uniques(example, uniques):
return False
elif example["line_max"] > args.line_max:
return False
else:
return True
def save_shard(shard_tuple):
"""Save shard"""
filename, shard = shard_tuple
shard.to_parquet(filename)
# Load dataset
t_start = time.time()
ds = load_dataset(args.dataset_name, split="train", chunksize=40<<20)
print(f"Time to load dataset: {time.time()-t_start:.2f}")
# Run preprocessing
t_start = time.time()
ds = ds.map(preprocess, num_proc=args.num_workers)
print(f"Time to preprocess dataset: {time.time()-t_start:.2f}")
print(ds)
# Deduplicate hashes
uniques = set(ds.unique("hash"))
frac = len(uniques) / len(ds)
print(f"Fraction of duplicates: {1-frac:.2%}")
# Deduplicate data and apply heuristics
t_start = time.time()
ds = ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args})
ds = ds.remove_columns(["line_mean", "line_max", "copies", "hash"])
print(f"Time to filter dataset: {time.time()-t_start:.2f}")
print(f"Size of filtered dataset: {len(ds)}")
# Save dataset in repo
repo = Repository(
local_dir=args.out_path,
clone_from=args.org + "/" + args.repo_name,
repo_type="dataset",
private=True,
use_auth_token=True,
git_user="lvwerra",
git_email="leandro.vonwerra@gmail.com",
)
os.mkdir(args.out_path + "/data")
if ds._indices is not None:
dataset_nbytes = ds.data.nbytes * len(ds._indices) / len(ds.data)
else:
dataset_nbytes = ds.data.nbytes
num_shards = int(dataset_nbytes / args.shard_size) + 1
print(f"Number of shards: {num_shards}")
t_start = time.time()
shards = (ds.shard(num_shards=num_shards, index=i, contiguous=True) for i in range(num_shards))
filenames = (f"{args.out_path}/data/train-{index:05d}-of-{num_shards:05d}.parquet" for index in range(num_shards))
with Pool(16) as p:
list(tqdm(p.imap_unordered(save_shard, zip(filenames, shards), chunksize=4), total=num_shards))
print(f"Time to save dataset: {time.time()-t_start:.2f}")
# To push to hub run `git add` and `git push` inside dataset repo folder