import collections import copy import glob import json import os import random import sys import json5 import jsonpath_ng.ext import tqdm REMOVE_KEYS = [ "$comment", "$id", "$ref", "Description", "description", "markdownDescription", "title", ] KEYWORDS = { "integer": [ "minimum", "maximum", "exclusiveMinimum", "exclusiveMaximum", "multipleOf", ], "object": [ "minProperties", "maxProperties", ], "string": [ "minLength", "maxLength", "format", "pattern", ], "array": [ "minContains", "maxContains", "minItems", "maxItems", "uniqueItems", ], } # Numeric and integer types use the same keywords KEYWORDS["numeric"] = KEYWORDS["integer"] def find_type_paths(obj, json_type, path=jsonpath_ng.Root()): if isinstance(obj, dict): for k, v in obj.items(): # If we have the type keyword and it's value matches, we found one if k == "type" and v == json_type: yield path # Continue recursively through the object's children yield from find_type_paths( v, json_type, jsonpath_ng.Child(path, jsonpath_ng.Fields(k)) ) elif isinstance(obj, list): # Check each list element for i, v in enumerate(obj): yield from find_type_paths( v, json_type, jsonpath_ng.Child(path, jsonpath_ng.Index(i)) ) def write_obj(schema, obj, path, keyword, is_neg): # Skip any objects that are too large if len(json.dumps(obj, indent=4)) <= 1024: print( json.dumps( { "schema": schema, "obj": obj, "path": path, "keyword": keyword, "is_neg": is_neg, } ) ) def build_obj(path, value): # Build an object with the same shape it has in the entire document # For example, a path of $.foo.bar[0] would create an object # that looks like {"foo": {"bar": [value]}} if isinstance(path, jsonpath_ng.Root): return value if isinstance(path.right, (jsonpath_ng.Index, jsonpath_ng.Slice)): return build_obj(path.left, [value]) elif isinstance(path.right, jsonpath_ng.Fields): return build_obj(path.left, {path.right.fields[0]: value}) else: return value def clean_obj(obj, keep_keyword): if isinstance(obj, dict): return {k: clean_obj(v, None) for k, v in obj.items() if k == keep_keyword} elif isinstance(obj, list): return [clean_obj(v, keep_keyword) for v in obj] else: return obj def get_examples(data): neg_pos = collections.defaultdict(lambda: ([], [])) for keyword_type, keywords in KEYWORDS.items(): # Find all schema elements with the given type found_paths = find_type_paths(data, keyword_type) for found_path in found_paths: for found_obj in found_path.find(data): # For each keyword, check if it is included for keyword in keywords: # Append to the 1st or 2nd list depending on # whether the keyword is used in this object has_keyword = keyword in found_obj.value # Remove the keyword since we can't use it to predict # obj_without_keyword.pop(keyword, None) obj_without_keyword = clean_obj(found_obj.value, keyword) # Remove keys we don't expect to have at inference time for key in REMOVE_KEYS: obj_without_keyword.pop(key, None) path_obj = build_obj(found_path, obj_without_keyword) neg_pos[keyword][has_keyword].append((path_obj, str(found_path))) return neg_pos def write_examples(schema, neg_pos): for keyword, (neg, pos) in neg_pos.items(): # Only include cases where we have at least # two positive and negative examples if len(pos) > 1 and len(neg) > 1: # Write out the positive and negative examples for pos_item, path in pos: write_obj(schema, pos_item, path, keyword, False) # For negative items, generate at most the number of positives # for (neg_item, path) in random.sample(neg, min(len(pos), len(neg))): for neg_item, path in neg: write_obj(schema, neg_item, path, keyword, True) def main(): schemas = [] for line in sys.stdin: obj = json.loads(line) schemas.append(obj) for schema in tqdm.tqdm(schemas): data = json5.loads(schema["content"]) neg_pos = get_examples(data) write_examples(schema["name"], neg_pos) if __name__ == "__main__": main()