|
import logging |
|
import pandas as pd |
|
from pathlib import Path |
|
from utils import DataLoader, SCAPlotter, TextProcessor, TopicModeling, DATA_ANALYSIS_PATH |
|
|
|
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') |
|
|
|
logging.info('Initialising the data loader, plotter, text processor and topic modeler') |
|
dl = DataLoader() |
|
plotter = SCAPlotter() |
|
text_processor = TextProcessor(dl) |
|
topic_modeler = TopicModeling() |
|
|
|
|
|
logging.info('Plotting the case distribution on all data') |
|
plotter.plot_case_distribution(dl.load_data('all')) |
|
|
|
|
|
logging.info('Loading the data with summaries only for further analysis.') |
|
df = dl.load_data('with_summaries') |
|
|
|
|
|
logging.info('Preparing the text: dropping duplicates, removing null values, etc.') |
|
df = text_processor.prepare_text(df, target_columns=['input', 'output']) |
|
|
|
|
|
logging.info('Getting all stats for the text and summary') |
|
stats_file = DATA_ANALYSIS_PATH / 'data_with_stats.csv' |
|
if stats_file.exists(): |
|
stats = pd.read_csv(stats_file) |
|
df = pd.concat([df, stats], axis=1) |
|
|
|
stats = df.copy() |
|
df = text_processor.get_all_stats(df) |
|
|
|
if df.equals(stats): |
|
logging.info('Data and stats are the same. All stats are calculated up to date.') |
|
else: |
|
stats = df.drop(columns=['text', 'summary']) |
|
stats.to_csv(stats_file, index=False) |
|
logging.info(f'Data with stats saved to {stats_file}') |
|
del stats |
|
|
|
logging.info('Plotting the summary vs judgment length') |
|
plotter.plot_summary_vs_judgment_length(df) |
|
|
|
logging.info('Plotting the summary and judgment stats') |
|
plotter.plot_length_distribution(df, columns=['text_sent_count', 'text_word_count', 'text_char_count'], file_name='judgment_stats') |
|
plotter.plot_length_distribution(df, columns=['text_sent_density','text_word_density'], file_name='judgment_density_stats') |
|
|
|
plotter.plot_length_distribution(df, columns=['sum_sent_count', 'sum_word_count', 'sum_char_count'], file_name='summary_stats') |
|
plotter.plot_length_distribution(df, columns=['sum_sent_density','sum_word_density'], file_name='summary_density_stats') |
|
|
|
|
|
logging.info('Getting the POS tags for the text and summary') |
|
columns = ['ADJ','ADP','ADV','CONJ','DET','NOUN','NUM','PRT','PRON','VERB','.','X'] |
|
|
|
|
|
logging.info('Plotting the POS tags for the text and summary') |
|
postags = ['ADJ','ADP','ADV','CONJ','DET','NOUN'] |
|
|
|
df_text = df[[f'text_{p}' for p in postags]] |
|
df_text.columns = [p for p in postags] |
|
plotter.plot_length_distribution(df_text, columns=postags, plot_boxplots=False, file_name='judgment_pos_tags') |
|
|
|
df_summary = df[[f'sum_{p}' for p in postags]] |
|
df_summary.columns = [p for p in postags] |
|
plotter.plot_length_distribution(df_summary, columns=postags, plot_boxplots=False, file_name='summary_pos_tags') |
|
|
|
del df_text, df_summary |
|
|
|
|
|
logging.info('Printing some unknown words') |
|
print('Unknown words: ', df['text_unknown_words'].values[5]) |
|
|
|
|
|
logging.info('Plotting the unknown words stats') |
|
unknown_words_columns = ['text_unknown_count', 'sum_unknown_count'] |
|
plotter.plot_length_distribution(df, columns=unknown_words_columns, file_name='unknown_words_stats') |
|
|
|
|
|
logging.info('Plotting the punctuation and stopwords stats') |
|
target_columns = ['text_stopw_count', 'sum_stopw_count', 'text_punc_count','sum_punc_count'] |
|
plotter.plot_length_distribution(df, columns=target_columns, file_name='punc_stopw_and_punc_stats') |
|
|
|
|
|
logging.info('Cleaning the text and summary for topic modeling') |
|
cleaned_text, cleaned_summary = text_processor.remove_stopwords(df, target_columns=['text', 'summary']) |
|
|
|
plotter.plot_wordcloud(cleaned_text, file_name='judgment_wordcloud') |
|
plotter.plot_wordcloud(cleaned_summary, file_name='summary_wordcloud') |
|
|
|
|
|
logging.info('Visualising the 20 most common words in the judgment') |
|
tf, tf_feature_names = text_processor.get_vectorizer_features(cleaned_text) |
|
plotter.plot_most_common_words(tf, tf_feature_names, file_name='judgment_most_common_words') |
|
|
|
|
|
|
|
|
|
|
|
|
|
logging.info('Visualising the 20 most common words in the summary') |
|
tf, tf_feature_names = text_processor.get_vectorizer_features(cleaned_summary) |
|
plotter.plot_most_common_words(tf, tf_feature_names, file_name='summary_most_common_words') |
|
|
|
|
|
|
|
|
|
|
|
|
|
logging.info('Performing BERTopic analysis on the judgment and summary') |
|
topic_modeler.perform_bertopic_analysis(cleaned_text=cleaned_text, cleaned_summary=cleaned_summary, output_path='bertopic/') |
|
judgment_model, _ = topic_modeler.perform_bertopic_analysis(cleaned_text=cleaned_text, save_topic_info=False, output_path='bertopic/judgments/') |
|
summary_model, _ = topic_modeler.perform_bertopic_analysis(cleaned_summary=cleaned_summary, save_topic_info=False, output_path='bertopic/summaries/') |
|
|
|
|
|
logging.info('Calculating the topic overlap between the judgment and summary') |
|
overlap_matrix = topic_modeler.calculate_overlap_matrix(judgment_model, summary_model) |
|
|
|
|
|
logging.info('Plotting the overlap matrix') |
|
plotter.plot_overlap_heatmap(overlap_matrix, file_name='overlap_matrix') |