File size: 14,852 Bytes
da17ede
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
extends Node

# --fixed-fps 2000 --disable-render-loop

enum ControlModes { HUMAN, TRAINING, ONNX_INFERENCE }
@export var control_mode: ControlModes = ControlModes.TRAINING
@export_range(1, 10, 1, "or_greater") var action_repeat := 8
@export_range(0, 10, 0.1, "or_greater") var speed_up := 1.0
@export var onnx_model_path := ""

# Onnx model stored for each requested path
var onnx_models: Dictionary

@onready var start_time = Time.get_ticks_msec()

const MAJOR_VERSION := "0"
const MINOR_VERSION := "7" 
const DEFAULT_PORT := "11008"
const DEFAULT_SEED := "1"
var stream: StreamPeerTCP = null
var connected = false
var message_center
var should_connect = true

var all_agents: Array
var agents_training: Array
var agents_inference: Array
var agents_heuristic: Array

## For recording expert demos
var agent_demo_record: Node
## Stores recorded trajectories
var demo_trajectories: Array
## A trajectory includes obs: Array, acts: Array, terminal (set in Python env instead)
var current_demo_trajectory: Array

var need_to_send_obs = false
var args = null
var initialized = false
var just_reset = false
var onnx_model = null
var n_action_steps = 0

var _action_space: Dictionary
var _action_space_inference: Array[Dictionary] = []
var _obs_space: Dictionary


# Called when the node enters the scene tree for the first time.
func _ready():
	await get_tree().root.ready
	get_tree().set_pause(true)
	_initialize()
	await get_tree().create_timer(1.0).timeout
	get_tree().set_pause(false)


func _initialize():
	_get_agents()
	args = _get_args()
	Engine.physics_ticks_per_second = _get_speedup() * 60  # Replace with function body.
	Engine.time_scale = _get_speedup() * 1.0
	prints(
		"physics ticks",
		Engine.physics_ticks_per_second,
		Engine.time_scale,
		_get_speedup(),
		speed_up
	)

	_set_heuristic("human", all_agents)

	_initialize_training_agents()
	_initialize_inference_agents()
	_initialize_demo_recording()

	_set_seed()
	_set_action_repeat()
	initialized = true


func _initialize_training_agents():
	if agents_training.size() > 0:
		_obs_space = agents_training[0].get_obs_space()
		_action_space = agents_training[0].get_action_space()
		connected = connect_to_server()
		if connected:
			_set_heuristic("model", agents_training)
			_handshake()
			_send_env_info()
		else:
			push_warning(
				"Couldn't connect to Python server, using human controls instead. ",
				"Did you start the training server using e.g. `gdrl` from the console?"
			)


func _initialize_inference_agents():
	if agents_inference.size() > 0:
		if control_mode == ControlModes.ONNX_INFERENCE:
			assert(
				FileAccess.file_exists(onnx_model_path),
				"Onnx Model Path set on Sync node does not exist: %s" % onnx_model_path
			)
			onnx_models[onnx_model_path] = ONNXModel.new(onnx_model_path, 1)

		for agent in agents_inference:
			_action_space_inference.append(agent.get_action_space())

			var agent_onnx_model: ONNXModel
			if agent.onnx_model_path.is_empty():
				assert(
					onnx_models.has(onnx_model_path),
					(
						"Node %s has no onnx model path set " % agent.get_path()
						+ "and sync node's control mode is not set to OnnxInference. "
						+ "Either add the path to the AIController, "
						+ "or if you want to use the path set on sync node instead, "
						+ "set control mode to OnnxInference."
					)
				)
				prints(
					"Info: AIController %s" % agent.get_path(),
					"has no onnx model path set.",
					"Using path set on the sync node instead."
				)
				agent_onnx_model = onnx_models[onnx_model_path]
			else:
				if not onnx_models.has(agent.onnx_model_path):
					assert(
						FileAccess.file_exists(agent.onnx_model_path),
						(
							"Onnx Model Path set on %s node does not exist: %s"
							% [agent.get_path(), agent.onnx_model_path]
						)
					)
					onnx_models[agent.onnx_model_path] = ONNXModel.new(agent.onnx_model_path, 1)
				agent_onnx_model = onnx_models[agent.onnx_model_path]

			agent.onnx_model = agent_onnx_model
		_set_heuristic("model", agents_inference)


func _initialize_demo_recording():
	if agent_demo_record:
		InputMap.add_action("RemoveLastDemoEpisode")
		InputMap.action_add_event(
			"RemoveLastDemoEpisode", agent_demo_record.remove_last_episode_key
		)
		current_demo_trajectory.resize(2)
		current_demo_trajectory[0] = []
		current_demo_trajectory[1] = []
		agent_demo_record.heuristic = "demo_record"


func _physics_process(_delta):
	# two modes, human control, agent control
	# pause tree, send obs, get actions, set actions, unpause tree

	_demo_record_process()

	if n_action_steps % action_repeat != 0:
		n_action_steps += 1
		return

	n_action_steps += 1

	_training_process()
	_inference_process()
	_heuristic_process()


func _training_process():
	if connected:
		get_tree().set_pause(true)

		if just_reset:
			just_reset = false
			var obs = _get_obs_from_agents(agents_training)

			var reply = {"type": "reset", "obs": obs}
			_send_dict_as_json_message(reply)
			# this should go straight to getting the action and setting it checked the agent, no need to perform one phyics tick
			get_tree().set_pause(false)
			return

		if need_to_send_obs:
			need_to_send_obs = false
			var reward = _get_reward_from_agents()
			var done = _get_done_from_agents()
			#_reset_agents_if_done() # this ensures the new observation is from the next env instance : NEEDS REFACTOR

			var obs = _get_obs_from_agents(agents_training)

			var reply = {"type": "step", "obs": obs, "reward": reward, "done": done}
			_send_dict_as_json_message(reply)

		var handled = handle_message()


func _inference_process():
	if agents_inference.size() > 0:
		var obs: Array = _get_obs_from_agents(agents_inference)
		var actions = []

		for agent_id in range(0, agents_inference.size()):
			var action = agents_inference[agent_id].onnx_model.run_inference(
				obs[agent_id]["obs"], 1.0
			)
			action["output"] = clamp_array(action["output"], -1.0, 1.0)
			var action_dict = _extract_action_dict(
				action["output"], _action_space_inference[agent_id]
			)
			actions.append(action_dict)

		_set_agent_actions(actions, agents_inference)
		_reset_agents_if_done(agents_inference)
		get_tree().set_pause(false)


func _demo_record_process():
	if not agent_demo_record:
		return

	if Input.is_action_just_pressed("RemoveLastDemoEpisode"):
		print("[Sync script][Demo recorder] Removing last recorded episode.")
		demo_trajectories.remove_at(demo_trajectories.size() - 1)
		print("Remaining episode count: %d" % demo_trajectories.size())

	if n_action_steps % agent_demo_record.action_repeat != 0:
		return

	var obs_dict: Dictionary = agent_demo_record.get_obs()

	# Get the current obs from the agent
	assert(
		obs_dict.has("obs"),
		"Demo recorder needs an 'obs' key in get_obs() returned dictionary to record obs from."
	)
	current_demo_trajectory[0].append(obs_dict.obs)

	# Get the action applied for the current obs from the agent
	agent_demo_record.set_action()
	var acts = agent_demo_record.get_action()

	var terminal = agent_demo_record.get_done()
	# Record actions only for non-terminal states
	if terminal:
		agent_demo_record.set_done_false()
	else:
		current_demo_trajectory[1].append(acts)

	if terminal:
		#current_demo_trajectory[2].append(true)
		demo_trajectories.append(current_demo_trajectory.duplicate(true))
		print("[Sync script][Demo recorder] Recorded episode count: %d" % demo_trajectories.size())
		current_demo_trajectory[0].clear()
		current_demo_trajectory[1].clear()


func _heuristic_process():
	for agent in agents_heuristic:
		_reset_agents_if_done(agents_heuristic)


func _extract_action_dict(action_array: Array, action_space: Dictionary):
	var index = 0
	var result = {}
	for key in action_space.keys():
		var size = action_space[key]["size"]
		if action_space[key]["action_type"] == "discrete":
			result[key] = round(action_array[index])
		else:
			result[key] = action_array.slice(index, index + size)
		index += size

	return result


## For AIControllers that inherit mode from sync, sets the correct mode.
func _set_agent_mode(agent: Node):
	var agent_inherits_mode: bool = agent.control_mode == agent.ControlModes.INHERIT_FROM_SYNC

	if agent_inherits_mode:
		match control_mode:
			ControlModes.HUMAN:
				agent.control_mode = agent.ControlModes.HUMAN
			ControlModes.TRAINING:
				agent.control_mode = agent.ControlModes.TRAINING
			ControlModes.ONNX_INFERENCE:
				agent.control_mode = agent.ControlModes.ONNX_INFERENCE


func _get_agents():
	all_agents = get_tree().get_nodes_in_group("AGENT")
	for agent in all_agents:
		_set_agent_mode(agent)

		if agent.control_mode == agent.ControlModes.TRAINING:
			agents_training.append(agent)
		elif agent.control_mode == agent.ControlModes.ONNX_INFERENCE:
			agents_inference.append(agent)
		elif agent.control_mode == agent.ControlModes.HUMAN:
			agents_heuristic.append(agent)
		elif agent.control_mode == agent.ControlModes.RECORD_EXPERT_DEMOS:
			assert(
				not agent_demo_record,
				"Currently only a single AIController can be used for recording expert demos."
			)
			agent_demo_record = agent


func _set_heuristic(heuristic, agents: Array):
	for agent in agents:
		agent.set_heuristic(heuristic)


func _handshake():
	print("performing handshake")

	var json_dict = _get_dict_json_message()
	assert(json_dict["type"] == "handshake")
	var major_version = json_dict["major_version"]
	var minor_version = json_dict["minor_version"]
	if major_version != MAJOR_VERSION:
		print("WARNING: major verison mismatch ", major_version, " ", MAJOR_VERSION)
	if minor_version != MINOR_VERSION:
		print("WARNING: minor verison mismatch ", minor_version, " ", MINOR_VERSION)

	print("handshake complete")


func _get_dict_json_message():
	# returns a dictionary from of the most recent message
	# this is not waiting
	while stream.get_available_bytes() == 0:
		stream.poll()
		if stream.get_status() != 2:
			print("server disconnected status, closing")
			get_tree().quit()
			return null

		OS.delay_usec(10)

	var message = stream.get_string()
	var json_data = JSON.parse_string(message)

	return json_data


func _send_dict_as_json_message(dict):
	stream.put_string(JSON.stringify(dict, "", false))


func _send_env_info():
	var json_dict = _get_dict_json_message()
	assert(json_dict["type"] == "env_info")

	var message = {
		"type": "env_info",
		"observation_space": _obs_space,
		"action_space": _action_space,
		"n_agents": len(agents_training)
	}
	_send_dict_as_json_message(message)


func connect_to_server():
	print("Waiting for one second to allow server to start")
	OS.delay_msec(1000)
	print("trying to connect to server")
	stream = StreamPeerTCP.new()

	# "localhost" was not working on windows VM, had to use the IP
	var ip = "127.0.0.1"
	var port = _get_port()
	var connect = stream.connect_to_host(ip, port)
	stream.set_no_delay(true)  # TODO check if this improves performance or not
	stream.poll()
	# Fetch the status until it is either connected (2) or failed to connect (3)
	while stream.get_status() < 2:
		stream.poll()
	return stream.get_status() == 2


func _get_args():
	print("getting command line arguments")
	var arguments = {}
	for argument in OS.get_cmdline_args():
		print(argument)
		if argument.find("=") > -1:
			var key_value = argument.split("=")
			arguments[key_value[0].lstrip("--")] = key_value[1]
		else:
			# Options without an argument will be present in the dictionary,
			# with the value set to an empty string.
			arguments[argument.lstrip("--")] = ""

	return arguments


func _get_speedup():
	print(args)
	return args.get("speedup", str(speed_up)).to_float()


func _get_port():
	return args.get("port", DEFAULT_PORT).to_int()


func _set_seed():
	var _seed = args.get("env_seed", DEFAULT_SEED).to_int()
	seed(_seed)


func _set_action_repeat():
	action_repeat = args.get("action_repeat", str(action_repeat)).to_int()


func disconnect_from_server():
	stream.disconnect_from_host()


func handle_message() -> bool:
	# get json message: reset, step, close
	var message = _get_dict_json_message()
	if message["type"] == "close":
		print("received close message, closing game")
		get_tree().quit()
		get_tree().set_pause(false)
		return true

	if message["type"] == "reset":
		print("resetting all agents")
		_reset_agents()
		just_reset = true
		get_tree().set_pause(false)
		#print("resetting forcing draw")
#        RenderingServer.force_draw()
#        var obs = _get_obs_from_agents()
#        print("obs ", obs)
#        var reply = {
#            "type": "reset",
#            "obs": obs
#        }
#        _send_dict_as_json_message(reply)
		return true

	if message["type"] == "call":
		var method = message["method"]
		var returns = _call_method_on_agents(method)
		var reply = {"type": "call", "returns": returns}
		print("calling method from Python")
		_send_dict_as_json_message(reply)
		return handle_message()

	if message["type"] == "action":
		var action = message["action"]
		_set_agent_actions(action, agents_training)
		need_to_send_obs = true
		get_tree().set_pause(false)
		return true

	print("message was not handled")
	return false


func _call_method_on_agents(method):
	var returns = []
	for agent in all_agents:
		returns.append(agent.call(method))

	return returns


func _reset_agents_if_done(agents = all_agents):
	for agent in agents:
		if agent.get_done():
			agent.set_done_false()


func _reset_agents(agents = all_agents):
	for agent in agents:
		agent.needs_reset = true
		#agent.reset()


func _get_obs_from_agents(agents: Array = all_agents):
	var obs = []
	for agent in agents:
		obs.append(agent.get_obs())
	return obs


func _get_reward_from_agents(agents: Array = agents_training):
	var rewards = []
	for agent in agents:
		rewards.append(agent.get_reward())
		agent.zero_reward()
	return rewards


func _get_done_from_agents(agents: Array = agents_training):
	var dones = []
	for agent in agents:
		var done = agent.get_done()
		if done:
			agent.set_done_false()
		dones.append(done)
	return dones


func _set_agent_actions(actions, agents: Array = all_agents):
	for i in range(len(actions)):
		agents[i].set_action(actions[i])


func clamp_array(arr: Array, min: float, max: float):
	var output: Array = []
	for a in arr:
		output.append(clamp(a, min, max))
	return output


## Save recorded export demos on window exit (Close window instead of "Stop" button in Godot Editor)
func _notification(what):
	if not agent_demo_record:
		return

	if what == NOTIFICATION_PREDELETE:
		var json_string = JSON.stringify(demo_trajectories, "", false)
		var file = FileAccess.open(agent_demo_record.expert_demo_save_path, FileAccess.WRITE)

		if not file:
			var error: Error = FileAccess.get_open_error()
			assert(not error, "There was an error opening the file: %d" % error)

		file.store_line(json_string)
		var error = file.get_error()
		assert(not error, "There was an error after trying to write to the file: %d" % error)