idx
int32
0
7k
sentence
stringlengths
1
1.13k
label
class label
2 classes
0
este lixo ...
1offensive
4
Comunista safada...
1offensive
8
Comunista lixo!
1offensive
12
Esquerdista.
1offensive
16
Oportunista essa corrupta.Agora todos os Comunistas querem se fazer de vítimas.
1offensive
20
Plano da esquerda foi é e será sempre críticar não nunca teve um plano de governo único plano era como roubar .
1offensive
24
O problema dela é que a tetinha secou
1offensive
28
É uma cara de pau mesmo... 😡
1offensive
32
Joga uma carteira de trabalho que correm todos, na verdade não gostam de trabalhar só sabem roubar o brasil
1offensive
36
BACHELETA DA TRETA E MUTRETA CHILENA..CANALHA SAPATONA.. BICHELETA..
1offensive
40
Noventa comunista
1offensive
44
Óleo de peroba pra lustrar a cara de pau!
1offensive
48
Aí a ganância falou mais alto... corrupta!
1offensive
52
Devolve o dinheiro roubado via OAS...
1offensive
56
Isso não passa de uma mera oportunista! #michelebachelet #oas não passa de uma múmia esquerdista ainda em atividade minha querida @carla.zambelli . Obrigado pelas informações de sempre 🇧🇷💙
1offensive
60
Q mulher ordinária
1offensive
64
Vagabunda
1offensive
68
Deve ter pena dela quando descobrir os podre dela essa imoral
1offensive
72
Horrorosa vaca suja
1offensive
76
Hipocrisia esquerdopata oportunista
1offensive
80
Falsa!!!! Que nem nota de $30!!!!🤪🤪🤪
1offensive
84
Safada sem vergonha ! Velha asquerosa !🤮
1offensive
88
Safada🤢🤢🤢
1offensive
92
Pois é deveria ter pena da própria ignorância.
1offensive
96
Mulherzinha cara de pau🤮🤮🤮🤮🤮🤮🤮🤮🤮🤮🤮🤮🤮🤮🤮
1offensive
100
Vá ter pena da puta que a pariu, corrupta
1offensive
104
Porque Bachelet faz parte da esquerda Hipócrita da América latina. Pergunte se ela tem pena de Cuba, Nicarágua ou da Venezuela. #MicheleBacheletHipócrita
1offensive
108
Sua TONTA SAFADA
1offensive
112
🤣 Comunista...
1offensive
116
Senhora Michele Bachelet!
1offensive
120
Demagoga se locupletando com dinheiro de propina
1offensive
124
Fdp
1offensive
128
Bandidona e pilantrona o leitinho acabou
1offensive
132
Outra pilantra!
1offensive
136
Essa senhora é uma currupta igual seus amiguinhos do PT.
1offensive
140
Terrorista FDP
1offensive
144
LADRA
1offensive
148
Quem quer saber oq vc pensa comunista corrupta vc deveria estar na cadeia !
1offensive
152
Ela que cuidado quintal da própria casa, já que está sujos com dinheiro de propina!!
1offensive
156
Pilantra
1offensive
160
Sim, ela tem penas.......com certeza
1offensive
164
Canalha
1offensive
168
Velha ridícula e bandida!! Parece uma porca
1offensive
172
Sim porque??? É muita hipocrisia. E a propina...
1offensive
176
Outra canalha.
1offensive
180
Esse povo de esquerda é asqueroso e corruptos
1offensive
184
Propineira com pena pq a mamata acabou.... 🤮🤮
1offensive
188
E uma coitada , não tem credibilidade aqui nao
1offensive
192
@veronica_michelle_bachelett e a propina recebida pela OAS teve pena quando recebeu? #hipocrita #oportunista #voltapromaroferenda
1offensive
196
Porque ela é uma ladra morfética
1offensive
200
Safada !! ONU não vale nada!!
1offensive
204
Falsa!!!
1offensive
208
Essa ja fez parte da quadrilha
1offensive
212
Que devolva a propina e pare de se meter onde nao foi chamada brachelenta!
1offensive
216
Pilantra vadia
1offensive
220
Hipocrisia Pura😡😡
1offensive
224
#maiatraidordapatria
1offensive
228
Não precisamos da pena de ninguém ,ainda mais dessa desqualificada ,guarde ela ,as muitas penas que tem pra si mesma 🐔, #Bolsonaro2022 ,sem mais .....
1offensive
232
Safada
1offensive
236
Pena do Brasil??? O qué será que pensa essa corrupta, tentando dar uma de pessoa íntegra, correta, quando não passa de uma vigarista! 😠🤔😠
1offensive
240
Percebem que , todo bandido no final de sua gestão , é convidado para trabalhar na ONU ! Porque será ???!
1offensive
244
Essa é uma canalha esquerdopata! Nós brasileiros não precisamos de suas condolências! Bandida!
1offensive
248
Que mulher nojenta
1offensive
252
Quem quer saber a opinião dela?
1offensive
256
Essa vagabunda não tem que falar nada!
1offensive
260
Pq é uma PILANTRA do mesmo NÍVEL BAIXO de LULADRÃO E DIMANTA!
1offensive
264
É uma idiota! Não precisamos da pena dela...
1offensive
268
Essa esquerdopata imbecil não consegue ser ouvida nem no Chile, sua terra!
1offensive
272
Porque é suja e adora dinheiro alheio
1offensive
276
Clínica. Faz parte da esquerda demoníaca.
1offensive
280
Mas é falsa hein?Acabou a mamata.quer dinheiro vá trabalhar.
1offensive
284
Hipócrita,vai procurar tua turma. O BRASIL não precisa da tua pena.
1offensive
288
Nojenta! Lava a boca pra falar do nosso Presidente!
1offensive
292
Eu que tenho pena dessa mulher feia e de um caráter duvidoso.
1offensive
296
E quando recebeu dinheiro ilegal de propina e portanto de nossos impostos suados? Hipócrita.
1offensive
300
Quando ouvimos uma sujeita dessas 💩 falando assim é sinal que estamos no caminho certo. Ela gostava do Brasil quando recebia mesada, dinheiro fruto de roubo.
1offensive
304
Otária, BABACA.
1offensive
308
É típico dessa gente a cara de pau!!!🤢
1offensive
312
Bachelet, não tem o que fazer?Sugestão: vau catar coquinho!!!
1offensive
316
Comunista vagabunda
1offensive
320
Pq é criminosa do foro de São Paulo !
1offensive
324
Outra esquerdista cara de pau! Não basta os do Brasil! 😡
1offensive
328
Essa puta não tem dó da Venezuela???
1offensive
332
A ONU é pior esquerda que temos no mundo atualmente.
1offensive
336
Hipócrita 🤬🤬🤬
1offensive
340
É que o dindin pra ela acabou 😂😂😂
1offensive
344
Sério???? Engraçado que quem invadiu a Polônia foram os Nazistas. Você estava comemorando isso???? A invasão???? Fascista que fala, né!!!
1offensive
348
Puta que pariu
1offensive
352
Até pelos comentários, a gente percebe quem é normal e quem é esquerdopata... Por que será né?
1offensive
356
SOS UNA BASURA BOLSONARO, DAS TANTO ASCO!!
1offensive
360
Deje el ego que usted no es más que el Amazonas reciba la plata que usted no es nada el Amazonas es algo
1offensive
364
Colonialista di merda
1offensive
368
Your words are like gasoline , and You put out 🔥 with gasoline.😱😱😱😱😱😱😱😱😱😱😱😱😱😱😱😱😱 🔥 rainforest.
1offensive
372
Selva 🇧🇷
1offensive
376
Que coisa linda a gente não conhecia, ISSO Políticos LADROES NEM IMAGINAVAM QUE, EXISTIAM TANTOS, PORQUE ???, sabia se um entrasse alguém do exercito deu no que deu, tirar verbas de Vagabundos , PARA SOBRAR PARA O BRASIL, E TEM MULAS QUE AINDA FALAM EM ESQUERDA MEU DEUS AS BURRiCES ESTÃO VENDO A REALIDADE E NÃO ACEITAM , CRIMES INVADINDO OS RESPONSÁVEIS PELO BRASIL, ATÉ ISSO ACORDARAM , NINGUÉM QUE VIROU P ESQUERDA FINGIRAM EM NAIO ENTENDER , BANDIDOS AGINDO JUNTOS COM 0S BANDIDOS DA ESQUERDA E PCC VIU COM QUEM ESSAS MULAS QUETEM QUE FOCAM NO BRASIL????
1offensive
380
@ronaldosnascimento1_ Mas tu é baixo nível, né cara? Dá dó!
1offensive
384
Fala bandidão
1offensive
388
Coitado desse Jão gordo, fracassado.
1offensive
392
Aproveite ,logo estará atrás das grades.
1offensive
396
Ai sabe roubar ...prefeitão de SP....kkkk...
1offensive

Portuguese Benchmark

This a collection of datasets in Portuguese initially meant to train and evaluate supervised language models such as BERT, RoBERTa, etc... It contains 10 datasets and 18 Tasks for Classification (CLS), NLI, Semantic Similarity Scoring (STS) and Named-Entity Recognition (NER).

Datasets Descriptions

LeNER-Br (NER) [Link]

LeNER-Br is a Portuguese language dataset for named entity recognition applied to legal documents. LeNER-Br consists entirely of manually annotated legislation and legal cases texts and contains tags for persons, locations, time entities, organizations, legislation and legal cases. To compose the dataset, 66 legal documents from several Brazilian Courts were collected. Courts of superior and state levels were considered, such as Supremo Tribunal Federal, Superior Tribunal de Justiça, Tribunal de Justiça de Minas Gerais and Tribunal de Contas da União. In addition, four legislation documents were collected, such as "Lei Maria da Penha", giving a total of 70 documents.

assin2-rte and assin2-sts (NLI/STS) [Link]

The ASSIN 2 corpus is composed of rather simple sentences. Following the procedures of SemEval 2014 Task 1. The training and validation data are composed, respectively, of 6,500 and 500 sentence pairs in Brazilian Portuguese, annotated for entailment and semantic similarity. Semantic similarity values range from 1 to 5, and text entailment classes are either entailment or none. The test data are composed of approximately 3,000 sentence pairs with the same annotation. All data were manually annotated.

HateBR_offensive_binary and HateBR_offensive_level (CLS) [Link]

HateBR is the first large-scale expert annotated dataset of Brazilian Instagram comments for abusive language detection on the web and social media. The HateBR was collected from Brazilian Instagram comments of politicians and manually annotated by specialists. It is composed of 7,000 documents annotated according to three different layers: a binary classification (offensive versus non-offensive comments), offensiveness-level (highly, moderately, and slightly offensive messages), and nine hate speech groups (xenophobia, racism, homophobia, sexism, religious intolerance, partyism, apology for the dictatorship, antisemitism, and fatphobia). Each comment was annotated by three different annotators and achieved high inter-annotator agreement. Furthermore, baseline experiments were implemented reaching 85% of F1-score outperforming the current literature dataset baselines for the Portuguese language. We hope that the proposed expert annotated dataset may foster research on hate speech detection in the Natural Language Processing area.

UlyssesNER-Br-* (NER) [Link]

UlyssesNER-Br is a corpus of Brazilian Legislative Documents for NER with quality baselines. The presented corpus consists of bills and legislative consultations from Brazilian Chamber of Deputies. UlyssesNER-Br has seven semantic classes or categories. Based on HAREM, we defined five typical categories: person, location, organization, event and date. In addition, we defined two specific semantic classes for the legislative domain: law foundation and law product. The law foundation category makes reference to entities related to laws, resolutions, decrees, as well as to domain-specific entities such as bills, which are law proposals being discussed by the parliament, and legislative consultations, also known as job requests made by the parliamentarians. The law product entity refers to systems, programs, and other products created from legislation.

brazilian_court_decisions_judgment and brazilian_court_decisions_unanimity (CLS) [Link]

The dataset is a collection of 4043 Ementa (summary) court decisions and their metadata from the Tribunal de Justiça de Alagoas (TJAL, the State Supreme Court of Alagoas (Brazil). The court decisions are labeled according to 7 categories and whether the decisions were unanimous on the part of the judges or not. The dataset supports the task of Legal Judgment Prediction.

harem-default and harem-selective (NER) [Link]

The HAREM is a Portuguese language corpus commonly used for Named Entity Recognition tasks. It includes about 93k words, from 129 different texts, from several genres, and language varieties. The split of this dataset version follows the division made by [1], where 7% HAREM documents are the validation set and the miniHAREM corpus (with about 65k words) is the test set. There are two versions of the dataset set, a version that has a total of 10 different named entity classes (Person, Organization, Location, Value, Date, Title, Thing, Event, Abstraction, and Other) and a "selective" version with only 5 classes (Person, Organization, Location, Value, and Date). It's important to note that the original version of the HAREM dataset has 2 levels of NER details, namely "Category" and "Sub-type". The dataset version processed here ONLY USE the "Category" level of the original dataset. [1] Souza, Fábio, Rodrigo Nogueira, and Roberto Lotufo. "BERTimbau: Pretrained BERT Models for Brazilian Portuguese." Brazilian Conference on Intelligent Systems. Springer, Cham, 2020.

multi_eurlex_pt (Multilabel CLS) [Link]

MultiEURLEX comprises 65k EU laws in 23 official EU languages. Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU. Each EUROVOC label ID is associated with a label descriptor, e.g., [60, agri-foodstuffs], [6006, plant product], [1115, fruit]. The descriptors are also available in the 23 languages. Chalkidis et al. (2019) published a monolingual (English) version of this dataset, called EUR-LEX, comprising 57k EU laws with the originally assigned gold labels.

mapa_pt_coarse and mapa_pt_fine (NER) [Link]

The dataset consists of 12 documents (9 for Spanish due to parsing errors) taken from EUR-Lex, a multilingual corpus of court decisions and legal dispositions in the 24 official languages of the European Union. The documents have been annotated for named entities following the guidelines of the MAPA project which foresees two annotation level, a general and a more fine-grained one. The annotated corpus can be used for named entity recognition/classification.

Portuguese_Hate_Speech_binary (CLS) [Link]

The dataset is composed of 5,668 tweets. For its annotation, we defined two different schemes used by annotators with different levels of expertise. Firstly, non-experts annotated the tweets with binary labels (‘hate’ vs. ‘no-hate’). Secondly, expert annotators classified the tweets following a fine-grained hierarchical multiple label scheme with 81 hate speech categories in total. The inter-annotator agreement varied from category to category, which reflects the insight that some types of hate speech are more subtle than others and that their detection depends on personal perception. This hierarchical annotation scheme is the main contribution of the presented work, as it facilitates the identification of different types of hate speech and their intersections.

rrip (CLS) [Link]

Rhetorical role identification (RRI) is an NLP task that consists of labeling the sentences of a document according to a given set of semantic functions (rhetorical roles). This task is useful to applications like document summarization, semantic search, document analysis, among others.
In this corpus, we propose to segment petitions into eight rhetorical roles by mainly considering the analytic needs of judge's' offices in Brazil. We present a corpus of 70 petitions comprising more than 10 thousand sentences manually labeled with the proposed rhetorical roles. These petitions were taken from civil lawsuits filed in the court of the Brazilian state of Mato Grosso do Sul (TJMS).

Citations

Citation for each one of the Tasks:

# LeNER-Br
@InProceedings{luz_etal_propor2018,
    author = {Pedro H. {Luz de Araujo} and Te'{o}filo E. {de Campos} and
            Renato R. R. {de Oliveira} and Matheus Stauffer and
            Samuel Couto and Paulo Bermejo},
    title = {{LeNER-Br}: a Dataset for Named Entity Recognition in {Brazilian} Legal Text},
    booktitle = {International Conference on the Computational Processing of Portuguese ({PROPOR})},
    publisher = {Springer},
    series = {Lecture Notes on Computer Science ({LNCS})},
    pages = {313--323},
    year = {2018},
    month = {September 24-26},
    address = {Canela, RS, Brazil},	  
    doi = {10.1007/978-3-319-99722-3_32},
    url = {https://teodecampos.github.io/LeNER-Br/},
}

# assin2-rte, assin2-sts
@inproceedings{real2020assin,
    title={The assin 2 shared task: a quick overview},
    author={Real, Livy and Fonseca, Erick and Oliveira, Hugo Goncalo},
    booktitle={International Conference on Computational Processing of the Portuguese Language},
    pages={406--412},
    year={2020},
    organization={Springer}
}

# HateBR_offensive_binary, HateBR_offensive_level
@inproceedings{vargas2022hatebr,
    title={HateBR: A Large Expert Annotated Corpus of Brazilian Instagram Comments for Offensive Language and Hate Speech Detection},
    author={Vargas, Francielle and Carvalho, Isabelle and de G{'o}es, Fabiana Rodrigues and Pardo, Thiago and Benevenuto, Fabr{'\i}cio},
    booktitle={Proceedings of the Thirteenth Language Resources and Evaluation Conference},
    pages={7174--7183},
    year={2022}
}

# UlyssesNER-Br-PL-coarse, UlyssesNER-Br-C-coarse, UlyssesNER-Br-PL-fine, UlyssesNER-Br-C-fine
@InProceedings{10.1007/978-3-030-98305-5_1,
    author="Albuquerque, Hidelberg O.
    and Costa, Rosimeire
    and Silvestre, Gabriel
    and Souza, Ellen
    and da Silva, N{'a}dia F. F.
    and Vit{'o}rio, Douglas
    and Moriyama, Gyovana
    and Martins, Lucas
    and Soezima, Luiza
    and Nunes, Augusto
    and Siqueira, Felipe
    and Tarrega, Jo{\~a}o P.
    and Beinotti, Joao V.
    and Dias, Marcio
    and Silva, Matheus
    and Gardini, Miguel
    and Silva, Vinicius
    and de Carvalho, Andr{'e} C. P. L. F.
    and Oliveira, Adriano L. I.",
    editor="Pinheiro, Vl{'a}dia
    and Gamallo, Pablo
    and Amaro, Raquel
    and Scarton, Carolina
    and Batista, Fernando
    and Silva, Diego
    and Magro, Catarina
    and Pinto, Hugo",
    title="UlyssesNER-Br: A Corpus of Brazilian Legislative Documents for Named Entity Recognition",
    booktitle="Computational Processing of the Portuguese Language",
    year="2022",
    publisher="Springer International Publishing",
    address="Cham",
    pages="3--14",
    isbn="978-3-030-98305-5"
}
@InProceedings{10.1007/978-3-031-16474-3_62,
    author="Costa, Rosimeire
    and Albuquerque, Hidelberg Oliveira
    and Silvestre, Gabriel
    and Silva, N{'a}dia F{'e}lix F.
    and Souza, Ellen
    and Vit{'o}rio, Douglas
    and Nunes, Augusto
    and Siqueira, Felipe
    and Pedro Tarrega, Jo{\~a}o
    and Vitor Beinotti, Jo{\~a}o
    and de Souza Dias, M{'a}rcio
    and Pereira, Fab{'i}ola S. F.
    and Silva, Matheus
    and Gardini, Miguel
    and Silva, Vinicius
    and de Carvalho, Andr{'e} C. P. L. F.
    and Oliveira, Adriano L. I.",
    editor="Marreiros, Goreti
    and Martins, Bruno
    and Paiva, Ana
    and Ribeiro, Bernardete
    and Sardinha, Alberto",
    title="Expanding UlyssesNER-Br Named Entity Recognition Corpus with Informal User-Generated Text",
    booktitle="Progress in Artificial Intelligence",
    year="2022",
    publisher="Springer International Publishing",
    address="Cham",
    pages="767--779",
    isbn="978-3-031-16474-3"
}

# brazilian_court_decisions_judgment, brazilian_court_decisions_unanimity
@article{Lage-Freitas2022,
  author = {Lage-Freitas, Andr{'{e}} and Allende-Cid, H{'{e}}ctor and Santana, Orivaldo and Oliveira-Lage, L{'{i}}via},
  doi = {10.7717/peerj-cs.904},
  issn = {2376-5992},
  journal = {PeerJ. Computer science},
  keywords = {Artificial intelligence,Jurimetrics,Law,Legal,Legal NLP,Legal informatics,Legal outcome forecast,Litigation prediction,Machine learning,NLP,Portuguese,Predictive algorithms,judgement prediction},
  language = {eng},
  month = {mar},
  pages = {e904--e904},
  publisher = {PeerJ Inc.},
  title = {{Predicting Brazilian Court Decisions}},
  url = {https://pubmed.ncbi.nlm.nih.gov/35494851 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044329/},
  volume = {8},
  year = {2022}
}

# harem-default, harem-selective
@inproceedings{santos2006harem,
    title={Harem: An advanced ner evaluation contest for portuguese},
    author={Santos, Diana and Seco, Nuno and Cardoso, Nuno and Vilela, Rui},
    booktitle={quot; In Nicoletta Calzolari; Khalid Choukri; Aldo Gangemi; Bente Maegaard; Joseph Mariani; Jan Odjik; Daniel Tapias (ed) Proceedings of the 5 th International Conference on Language Resources and Evaluation (LREC'2006)(Genoa Italy 22-28 May 2006)},
    year={2006}
}

# multi_eurlex_pt
@InProceedings{chalkidis-etal-2021-multieurlex,
  author = {Chalkidis, Ilias  
                and Fergadiotis, Manos
                and Androutsopoulos, Ion},
  title = {MultiEURLEX -- A multi-lingual and multi-label legal document 
               classification dataset for zero-shot cross-lingual transfer},
  booktitle = {Proceedings of the 2021 Conference on Empirical Methods
               in Natural Language Processing},
  year = {2021},
  publisher = {Association for Computational Linguistics},
  location = {Punta Cana, Dominican Republic},
  url = {https://arxiv.org/abs/2109.00904}
}

# mapa_pt_coarse, mapa_pt_fine
@article{DeGibertBonet2022,
    author = {{de Gibert Bonet}, Ona and {Garc{'{i}}a Pablos}, Aitor and Cuadros, Montse and Melero, Maite},
    journal = {Proceedings of the Language Resources and Evaluation Conference},
    number = {June},
    pages = {3751--3760},
    title = {{Spanish Datasets for Sensitive Entity Detection in the Legal Domain}},
    url = {https://aclanthology.org/2022.lrec-1.400},
    year = {2022}
}

# Portuguese_Hate_Speech_binary
@inproceedings{fortuna-etal-2019-hierarchically,
    title = "A Hierarchically-Labeled {P}ortuguese Hate Speech Dataset",
    author = "Fortuna, Paula  and
    Rocha da Silva, Jo{\~a}o  and
    Soler-Company, Juan  and
    Wanner, Leo  and
    Nunes, S{'e}rgio",
    editor = "Roberts, Sarah T.  and
    Tetreault, Joel  and
    Prabhakaran, Vinodkumar  and
    Waseem, Zeerak",
    booktitle = "Proceedings of the Third Workshop on Abusive Language Online",
    month = aug,
    year = "2019",
    address = "Florence, Italy",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W19-3510",
    doi = "10.18653/v1/W19-3510",
    pages = "94--104"
}

#rrip
@inproceedings{aragy_rhetorical_2021,
    series = {Lecture {Notes} in {Computer} {Science}},
    title = {Rhetorical {Role} {Identification} for {Portuguese} {Legal} {Documents}},
    isbn = {978-3-030-91699-2},
    doi = {10.1007/978-3-030-91699-2_38},
    booktitle = {Intelligent {Systems}},
    publisher = {Springer International Publishing},
    author = {Aragy, Roberto and Fernandes, Eraldo Rezende and Caceres, Edson Norberto},
    editor = {Britto, André and Valdivia Delgado, Karina},
    year = {2021},
    pages = {557--571},
}
Downloads last month
1,120
Edit dataset card