# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import hydra import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import utils class RandomShiftsAug(nn.Module): def __init__(self, pad=4): super().__init__() self.pad = pad def forward(self, x): n, c, h, w = x.size() assert h == w padding = tuple([self.pad] * 4) x = F.pad(x, padding, 'replicate') eps = 1.0 / (h + 2 * self.pad) arange = torch.linspace(-1.0 + eps, 1.0 - eps, h + 2 * self.pad, device=x.device, dtype=x.dtype)[:h] arange = arange.unsqueeze(0).repeat(h, 1).unsqueeze(2) base_grid = torch.cat([arange, arange.transpose(1, 0)], dim=2) base_grid = base_grid.unsqueeze(0).repeat(n, 1, 1, 1) shift = torch.randint(0, 2 * self.pad + 1, size=(n, 1, 1, 2), device=x.device, dtype=x.dtype) shift *= 2.0 / (h + 2 * self.pad) grid = base_grid + shift return F.grid_sample(x, grid, padding_mode='zeros', align_corners=False) class NoShiftAug(nn.Module): def __init__(self): super().__init__() def forward(self, x): return x class Encoder(nn.Module): def __init__(self, obs_shape): super().__init__() assert len(obs_shape) == 3 self.repr_dim = 32 * 35 * 35 self.convnet = nn.Sequential(nn.Conv2d(obs_shape[0], 32, 3, stride=2), nn.ReLU(), nn.Conv2d(32, 32, 3, stride=1), nn.ReLU(), nn.Conv2d(32, 32, 3, stride=1), nn.ReLU(), nn.Conv2d(32, 32, 3, stride=1), nn.ReLU()) self.apply(utils.weight_init) def forward(self, obs): obs = obs / 255.0 - 0.5 h = self.convnet(obs) h = h.view(h.shape[0], -1) return h class Actor(nn.Module): def __init__(self, repr_dim, action_shape, feature_dim, hidden_dim): super().__init__() self.trunk = nn.Sequential(nn.Linear(repr_dim, feature_dim), nn.LayerNorm(feature_dim), nn.Tanh()) self.policy = nn.Sequential(nn.Linear(feature_dim, hidden_dim), nn.ReLU(inplace=True), nn.Linear(hidden_dim, hidden_dim), nn.ReLU(inplace=True), nn.Linear(hidden_dim, action_shape[0])) self.apply(utils.weight_init) def forward(self, obs, std): h = self.trunk(obs) mu = self.policy(h) mu = torch.tanh(mu) std = torch.ones_like(mu) * std dist = utils.TruncatedNormal(mu, std) return dist class Critic(nn.Module): def __init__(self, repr_dim, action_shape, feature_dim, hidden_dim): super().__init__() self.trunk = nn.Sequential(nn.Linear(repr_dim, feature_dim), nn.LayerNorm(feature_dim), nn.Tanh()) self.Q1 = nn.Sequential( nn.Linear(feature_dim + action_shape[0], hidden_dim), nn.ReLU(inplace=True), nn.Linear(hidden_dim, hidden_dim), nn.ReLU(inplace=True), nn.Linear(hidden_dim, 1)) self.Q2 = nn.Sequential( nn.Linear(feature_dim + action_shape[0], hidden_dim), nn.ReLU(inplace=True), nn.Linear(hidden_dim, hidden_dim), nn.ReLU(inplace=True), nn.Linear(hidden_dim, 1)) self.apply(utils.weight_init) def forward(self, obs, action): h = self.trunk(obs) h_action = torch.cat([h, action], dim=-1) q1 = self.Q1(h_action) q2 = self.Q2(h_action) return q1, q2 class DrQV2Agent: def __init__(self, obs_shape, action_shape, device, lr, feature_dim, hidden_dim, critic_target_tau, num_expl_steps, update_every_steps, stddev_schedule, stddev_clip, use_tb, offline=False, bc_weight=2.5, augmentation=RandomShiftsAug(pad=4), use_bc=True): self.device = device self.critic_target_tau = critic_target_tau self.update_every_steps = update_every_steps self.use_tb = use_tb self.num_expl_steps = num_expl_steps self.stddev_schedule = stddev_schedule self.stddev_clip = stddev_clip self.offline = offline self.bc_weight = bc_weight self.use_bc = use_bc # models self.encoder = Encoder(obs_shape).to(device) self.actor = Actor(self.encoder.repr_dim, action_shape, feature_dim, hidden_dim).to(device) self.critic = Critic(self.encoder.repr_dim, action_shape, feature_dim, hidden_dim).to(device) self.critic_target = Critic(self.encoder.repr_dim, action_shape, feature_dim, hidden_dim).to(device) self.critic_target.load_state_dict(self.critic.state_dict()) # optimizers self.encoder_opt = torch.optim.Adam(self.encoder.parameters(), lr=lr) self.actor_opt = torch.optim.Adam(self.actor.parameters(), lr=lr) self.critic_opt = torch.optim.Adam(self.critic.parameters(), lr=lr) # data augmentation self.aug = augmentation self.train() self.critic_target.train() def train(self, training=True): self.training = training self.encoder.train(training) self.actor.train(training) self.critic.train(training) def act(self, obs, step, eval_mode): obs = torch.as_tensor(obs, device=self.device) obs = self.encoder(obs.unsqueeze(0)) stddev = utils.schedule(self.stddev_schedule, step) dist = self.actor(obs, stddev) if eval_mode: action = dist.mean else: action = dist.sample(clip=None) if step < self.num_expl_steps: action.uniform_(-1.0, 1.0) return action.cpu().numpy()[0] def update_critic(self, obs, action, reward, discount, next_obs, step): metrics = dict() with torch.no_grad(): stddev = utils.schedule(self.stddev_schedule, step) dist = self.actor(next_obs, stddev) next_action = dist.sample(clip=self.stddev_clip) target_Q1, target_Q2 = self.critic_target(next_obs, next_action) target_V = torch.min(target_Q1, target_Q2) target_Q = reward.float() + (discount * target_V) Q1, Q2 = self.critic(obs, action) critic_loss = F.mse_loss(Q1, target_Q) + F.mse_loss(Q2, target_Q) if self.use_tb: metrics['critic_target_q'] = target_Q.mean().item() metrics['critic_q1'] = Q1.mean().item() metrics['critic_q2'] = Q2.mean().item() metrics['critic_loss'] = critic_loss.item() # optimize encoder and critic self.encoder_opt.zero_grad(set_to_none=True) self.critic_opt.zero_grad(set_to_none=True) critic_loss.backward() self.critic_opt.step() self.encoder_opt.step() return metrics def update_actor(self, obs, step, behavioural_action=None): metrics = dict() stddev = utils.schedule(self.stddev_schedule, step) dist = self.actor(obs, stddev) action = dist.sample(clip=self.stddev_clip) log_prob = dist.log_prob(action).sum(-1, keepdim=True) Q1, Q2 = self.critic(obs, action) Q = torch.min(Q1, Q2) actor_policy_improvement_loss = -Q.mean() actor_loss = actor_policy_improvement_loss # offline BC Loss if self.offline: actor_bc_loss = F.mse_loss(action, behavioural_action) # Eq. 5 of arXiv:2106.06860 lam = self.bc_weight / Q.detach().abs().mean() if self.use_bc: actor_loss = actor_policy_improvement_loss * lam + actor_bc_loss else: actor_loss = actor_policy_improvement_loss * lam # optimize actor self.actor_opt.zero_grad(set_to_none=True) actor_loss.backward() self.actor_opt.step() if self.use_tb: metrics['actor_loss'] = actor_policy_improvement_loss.item() metrics['actor_logprob'] = log_prob.mean().item() metrics['actor_ent'] = dist.entropy().sum(dim=-1).mean().item() if self.offline: metrics['actor_bc_loss'] = actor_bc_loss.item() return metrics def update(self, replay_buffer, step): metrics = dict() if step % self.update_every_steps != 0: return metrics batch = next(replay_buffer) obs, action, reward, discount, next_obs = utils.to_torch( batch, self.device) # augment obs = self.aug(obs.float()) next_obs = self.aug(next_obs.float()) # encode obs = self.encoder(obs) with torch.no_grad(): next_obs = self.encoder(next_obs) if self.use_tb: metrics['batch_reward'] = reward.mean().item() # update critic metrics.update( self.update_critic(obs, action, reward, discount, next_obs, step)) # update actor if self.offline: metrics.update(self.update_actor(obs.detach(), step, action.detach())) else: metrics.update(self.update_actor(obs.detach(), step)) # update critic target utils.soft_update_params(self.critic, self.critic_target, self.critic_target_tau) return metrics