Datasets:
File size: 4,795 Bytes
965d7b3 0b59da1 965d7b3 0b59da1 965d7b3 0b59da1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
---
dataset_info:
features:
- name: address_detail_pid
dtype: string
- name: street_locality_pid
dtype: string
- name: locality_pid
dtype: string
- name: building_name
dtype: string
- name: lot_number_prefix
dtype: string
- name: lot_number
dtype: string
- name: lot_number_suffix
dtype: string
- name: flat_type
dtype: string
- name: flat_number_prefix
dtype: string
- name: flat_number
dtype: float64
- name: flat_number_suffix
dtype: string
- name: level_type
dtype: string
- name: level_number_prefix
dtype: string
- name: level_number
dtype: float64
- name: level_number_suffix
dtype: string
- name: number_first_prefix
dtype: string
- name: number_first
dtype: float64
- name: number_first_suffix
dtype: string
- name: number_last_prefix
dtype: string
- name: number_last
dtype: float64
- name: number_last_suffix
dtype: string
- name: street_name
dtype: string
- name: street_class_code
dtype: string
- name: street_class_type
dtype: string
- name: street_type_code
dtype: string
- name: street_suffix_code
dtype: string
- name: street_suffix_type
dtype: string
- name: locality_name
dtype: string
- name: state_abbreviation
dtype: string
- name: postcode
dtype: int64
- name: latitude
dtype: float64
- name: longitude
dtype: float64
- name: geocode_type
dtype: string
- name: confidence
dtype: int64
- name: alias_principal
dtype: string
- name: primary_secondary
dtype: string
- name: legal_parcel_id
dtype: string
- name: date_created
dtype: string
splits:
- name: train
num_bytes: 4657596871
num_examples: 15357486
download_size: 1584880457
dataset_size: 4657596871
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
license: cc-by-4.0
language:
- en
task_categories:
- text-classification
tags:
- geospatial
- address
- location
- australia
- gnaf
- geoscape
pretty_name: gnaf
size_categories:
- 10M<n<100M
---
# Geoscape Geocoded National Address File (GNAF) 2022
## Dataset overview
Geoscape GNAF is the geocoded address database for Australian businesses and governments. It’s the trusted source of geocoded address data for Australia with over 50 million contributed addresses distilled into 15.4 million G-NAF addresses. It is built and maintained by Geoscape Australia using independently examined and validated government data.
It contains the state, suburb, street, number and coordinate reference or geocode for street addresses in Australia.
Original data source: https://data.gov.au/data/dataset/geocoded-national-address-file-g-naf
G-NAF Product Description: https://docs.geoscape.com.au/projects/gnaf_desc/en/stable/index.html
Transformed into csv using PostgreSQL scripts from: https://github.com/dylanhogg/address-net/tree/master/gnaf_loading
## Columns extracted into this dataset
This dataset contains 15.3 million rows with text and numeric column values extracted from the source GNAF files using PostgreSQL scripts from: https://github.com/dylanhogg/address-net/tree/master/gnaf_loading
## Columns
```
building_name
flat_number
flat_number_prefix
flat_number_suffix
flat_type
latitude
level_number
level_number_prefix
level_number_suffix
level_type
locality_name
longitude
lot_number
lot_number_prefix
lot_number_suffix
number_first
number_first_prefix
number_first_suffix
number_last
number_last_prefix
number_last_suffix
postcode
state_abbreviation
street_name
street_suffix_code
street_type_code
```
## Provenance
### Data source
G-NAF is a complex and large dataset (approximately 5GB unpacked), consisting of multiple tables that will need to be joined prior to use.
This dataset was created from source data from Aug 2022.
https://data.gov.au/data/dataset/geocoded-national-address-file-g-naf
### Collection methodology
Transformed into csv using PostgreSQL scripts from:
https://github.com/dylanhogg/address-net/tree/master/gnaf_loading
## Restrictions
The EULA terms are based on the Creative Commons Attribution 4.0 International license (CC BY 4.0). However, an important restriction relating to the use of the open G-NAF for the sending of mail has been added. The open G-NAF data must not be used for the generation of an address or a compilation of addresses for the sending of mail unless the user has verified that each address to be used for the sending of mail is capable of receiving mail by reference to a secondary source of information.
## Attribution
Incorporates or developed using G-NAF © Geoscape Australia licensed by the Commonwealth of Australia under the Open Geo-coded National Address File (G-NAF) End User Licence Agreement. |