Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
albertvillanova HF staff commited on
Commit
b83b145
1 Parent(s): 6bcf0d7

Delete legacy dataset_infos.json

Browse files
Files changed (1) hide show
  1. dataset_infos.json +0 -103
dataset_infos.json DELETED
@@ -1,103 +0,0 @@
1
- {
2
- "plain_text": {
3
- "description": "The Adversarial Natural Language Inference (ANLI) is a new large-scale NLI benchmark dataset,\nThe dataset is collected via an iterative, adversarial human-and-model-in-the-loop procedure.\nANLI is much more difficult than its predecessors including SNLI and MNLI.\nIt contains three rounds. Each round has train/dev/test splits.\n",
4
- "citation": "@InProceedings{nie2019adversarial,\n title={Adversarial NLI: A New Benchmark for Natural Language Understanding},\n author={Nie, Yixin\n and Williams, Adina\n and Dinan, Emily\n and Bansal, Mohit\n and Weston, Jason\n and Kiela, Douwe},\n booktitle = \"Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics\",\n year = \"2020\",\n publisher = \"Association for Computational Linguistics\",\n}\n",
5
- "homepage": "https://github.com/facebookresearch/anli/",
6
- "license": "",
7
- "features": {
8
- "uid": {
9
- "dtype": "string",
10
- "_type": "Value"
11
- },
12
- "premise": {
13
- "dtype": "string",
14
- "_type": "Value"
15
- },
16
- "hypothesis": {
17
- "dtype": "string",
18
- "_type": "Value"
19
- },
20
- "label": {
21
- "names": [
22
- "entailment",
23
- "neutral",
24
- "contradiction"
25
- ],
26
- "_type": "ClassLabel"
27
- },
28
- "reason": {
29
- "dtype": "string",
30
- "_type": "Value"
31
- }
32
- },
33
- "builder_name": "anli",
34
- "dataset_name": "anli",
35
- "config_name": "plain_text",
36
- "version": {
37
- "version_str": "0.1.0",
38
- "description": "",
39
- "major": 0,
40
- "minor": 1,
41
- "patch": 0
42
- },
43
- "splits": {
44
- "train_r1": {
45
- "name": "train_r1",
46
- "num_bytes": 8006888,
47
- "num_examples": 16946,
48
- "dataset_name": null
49
- },
50
- "dev_r1": {
51
- "name": "dev_r1",
52
- "num_bytes": 573428,
53
- "num_examples": 1000,
54
- "dataset_name": null
55
- },
56
- "test_r1": {
57
- "name": "test_r1",
58
- "num_bytes": 574917,
59
- "num_examples": 1000,
60
- "dataset_name": null
61
- },
62
- "train_r2": {
63
- "name": "train_r2",
64
- "num_bytes": 20801581,
65
- "num_examples": 45460,
66
- "dataset_name": null
67
- },
68
- "dev_r2": {
69
- "name": "dev_r2",
70
- "num_bytes": 556066,
71
- "num_examples": 1000,
72
- "dataset_name": null
73
- },
74
- "test_r2": {
75
- "name": "test_r2",
76
- "num_bytes": 572639,
77
- "num_examples": 1000,
78
- "dataset_name": null
79
- },
80
- "train_r3": {
81
- "name": "train_r3",
82
- "num_bytes": 44720719,
83
- "num_examples": 100459,
84
- "dataset_name": null
85
- },
86
- "dev_r3": {
87
- "name": "dev_r3",
88
- "num_bytes": 663148,
89
- "num_examples": 1200,
90
- "dataset_name": null
91
- },
92
- "test_r3": {
93
- "name": "test_r3",
94
- "num_bytes": 657586,
95
- "num_examples": 1200,
96
- "dataset_name": null
97
- }
98
- },
99
- "download_size": 26286748,
100
- "dataset_size": 77126972,
101
- "size_in_bytes": 103413720
102
- }
103
- }