File size: 7,002 Bytes
c0b84ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a60f228
 
e8c6f38
 
c0b84ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e30cc69
c0b84ff
 
 
 
 
 
 
 
 
 
25e1f63
c0b84ff
2e86309
c0b84ff
 
25e1f63
c0b84ff
 
 
 
25e1f63
c0b84ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5ed17d
e30cc69
c0b84ff
 
 
 
 
 
 
bf70961
c0b84ff
 
2e86309
e30cc69
 
c0b84ff
e30cc69
c0b84ff
5f490b7
0ad3cc2
e30cc69
 
0ad3cc2
 
 
 
 
e30cc69
 
e8c6f38
 
 
 
 
 
 
 
 
 
 
 
0ad3cc2
 
def1ce9
0ad3cc2
 
dd1cdf8
c0b84ff
 
5f490b7
e30cc69
 
c0b84ff
2e86309
c0b84ff
 
dd1cdf8
bb6cd8c
c0b84ff
 
def1ce9
c0b84ff
dd1cdf8
c0b84ff
e8c6f38
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
"""FROM SQUAD_V2"""


import json

import datasets
from datasets.tasks import QuestionAnsweringExtractive


# TODO(squad_v2): BibTeX citation
_CITATION = """\
Tuora, R., Zawadzka-Paluektau, N., Klamra, C., Zwierzchowska, A., Kobyliński, Ł. (2022). 
Towards a Polish Question Answering Dataset (PoQuAD). 
In: Tseng, YH., Katsurai, M., Nguyen, H.N. (eds) From Born-Physical to Born-Virtual: Augmenting Intelligence in Digital Libraries. ICADL 2022. 
Lecture Notes in Computer Science, vol 13636. Springer, Cham. 
https://doi.org/10.1007/978-3-031-21756-2_16
"""

_DESCRIPTION = """\
PoQuaD description
"""


_URLS = {
    "train": "poquad-train.json",
    "dev": "poquad-dev.json",
    "test-A": "poquad-test-A.json",
    "test-B": "poquad-test-B.json",
}


class SquadV2Config(datasets.BuilderConfig):
    """BuilderConfig for SQUAD."""

    def __init__(self, **kwargs):
        """BuilderConfig for SQUADV2.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(SquadV2Config, self).__init__(**kwargs)


class SquadV2(datasets.GeneratorBasedBuilder):
    """TODO(squad_v2): Short description of my dataset."""

    # TODO(squad_v2): Set up version.
    BUILDER_CONFIGS = [
        SquadV2Config(name="poquad", version=datasets.Version("2.0.4"), description="PoQuaD plaint text"),
    ]

    def _info(self):
        # TODO(squad_v2): Specifies the datasets.DatasetInfo object
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # datasets.features.FeatureConnectors
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "title": datasets.Value("string"),
                    "summary": datasets.Value("string"),
                    "context": datasets.Value("string"),
                    "question": datasets.Value("string"),
                    "is_impossible": datasets.Value("bool"),
                    "answers": datasets.features.Sequence(
                        {
                            "text": datasets.Value("string"),
                            "answer_start": datasets.Value("int32"),
                            "generative_answer": datasets.Value("string"),
                        }
                    ),
                    # These are the features of your dataset like images, labels ...
                }
            ),
            # If there's a common (input, target) tuple from the features,
            # specify them here. They'll be used if as_supervised=True in
            # builder.as_dataset.
            supervised_keys=None,
            # Homepage of the dataset for documentation
            homepage="https://rajpurkar.github.io/SQuAD-explorer/",
            citation=_CITATION,
            task_templates=[
                QuestionAnsweringExtractive(
                    question_column="question", context_column="context", answers_column="answers"
                )
            ],
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        # TODO(squad_v2): Downloads the data and defines the splits
        # dl_manager is a datasets.download.DownloadManager that can be used to
        # download and extract URLs
        urls_to_download = _URLS
        downloaded_files = dl_manager.download_and_extract(urls_to_download)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
            datasets.SplitGenerator(name="testA", gen_kwargs={"filepath": downloaded_files["test-A"]}),
            datasets.SplitGenerator(name="testB", gen_kwargs={"filepath": downloaded_files["test-B"]}),
        ]

    def _generate_examples(self, filepath):
        """Yields examples."""
        # TODO(squad_v2): Yields (key, example) tuples from the dataset
        with open(filepath, encoding="utf-8") as f:
            squad = json.load(f)
            id_ = 0
            for example in squad["data"]:
                title = example.get("title", "")
                summary = example.get("summary", "")
                example_id = example["id"]
                for paragraph_id, paragraph in enumerate(example["paragraphs"]):
                    context = paragraph["context"]  # do not strip leading blank spaces GH-2585
                    for question_id,qa in enumerate(paragraph["qas"]):
                        question = qa["question"]
                        id_ += 1
                     
                        idd = f"{example_id}_{paragraph_id}_{question_id}"

                        if "answers" in qa:
                            answers_key="answers"
                        elif "plausible_answers" in qa:
                            answers_key="plausible_answers"
                        else:
                            yield idd, {
                                "id": idd,
                                "title": title,
                                "summary": summary,
                                "context": context,
                                "question": question,
                                "is_impossible" : None,
                                # "paragraph_id": paragraph_id,
                                "answers": {

                                },
                            }
                            continue
                            #raise ValueError
                            
                        answer_starts = [answer["answer_start"] for answer in qa[answers_key]]
                        #answer_ends = [answer["answer_end"] for answer in qa["answers"]]
                        answers = [answer["text"] for answer in qa[answers_key]]
                        generative_answers = [answer["generative_answer"] for answer in qa[answers_key]]
                        is_impossible = qa["is_impossible"]
                        # Features currently used are "context", "question", and "answers".
                        # Others are extracted here for the ease of future expansions.

                        yield idd, {
                            "id": idd,
                            "title": title,
                            "summary": summary,
                            "context": context,
                            "question": question,
                            "is_impossible" : is_impossible,
                            # "paragraph_id": paragraph_id,
                            "answers": {
                                "answer_start": answer_starts,
                                #"answer_end": answer_ends,
                                "text": answers,
                                "generative_answer": generative_answers
                            },
                        }