import ast import datasets as ds import pandas as pd _DESCRIPTION = """\ CAMERA (CyberAgent Multimodal Evaluation for Ad Text GeneRAtion) is the Japanese ad text generation dataset. """ _CITATION = """\ @misc{mita2024striking, title={Striking Gold in Advertising: Standardization and Exploration of Ad Text Generation}, author={Masato Mita and Soichiro Murakami and Akihiko Kato and Peinan Zhang}, year={2024}, eprint={2309.12030}, archivePrefix={arXiv}, primaryClass={id='cs.CL' full_name='Computation and Language' is_active=True alt_name='cmp-lg' in_archive='cs' is_general=False description='Covers natural language processing. Roughly includes material in ACM Subject Class I.2.7. Note that work on artificial languages (programming languages, logics, formal systems) that does not explicitly address natural-language issues broadly construed (natural-language processing, computational linguistics, speech, text retrieval, etc.) is not appropriate for this area.'} } """ _HOMEPAGE = "https://github.com/CyberAgentAILab/camera" _LICENSE = """\ This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. """ _URLS = { "without-lp-images": "https://storage.googleapis.com/camera-public/camera-v2.2-minimal.tar.gz", "with-lp-images": "https://storage.googleapis.com/camera-public/camera-v2.2.tar.gz", } _DESCRIPTION = { "without-lp-images": "The CAMERA dataset w/o LP images (ver.2.2.0)", "with-lp-images": "The CAMERA dataset w/ LP images (ver.2.2.0)", } _VERSION = ds.Version("2.2.0", "") class CameraConfig(ds.BuilderConfig): def __init__(self, name: str, version: ds.Version = _VERSION, **kwargs): super().__init__( name=name, description=_DESCRIPTION[name], version=version, **kwargs, ) class CameraDataset(ds.GeneratorBasedBuilder): BUILDER_CONFIGS = [CameraConfig(name="without-lp-images")] DEFAULT_CONFIG_NAME = "without-lp-images" def _info(self) -> ds.DatasetInfo: features = ds.Features( { "asset_id": ds.Value("int64"), "kw": ds.Value("string"), "lp_meta_description": ds.Value("string"), "title_org": ds.Value("string"), "title_ne1": ds.Value("string"), "title_ne2": ds.Value("string"), "title_ne3": ds.Value("string"), "domain": ds.Value("string"), "parsed_full_text_annotation": ds.Sequence( { "text": ds.Value("string"), "xmax": ds.Value("int64"), "xmin": ds.Value("int64"), "ymax": ds.Value("int64"), "ymin": ds.Value("int64"), } ), } ) if self.config.name == "with-lp-images": features["lp_image"] = ds.Image() return ds.DatasetInfo( description=_DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, license=_LICENSE, features=features, ) def _split_generators(self, dl_manager: ds.DownloadManager): base_dir = dl_manager.download_and_extract(_URLS[self.config.name]) lp_image_dir: str | None = None if self.config.name == "without-lp-images": data_dir = f"{base_dir}/camera-v2.2-minimal" elif self.config.name == "with-lp-images": data_dir = f"{base_dir}/camera-v2.2" lp_image_dir = f"{data_dir}/lp-screenshot" else: raise ValueError(f"Invalid config name: {self.config.name}") return [ ds.SplitGenerator( name=ds.Split.TRAIN, gen_kwargs={ "file": f"{data_dir}/train.csv", "lp_image_dir": lp_image_dir, }, ), ds.SplitGenerator( name=ds.Split.VALIDATION, gen_kwargs={ "file": f"{data_dir}/dev.csv", "lp_image_dir": lp_image_dir, }, ), ds.SplitGenerator( name=ds.Split.TEST, gen_kwargs={ "file_name": f"{data_dir}/test.csv", "lp_image_dir": lp_image_dir, }, ), ] def _generate_examples(self, file: str, lp_image_dir: str | None = None): df = pd.read_csv(file) for i, data_dict in enumerate(df.to_dict("records")): asset_id = data_dict["asset_id"] example_dict = { "asset_id": asset_id, "kw": data_dict["kw"], "lp_meta_description": data_dict["lp_meta_description"], "title_org": data_dict["title_org"], "title_ne1": data_dict.get("title_ne1", ""), "title_ne2": data_dict.get("title_ne2", ""), "title_ne3": data_dict.get("title_ne3", ""), "domain": data_dict.get("domain", ""), "parsed_full_text_annotation": ast.literal_eval( data_dict["parsed_full_text_annotation"] ), } if self.config.name == "with-lp-images" and lp_image_dir is not None: file_name = f"screen-1200-{asset_id}.png" example_dict["lp_image"] = f"{lp_image_dir}/{file_name}" yield i, example_dict