File size: 35,500 Bytes
b1cd545 ff63fa7 b1cd545 1c377fd b1cd545 1c377fd b1cd545 4fb1494 b1cd545 4fb1494 ad8362e b1cd545 4fb1494 b1cd545 a5884c3 b1cd545 ad8362e b1cd545 a5884c3 b1cd545 ff63fa7 b1cd545 a5884c3 b1cd545 a5884c3 b1cd545 a5884c3 b1cd545 a5884c3 b1cd545 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 |
{
"cells": [
{
"cell_type": "markdown",
"id": "377f3d60-eddc-46aa-b21b-d30b4cf7607d",
"metadata": {},
"source": [
"# Finding natural geroprotectors with Precious3GPT and BATMAN\n",
"\n",
"This notebook will teach you how to use P3GPT to emulate the workflow of a chemical screening projects.\n",
"\n",
"In particular, we will identify the compounds encountered in traditional Chinese medicine (TCM) with a geroprotective potential.\n",
"\n",
"In this notebook, we generate omics signatures in 8 human tissues. We will then use these signatures and an external catalog of TCM ingredients [BATMAN](http://bionet.ncpsb.org.cn/batman-tcm/#/browse) to select the compounds that target the genes in P3GPT-generated signatures.\n",
"\n",
"<center><img src=\"https://huggingface.co/datasets/f-galkin/batman2/resolve/main/demo/imgs/experiment_scheme.png\" width=\"800\" ></center>\n",
"<center><i>This notebook only focuses on TCM compounds with known targets, but you may modify the code to look for geroprotectors based on the information about predicted targets as well. In this case, the identified potential geroprptectors will be more numerous and might contain novel compounds.</i></center>\n"
]
},
{
"cell_type": "markdown",
"id": "05eb4e79-9040-4963-ab1f-62cfb4a9f9f3",
"metadata": {},
"source": [
"> ⚠️ **Dependency:** To replicate this project, you need to download some files from [Precious3GPT's repo](https://doi.org/10.57967/hf/2699) and then move the ```mpt_7b``` directory and ```precious3_gpt_multi_modal.py``` from `p3-mm` to `~/P3LIB/`. You can remove all the other downloaded files.\n",
"\n",
"``` python\n",
"from huggingface_hub import snapshot_download\n",
"snapshot_download(repo_id=\"insilicomedicine/precious3-gpt-multi-modal\", local_dir='./p3-mm')\n",
"```\n",
"> In the end, your directory structure should look as follows:\n",
"```\n",
"└── demo\n",
" ├── 1Aug2024_aging_signatures.pckl [optional]\n",
" ├── HF_TCM+P3GPT_sceening.ipynb\n",
" ├── P3GPT_compound_targets.pckl\n",
" └── P3LIB\n",
" ├── mpt_7b\n",
" │ ├── ...\n",
" │ └── ...\n",
" ├─ endpoints.py\n",
" ├─ formula_picker.py\n",
" └─ precious3_gpt_multi_modal.py\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "27aceeaa-2db6-4df7-b9bb-3a775032b725",
"metadata": {},
"outputs": [],
"source": [
"from typing import Dict, List, Any\n",
"import os\n",
"import torch\n",
"from transformers import AutoTokenizer, AutoModel\n",
"import pandas as pd\n",
"import time\n",
"import numpy as np\n",
"from transformers import GenerationConfig\n",
"import pickle\n",
"import numpy as np\n",
"import pandas as pd\n",
"from scipy.stats import fisher_exact\n",
"\n",
"from P3LIB.endpoints import EndpointHandler"
]
},
{
"cell_type": "markdown",
"id": "fe4c382e-2ef8-4cc1-a050-7cd8388519c2",
"metadata": {},
"source": [
"## 1. Generate aging signatures\n",
"\n",
"Define the tissues and the omics domains to be screened to be inserted in the P3GPT prompt template.\n",
"\n",
"Since we are only intereseted in aging-related omics differences, we only need one instruction: `age_group2diff2age_group`.\n",
"Make sure to specify the case and control age groups exactly as specified in the `p3_entities_with_type.csv` file.\n",
"\n",
"We can leave most other prompt fields empty but you are free to modify them and thus reproduce a different setting. E.g. you can leave `tissue` vacant and fill in the `cell` field to enable an *in vitro* setting, or you can specify the `drug` to explore how a compound affects the aging signature."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "36fac0e0-79a8-4128-9604-81b382639b84",
"metadata": {},
"outputs": [],
"source": [
"tissue_options = ['skin', 'muscle', 'whole blood', 'epithelium', 'artery', 'fat tissue', 'brain', 'liver']\n",
"domain_options = ['methylation', 'proteomics', 'expression']\n",
"\n",
"prompt_config_age = {\n",
" \"instruction\": 'age_group2diff2age_group',\n",
" \"tissue\": '', #insert tissue here\n",
" \"age\": \"\",\n",
" \"cell\": \"\", #insert cell line here\n",
" \"efo\": \"\",\n",
" \"datatype\": \"\",\n",
" \"drug\": \"\", #insert cpd here if any\n",
" \"dose\": \"\",\n",
" \"time\": \"\",\n",
" \"case\": \"70.0-80.0\",\n",
" \"control\": \"19.95-25.0\",\n",
" \"dataset_type\": \"\", #insert domain here\n",
" \"gender\": \"\",\n",
" \"species\": \"human\",\n",
" \"up\": [],\n",
" \"down\": []\n",
" }"
]
},
{
"cell_type": "markdown",
"id": "872a6b5d-4d52-46f9-839f-7378153d2f67",
"metadata": {},
"source": [
"The `endpoints.py` module contains several options to invoke P3GPT.\n",
"Unless your input prompt contains lists of up-/down-regulated genes, it is advised to use `EndpointHandler` for local inference.\n",
"\n",
"The only parameter you need to specify at handler initialization is the GPU device to deploy P3GPT on."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "f85d0b5b-7b50-400b-82ad-bd655a137da6",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/f.galkin/.cache/huggingface/modules/transformers_modules/mosaicml/mpt-7b/039e37745f00858f0e01e988383a8c4393b1a4f5/configuration_mpt.py:114: UserWarning: alibi or rope is turned on, setting `learned_pos_emb` to `False.`\n",
" warnings.warn(f'alibi or rope is turned on, setting `learned_pos_emb` to `False.`')\n",
"/home/f.galkin/.cache/huggingface/modules/transformers_modules/mosaicml/mpt-7b/039e37745f00858f0e01e988383a8c4393b1a4f5/configuration_mpt.py:141: UserWarning: If not using a Prefix Language Model, we recommend setting \"attn_impl\" to \"flash\" instead of \"triton\".\n",
" warnings.warn(UserWarning('If not using a Prefix Language Model, we recommend setting \"attn_impl\" to \"flash\" instead of \"triton\".'))\n"
]
}
],
"source": [
"handler = EndpointHandler(device='cuda:2')"
]
},
{
"cell_type": "markdown",
"id": "c4df757f-7abd-4d50-9b3c-888b2d1208d0",
"metadata": {},
"source": [
"With 8 tissues and 3 omics domains, you will generate a total of 24 aging signatures.\n",
"\n",
"The default mode of execution for P3GPT is prompt completion, which is inherently stocahstic. To avoid any sampling effects, we enabled a special mode of P3GPT execution in `EndpointHandler`. Instead of generating gene tokens one at a time, we access the complete output probability distribution for up- and down-regulated genes and take top-N tokens from them.\n",
"\n",
"We can treat a gene's output probability as a proxy for its importance in the aging process to be used later."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "2a654df4-93cd-4e53-8468-99a870e427f0",
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running generations for skin-methylation\n",
"[BOS]<age_group2diff2age_group><tissue>skin </tissue><cell></cell><efo></efo><datatype></datatype><drug></drug><dose></dose><time></time><case>70.0-80.0 </case><control>19.95-25.0 </control><dataset_type>methylation </dataset_type><gender></gender><species>human </species><up>\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/f.galkin/.cache/huggingface/modules/transformers_modules/mosaicml/mpt-7b/039e37745f00858f0e01e988383a8c4393b1a4f5/attention.py:87: UserWarning: Propagating key_padding_mask to the attention module and applying it within the attention module can cause unnecessary computation/memory usage. Consider integrating into attn_bias once and passing that to each attention module instead.\n",
" warnings.warn('Propagating key_padding_mask to the attention module ' + 'and applying it within the attention module can cause ' + 'unnecessary computation/memory usage. Consider integrating ' + 'into attn_bias once and passing that to each attention ' + 'module instead.')\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"This is token index where gene should be predicted: 1\n",
"[BOS]<age_group2diff2age_group><tissue>skin </tissue><cell></cell><efo></efo><datatype></datatype><drug></drug><dose></dose><time></time><case>70.0-80.0 </case><control>19.95-25.0 </control><dataset_type>methylation </dataset_type><gender></gender><species>human </species>\n",
"This is token index where gene should be predicted: 260\n",
"Running generations for skin-proteomics\n",
"[BOS]<age_group2diff2age_group><tissue>skin </tissue><cell></cell><efo></efo><datatype></datatype><drug></drug><dose></dose><time></time><case>70.0-80.0 </case><control>19.95-25.0 </control><dataset_type>proteomics </dataset_type><gender></gender><species>human </species><up>\n",
"This is token index where gene should be predicted: 1\n",
"[BOS]<age_group2diff2age_group><tissue>skin </tissue><cell></cell><efo></efo><datatype></datatype><drug></drug><dose></dose><time></time><case>70.0-80.0 </case><control>19.95-25.0 </control><dataset_type>proteomics </dataset_type><gender></gender><species>human </species>\n",
"This is token index where gene should be predicted: 259\n",
"Running generations for skin-expression\n",
"...\n",
"Running generations for liver-expression\n",
"[BOS]<age_group2diff2age_group><tissue>liver </tissue><cell></cell><efo></efo><datatype></datatype><drug></drug><dose></dose><time></time><case>70.0-80.0 </case><control>19.95-25.0 </control><dataset_type>expression </dataset_type><gender></gender><species>human </species><up>\n",
"This is token index where gene should be predicted: 1\n",
"[BOS]<age_group2diff2age_group><tissue>liver </tissue><cell></cell><efo></efo><datatype></datatype><drug></drug><dose></dose><time></time><case>70.0-80.0 </case><control>19.95-25.0 </control><dataset_type>expression </dataset_type><gender></gender><species>human </species>\n",
"[BOS]<age_group2diff2age_group><tissue>liver </tissue><cell></cell><efo></efo><datatype></datatype><drug></drug><dose></dose><time></time><case>70.0-80.0 </case><control>19.95-25.0 </control><dataset_type>expression </dataset_type><gender></gender><species>human </species>\n",
"This is token index where gene should be predicted: 261\n"
]
}
],
"source": [
"generations = {z:{x:{y:[] for y in ('up', 'down')}for x in domain_options} for z in tissue_options}\n",
"for tis in generations:\n",
" prompt_config_age['tissue'] = tis\n",
" for dom in generations[tis]:\n",
" print(f\"Running generations for {tis}-{dom}\")\n",
" prompt_config_age['dataset_type'] = dom\n",
" for direct in generations[tis][dom]:\n",
" # uses the get_gene_probabilities method to get a list of top-k genes by their output probability\n",
" try:\n",
" generations[tis][dom][direct] = handler.get_gene_probabilities(prompt_config=prompt_config_age, top_k=100, list_type=direct,\n",
" random_seed = 137)\n",
" except ValueError:\n",
" # invoke P3GPT with a non-default random seed in case you encounter any errors in your generation\n",
" generations[tis][dom][direct] = handler.get_gene_probabilities(prompt_config=prompt_config_age, top_k=100, list_type=direct,\n",
" random_seed = 138)"
]
},
{
"cell_type": "markdown",
"id": "d585e881-3057-4e7a-a609-e7982e891237",
"metadata": {},
"source": [
"### ↓ This file stores the generated up-down lists for aging tissues"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "4f38b543-3109-40ff-b73d-a30d152de159",
"metadata": {},
"outputs": [],
"source": [
"with open('./1Aug2024_aging_signatures.pckl', 'wb') as f:\n",
" pickle.dump(generations,f)"
]
},
{
"cell_type": "markdown",
"id": "e631b582-b393-4084-b528-df5a8540272f",
"metadata": {},
"source": [
"> 💡 **Note**: You may load the file above directly to skip step-1 and use P3GPT-generated aging signature in your TCM research\n",
"```python\n",
"with open('./1Aug2024_aging_signatures.pckl', 'rb') as f:\n",
" generations = pickle.load(f)\n",
"```"
]
},
{
"cell_type": "markdown",
"id": "ed5e17cb-0242-40be-bd24-056d3ad61bc1",
"metadata": {},
"source": [
"## 2. Screen TCM compounds"
]
},
{
"cell_type": "markdown",
"id": "9e8f2ea2-1298-4ecc-9686-e7426afd9a1b",
"metadata": {},
"source": [
"The file below contains 659 TCM ingredients that are represented in the P3GPT training set.\n",
"\n",
"The BATMAN catalog refers to compounds by Pubchem CIDs while P3GPT uses conventional names, so we created a mapping CID→Names.\n",
"BATMAN also specifies protein targets the compounds are known or predicted to affect. We will measure the overlap between these lists and the P3GPT-generated aging signatures to find the most promising compounds. "
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "4dd3cd2e-0b8c-413f-87fb-0ce9bd0464e8",
"metadata": {},
"outputs": [],
"source": [
"with open('./P3GPT_compound_targets.pckl', 'rb') as f:\n",
" TCM_cpds = pickle.load(f)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "fe272676-96c6-401b-af36-31896daad5a0",
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"(5281792,\n",
" {'title': 'rosmarinic-acid',\n",
" 'known_targets': {'symbols': ['C5', 'CCR3', 'CCL2', 'PREP', 'NFKB1',\n",
" 'IKBKB', 'CASP3', 'C3', 'OLIG2', 'CCL11', \n",
" 'CD86', 'AURKA', 'IL2', 'F2', 'IDO1',\n",
" 'IL4', 'RPS6KB1','ABAT', 'CCL3','STAT1',\n",
" 'CD80', 'IL5', 'IL6'],\n",
" 'entrez_ids': [18, 3565, 4790, 836, 3551,\n",
" 3620, 6772, 718, 2147, 3558,\n",
" 3569, 6347, 6356, 727, 6790,\n",
" 3567, 942, 6348, 10215, 6198,\n",
" 5550, 1232, 941]},\n",
" 'predicted_targets': {'symbols': ['IFNG', 'PTGS1', 'PTGS2', 'TPMT'],\n",
" 'entrez_ids': [3458, 5742, 5743, 7172]}})"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# See what an entry in the mapping looks like\n",
"list(TCM_cpds.items())[0]"
]
},
{
"cell_type": "markdown",
"id": "324be182-fd49-4b5f-bc65-7c59ff56e46b",
"metadata": {},
"source": [
"Next, let's count how many times each compound's targets pop up in the generated signatures. To see if the overlap between targets and important aging genes is significant, we'll apply Fisher's exact test. As the background set, we shall use the total number of genes used by P3GPT — 25,332. "
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "853128d9-bafb-407a-9234-7376914ab9c0",
"metadata": {},
"outputs": [],
"source": [
"list_len = 100\n",
"enrich_stats = pd.DataFrame(None, index = None,\n",
" columns = ['compound', 'cid', 'tissue', 'domain',\n",
" 'p_value', 'target_type', 'N_targets',\n",
" 'hit_targets'])\n",
"for cid in TCM_cpds:\n",
" tg_sets = {'known':set(TCM_cpds[cid]['known_targets']['symbols']),\n",
" \"predicted\":set(TCM_cpds[cid]['predicted_targets']['symbols'])}\n",
" tg_sets[\"both\"] = tg_sets['known'] | tg_sets['predicted']\n",
" for tis in generations:\n",
" for dom in generations[tis]:\n",
" p3_set = set(generations[tis][dom]['up'][:list_len] + generations[tis][dom]['down'][:list_len])\n",
" for tg_type, tg_set in tg_sets.items():\n",
" p3_hits = tg_set & p3_set\n",
" # cols: in targets, not in targets\n",
" # rows: in P3 output, not in P3 output\n",
" cont_table = (a := np.array([[len(p3_hits), len(tg_set - p3_hits)],\n",
" [len(p3_hits - tg_set), 0]])) + \\\n",
" np.array([[0, 0],\n",
" [0, 25332 - a.sum().sum()]])\n",
"\n",
" F_exact = fisher_exact(table=cont_table, alternative='greater')\n",
" #['compound', 'tissue', 'domain', 'p_value', 'target_type']\n",
" enrich_stats.loc[enrich_stats.shape[0],:] = [TCM_cpds[cid]['title'],\n",
" cid,\n",
" tis,\n",
" dom,\n",
" F_exact[1],\n",
" tg_type,\n",
" len(tg_set),\n",
" len(p3_hits)]"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "9bb28a7d-b1f2-4159-b93c-3acad16d8d22",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Total number of tests: 47448\n"
]
}
],
"source": [
"print(f\"Total number of tests: {enrich_stats.shape[0]}\")"
]
},
{
"cell_type": "markdown",
"id": "170d3779-0f09-4b93-b26c-2cf2c75bd712",
"metadata": {},
"source": [
"Since we have run thousands of statistical tests, it makes sense to include a multiple comparison correction"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "d087b76b-978d-4f87-81fc-97e3b8c0dad7",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Remaining entries: 8866\n",
"Compounds that passed 1+ enrichment tests: 424\n"
]
}
],
"source": [
"enrich_stats[\"corr_Pv\"] = [min(1, x) for x in enrich_stats[\"p_value\"] * enrich_stats.shape[0]]\n",
"enrich_stats = enrich_stats[enrich_stats[\"corr_Pv\"]<.001]\n",
"print(f\"Remaining entries: {enrich_stats.shape[0]}\")\n",
"print(f'Compounds that passed 1+ enrichment tests: {len(enrich_stats.compound.unique())}')"
]
},
{
"cell_type": "markdown",
"id": "c9817c0b-51f2-4b7a-913c-9741345f1895",
"metadata": {},
"source": [
"We can now zoom in on the compounds that passed the test.\n",
"\n",
"Out of all 659 TCM compounds, the targets of 424 of them significantly overlapped with an aging aging signature.\n",
"Let's trim the table of significant enrichments even further by considering only the documented targets. \n",
"\n",
"> 💡 **Note:** You may choose a different target confirmation level. Looking for enrichment in known targets creates a bias toward well-studied compounds. Such popular anti-aging compounds as curcumin, for example, have thousands of publications covering their cellular interactions. Meanwhile, an obscure but an equally potent geroprotector may have zero known targets. Repeating this workflow with predicted targets is likely to provide more novel compounds."
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "3f71d393-2f67-4257-97a4-9a46b62ff334",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Remaining entries: 375\n",
"Compounds that passed 1+ enrichment tests: 80\n"
]
}
],
"source": [
"confirmation_level = 'known'\n",
"enrich_stats = enrich_stats[enrich_stats[\"target_type\"]==confirmation_level]\n",
"print(f\"Remaining entries: {enrich_stats.shape[0]}\")\n",
"print(f'Compounds that passed 1+ enrichment tests: {len(enrich_stats.compound.unique())}')"
]
},
{
"cell_type": "markdown",
"id": "acf8a7b2-21c4-4394-adb1-77fba7e950f4",
"metadata": {},
"source": [
"80 compounds is a much more manageable compound selection.\n",
"\n",
"These TCM compounds are targetting the genes involved in aging and may be considered for futher investigation *in vitro* or *in vivo*.\n",
"But what if we we wanted to compose a cocktail of TCM ingredients that will slow down the aging processes in as many tissues as possible?\n",
"Are there any TCM compounds that have been detected in 8/8 tissues?\n"
]
},
{
"cell_type": "code",
"execution_count": 32,
"id": "812aaa05-8ead-4cfb-b9f4-59ea7b25ead9",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"--- N potential geroprotectors identified in each tissue ---\n",
"N skin-compounds = 38\n",
"N muscle-compounds = 25\n",
"N whole blood-compounds = 48\n",
"N epithelium-compounds = 19\n",
"N artery-compounds = 32\n",
"N fat tissue-compounds = 17\n",
"N brain-compounds = 47\n",
"N liver-compounds = 23\n",
"\n",
"--- TCM ingredients targeting aging in 6 tissues (N = 4) ---\n",
"alpha-tocopherol\n",
"capsaicin\n",
"baicalin\n",
"testosterone\n",
"\n",
"--- TCM ingredients targeting aging in 7 tissues (N = 2) ---\n",
"kaempferol\n",
"triptolide\n",
"\n",
"--- TCM ingredients targeting aging in 8 tissues (N = 8) ---\n",
"colchicine\n",
"quercetin\n",
"apigenin\n",
"resveratrol\n",
"curcumin\n",
"brd-k55591206;epigallocatechin 3-gallate\n",
"estradiol\n",
"progesterone\n"
]
}
],
"source": [
"cpd_counts = {}\n",
"print(\"--- N potential geroprotectors identified in each tissue ---\")\n",
"for t in tissue_options:\n",
" tis_df = enrich_stats[(enrich_stats.tissue == t)& \\\n",
" (enrich_stats.target_type == confirmation_level)]\n",
" print(f'N {t}-compounds = {len(tis_df.compound.unique())}')\n",
" for cpd in tis_df.compound.unique():\n",
" if cpd not in cpd_counts:\n",
" cpd_counts[cpd] = 0\n",
" cpd_counts[cpd]+=1\n",
"\n",
"cpds_by_tis_count = dict()\n",
"for i in range(1,9):\n",
" cpds_by_tis_count[i] = [x for x,y in cpd_counts.items() if y == i]\n",
"\n",
"for i in (6,7,8):\n",
" print(f\"\\n--- TCM ingredients targeting aging in {i} tissues (N = {len(cpds_by_tis_count[i])}) ---\")\n",
" print(*cpds_by_tis_count[i], sep ='\\n')\n",
" \n"
]
},
{
"cell_type": "markdown",
"id": "931bf007-843e-41b3-b0ef-be7d754b025c",
"metadata": {},
"source": [
"A total of 14 compounds were detected as potential geroprotectors in 6+ tissues, while almost half of all detected ingredients affect agig only in one tissue.\n",
"Among them, 8 were targetting the aging signatures in 8/8 tissues. \n",
"\n",
"<center><img src=\"https://huggingface.co/datasets/f-galkin/batman2/resolve/main/demo/imgs/cpds_affecting_tissue_aging.svg\" width=\"600\" ></center>\n",
"\n",
"> 💡 **Note:** The compounds we call \"potential geroprotectors\" may in fact accelerate aging. When we difined important aging genes, we did binned the up- and down-regulated genes together, although the directionality of change is extremely important in this setting. Additionally, the mechanism of action (agonist/antagonist) of a TCM ingredient needs to be taken into account. We can lean on the fact that most compounds in BATMAN are generally considered safe or even beneficial to the organism, but ultimately, the final list of TCM geroprotectors needs to be manually reviewed."
]
},
{
"cell_type": "markdown",
"id": "16a8fec8-6587-41d0-bde7-1d1f42a69812",
"metadata": {},
"source": [
"## 3. Selecting a TCM formula\n",
"\n",
"Now that we have a list of 14 compounds with a systemic effect on aging, we can leverage BATMAN to do either of the following:\n",
"\n",
"- Screen existing TCM formulas to find those that contain as many compounds from our list as possible;\n",
"- Make a new TCM formula ourselves by selecting herbs one by one.\n",
"\n",
"We will demonstrate only the former option in this notebook."
]
},
{
"cell_type": "code",
"execution_count": 38,
"id": "189c2367-4a63-44b5-a0be-1a9d5b65c35c",
"metadata": {},
"outputs": [],
"source": [
"# Here are the CIDs of the potential geroprotectors \n",
"# we identified in section 2\n",
"cids = [969516, #curcumin\n",
" 445154, #resveratrol\n",
" 5280343, #quercetin\n",
" 6167, #colchicine\n",
" 5280443, #apigening\n",
" 65064, #EGCG3\n",
" 5757, # estradiol\n",
" 5994, # progesterone\n",
" 5280863, # kaempferol\n",
" 107985, # triptolide\n",
" 14985, #alpha-tocopherol\n",
" 1548943, # Capsaicin\n",
" 64982, # Baicalin\n",
" 6013, # Testosterone\n",
" ]"
]
},
{
"cell_type": "markdown",
"id": "d1969f91-d51b-4974-b1d6-fe9f834f7462",
"metadata": {},
"source": [
"For the sake of brevity, we have externalized the scripts used to parse BATMAN files into linked lists of ingredients-herbs-formulas with the `formula_picker.py` mini module available at the [batman2](https://huggingface.co/datasets/f-galkin/batman2) dataset repository. \n",
"\n",
"Feel free reuse the scripts and files we prepared in your own TCM-related projects. If you don't need our `TCMDB` wrapper class, you can access BATMAN data tables directly by executing the following commands:\n",
"```python\n",
"from datasets import load_dataset\n",
"batman_ingredients = load_dataset(\"f-galkin/batman2\", \"batman_ingredients\")\n",
"batman_herbs = load_dataset(\"f-galkin/batman2\", \"batman_herbs\")\n",
"batman_formulas = load_dataset(\"f-galkin/batman2\", \"batman_formulas\")\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 34,
"id": "73c59513-f48e-4570-8c66-8bfc5cfb547d",
"metadata": {},
"outputs": [],
"source": [
"from P3LIB.formula_picker import TCMDB\n",
"from datasets import load_dataset\n",
"db = TCMDB.download_from_hf()"
]
},
{
"cell_type": "markdown",
"id": "2acc6a91-51ab-4626-993e-5689eb03858c",
"metadata": {},
"source": [
"We formatted the BATMAN files (accessed on 8/1/2024) to support basic search operations, such as looking up a TCM formula that has the maximum amount of the compounds provided in a query."
]
},
{
"cell_type": "code",
"execution_count": 41,
"id": "ee611008-0335-4243-824e-2c78e032c844",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"13 compounds of 14 are encountered in the following TCM formulas:\n",
"['ZHANG ZHOU SHEN QU']\n"
]
}
],
"source": [
"p3_formula = db.select_formula_by_cpd(cids)\n",
"print(\"%s compounds of 14 are encountered in the following TCM formulas:\\n%s\"%p3_formula)"
]
},
{
"cell_type": "markdown",
"id": "60706086-fc5f-4b10-9355-d5e1f11e3507",
"metadata": {},
"source": [
"Not a single TCM formula out of the 54,832 described in BATMAN2 has all the 14 potential geroprotectors we selected.\n",
"And only 1 formula has 13/14 compounds — ZHANG ZHOU SHEN QU. Let's take a closer look at it."
]
},
{
"cell_type": "code",
"execution_count": 45,
"id": "d2ddf3f9-5515-49e2-8409-0caaf5aac4cd",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The contents of the ZHANG ZHOU SHEN QU (漳州神曲) TCM formula\n",
"1. Weeping forsythia (连翘)\n",
"2. Tsaoko (草果)\n",
"3. Yerbadetajo (墨旱莲)\n",
"4. Haichow elsholtzia (香薷)\n",
"5. Common anemarrhena (知母)\n",
"6. Medicine terminalia equivalent plant: terminalia chebula var tomentella (诃子)\n",
"7. Slenderstyle acanthopanax root-bark equivalent plant: acanthopanax sessiliflorus , acanthopanax senticosus (五加皮)\n",
"8. Dried tangerine peel (陈皮)\n",
"9. Bark of officinal magnolia (厚朴)\n",
"10. Perilia fruit (紫苏子)\n",
"11. Oriental waterplantain (泽泻)\n",
"12. Chinese hawthorn equivalent plant: crataegus pinnatifida var major (山楂)\n",
"13. Common hogfennel equivalent plant: peucedanum praeruptorum , peucedanum longshengens, peucedanum rubricaule , ligusticum brachylobum (前胡)\n",
"14. Glabrous greenbrier equivalent plant: smilax menispermoidea (土茯苓)\n",
"15. Chinese star anise (八角茴香)\n",
"16. White mulberry branch (桑枝)\n",
"17. (槟榔)\n",
"18. Wild mint (薄荷)\n",
"19. Pummelo peel (化橘红)\n",
"20. Mongolian snakegourd root (天花粉)\n",
"21. Red peony root (赤芍)\n",
"22. Grassleaved sweetflag equivalent plant: acorus gramineus (石菖蒲)\n",
"23. Lesser galangal (高粱姜)\n",
"24. Common yam equivalent plant: dioscorea japonica (山药)\n",
"25. Fineleaf schizonepeta (荆芥)\n",
"26. Doubleteeth pubescent angelica equivalent plant: heracleum lanatum (独活)\n",
"27. Amur corktree equivalent plant: phellodendron chinense , phellodendron chinense var glabriusculum, phellodendron amurense var wilsonii (黄柏)\n",
"28. Barley germinating fruit (麦芽)\n",
"29. Incised notopterygium equivalent plant: notopterygium forbesii (羌活)\n",
"30. Nutgrass galingale (香附)\n",
"31. Seed of gordon euryale (芡实)\n",
"32. Largehead atractylodes (白术)\n",
"33. Seville orange young fruit equivalent plant: citrus wilsonii , poncirus trifoliata (枳实)\n",
"34. Rangooncreeper (使君子)\n",
"35. Baikal skullcap equivalent plant: scutellaria amoena , scutellaria viscidula, scutellaria likiangensis , scutellaria rehderiana, scutellaria hypericifolia (黄芩)\n",
"36. Common nutmeg (肉豆蔻)\n",
"37. Common burreed (三棱)\n",
"38. Ural licorice equivalent plant: glycyrrhiza inflata, glycyrrhiza glabra, glycyrrhiza kansuensis, glycyrrhiza aspera, glycyrrhiza yunnanensis , glycyrrhiza squamulosa (甘草)\n",
"39. Common aucklandia (costustoot) (木香)\n",
"40. Zedoray rhizome (莪术)\n",
"41. Medicinal rhubarb equivalent plant: rheum palmatum, rheum tanguticum (大黄)\n",
"42. Celery wormwood (青蒿)\n",
"43. Common perilla leaf equivalent plant: perilla frutescens var acuta (紫苏叶)\n",
"44. Fruit of seville orange (枳壳)\n",
"45. Divaricate saposhnikovia (防风)\n",
"46. Fennel fruit (小茴香)\n",
"47. Root - bark of chinese wolfberry (地骨皮)\n",
"48. Cassiabarktree twig (桂枝)\n",
"49. Swordlike atractylodes equivalent plant: atractylodes chinensis, atractylodes japonica (苍术)\n",
"50. Lobed kudzuvine root equivalent plant: pueraria thomsonii, pueraria edulis, pueraria omeiensis , pueraria phaseoloides (葛根)\n",
"51. Indian bread (茯苓)\n",
"52. Rice bean (赤小豆)\n",
"53. Dahurian angelica (白芷)\n",
"54. Cassiabarktree (肉桂)\n",
"55. Balloonflower (桔梗)\n",
"56. Chinese nardostachys equivalent plant: nardostachys jatamansi (甘松)\n",
"57. Galanga resurrectionlily (山柰)\n",
"58. Bitter apricot seed (苦杏仁)\n",
"59. White hyacinth bean (白扁豆)\n",
"60. Bunge pricklyash equivalent plant: zanthoxylum schinifolium (花椒)\n",
"61. Bugbane equivalent plant: cimicifuga dahurica, cimicifuga heracleifolia (升麻)\n",
"62. Chinese ephedra equivalent plant: ephedra equisetina , ephedra intermedia , ephedra minuta , ephedra monosperma, ephedra likiangensis, ephedra saxatilis, ephedra gerardiana (麻黄)\n",
"63. Jobstears seed (薏苡仁)\n",
"64. Garden radish seed (莱菔子)\n",
"65. Common selfheal (夏枯草)\n",
"66. Common ginger dried rhizome (干姜)\n",
"67. Shiny bugleweed (泽兰)\n",
"68. Green tangerine peel (青皮)\n",
"69. Chinese thorowax equivalent plant: bupleurum scorzonerifolium, bupleurum smithii var parvifolium , bupleurum aureum, bupleurum longiradiatum, bupleurum marginatum , bupleurum marginatum var stenophyllum, bupleurum angustissimum, bupleurum chaishoui, bupleurum wenchuanense , bupleurum sibiricum, bupleurum yinchowense (柴胡)\n",
"70. Cape jasmine fruit (栀子)\n",
"71. Virgate wormwood herb (茵陈)\n",
"72. Clove tree (丁香)\n",
"73. Combined spicebush (乌药)\n",
"74. Cablin potchouli (广霍香)\n",
"75. Villous amomum equivalent plant: amomum xanthioides , amomum longiligulare (砂仁)\n"
]
}
],
"source": [
"pinyin_name = 'ZHANG ZHOU SHEN QU'\n",
"print(f'The contents of the {pinyin_name} ({db.formulas[pinyin_name].synonyms[0]}) TCM formula')\n",
"for i, herb in enumerate(db.formulas[pinyin_name].herbs):\n",
" print(f\"{i+1}. {herb.synonyms[2]} ({herb.synonyms[1]})\")\n"
]
},
{
"cell_type": "markdown",
"id": "690e5223-3091-4dd0-9944-e6c4c7323abf",
"metadata": {},
"source": [
"The formula we ended up with is quite complex and contains 75 herbal components, such as nutmeg, turmeric, scutellaria, citrus peels, patchouli and others.\n",
"\n",
"You can learn more about this composition on other [TCM databases](https://bidd.group/TCMID/tcmf.php?formula=TCMFx6833). For now, that is where we shall conclude our search"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "ism311",
"language": "python",
"name": "myenv"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.0"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|