Datasets:
ArXiv:
License:
# -------------------------------------------------------- | |
# InternVL | |
# Copyright (c) 2023 OpenGVLab | |
# Licensed under The MIT License [see LICENSE for details] | |
# -------------------------------------------------------- | |
from typing import Optional, Tuple, Union | |
import torch | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
from einops import rearrange | |
from timm.models.layers import DropPath | |
from torch import nn | |
from transformers.activations import ACT2FN | |
from transformers.modeling_outputs import (BaseModelOutput, | |
BaseModelOutputWithPooling) | |
from transformers.modeling_utils import PreTrainedModel | |
from transformers.utils import logging | |
from .configuration_intern_vit import InternVisionConfig | |
try: | |
try: # v1 | |
from flash_attn.flash_attn_interface import \ | |
flash_attn_unpadded_qkvpacked_func | |
except: # v2 | |
from flash_attn.flash_attn_interface import \ | |
flash_attn_varlen_qkvpacked_func as flash_attn_unpadded_qkvpacked_func | |
from flash_attn.bert_padding import pad_input, unpad_input | |
has_flash_attn = True | |
except: | |
print('FlashAttention is not installed.') | |
has_flash_attn = False | |
logger = logging.get_logger(__name__) | |
class FlashAttention(nn.Module): | |
"""Implement the scaled dot product attention with softmax. | |
Arguments | |
--------- | |
softmax_scale: The temperature to use for the softmax attention. | |
(default: 1/sqrt(d_keys) where d_keys is computed at | |
runtime) | |
attention_dropout: The dropout rate to apply to the attention | |
(default: 0.0) | |
""" | |
def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None): | |
super().__init__() | |
self.softmax_scale = softmax_scale | |
self.dropout_p = attention_dropout | |
def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None, | |
max_s=None, need_weights=False): | |
"""Implements the multihead softmax attention. | |
Arguments | |
--------- | |
qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None | |
if unpadded: (nnz, 3, h, d) | |
key_padding_mask: a bool tensor of shape (B, S) | |
""" | |
assert not need_weights | |
assert qkv.dtype in [torch.float16, torch.bfloat16] | |
assert qkv.is_cuda | |
if cu_seqlens is None: | |
batch_size = qkv.shape[0] | |
seqlen = qkv.shape[1] | |
if key_padding_mask is None: | |
qkv = rearrange(qkv, 'b s ... -> (b s) ...') | |
max_s = seqlen | |
cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32, | |
device=qkv.device) | |
output = flash_attn_unpadded_qkvpacked_func( | |
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0, | |
softmax_scale=self.softmax_scale, causal=causal | |
) | |
output = rearrange(output, '(b s) ... -> b s ...', b=batch_size) | |
else: | |
nheads = qkv.shape[-2] | |
x = rearrange(qkv, 'b s three h d -> b s (three h d)') | |
x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask) | |
x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads) | |
output_unpad = flash_attn_unpadded_qkvpacked_func( | |
x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0, | |
softmax_scale=self.softmax_scale, causal=causal | |
) | |
output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'), | |
indices, batch_size, seqlen), | |
'b s (h d) -> b s h d', h=nheads) | |
else: | |
assert max_s is not None | |
output = flash_attn_unpadded_qkvpacked_func( | |
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0, | |
softmax_scale=self.softmax_scale, causal=causal | |
) | |
return output, None | |
class InternRMSNorm(nn.Module): | |
def __init__(self, hidden_size, eps=1e-6): | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(hidden_size)) | |
self.variance_epsilon = eps | |
def forward(self, hidden_states): | |
input_dtype = hidden_states.dtype | |
hidden_states = hidden_states.to(torch.float32) | |
variance = hidden_states.pow(2).mean(-1, keepdim=True) | |
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | |
return self.weight * hidden_states.to(input_dtype) | |
try: | |
from apex.normalization import FusedRMSNorm | |
InternRMSNorm = FusedRMSNorm # noqa | |
logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm') | |
except ImportError: | |
# using the normal InternRMSNorm | |
pass | |
except Exception: | |
logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm') | |
pass | |
NORM2FN = { | |
'rms_norm': InternRMSNorm, | |
'layer_norm': nn.LayerNorm, | |
} | |
class InternVisionEmbeddings(nn.Module): | |
def __init__(self, config: InternVisionConfig): | |
super().__init__() | |
self.config = config | |
self.embed_dim = config.hidden_size | |
self.image_size = config.image_size | |
self.patch_size = config.patch_size | |
self.class_embedding = nn.Parameter( | |
torch.randn(1, 1, self.embed_dim), | |
) | |
self.patch_embedding = nn.Conv2d( | |
in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size | |
) | |
self.num_patches = (self.image_size // self.patch_size) ** 2 | |
self.num_positions = self.num_patches + 1 | |
self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim)) | |
def _get_pos_embed(self, pos_embed, H, W): | |
target_dtype = pos_embed.dtype | |
pos_embed = pos_embed.float().reshape( | |
1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2) | |
pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \ | |
reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype) | |
return pos_embed | |
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: | |
target_dtype = self.patch_embedding.weight.dtype | |
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height] | |
batch_size, _, height, width = patch_embeds.shape | |
patch_embeds = patch_embeds.flatten(2).transpose(1, 2) | |
class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype) | |
embeddings = torch.cat([class_embeds, patch_embeds], dim=1) | |
position_embedding = torch.cat([ | |
self.position_embedding[:, :1, :], | |
self._get_pos_embed(self.position_embedding[:, 1:, :], height, width) | |
], dim=1) | |
embeddings = embeddings + position_embedding.to(target_dtype) | |
return embeddings | |
class InternAttention(nn.Module): | |
"""Multi-headed attention from 'Attention Is All You Need' paper""" | |
def __init__(self, config: InternVisionConfig): | |
super().__init__() | |
self.config = config | |
self.embed_dim = config.hidden_size | |
self.num_heads = config.num_attention_heads | |
self.use_flash_attn = config.use_flash_attn and has_flash_attn | |
if config.use_flash_attn and not has_flash_attn: | |
print('Warning: Flash Attention is not available, use_flash_attn is set to False.') | |
self.head_dim = self.embed_dim // self.num_heads | |
if self.head_dim * self.num_heads != self.embed_dim: | |
raise ValueError( | |
f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:' | |
f' {self.num_heads}).' | |
) | |
self.scale = self.head_dim ** -0.5 | |
self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias) | |
self.attn_drop = nn.Dropout(config.attention_dropout) | |
self.proj_drop = nn.Dropout(config.dropout) | |
self.qk_normalization = config.qk_normalization | |
if self.qk_normalization: | |
self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps) | |
self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps) | |
if self.use_flash_attn: | |
self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout) | |
self.proj = nn.Linear(self.embed_dim, self.embed_dim) | |
def _naive_attn(self, x): | |
B, N, C = x.shape | |
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple) | |
if self.qk_normalization: | |
B_, H_, N_, D_ = q.shape | |
q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2) | |
k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2) | |
attn = ((q * self.scale) @ k.transpose(-2, -1)) | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
def _flash_attn(self, x, key_padding_mask=None, need_weights=False): | |
qkv = self.qkv(x) | |
qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads) | |
if self.qk_normalization: | |
q, k, v = qkv.unbind(2) | |
q = self.q_norm(q.flatten(-2, -1)).view(q.shape) | |
k = self.k_norm(k.flatten(-2, -1)).view(k.shape) | |
qkv = torch.stack([q, k, v], dim=2) | |
context, _ = self.inner_attn( | |
qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False | |
) | |
outs = self.proj(rearrange(context, 'b s h d -> b s (h d)')) | |
outs = self.proj_drop(outs) | |
return outs | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states) | |
return x | |
class InternMLP(nn.Module): | |
def __init__(self, config: InternVisionConfig): | |
super().__init__() | |
self.config = config | |
self.act = ACT2FN[config.hidden_act] | |
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) | |
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.fc1(hidden_states) | |
hidden_states = self.act(hidden_states) | |
hidden_states = self.fc2(hidden_states) | |
return hidden_states | |
class InternVisionEncoderLayer(nn.Module): | |
def __init__(self, config: InternVisionConfig, drop_path_rate: float): | |
super().__init__() | |
self.embed_dim = config.hidden_size | |
self.intermediate_size = config.intermediate_size | |
self.norm_type = config.norm_type | |
self.attn = InternAttention(config) | |
self.mlp = InternMLP(config) | |
self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps) | |
self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps) | |
self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim)) | |
self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim)) | |
self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity() | |
self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity() | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]: | |
""" | |
Args: | |
hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)` | |
""" | |
hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states)) * self.ls1) | |
hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states)) * self.ls2) | |
return hidden_states | |
class InternVisionEncoder(nn.Module): | |
""" | |
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a | |
[`InternEncoderLayer`]. | |
Args: | |
config (`InternConfig`): | |
The corresponding vision configuration for the `InternEncoder`. | |
""" | |
def __init__(self, config: InternVisionConfig): | |
super().__init__() | |
self.config = config | |
# stochastic depth decay rule | |
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)] | |
self.layers = nn.ModuleList([ | |
InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)]) | |
self.gradient_checkpointing = True | |
def forward( | |
self, | |
inputs_embeds, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutput]: | |
r""" | |
Args: | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
Embedded representation of the inputs. Should be float, not int tokens. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors | |
for more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
encoder_states = () if output_hidden_states else None | |
hidden_states = inputs_embeds | |
for idx, encoder_layer in enumerate(self.layers): | |
if output_hidden_states: | |
encoder_states = encoder_states + (hidden_states,) | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = torch.utils.checkpoint.checkpoint( | |
encoder_layer, | |
hidden_states) | |
else: | |
layer_outputs = encoder_layer( | |
hidden_states, | |
) | |
hidden_states = layer_outputs | |
if output_hidden_states: | |
encoder_states = encoder_states + (hidden_states,) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, encoder_states] if v is not None) | |
return BaseModelOutput( | |
last_hidden_state=hidden_states, hidden_states=encoder_states | |
) | |
class InternVisionModel(PreTrainedModel): | |
main_input_name = 'pixel_values' | |
config_class = InternVisionConfig | |
_no_split_modules = ['InternVisionEncoderLayer'] | |
def __init__(self, config: InternVisionConfig): | |
super().__init__(config) | |
self.config = config | |
self.embeddings = InternVisionEmbeddings(config) | |
self.encoder = InternVisionEncoder(config) | |
def resize_pos_embeddings(self, old_size, new_size, patch_size): | |
pos_emb = self.embeddings.position_embedding | |
_, num_positions, embed_dim = pos_emb.shape | |
cls_emb = pos_emb[:, :1, :] | |
pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2) | |
pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False) | |
pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1) | |
pos_emb = torch.cat([cls_emb, pos_emb], dim=1) | |
self.embeddings.position_embedding = nn.Parameter(pos_emb) | |
self.embeddings.image_size = new_size | |
logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size)) | |
def get_input_embeddings(self): | |
return self.embeddings | |
def forward( | |
self, | |
pixel_values: Optional[torch.FloatTensor] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
pixel_embeds: Optional[torch.FloatTensor] = None, | |
) -> Union[Tuple, BaseModelOutputWithPooling]: | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if pixel_values is None and pixel_embeds is None: | |
raise ValueError('You have to specify pixel_values or pixel_embeds') | |
if pixel_embeds is not None: | |
hidden_states = pixel_embeds | |
else: | |
if len(pixel_values.shape) == 4: | |
hidden_states = self.embeddings(pixel_values) | |
else: | |
raise ValueError(f'wrong pixel_values size: {pixel_values.shape}') | |
encoder_outputs = self.encoder( | |
inputs_embeds=hidden_states, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
last_hidden_state = encoder_outputs.last_hidden_state | |
pooled_output = last_hidden_state[:, 0, :] | |
if not return_dict: | |
return (last_hidden_state, pooled_output) + encoder_outputs[1:] | |
return BaseModelOutputWithPooling( | |
last_hidden_state=last_hidden_state, | |
pooler_output=pooled_output, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
) | |