Datasets:

Languages:
English
ArXiv:
License:
system HF staff commited on
Commit
93611e5
0 Parent(s):

Update files from the datasets library (from 1.2.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.2.0

Files changed (5) hide show
  1. .gitattributes +27 -0
  2. README.md +184 -0
  3. dataset_infos.json +1 -0
  4. dummy/0.0.0/dummy_data.zip +3 -0
  5. grail_qa.py +146 -0
.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,184 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - crowdsourced
4
+ language_creators:
5
+ - found
6
+ languages:
7
+ - en
8
+ licenses:
9
+ - unknown
10
+ multilinguality:
11
+ - monolingual
12
+ size_categories:
13
+ - n<1K
14
+ source_datasets:
15
+ - original
16
+ task_categories:
17
+ - question-answering
18
+ task_ids:
19
+ - question-answering-other-knowledge-base-qa
20
+ ---
21
+
22
+ # Dataset Card for Grail QA
23
+
24
+ ## Table of Contents
25
+
26
+ - [Dataset Card for Grail QA](#dataset-card-for-grail-qa)
27
+ - [Table of Contents](#table-of-contents)
28
+ - [Dataset Description](#dataset-description)
29
+ - [Dataset Summary](#dataset-summary)
30
+ - [What is GrailQA?](#what-is-grailqa)
31
+ - [Why GrailQA?](#why-grailqa)
32
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
33
+ - [Languages](#languages)
34
+ - [Dataset Structure](#dataset-structure)
35
+ - [Data Instances](#data-instances)
36
+ - [Data Fields](#data-fields)
37
+ - [Data Splits](#data-splits)
38
+ - [Dataset Creation](#dataset-creation)
39
+ - [Curation Rationale](#curation-rationale)
40
+ - [Source Data](#source-data)
41
+ - [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
42
+ - [Who are the source language producers?](#who-are-the-source-language-producers)
43
+ - [Annotations](#annotations)
44
+ - [Annotation process](#annotation-process)
45
+ - [Who are the annotators?](#who-are-the-annotators)
46
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
47
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
48
+ - [Social Impact of Dataset](#social-impact-of-dataset)
49
+ - [Discussion of Biases](#discussion-of-biases)
50
+ - [Other Known Limitations](#other-known-limitations)
51
+ - [Additional Information](#additional-information)
52
+ - [Dataset Curators](#dataset-curators)
53
+ - [Licensing Information](#licensing-information)
54
+ - [Citation Information](#citation-information)
55
+
56
+ ## Dataset Description
57
+
58
+ - **Homepage: [Grail QA](https://dki-lab.github.io/GrailQA/)**
59
+ - **Repository:**
60
+ - **Paper:[GrailQA paper (Gu et al. '20)](https://arxiv.org/abs/2011.07743)**
61
+ - **Leaderboard:**
62
+ - **Point of Contact:**
63
+
64
+ ### Dataset Summary
65
+
66
+ #### What is GrailQA?
67
+
68
+ Strongly Generalizable Question Answering (GrailQA) is a new large-scale, high-quality dataset for question answering on knowledge bases (KBQA) on Freebase with 64,331 questions annotated with both answers and corresponding logical forms in different syntax (i.e., SPARQL, S-expression, etc.). It can be used to test three levels of generalization in KBQA: i.i.d., compositional, and zero-shot.
69
+
70
+ #### Why GrailQA?
71
+
72
+ GrailQA is by far the largest crowdsourced KBQA dataset with questions of high diversity (i.e., questions in GrailQA can have up to 4 relations and optionally have a function from counting, superlatives and comparatives). It also has the highest coverage over Freebase; it widely covers 3,720 relations and 86 domains from Freebase. Last but not least, our meticulous data split allows GrailQA to test not only i.i.d. generalization, but also compositional generalization and zero-shot generalization, which are critical for practical KBQA systems.
73
+
74
+ ### Supported Tasks and Leaderboards
75
+
76
+ [More Information Needed]
77
+
78
+ ### Languages
79
+
80
+ English and Graph query
81
+
82
+ ## Dataset Structure
83
+
84
+ ### Data Instances
85
+
86
+ [More Information Needed]
87
+
88
+ ### Data Fields
89
+
90
+ - `qid` (`str`)
91
+ - `question` (`str`)
92
+ - `answer` (`List`): Defaults to `[]` in test split.
93
+ - `answer_type` (`str`)
94
+ - `answer_argument` (`str`)
95
+ - `entity_name` (`str`): Defauts to `""` if `answer_type` is not `Entity`.
96
+ - `function` (`string`): Defaults to `""` in test split.
97
+ - `num_node` (`int`): Defaults to `-1` in test split.
98
+ - `num_edge` (`int`): Defaults to `-1` in test split.
99
+ - `graph_query` (`Dict`)
100
+ - `nodes` (`List`): Defaults to `[]` in test split.
101
+ - `nid` (`int`)
102
+ - `node_type` (`str`)
103
+ - `id` (`str`)
104
+ - `class` (`str`)
105
+ - `friendly_name` (`str`)
106
+ - `question_node` (`int`)
107
+ - `function` (`str`)
108
+ - `edges` (`List`): Defaults to `[]` in test split.
109
+ - `start` (`int`)
110
+ - `end` (`int`)
111
+ - `relation` (`str`)
112
+ - `friendly_name` (`str`)
113
+ - `sqarql_query` (`str`): Defaults to `""` in test split.
114
+ - `domains` (`List[str]`): Defaults to `[]` in test split.
115
+ - `level` (`str`): Only available in validation split. Defaults to `""` in others.
116
+ - `s_expression` (`str`): Defaults to `""` in test split.
117
+
118
+ **Notes:** Only `qid` and `question` available in test split.
119
+
120
+ ### Data Splits
121
+
122
+ Dataset Split | Number of Instances in Split
123
+ --------------|--------------------------------------------
124
+ Train | 44,337
125
+ Validation | 6,763
126
+ Test | 13,231
127
+
128
+ ## Dataset Creation
129
+
130
+ ### Curation Rationale
131
+
132
+ [More Information Needed]
133
+
134
+ ### Source Data
135
+
136
+ #### Initial Data Collection and Normalization
137
+
138
+ [More Information Needed]
139
+
140
+ #### Who are the source language producers?
141
+
142
+ [More Information Needed]
143
+
144
+ ### Annotations
145
+
146
+ #### Annotation process
147
+
148
+ [More Information Needed]
149
+
150
+ #### Who are the annotators?
151
+
152
+ [More Information Needed]
153
+
154
+ ### Personal and Sensitive Information
155
+
156
+ [More Information Needed]
157
+
158
+ ## Considerations for Using the Data
159
+
160
+ ### Social Impact of Dataset
161
+
162
+ [More Information Needed]
163
+
164
+ ### Discussion of Biases
165
+
166
+ [More Information Needed]
167
+
168
+ ### Other Known Limitations
169
+
170
+ [More Information Needed]
171
+
172
+ ## Additional Information
173
+
174
+ ### Dataset Curators
175
+
176
+ [More Information Needed]
177
+
178
+ ### Licensing Information
179
+
180
+ [More Information Needed]
181
+
182
+ ### Citation Information
183
+
184
+ [More Information Needed]
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"default": {"description": "Strongly Generalizable Question Answering (GrailQA) is a new large-scale, high-quality dataset for question answering on knowledge bases (KBQA) on Freebase with 64,331 questions annotated with both answers and corresponding logical forms in different syntax (i.e., SPARQL, S-expression, etc.). It can be used to test three levels of generalization in KBQA: i.i.d., compositional, and zero-shot.\n", "citation": "@misc{gu2020iid,\n title={Beyond I.I.D.: Three Levels of Generalization for Question Answering on Knowledge Bases},\n author={Yu Gu and Sue Kase and Michelle Vanni and Brian Sadler and Percy Liang and Xifeng Yan and Yu Su},\n year={2020},\n eprint={2011.07743},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://rajpurkar.github.io/SQuAD-explorer/", "license": "", "features": {"qid": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"feature": {"answer_type": {"dtype": "string", "id": null, "_type": "Value"}, "answer_argument": {"dtype": "string", "id": null, "_type": "Value"}, "entity_name": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "function": {"dtype": "string", "id": null, "_type": "Value"}, "num_node": {"dtype": "int32", "id": null, "_type": "Value"}, "num_edge": {"dtype": "int32", "id": null, "_type": "Value"}, "graph_query": {"nodes": {"feature": {"nid": {"dtype": "int32", "id": null, "_type": "Value"}, "node_type": {"dtype": "string", "id": null, "_type": "Value"}, "id": {"dtype": "string", "id": null, "_type": "Value"}, "class": {"dtype": "string", "id": null, "_type": "Value"}, "friendly_name": {"dtype": "string", "id": null, "_type": "Value"}, "question_node": {"dtype": "int32", "id": null, "_type": "Value"}, "function": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "edges": {"feature": {"start": {"dtype": "int32", "id": null, "_type": "Value"}, "end": {"dtype": "int32", "id": null, "_type": "Value"}, "relation": {"dtype": "string", "id": null, "_type": "Value"}, "friendly_name": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "sparql_query": {"dtype": "string", "id": null, "_type": "Value"}, "domains": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "level": {"dtype": "string", "id": null, "_type": "Value"}, "s_expression": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "grail_qa", "config_name": "default", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 69433121, "num_examples": 44337, "dataset_name": "grail_qa"}, "validation": {"name": "validation", "num_bytes": 9800544, "num_examples": 6763, "dataset_name": "grail_qa"}, "test": {"name": "test", "num_bytes": 2167256, "num_examples": 13231, "dataset_name": "grail_qa"}}, "download_checksums": {"https://dl.orangedox.com/WyaCpL?dl=1": {"num_bytes": 17636773, "checksum": "7717dbae47ba4f6aa8b9df0810db8211460116647c0c06bb26a6b198d0aaa992"}}, "download_size": 17636773, "post_processing_size": null, "dataset_size": 81400921, "size_in_bytes": 99037694}}
dummy/0.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c83c9f81b07b18cbea2b1e52fc1799225410525b3bc1ca303c1652e27238339f
3
+ size 4838
grail_qa.py ADDED
@@ -0,0 +1,146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # Lint as: python3
17
+ """GrailQA: The Strongly Generalizable Question Answering Dataset"""
18
+
19
+ from __future__ import absolute_import, division, print_function
20
+
21
+ import json
22
+ import logging
23
+ import os
24
+
25
+ import datasets
26
+
27
+
28
+ _CITATION = """\
29
+ @misc{gu2020iid,
30
+ title={Beyond I.I.D.: Three Levels of Generalization for Question Answering on Knowledge Bases},
31
+ author={Yu Gu and Sue Kase and Michelle Vanni and Brian Sadler and Percy Liang and Xifeng Yan and Yu Su},
32
+ year={2020},
33
+ eprint={2011.07743},
34
+ archivePrefix={arXiv},
35
+ primaryClass={cs.CL}
36
+ }
37
+ """
38
+
39
+ _DESCRIPTION = """\
40
+ Strongly Generalizable Question Answering (GrailQA) is a new large-scale, \
41
+ high-quality dataset for question answering on knowledge bases (KBQA) on Freebase with 64,331 questions annotated \
42
+ with both answers and corresponding logical forms in different syntax (i.e., SPARQL, S-expression, etc.). \
43
+ It can be used to test three levels of generalization in KBQA: i.i.d., compositional, and zero-shot.
44
+ """
45
+
46
+ _URL = "https://dl.orangedox.com/WyaCpL?dl=1"
47
+
48
+
49
+ class GrailQA(datasets.GeneratorBasedBuilder):
50
+ """GrailQA: The Strongly Generalizable Question Answering Dataset"""
51
+
52
+ def _info(self):
53
+ return datasets.DatasetInfo(
54
+ description=_DESCRIPTION,
55
+ features=datasets.Features(
56
+ {
57
+ "qid": datasets.Value("string"),
58
+ "question": datasets.Value("string"),
59
+ "answer": datasets.features.Sequence(
60
+ {
61
+ "answer_type": datasets.Value("string"),
62
+ "answer_argument": datasets.Value("string"),
63
+ "entity_name": datasets.Value("string"),
64
+ }
65
+ ),
66
+ "function": datasets.Value("string"),
67
+ "num_node": datasets.Value("int32"),
68
+ "num_edge": datasets.Value("int32"),
69
+ "graph_query": {
70
+ "nodes": datasets.features.Sequence(
71
+ {
72
+ "nid": datasets.Value("int32"),
73
+ "node_type": datasets.Value("string"),
74
+ "id": datasets.Value("string"),
75
+ "class": datasets.Value("string"),
76
+ "friendly_name": datasets.Value("string"),
77
+ "question_node": datasets.Value("int32"),
78
+ "function": datasets.Value("string"),
79
+ }
80
+ ),
81
+ "edges": datasets.features.Sequence(
82
+ {
83
+ "start": datasets.Value("int32"),
84
+ "end": datasets.Value("int32"),
85
+ "relation": datasets.Value("string"),
86
+ "friendly_name": datasets.Value("string"),
87
+ }
88
+ ),
89
+ },
90
+ "sparql_query": datasets.Value("string"),
91
+ "domains": datasets.features.Sequence(datasets.Value("string")),
92
+ "level": datasets.Value("string"),
93
+ "s_expression": datasets.Value("string"),
94
+ }
95
+ ),
96
+ # No default supervised_keys (as we have to pass both question
97
+ # and context as input).
98
+ supervised_keys=None,
99
+ homepage="https://dki-lab.github.io/GrailQA/",
100
+ citation=_CITATION,
101
+ )
102
+
103
+ def _split_generators(self, dl_manager):
104
+ dl_path = os.path.join(dl_manager.download_and_extract(_URL), "GrailQA_v1.0")
105
+
106
+ return [
107
+ datasets.SplitGenerator(
108
+ name=datasets.Split.TRAIN,
109
+ gen_kwargs={"filepath": os.path.join(dl_path, "grailqa_v1.0_train.json")},
110
+ ),
111
+ datasets.SplitGenerator(
112
+ name=datasets.Split.VALIDATION,
113
+ gen_kwargs={"filepath": os.path.join(dl_path, "grailqa_v1.0_dev.json")},
114
+ ),
115
+ datasets.SplitGenerator(
116
+ name=datasets.Split.TEST,
117
+ gen_kwargs={"filepath": os.path.join(dl_path, "grailqa_v1.0_test_public.json")},
118
+ ),
119
+ ]
120
+
121
+ def _generate_examples(self, filepath):
122
+ """This function returns the examples in the raw (text) form."""
123
+ logging.info("generating examples from = %s", filepath)
124
+ with open(filepath, encoding="utf-8") as f:
125
+ samples = json.load(f)
126
+ for sample in samples:
127
+ features = {
128
+ "qid": str(sample["qid"]),
129
+ "question": sample["question"],
130
+ "function": sample.get("function", ""),
131
+ "num_node": sample.get("num_node", -1),
132
+ "num_edge": sample.get("num_edge", -1),
133
+ "graph_query": sample.get("graph_query", {"nodes": [], "edges": []}),
134
+ "sparql_query": sample.get("sparql_query", ""),
135
+ "domains": sample.get("domains", []),
136
+ "level": sample.get("level", ""),
137
+ "s_expression": sample.get("s_expression", ""),
138
+ }
139
+
140
+ answers = sample.get("answer", [])
141
+ for answer in answers:
142
+ if "entity_name" not in answer:
143
+ answer["entity_name"] = ""
144
+
145
+ features["answer"] = answers
146
+ yield sample["qid"], features