import re import numpy as np import tensorflow as tf from tensorflow.keras import layers as tfkl from tensorflow_probability import distributions as tfd from tensorflow.keras.mixed_precision import experimental as prec from .. import common class EnsembleRSSM(common.Module): def __init__( self, ensemble=5, stoch=30, deter=200, hidden=200, discrete=False, act='elu', norm='none', std_act='softplus', min_std=0.1): super().__init__() self._ensemble = ensemble self._stoch = stoch self._deter = deter self._hidden = hidden self._discrete = discrete self._act = get_act(act) self._norm = norm self._std_act = std_act self._min_std = min_std self._cell = GRUCell(self._deter, norm=True) self._cast = lambda x: tf.cast(x, prec.global_policy().compute_dtype) def initial(self, batch_size): dtype = prec.global_policy().compute_dtype if self._discrete: state = dict( logit=tf.zeros([batch_size, self._stoch, self._discrete], dtype), stoch=tf.zeros([batch_size, self._stoch, self._discrete], dtype), deter=self._cell.get_initial_state(None, batch_size, dtype)) else: state = dict( mean=tf.zeros([batch_size, self._stoch], dtype), std=tf.zeros([batch_size, self._stoch], dtype), stoch=tf.zeros([batch_size, self._stoch], dtype), deter=self._cell.get_initial_state(None, batch_size, dtype)) return state @tf.function def observe(self, embed, action, is_first, state=None): swap = lambda x: tf.transpose(x, [1, 0] + list(range(2, len(x.shape)))) if state is None: state = self.initial(tf.shape(action)[0]) post, prior = common.static_scan( lambda prev, inputs: self.obs_step(prev[0], *inputs), (swap(action), swap(embed), swap(is_first)), (state, state)) post = {k: swap(v) for k, v in post.items()} prior = {k: swap(v) for k, v in prior.items()} return post, prior @tf.function def imagine(self, action, state=None): swap = lambda x: tf.transpose(x, [1, 0] + list(range(2, len(x.shape)))) if state is None: state = self.initial(tf.shape(action)[0]) assert isinstance(state, dict), state action = swap(action) prior = common.static_scan(self.img_step, action, state) prior = {k: swap(v) for k, v in prior.items()} return prior def get_feat(self, state): stoch = self._cast(state['stoch']) if self._discrete: shape = stoch.shape[:-2] + [self._stoch * self._discrete] stoch = tf.reshape(stoch, shape) return tf.concat([stoch, state['deter']], -1) def get_dist(self, state, ensemble=False): if ensemble: state = self._suff_stats_ensemble(state['deter']) if self._discrete: logit = state['logit'] logit = tf.cast(logit, tf.float32) dist = tfd.Independent(common.OneHotDist(logit), 1) else: mean, std = state['mean'], state['std'] mean = tf.cast(mean, tf.float32) std = tf.cast(std, tf.float32) dist = tfd.MultivariateNormalDiag(mean, std) return dist @tf.function def obs_step(self, prev_state, prev_action, embed, is_first, sample=True): # if is_first.any(): prev_state, prev_action = tf.nest.map_structure( lambda x: tf.einsum( 'b,b...->b...', 1.0 - is_first.astype(x.dtype), x), (prev_state, prev_action)) prior = self.img_step(prev_state, prev_action, sample) x = tf.concat([prior['deter'], embed], -1) x = self.get('obs_out', tfkl.Dense, self._hidden)(x) x = self.get('obs_out_norm', NormLayer, self._norm)(x) x = self._act(x) stats = self._suff_stats_layer('obs_dist', x) dist = self.get_dist(stats) stoch = dist.sample() if sample else dist.mode() post = {'stoch': stoch, 'deter': prior['deter'], **stats} return post, prior @tf.function def img_step(self, prev_state, prev_action, sample=True): prev_stoch = self._cast(prev_state['stoch']) prev_action = self._cast(prev_action) if self._discrete: shape = prev_stoch.shape[:-2] + [self._stoch * self._discrete] prev_stoch = tf.reshape(prev_stoch, shape) x = tf.concat([prev_stoch, prev_action], -1) x = self.get('img_in', tfkl.Dense, self._hidden)(x) x = self.get('img_in_norm', NormLayer, self._norm)(x) x = self._act(x) deter = prev_state['deter'] deter, _ = self._cell(x, [deter]) stats = self._suff_stats_ensemble(deter) index = tf.random.uniform((), 0, self._ensemble, tf.int32) stats = {k: v[index] for k, v in stats.items()} dist = self.get_dist(stats) stoch = dist.sample() if sample else dist.mode() prior = {'stoch': stoch, 'deter': deter, **stats} return prior def _suff_stats_ensemble(self, inp): bs = list(inp.shape[:-1]) inp = inp.reshape([-1, inp.shape[-1]]) stats = [] for k in range(self._ensemble): x = self.get(f'img_out_{k}', tfkl.Dense, self._hidden)(inp) x = self.get(f'img_out_norm_{k}', NormLayer, self._norm)(x) x = self._act(x) stats.append(self._suff_stats_layer(f'img_dist_{k}', x)) stats = { k: tf.stack([x[k] for x in stats], 0) for k, v in stats[0].items()} stats = { k: v.reshape([v.shape[0]] + bs + list(v.shape[2:])) for k, v in stats.items()} return stats def _suff_stats_layer(self, name, x): if self._discrete: x = self.get(name, tfkl.Dense, self._stoch * self._discrete, None)(x) logit = tf.reshape(x, x.shape[:-1] + [self._stoch, self._discrete]) return {'logit': logit} else: x = self.get(name, tfkl.Dense, 2 * self._stoch, None)(x) mean, std = tf.split(x, 2, -1) std = { 'softplus': lambda: tf.nn.softplus(std), 'sigmoid': lambda: tf.nn.sigmoid(std), 'sigmoid2': lambda: 2 * tf.nn.sigmoid(std / 2), }[self._std_act]() std = std + self._min_std return {'mean': mean, 'std': std} def kl_loss(self, post, prior, forward, balance, free, free_avg): kld = tfd.kl_divergence sg = lambda x: tf.nest.map_structure(tf.stop_gradient, x) lhs, rhs = (prior, post) if forward else (post, prior) mix = balance if forward else (1 - balance) if balance == 0.5: value = kld(self.get_dist(lhs), self.get_dist(rhs)) loss = tf.maximum(value, free).mean() else: value_lhs = value = kld(self.get_dist(lhs), self.get_dist(sg(rhs))) value_rhs = kld(self.get_dist(sg(lhs)), self.get_dist(rhs)) if free_avg: loss_lhs = tf.maximum(value_lhs.mean(), free) loss_rhs = tf.maximum(value_rhs.mean(), free) else: loss_lhs = tf.maximum(value_lhs, free).mean() loss_rhs = tf.maximum(value_rhs, free).mean() loss = mix * loss_lhs + (1 - mix) * loss_rhs return loss, value class Encoder(common.Module): def __init__( self, shapes, cnn_keys=r'.*', mlp_keys=r'.*', act='elu', norm='none', cnn_depth=48, cnn_kernels=(4, 4, 4, 4), mlp_layers=[400, 400, 400, 400]): self.shapes = shapes self.cnn_keys = [ k for k, v in shapes.items() if re.match(cnn_keys, k) and len(v) == 3] self.mlp_keys = [ k for k, v in shapes.items() if re.match(mlp_keys, k) and len(v) == 1] print('Encoder CNN inputs:', list(self.cnn_keys)) print('Encoder MLP inputs:', list(self.mlp_keys)) self._act = get_act(act) self._norm = norm self._cnn_depth = cnn_depth self._cnn_kernels = cnn_kernels self._mlp_layers = mlp_layers @tf.function def __call__(self, data): key, shape = list(self.shapes.items())[0] batch_dims = data[key].shape[:-len(shape)] data = { k: tf.reshape(v, (-1,) + tuple(v.shape)[len(batch_dims):]) for k, v in data.items()} outputs = [] if self.cnn_keys: outputs.append(self._cnn({k: data[k] for k in self.cnn_keys})) if self.mlp_keys: outputs.append(self._mlp({k: data[k] for k in self.mlp_keys})) output = tf.concat(outputs, -1) return output.reshape(batch_dims + output.shape[1:]) def _cnn(self, data): x = tf.concat(list(data.values()), -1) x = x.astype(prec.global_policy().compute_dtype) for i, kernel in enumerate(self._cnn_kernels): depth = 2 ** i * self._cnn_depth x = self.get(f'conv{i}', tfkl.Conv2D, depth, kernel, 2)(x) x = self.get(f'convnorm{i}', NormLayer, self._norm)(x) x = self._act(x) return x.reshape(tuple(x.shape[:-3]) + (-1,)) def _mlp(self, data): x = tf.concat(list(data.values()), -1) x = x.astype(prec.global_policy().compute_dtype) for i, width in enumerate(self._mlp_layers): x = self.get(f'dense{i}', tfkl.Dense, width)(x) x = self.get(f'densenorm{i}', NormLayer, self._norm)(x) x = self._act(x) return x class Decoder(common.Module): def __init__( self, shapes, cnn_keys=r'.*', mlp_keys=r'.*', act='elu', norm='none', cnn_depth=48, cnn_kernels=(4, 4, 4, 4), mlp_layers=[400, 400, 400, 400]): self._shapes = shapes self.cnn_keys = [ k for k, v in shapes.items() if re.match(cnn_keys, k) and len(v) == 3] self.mlp_keys = [ k for k, v in shapes.items() if re.match(mlp_keys, k) and len(v) == 1] print('Decoder CNN outputs:', list(self.cnn_keys)) print('Decoder MLP outputs:', list(self.mlp_keys)) self._act = get_act(act) self._norm = norm self._cnn_depth = cnn_depth self._cnn_kernels = cnn_kernels self._mlp_layers = mlp_layers def __call__(self, features): features = tf.cast(features, prec.global_policy().compute_dtype) outputs = {} if self.cnn_keys: outputs.update(self._cnn(features)) if self.mlp_keys: outputs.update(self._mlp(features)) return outputs def _cnn(self, features): channels = {k: self._shapes[k][-1] for k in self.cnn_keys} ConvT = tfkl.Conv2DTranspose x = self.get('convin', tfkl.Dense, 32 * self._cnn_depth)(features) x = tf.reshape(x, [-1, 1, 1, 32 * self._cnn_depth]) for i, kernel in enumerate(self._cnn_kernels): depth = 2 ** (len(self._cnn_kernels) - i - 2) * self._cnn_depth act, norm = self._act, self._norm if i == len(self._cnn_kernels) - 1: depth, act, norm = sum(channels.values()), tf.identity, 'none' x = self.get(f'conv{i}', ConvT, depth, kernel, 2)(x) x = self.get(f'convnorm{i}', NormLayer, norm)(x) x = act(x) x = x.reshape(features.shape[:-1] + x.shape[1:]) means = tf.split(x, list(channels.values()), -1) dists = { key: tfd.Independent(tfd.Normal(mean, 1), 3) for (key, shape), mean in zip(channels.items(), means)} return dists def _mlp(self, features): shapes = {k: self._shapes[k] for k in self.mlp_keys} x = features for i, width in enumerate(self._mlp_layers): x = self.get(f'dense{i}', tfkl.Dense, width)(x) x = self.get(f'densenorm{i}', NormLayer, self._norm)(x) x = self._act(x) dists = {} for key, shape in shapes.items(): dists[key] = self.get(f'dense_{key}', DistLayer, shape)(x) return dists class MLP(common.Module): def __init__(self, shape, layers, units, act='elu', norm='none', **out): self._shape = (shape,) if isinstance(shape, int) else shape self._layers = layers self._units = units self._norm = norm self._act = get_act(act) self._out = out def __call__(self, features): x = tf.cast(features, prec.global_policy().compute_dtype) x = x.reshape([-1, x.shape[-1]]) for index in range(self._layers): x = self.get(f'dense{index}', tfkl.Dense, self._units)(x) x = self.get(f'norm{index}', NormLayer, self._norm)(x) x = self._act(x) x = x.reshape(features.shape[:-1] + [x.shape[-1]]) return self.get('out', DistLayer, self._shape, **self._out)(x) class GRUCell(tf.keras.layers.AbstractRNNCell): def __init__(self, size, norm=False, act='tanh', update_bias=-1, **kwargs): super().__init__() self._size = size self._act = get_act(act) self._norm = norm self._update_bias = update_bias self._layer = tfkl.Dense(3 * size, use_bias=norm is not None, **kwargs) if norm: self._norm = tfkl.LayerNormalization(dtype=tf.float32) @property def state_size(self): return self._size @tf.function def call(self, inputs, state): state = state[0] # Keras wraps the state in a list. parts = self._layer(tf.concat([inputs, state], -1)) if self._norm: dtype = parts.dtype parts = tf.cast(parts, tf.float32) parts = self._norm(parts) parts = tf.cast(parts, dtype) reset, cand, update = tf.split(parts, 3, -1) reset = tf.nn.sigmoid(reset) cand = self._act(reset * cand) update = tf.nn.sigmoid(update + self._update_bias) output = update * cand + (1 - update) * state return output, [output] class DistLayer(common.Module): def __init__( self, shape, dist='mse', min_std=0.1, init_std=0.0): self._shape = shape self._dist = dist self._min_std = min_std self._init_std = init_std def __call__(self, inputs): out = self.get('out', tfkl.Dense, np.prod(self._shape))(inputs) out = tf.reshape(out, tf.concat([tf.shape(inputs)[:-1], self._shape], 0)) out = tf.cast(out, tf.float32) if self._dist in ('normal', 'tanh_normal', 'trunc_normal'): std = self.get('std', tfkl.Dense, np.prod(self._shape))(inputs) std = tf.reshape(std, tf.concat([tf.shape(inputs)[:-1], self._shape], 0)) std = tf.cast(std, tf.float32) if self._dist == 'mse': dist = tfd.Normal(out, 1.0) return tfd.Independent(dist, len(self._shape)) if self._dist == 'normal': dist = tfd.Normal(out, std) return tfd.Independent(dist, len(self._shape)) if self._dist == 'binary': dist = tfd.Bernoulli(out) return tfd.Independent(dist, len(self._shape)) if self._dist == 'tanh_normal': mean = 5 * tf.tanh(out / 5) std = tf.nn.softplus(std + self._init_std) + self._min_std dist = tfd.Normal(mean, std) dist = tfd.TransformedDistribution(dist, common.TanhBijector()) dist = tfd.Independent(dist, len(self._shape)) return common.SampleDist(dist) if self._dist == 'trunc_normal': std = 2 * tf.nn.sigmoid((std + self._init_std) / 2) + self._min_std dist = common.TruncNormalDist(tf.tanh(out), std, -1, 1) return tfd.Independent(dist, 1) if self._dist == 'onehot': return common.OneHotDist(out) raise NotImplementedError(self._dist) class NormLayer(common.Module): def __init__(self, name): if name == 'none': self._layer = None elif name == 'layer': self._layer = tfkl.LayerNormalization() else: raise NotImplementedError(name) def __call__(self, features): if not self._layer: return features return self._layer(features) def get_act(name): if name == 'none': return tf.identity if name == 'mish': return lambda x: x * tf.math.tanh(tf.nn.softplus(x)) elif hasattr(tf.nn, name): return getattr(tf.nn, name) elif hasattr(tf, name): return getattr(tf, name) else: raise NotImplementedError(name)