|
from tokenizers.decoders import WordPiece as WordPieceDecoder |
|
from tokenizers.pre_tokenizers import BertPreTokenizer |
|
from tokenizers.normalizers import BertNormalizer |
|
from tokenizers.trainers import WordPieceTrainer |
|
from tokenizers.models import WordPiece as WordPieceModel |
|
from tokenizers import Tokenizer |
|
import itertools |
|
|
|
from datasets import load_dataset |
|
from datasets.utils.logging import set_verbosity_error |
|
set_verbosity_error() |
|
|
|
from utils import SampleBatch |
|
|
|
def unpack_samples( |
|
batch: SampleBatch |
|
): |
|
iterator = ( |
|
sample.values() |
|
for sample in batch['translation'] |
|
) |
|
|
|
return list( |
|
itertools.chain |
|
.from_iterable(iterator) |
|
) |
|
|
|
|
|
def build_tokenizer( |
|
clean_text: bool = True, |
|
strip_accents: bool = True, |
|
lowercase: bool = True |
|
) -> Tokenizer: |
|
tokenizer = Tokenizer( |
|
model=WordPieceModel( |
|
unk_token='<UNK>' |
|
) |
|
) |
|
tokenizer.normalizer = BertNormalizer( |
|
clean_text=clean_text, |
|
handle_chinese_chars=True, |
|
strip_accents=strip_accents, |
|
lowercase=lowercase |
|
) |
|
tokenizer.pre_tokenizer = BertPreTokenizer() |
|
tokenizer.decoder = WordPieceDecoder() |
|
|
|
return tokenizer |
|
|
|
|
|
train_dset = load_dataset( |
|
path='nordmann2023', |
|
name='balanced', |
|
split='train' |
|
) |
|
|
|
tokenizer = build_tokenizer( |
|
clean_text=True, |
|
strip_accents=False, |
|
lowercase=False |
|
) |
|
tokenizer.train_from_iterator( |
|
iterator=( |
|
unpack_samples(batch) |
|
for batch in train_dset.iter( |
|
batch_size=10000 |
|
) |
|
), |
|
trainer=WordPieceTrainer( |
|
vocab_size=40000, |
|
special_tokens=[ |
|
'<UNK>', '<CLS>', '<SEP>', '<PAD>', '<MASK>' |
|
] |
|
), |
|
length=train_dset.num_rows * 2 |
|
) |
|
tokenizer.save( |
|
path='tokenizer.json' |
|
) |
|
|