Datasets:
Kosuke-Yamada
commited on
Commit
•
da9f614
1
Parent(s):
2e63281
commit for the first time 🎉
Browse files
camera.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import ast
|
2 |
+
|
3 |
+
import datasets as ds
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
_DESCRIPTION = """\
|
7 |
+
CAMERA (CyberAgent Multimodal Evaluation for Ad Text GeneRAtion) is the Japanese ad text generation dataset.
|
8 |
+
"""
|
9 |
+
|
10 |
+
_CITATION = """\
|
11 |
+
@misc{mita2024striking,
|
12 |
+
title={Striking Gold in Advertising: Standardization and Exploration of Ad Text Generation},
|
13 |
+
author={Masato Mita and Soichiro Murakami and Akihiko Kato and Peinan Zhang},
|
14 |
+
year={2024},
|
15 |
+
eprint={2309.12030},
|
16 |
+
archivePrefix={arXiv},
|
17 |
+
primaryClass={id='cs.CL' full_name='Computation and Language' is_active=True alt_name='cmp-lg' in_archive='cs' is_general=False description='Covers natural language processing. Roughly includes material in ACM Subject Class I.2.7. Note that work on artificial languages (programming languages, logics, formal systems) that does not explicitly address natural-language issues broadly construed (natural-language processing, computational linguistics, speech, text retrieval, etc.) is not appropriate for this area.'}
|
18 |
+
}
|
19 |
+
"""
|
20 |
+
|
21 |
+
_HOMEPAGE = "https://github.com/CyberAgentAILab/camera"
|
22 |
+
|
23 |
+
_LICENSE = """\
|
24 |
+
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
|
25 |
+
"""
|
26 |
+
|
27 |
+
_URLS = {
|
28 |
+
"without-lp-images": "https://storage.googleapis.com/camera-public/camera-v2.2-minimal.tar.gz",
|
29 |
+
"with-lp-images": "https://storage.googleapis.com/camera-public/camera-v2.2.tar.gz",
|
30 |
+
}
|
31 |
+
|
32 |
+
_DESCRIPTION = {
|
33 |
+
"without-lp-images": "The CAMERA dataset w/o LP images (ver.2.2.0)",
|
34 |
+
"with-lp-images": "The CAMERA dataset w/ LP images (ver.2.2.0)",
|
35 |
+
}
|
36 |
+
|
37 |
+
_VERSION = ds.Version("2.2.0", "")
|
38 |
+
|
39 |
+
|
40 |
+
class CameraConfig(ds.BuilderConfig):
|
41 |
+
def __init__(self, name: str, version: ds.Version = _VERSION, **kwargs):
|
42 |
+
super().__init__(
|
43 |
+
name=name,
|
44 |
+
description=_DESCRIPTION[name],
|
45 |
+
version=version,
|
46 |
+
**kwargs,
|
47 |
+
)
|
48 |
+
|
49 |
+
|
50 |
+
class CameraDataset(ds.GeneratorBasedBuilder):
|
51 |
+
BUILDER_CONFIGS = [CameraConfig(name="without-lp-images")]
|
52 |
+
|
53 |
+
DEFAULT_CONFIG_NAME = "without-lp-images"
|
54 |
+
|
55 |
+
def _info(self) -> ds.DatasetInfo:
|
56 |
+
features = ds.Features(
|
57 |
+
{
|
58 |
+
"asset_id": ds.Value("int64"),
|
59 |
+
"kw": ds.Value("string"),
|
60 |
+
"lp_meta_description": ds.Value("string"),
|
61 |
+
"title_org": ds.Value("string"),
|
62 |
+
"title_ne1": ds.Value("string"),
|
63 |
+
"title_ne2": ds.Value("string"),
|
64 |
+
"title_ne3": ds.Value("string"),
|
65 |
+
"domain": ds.Value("string"),
|
66 |
+
"parsed_full_text_annotation": ds.Sequence(
|
67 |
+
{
|
68 |
+
"text": ds.Value("string"),
|
69 |
+
"xmax": ds.Value("int64"),
|
70 |
+
"xmin": ds.Value("int64"),
|
71 |
+
"ymax": ds.Value("int64"),
|
72 |
+
"ymin": ds.Value("int64"),
|
73 |
+
}
|
74 |
+
),
|
75 |
+
}
|
76 |
+
)
|
77 |
+
|
78 |
+
if self.config.name == "with-lp-images":
|
79 |
+
features["lp_image"] = ds.Image()
|
80 |
+
|
81 |
+
return ds.DatasetInfo(
|
82 |
+
description=_DESCRIPTION,
|
83 |
+
citation=_CITATION,
|
84 |
+
homepage=_HOMEPAGE,
|
85 |
+
license=_LICENSE,
|
86 |
+
features=features,
|
87 |
+
)
|
88 |
+
|
89 |
+
def _split_generators(self, dl_manager: ds.DownloadManager):
|
90 |
+
base_dir = dl_manager.download_and_extract(_URLS[self.config.name])
|
91 |
+
lp_image_dir: str | None = None
|
92 |
+
|
93 |
+
if self.config.name == "without-lp-images":
|
94 |
+
data_dir = f"{base_dir}/camera-v2.2-minimal"
|
95 |
+
elif self.config.name == "with-lp-images":
|
96 |
+
data_dir = f"{base_dir}/camera-v2.2"
|
97 |
+
lp_image_dir = f"{data_dir}/lp-screenshot"
|
98 |
+
else:
|
99 |
+
raise ValueError(f"Invalid config name: {self.config.name}")
|
100 |
+
|
101 |
+
return [
|
102 |
+
ds.SplitGenerator(
|
103 |
+
name=ds.Split.TRAIN,
|
104 |
+
gen_kwargs={
|
105 |
+
"file": f"{data_dir}/train.csv",
|
106 |
+
"lp_image_dir": lp_image_dir,
|
107 |
+
},
|
108 |
+
),
|
109 |
+
ds.SplitGenerator(
|
110 |
+
name=ds.Split.VALIDATION,
|
111 |
+
gen_kwargs={
|
112 |
+
"file": f"{data_dir}/dev.csv",
|
113 |
+
"lp_image_dir": lp_image_dir,
|
114 |
+
},
|
115 |
+
),
|
116 |
+
ds.SplitGenerator(
|
117 |
+
name=ds.Split.TEST,
|
118 |
+
gen_kwargs={
|
119 |
+
"file_name": f"{data_dir}/test.csv",
|
120 |
+
"lp_image_dir": lp_image_dir,
|
121 |
+
},
|
122 |
+
),
|
123 |
+
]
|
124 |
+
|
125 |
+
def _generate_examples(self, file: str, lp_image_dir: str | None = None):
|
126 |
+
df = pd.read_csv(file)
|
127 |
+
for i, data_dict in enumerate(df.to_dict("records")):
|
128 |
+
asset_id = data_dict["asset_id"]
|
129 |
+
example_dict = {
|
130 |
+
"asset_id": asset_id,
|
131 |
+
"kw": data_dict["kw"],
|
132 |
+
"lp_meta_description": data_dict["lp_meta_description"],
|
133 |
+
"title_org": data_dict["title_org"],
|
134 |
+
"title_ne1": data_dict.get("title_ne1", ""),
|
135 |
+
"title_ne2": data_dict.get("title_ne2", ""),
|
136 |
+
"title_ne3": data_dict.get("title_ne3", ""),
|
137 |
+
"domain": data_dict.get("domain", ""),
|
138 |
+
"parsed_full_text_annotation": ast.literal_eval(
|
139 |
+
data_dict["parsed_full_text_annotation"]
|
140 |
+
),
|
141 |
+
}
|
142 |
+
|
143 |
+
if self.config.name == "with-lp-images" and lp_image_dir is not None:
|
144 |
+
file_name = f"screen-1200-{asset_id}.png"
|
145 |
+
example_dict["lp_image"] = f"{lp_image_dir}/{file_name}"
|
146 |
+
|
147 |
+
yield i, example_dict
|