|
import ast |
|
|
|
import datasets as ds |
|
import pandas as pd |
|
|
|
_DESCRIPTION = """\ |
|
CAMERA (CyberAgent Multimodal Evaluation for Ad Text GeneRAtion) is the Japanese ad text generation dataset. |
|
""" |
|
|
|
_CITATION = """\ |
|
@misc{mita2024striking, |
|
title={Striking Gold in Advertising: Standardization and Exploration of Ad Text Generation}, |
|
author={Masato Mita and Soichiro Murakami and Akihiko Kato and Peinan Zhang}, |
|
year={2024}, |
|
eprint={2309.12030}, |
|
archivePrefix={arXiv}, |
|
primaryClass={id='cs.CL' full_name='Computation and Language' is_active=True alt_name='cmp-lg' in_archive='cs' is_general=False description='Covers natural language processing. Roughly includes material in ACM Subject Class I.2.7. Note that work on artificial languages (programming languages, logics, formal systems) that does not explicitly address natural-language issues broadly construed (natural-language processing, computational linguistics, speech, text retrieval, etc.) is not appropriate for this area.'} |
|
} |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/CyberAgentAILab/camera" |
|
|
|
_LICENSE = """\ |
|
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. |
|
""" |
|
|
|
_URLS = { |
|
"without-lp-images": "https://storage.googleapis.com/camera-public/camera-v2.2-minimal.tar.gz", |
|
"with-lp-images": "https://storage.googleapis.com/camera-public/camera-v2.2.tar.gz", |
|
} |
|
|
|
_DESCRIPTION = { |
|
"without-lp-images": "The CAMERA dataset w/o LP images (ver.2.2.0)", |
|
"with-lp-images": "The CAMERA dataset w/ LP images (ver.2.2.0)", |
|
} |
|
|
|
_VERSION = ds.Version("2.2.0", "") |
|
|
|
|
|
class CameraConfig(ds.BuilderConfig): |
|
def __init__(self, name: str, version: ds.Version = _VERSION, **kwargs): |
|
super().__init__( |
|
name=name, |
|
description=_DESCRIPTION[name], |
|
version=version, |
|
**kwargs, |
|
) |
|
|
|
|
|
class CameraDataset(ds.GeneratorBasedBuilder): |
|
BUILDER_CONFIGS = [CameraConfig(name="without-lp-images")] |
|
|
|
DEFAULT_CONFIG_NAME = "without-lp-images" |
|
|
|
def _info(self) -> ds.DatasetInfo: |
|
features = ds.Features( |
|
{ |
|
"asset_id": ds.Value("int64"), |
|
"kw": ds.Value("string"), |
|
"lp_meta_description": ds.Value("string"), |
|
"title_org": ds.Value("string"), |
|
"title_ne1": ds.Value("string"), |
|
"title_ne2": ds.Value("string"), |
|
"title_ne3": ds.Value("string"), |
|
"domain": ds.Value("string"), |
|
"parsed_full_text_annotation": ds.Sequence( |
|
{ |
|
"text": ds.Value("string"), |
|
"xmax": ds.Value("int64"), |
|
"xmin": ds.Value("int64"), |
|
"ymax": ds.Value("int64"), |
|
"ymin": ds.Value("int64"), |
|
} |
|
), |
|
} |
|
) |
|
|
|
if self.config.name == "with-lp-images": |
|
features["lp_image"] = ds.Image() |
|
|
|
return ds.DatasetInfo( |
|
description=_DESCRIPTION, |
|
citation=_CITATION, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
features=features, |
|
) |
|
|
|
def _split_generators(self, dl_manager: ds.DownloadManager): |
|
base_dir = dl_manager.download_and_extract(_URLS[self.config.name]) |
|
lp_image_dir: str | None = None |
|
|
|
if self.config.name == "without-lp-images": |
|
data_dir = f"{base_dir}/camera-v2.2-minimal" |
|
elif self.config.name == "with-lp-images": |
|
data_dir = f"{base_dir}/camera-v2.2" |
|
lp_image_dir = f"{data_dir}/lp-screenshot" |
|
else: |
|
raise ValueError(f"Invalid config name: {self.config.name}") |
|
|
|
return [ |
|
ds.SplitGenerator( |
|
name=ds.Split.TRAIN, |
|
gen_kwargs={ |
|
"file": f"{data_dir}/train.csv", |
|
"lp_image_dir": lp_image_dir, |
|
}, |
|
), |
|
ds.SplitGenerator( |
|
name=ds.Split.VALIDATION, |
|
gen_kwargs={ |
|
"file": f"{data_dir}/dev.csv", |
|
"lp_image_dir": lp_image_dir, |
|
}, |
|
), |
|
ds.SplitGenerator( |
|
name=ds.Split.TEST, |
|
gen_kwargs={ |
|
"file": f"{data_dir}/test.csv", |
|
"lp_image_dir": lp_image_dir, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, file: str, lp_image_dir: str | None = None): |
|
df = pd.read_csv(file) |
|
for i, data_dict in enumerate(df.to_dict("records")): |
|
asset_id = data_dict["asset_id"] |
|
example_dict = { |
|
"asset_id": asset_id, |
|
"kw": data_dict["kw"], |
|
"lp_meta_description": data_dict["lp_meta_description"], |
|
"title_org": data_dict["title_org"], |
|
"title_ne1": data_dict.get("title_ne1", ""), |
|
"title_ne2": data_dict.get("title_ne2", ""), |
|
"title_ne3": data_dict.get("title_ne3", ""), |
|
"domain": data_dict.get("domain", ""), |
|
"parsed_full_text_annotation": ast.literal_eval( |
|
data_dict["parsed_full_text_annotation"] |
|
), |
|
} |
|
|
|
if self.config.name == "with-lp-images" and lp_image_dir is not None: |
|
file_name = f"screen-1200-{asset_id}.png" |
|
example_dict["lp_image"] = f"{lp_image_dir}/{file_name}" |
|
|
|
yield i, example_dict |
|
|