File size: 5,388 Bytes
e54948d 16ab311 e54948d 16ab311 e54948d bdabc8d e54948d 16ab311 e54948d bdabc8d e54948d 16ab311 6a16dec 083d4cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
import datasets
_DESCRIPTION = ''
_PROJECTS_GAME_ENGINE = [
'GameEngine_ActionRPG',
'GameEngine_ArchVizInterior',
'GameEngine_ASCTeuthisan',
'GameEngine_BroadcastSample',
'GameEngine_CitySample',
'GameEngine_ElectricDreamsEnv',
'GameEngine_ElementalDemo',
'GameEngine_HillsideSample',
'GameEngine_Matinee',
'GameEngine_MeerkatDemo',
'GameEngine_MLDeformerSample',
'GameEngine_ParticleEffects',
'GameEngine_RealisticRendering',
'GameEngine_SlayAnimationSample',
'GameEngine_StylizedRendering',
'GameEngine_SubwaySequencer',
'GameEngine_SunTemple'
]
_PROJECTS_DOWNSCALE = [
'Downscale_Dota2'
]
# _PROJECTS = _PROJECTS_GAME_ENGINE + _PROJECTS_DOWNSCALE
_PROJECTS = _PROJECTS_DOWNSCALE
_DESCRIPTION_DATA_GAME_ENGINE = {
'GameEngine_ActionRPG': '',
'GameEngine_ArchVizInterior': '',
'GameEngine_ASCTeuthisan': '',
'GameEngine_BroadcastSample': '',
'GameEngine_CitySample': '',
'GameEngine_ElectricDreamsEnv': '',
'GameEngine_ElementalDemo': '',
'GameEngine_HillsideSample': '',
'GameEngine_Matinee': '',
'GameEngine_MeerkatDemo': '',
'GameEngine_MLDeformerSample': '',
'GameEngine_ParticleEffects': '',
'GameEngine_RealisticRendering': '',
'GameEngine_SlayAnimationSample': '',
'GameEngine_StylizedRendering': '',
'GameEngine_SubwaySequencer': '',
'GameEngine_SunTemple': ''
}
_DESCRIPTION_DATA_DOWNSCALE = {
'Downscale_Dota2': ''
}
_DESCRIPTION_DATA = _DESCRIPTION_DATA_DOWNSCALE
# _DESCRIPTION_DATA = {
# **_DESCRIPTION_DATA_GAME_ENGINE,
# **_DESCRIPTION_DATA_DOWNSCALE
# }
_DATA_FILES_GAME_ENGINE = {
'GameEngine_ActionRPG': '',
'GameEngine_ArchVizInterior': '',
'GameEngine_ASCTeuthisan': '',
'GameEngine_BroadcastSample': '',
'GameEngine_CitySample': '',
'GameEngine_ElectricDreamsEnv': '',
'GameEngine_ElementalDemo': '',
'GameEngine_HillsideSample': '',
'GameEngine_Matinee': '',
'GameEngine_MeerkatDemo': '',
'GameEngine_MLDeformerSample': '',
'GameEngine_ParticleEffects': '',
'GameEngine_RealisticRendering': '',
'GameEngine_SlayAnimationSample': '',
'GameEngine_StylizedRendering': '',
'GameEngine_SubwaySequencer': '',
'GameEngine_SunTemple': ''
}
_DATA_FILES_DOWNSCALE = {
'Downscale_Dota2': {
'train': {
'r270p': 'data/DownscaleData/Dota2/train-270p.tar.gz',
'r360p': 'data/DownscaleData/Dota2/train-360p.tar.gz',
'r540p': 'data/DownscaleData/Dota2/train-540p.tar.gz',
'r1080p': 'data/DownscaleData/Dota2/train-1080p.tar.gz'
},
'val': {
'r270p': 'data/DownscaleData/Dota2/val-270p.tar.gz',
'r360p': 'data/DownscaleData/Dota2/val-360p.tar.gz',
'r540p': 'data/DownscaleData/Dota2/val-540p.tar.gz',
'r1080p': 'data/DownscaleData/Dota2/val-1080p.tar.gz'
}
}
}
# _DATA_FILES = {
# **_DATA_FILES_GAME_ENGINE,
# **_DATA_FILES_DOWNSCALE
# }
_DATA_FILES = _DATA_FILES_DOWNSCALE
class SuperResolutionGamesConfig(datasets.BuilderConfig):
def __init__(self, data_files, features, **kwargs):
super().__init__(version=datasets.Version('0.0.0'), **kwargs)
self.data_files = data_files
self.features = features
class SuperResolutionGames(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
SuperResolutionGamesConfig(
name=name,
description=_DESCRIPTION_DATA[name],
data_files=_DATA_FILES[name],
features=['r270p', 'r360p', 'r540p', 'r1080p']
) for name in _PROJECTS
]
def _info(self):
features = {f: datasets.Image() for f in self.config.features}
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(features),
supervised_keys=None,
)
def _split_generators(self, dl_manager):
data_files = self.config.data_files
train_archives, val_archives = data_files['train'], data_files['val']
train_archives_downloaded = {
k: dl_manager.download(train_archives[k]) \
for k in train_archives.keys()
}
val_archives_downloaded = {
k: dl_manager.download(val_archives[k]) \
for k in val_archives.keys()
}
splits = [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
k: dl_manager.iter_archive(train_archives_downloaded[k]) \
for k in train_archives_downloaded.keys()
}
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
k: dl_manager.iter_archive(val_archives_downloaded[k]) \
for k in val_archives_downloaded.keys()
}
)
]
return splits
def _generate_examples(self, r270p, r360p, r540p, r1080p):
for el1, el2, el3, el4 in zip(r270p, r360p, r540p, r1080p):
sample = {
'270p': [el1[0], el1[1].read()],
'360p': [el2[0], el2[1].read()],
'540p': [el3[0], el3[1].read()],
'1080p': [el4[0], el4[1].read()]
}
yield sample
|