Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
topic-classification
Languages:
English
Size:
1M - 10M
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Yahoo! Answers Topic Classification Dataset""" | |
from __future__ import absolute_import, division, print_function | |
import csv | |
import os | |
import datasets | |
_DESCRIPTION = """ | |
Yahoo! Answers Topic Classification is text classification dataset. \ | |
The dataset is the Yahoo! Answers corpus as of 10/25/2007. \ | |
The Yahoo! Answers topic classification dataset is constructed using 10 largest main categories. \ | |
From all the answers and other meta-information, this dataset only used the best answer content and the main category information. | |
""" | |
_URL = "https://drive.google.com/uc?export=download&id=0Bz8a_Dbh9Qhbd2JNdDBsQUdocVU" | |
_TOPICS = [ | |
"Society & Culture", | |
"Science & Mathematics", | |
"Health", | |
"Education & Reference", | |
"Computers & Internet", | |
"Sports", | |
"Business & Finance", | |
"Entertainment & Music", | |
"Family & Relationships", | |
"Politics & Government", | |
] | |
class YahooAnswersTopics(datasets.GeneratorBasedBuilder): | |
"Yahoo! Answers Topic Classification Dataset" | |
VERSION = datasets.Version("1.0.0") | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig( | |
name="yahoo_answers_topics", | |
version=datasets.Version("1.0.0", ""), | |
), | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("int32"), | |
"topic": datasets.features.ClassLabel(names=_TOPICS), | |
"question_title": datasets.Value("string"), | |
"question_content": datasets.Value("string"), | |
"best_answer": datasets.Value("string"), | |
}, | |
), | |
supervised_keys=None, | |
homepage="https://github.com/LC-John/Yahoo-Answers-Topic-Classification-Dataset", | |
) | |
def _split_generators(self, dl_manager): | |
data_dir = dl_manager.download_and_extract(_URL) | |
# Extracting (un-taring) the training data | |
data_dir = os.path.join(data_dir, "yahoo_answers_csv") | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(data_dir, "train.csv")} | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, gen_kwargs={"filepath": os.path.join(data_dir, "test.csv")} | |
), | |
] | |
def _generate_examples(self, filepath): | |
with open(filepath, encoding="utf-8") as f: | |
rows = csv.reader(f) | |
for i, row in enumerate(rows): | |
yield i, { | |
"id": i, | |
"topic": int(row[0]) - 1, | |
"question_title": row[1], | |
"question_content": row[2], | |
"best_answer": row[3], | |
} | |