Datasets:
File size: 1,335 Bytes
fffa9f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
from datetime import datetime
import pandas as pd
from bs4 import BeautifulSoup
def parse_review(html):
if html.startswith('"') and html.endswith('"'):
html = html[1:-1]
soup = BeautifulSoup(html, "lxml")
text = soup.get_text()
return text
def parse_rating(rating_str):
rating = int(rating_str)
return rating
def parse_date(date_str):
dt = datetime.strptime(date_str, "%B %d, %Y")
iso_format_date = dt.strftime("%Y-%m-%d")
return iso_format_date
def read_file(file_path):
data = pd.read_csv(file_path, sep="\t")
rows = []
for _, row in data.iterrows():
obj = {
"id": row[0],
"drugName": row[1],
"condition": row[2],
"review": parse_review(row[3]),
"rating": parse_rating(row[4]),
"date": parse_date(row[5]),
"usefulCount": row[6],
}
rows.append(obj)
return rows
def save(rows, file_path):
df = pd.DataFrame(rows)
df.to_csv(file_path, index=False)
def run():
train_rows = read_file("drugsComTrain_raw.tsv")
test_rows = read_file("drugsComTest_raw.tsv")
all_rows = train_rows + test_rows
save(train_rows, "train.csv")
save(test_rows, "test.csv")
save(all_rows, "complete.csv")
if __name__ == "__main__":
run()
|