import logging import pandas as pd from pathlib import Path from utils import DataLoader, SCAPlotter, TextProcessor, TopicModeling, DATA_ANALYSIS_PATH logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') logging.info('Initialising the data loader, plotter, text processor and topic modeler') dl = DataLoader() plotter = SCAPlotter() text_processor = TextProcessor(dl) topic_modeler = TopicModeling() # plot case distribution logging.info('Plotting the case distribution on all data') plotter.plot_case_distribution(dl.load_data('all')) # get the data with summaries logging.info('Loading the data with summaries only for further analysis.') df = dl.load_data('with_summaries') # prepare the text logging.info('Preparing the text: dropping duplicates, removing null values, etc.') df = text_processor.prepare_text(df, target_columns=['input', 'output']) # get all stats logging.info('Getting all stats for the text and summary') stats_file = DATA_ANALYSIS_PATH / 'data_with_stats.csv' if stats_file.exists(): stats = pd.read_csv(stats_file) df = pd.concat([df, stats], axis=1) stats = df.copy() df = text_processor.get_all_stats(df) if df.equals(stats): logging.info('Data and stats are the same. All stats are calculated up to date.') else: stats = df.drop(columns=['text', 'summary']) stats.to_csv(stats_file, index=False) logging.info(f'Data with stats saved to {stats_file}') del stats logging.info('Plotting the summary vs judgment length') plotter.plot_summary_vs_judgment_length(df) logging.info('Plotting the summary and judgment stats') plotter.plot_length_distribution(df, columns=['text_sent_count', 'text_word_count', 'text_char_count'], file_name='judgment_stats') plotter.plot_length_distribution(df, columns=['text_sent_density','text_word_density'], file_name='judgment_density_stats') plotter.plot_length_distribution(df, columns=['sum_sent_count', 'sum_word_count', 'sum_char_count'], file_name='summary_stats') plotter.plot_length_distribution(df, columns=['sum_sent_density','sum_word_density'], file_name='summary_density_stats') # get the pos tags logging.info('Getting the POS tags for the text and summary') columns = ['ADJ','ADP','ADV','CONJ','DET','NOUN','NUM','PRT','PRON','VERB','.','X'] # plot the pos tags logging.info('Plotting the POS tags for the text and summary') postags = ['ADJ','ADP','ADV','CONJ','DET','NOUN'] df_text = df[[f'text_{p}' for p in postags]] df_text.columns = [p for p in postags] plotter.plot_length_distribution(df_text, columns=postags, plot_boxplots=False, file_name='judgment_pos_tags') df_summary = df[[f'sum_{p}' for p in postags]] df_summary.columns = [p for p in postags] plotter.plot_length_distribution(df_summary, columns=postags, plot_boxplots=False, file_name='summary_pos_tags') del df_text, df_summary # print some unknown words logging.info('Printing some unknown words') print('Unknown words: ', df['text_unknown_words'].values[5]) # plot unknown words stats in text and summary logging.info('Plotting the unknown words stats') unknown_words_columns = ['text_unknown_count', 'sum_unknown_count'] plotter.plot_length_distribution(df, columns=unknown_words_columns, file_name='unknown_words_stats') # plot puncs and stopwords logging.info('Plotting the punctuation and stopwords stats') target_columns = ['text_stopw_count', 'sum_stopw_count', 'text_punc_count','sum_punc_count'] plotter.plot_length_distribution(df, columns=target_columns, file_name='punc_stopw_and_punc_stats') # clean the data for topic modeling logging.info('Cleaning the text and summary for topic modeling') cleaned_text, cleaned_summary = text_processor.remove_stopwords(df, target_columns=['text', 'summary']) plotter.plot_wordcloud(cleaned_text, file_name='judgment_wordcloud') plotter.plot_wordcloud(cleaned_summary, file_name='summary_wordcloud') # Visualise the 20 most common words in the judgment logging.info('Visualising the 20 most common words in the judgment') tf, tf_feature_names = text_processor.get_vectorizer_features(cleaned_text) plotter.plot_most_common_words(tf, tf_feature_names, file_name='judgment_most_common_words') # # perform lda analysis, this takes a lot of time # logging.info('Performing LDA analysis on the judgment') # topic_modeler.perform_lda_analysis(cleaned_text, tf_vectorizer, file_name='judgment_lda_analysis') # Visualise the 20 most common words in the summary logging.info('Visualising the 20 most common words in the summary') tf, tf_feature_names = text_processor.get_vectorizer_features(cleaned_summary) plotter.plot_most_common_words(tf, tf_feature_names, file_name='summary_most_common_words') # # perform lda analysis, this takes a lot of time # logging.info('Performing LDA analysis on the summary') # topic_modeler.perform_lda_analysis(cleaned_summary, tf_vectorizer, file_name='summary_lda_analysis') # perform bertopic analysis logging.info('Performing BERTopic analysis on the judgment and summary') topic_modeler.perform_bertopic_analysis(cleaned_text=cleaned_text, cleaned_summary=cleaned_summary, output_path='bertopic/') judgment_model, _ = topic_modeler.perform_bertopic_analysis(cleaned_text=cleaned_text, save_topic_info=False, output_path='bertopic/judgments/') summary_model, _ = topic_modeler.perform_bertopic_analysis(cleaned_summary=cleaned_summary, save_topic_info=False, output_path='bertopic/summaries/') # calculate topic overlap logging.info('Calculating the topic overlap between the judgment and summary') overlap_matrix = topic_modeler.calculate_overlap_matrix(judgment_model, summary_model) # plot the overlap matrix logging.info('Plotting the overlap matrix') plotter.plot_overlap_heatmap(overlap_matrix, file_name='overlap_matrix')