|
|
|
|
|
|
|
from diffusers import DiffusionPipeline |
|
from huggingface_hub import upload_folder |
|
from peft import LoraConfig |
|
import argparse |
|
import torch |
|
|
|
from peft.utils import get_peft_model_state_dict |
|
from diffusers.utils import convert_state_dict_to_diffusers |
|
from diffusers.loaders import StableDiffusionXLLoraLoaderMixin, LoraLoaderMixin |
|
from huggingface_hub import create_repo, upload_folder |
|
|
|
|
|
mapping = { |
|
"hf-internal-testing/tiny-sd-pipe": "hf-internal-testing/tiny-sd-lora-peft", |
|
"hf-internal-testing/tiny-sdxl-pipe": "hf-internal-testing/tiny-sdxl-lora-peft", |
|
} |
|
|
|
|
|
def load_pipeline(pipeline_id): |
|
pipe = DiffusionPipeline.from_pretrained(pipeline_id) |
|
return pipe |
|
|
|
|
|
def get_lora_config(): |
|
rank = 4 |
|
|
|
torch.manual_seed(0) |
|
text_lora_config = LoraConfig( |
|
r=rank, |
|
lora_alpha=rank, |
|
target_modules=["q_proj", "k_proj", "v_proj", "out_proj"], |
|
init_lora_weights=False, |
|
) |
|
|
|
torch.manual_seed(0) |
|
unet_lora_config = LoraConfig( |
|
r=rank, |
|
lora_alpha=rank, |
|
target_modules=["to_q", "to_k", "to_v", "to_out.0"], |
|
init_lora_weights=False, |
|
) |
|
return text_lora_config, unet_lora_config |
|
|
|
|
|
def get_dummy_inputs(): |
|
pipeline_inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"num_inference_steps": 2, |
|
"guidance_scale": 6.0, |
|
"output_type": "np", |
|
"generator": torch.manual_seed(0), |
|
} |
|
return pipeline_inputs |
|
|
|
|
|
def run_inference(args): |
|
has_two_text_encoders = False |
|
pipe = load_pipeline(pipeline_id=args.pipeline_id) |
|
text_lora_config, unet_lora_config = get_lora_config() |
|
|
|
pipe.text_encoder.add_adapter(text_lora_config) |
|
pipe.unet.add_adapter(unet_lora_config) |
|
if hasattr(pipe, "text_encoder_2"): |
|
pipe.text_encoder_2.add_adapter(text_lora_config) |
|
has_two_text_encoders = True |
|
|
|
inputs = get_dummy_inputs() |
|
outputs = pipe(**inputs).images |
|
predicted_slice = outputs[0, -3:, -3:, -1].flatten().tolist() |
|
|
|
print(", ".join([str(round(x, 4)) for x in predicted_slice])) |
|
|
|
if args.push_to_hub: |
|
text_encoder_state_dict = convert_state_dict_to_diffusers( |
|
get_peft_model_state_dict(pipe.text_encoder) |
|
) |
|
unet_state_dict = convert_state_dict_to_diffusers( |
|
get_peft_model_state_dict(pipe.unet) |
|
) |
|
if has_two_text_encoders: |
|
text_encoder_2_state_dict = convert_state_dict_to_diffusers( |
|
get_peft_model_state_dict(pipe.text_encoder_2) |
|
) |
|
|
|
serialization_cls = ( |
|
StableDiffusionXLLoraLoaderMixin |
|
if has_two_text_encoders |
|
else LoraLoaderMixin |
|
) |
|
output_dir = mapping[args.pipeline_id].split("/")[-1] |
|
|
|
if not has_two_text_encoders: |
|
serialization_cls.save_lora_weights( |
|
save_directory=output_dir, |
|
unet_lora_layers=unet_state_dict, |
|
text_encoder_lora_layers=text_encoder_state_dict, |
|
) |
|
else: |
|
serialization_cls.save_lora_weights( |
|
save_directory=output_dir, |
|
unet_lora_layers=unet_state_dict, |
|
text_encoder_lora_layers=text_encoder_state_dict, |
|
text_encoder_2_lora_layers=text_encoder_2_state_dict, |
|
) |
|
|
|
repo_id = create_repo(repo_id=mapping[args.pipeline_id], exist_ok=True).repo_id |
|
upload_folder(repo_id=repo_id, folder_path=output_dir) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
"--pipeline_id", |
|
type=str, |
|
default="hf-internal-testing/tiny-sd-pipe", |
|
choices=[ |
|
"hf-internal-testing/tiny-sd-pipe", |
|
"hf-internal-testing/tiny-sdxl-pipe", |
|
], |
|
) |
|
parser.add_argument("--push_to_hub", action="store_true") |
|
args = parser.parse_args() |
|
|
|
run_inference(args) |
|
|