Datasets:
Sub-tasks:
dialogue-modeling
Languages:
English
Size:
10K<n<100K
Tags:
conversational-curiosity
License:
File size: 12,044 Bytes
4b18ec2 d782488 4b18ec2 d782488 690279b 4b18ec2 3a8f51a 4b18ec2 239dbae dd4e169 184bb68 e5de162 c3ae8fe 1252b91 c3ae8fe 1252b91 c3ae8fe 1252b91 c3ae8fe 1252b91 c3ae8fe 1252b91 c3ae8fe 1252b91 c3ae8fe 1252b91 c3ae8fe 1252b91 c3ae8fe 1252b91 c3ae8fe f10d546 c3ae8fe 4b18ec2 dd4e169 4b18ec2 dd4e169 4b18ec2 cd86a0f 4b18ec2 239dbae 4b18ec2 239dbae 4b18ec2 3a8f51a 4b18ec2 239dbae 4b18ec2 239dbae 4b18ec2 239dbae 4b18ec2 239dbae 62197cc 4b18ec2 239dbae 4b18ec2 239dbae cd86a0f e5de162 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- cc-by-nc-4.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-generation
- fill-mask
task_ids:
- dialogue-modeling
paperswithcode_id: curiosity
pretty_name: Curiosity Dataset
tags:
- conversational-curiosity
dataset_info:
features:
- name: messages
sequence:
- name: message
dtype: string
- name: liked
dtype:
class_label:
names:
'0': 'False'
'1': 'True'
- name: sender
dtype:
class_label:
names:
'0': user
'1': assistant
- name: facts
sequence:
- name: fid
dtype: int32
- name: used
dtype:
class_label:
names:
'0': 'False'
'1': 'True'
- name: source
dtype:
class_label:
names:
'0': section
'1': known
'2': random
- name: message_id
dtype: string
- name: dialog_acts
sequence: string
- name: known_entities
sequence: string
- name: focus_entity
dtype: string
- name: dialog_id
dtype: int32
- name: inferred_steps
dtype:
class_label:
names:
'0': 'False'
'1': 'True'
- name: created_time
dtype: int64
- name: aspects
sequence: string
- name: first_aspect
dtype: string
- name: second_aspect
dtype: string
- name: shuffle_facts
dtype:
class_label:
names:
'0': 'False'
'1': 'True'
- name: related_entities
sequence: string
- name: tag
dtype: string
- name: user_id
dtype: int32
- name: assistant_id
dtype: int32
- name: is_annotated
dtype:
class_label:
names:
'0': 'False'
'1': 'True'
- name: user_dialog_rating
dtype: int32
- name: user_other_agent_rating
dtype: int32
- name: assistant_dialog_rating
dtype: int32
- name: assistant_other_agent_rating
dtype: int32
- name: reported
dtype:
class_label:
names:
'0': 'False'
'1': 'True'
- name: annotated
dtype:
class_label:
names:
'0': 'False'
'1': 'True'
config_name: curiosity_dialogs
splits:
- name: train
num_bytes: 37198297
num_examples: 10287
- name: val
num_bytes: 4914487
num_examples: 1287
- name: test
num_bytes: 4915613
num_examples: 1287
- name: test_zero
num_bytes: 4333191
num_examples: 1187
download_size: 92169165
dataset_size: 51361588
---
# Dataset Card for Curiosity Dataset
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [Curiosity Dataset Homepage](https://www.pedro.ai/curiosity)
- **Repository:** [Curiosity Dataset Repository](https://github.com/facebookresearch/curiosity)
- **Paper:** [ACL Anthology](https://www.aclweb.org/anthology/2020.emnlp-main.655/)
- **Point of Contact:** [Pedro Rodriguez](https://mailhide.io/e/wbfjM)
### Dataset Summary
Curiosity dataset consists of 14K English dialogs (181K utterances) where users and assistants converse about geographic topics like geopolitical entities and locations. This dataset is annotated with pre-existing user knowledge, message-level dialog acts, grounding to Wikipedia, and user reactions to messages.
### Supported Tasks and Leaderboards
* `text-generation-other-conversational-curiosity`: The dataset can be used to train a model for Conversational Curiosity, which consists in the testing of the hypothesis that engagement increases when users are presented with facts related to what they know. Success on this task is typically measured by achieving a *high* [Accuracy](https://huggingface.co/metrics/accuracy) and [F1 Score](https://huggingface.co/metrics/f1).
### Languages
The text in the dataset is in English collected by crowd-souring. The associated BCP-47 code is `en`.
## Dataset Structure
### Data Instances
A typical data point consists of dialogs between an user and an assistant, which is followed by the different attributes of the particular dialog.
An example from the Curiosity Dataset train set looks as follows:
```
{'annotated': 1,
'aspects': ['Media', 'Politics and government'],
'assistant_dialog_rating': 5,
'assistant_id': 341,
'assistant_other_agent_rating': 5,
'created_time': 1571783665,
'dialog_id': 21922,
'first_aspect': 'Media',
'focus_entity': 'Namibia',
'inferred_steps': 1,
'is_annotated': 0,
'known_entities': ['South Africa', 'United Kingdom', 'Portugal'],
'messages': {'dialog_acts': [['request_topic'],
['inform_response'],
['request_aspect'],
['inform_response'],
['request_followup'],
['inform_response'],
['request_aspect', 'feedback_positive'],
['inform_response'],
['request_followup'],
['inform_response'],
[],
[]],
'facts': [{'fid': [], 'source': [], 'used': []},
{'fid': [77870, 77676, 77816, 77814, 77775, 77659, 77877, 77785, 77867],
'source': [0, 1, 2, 2, 0, 2, 0, 1, 1],
'used': [0, 0, 0, 0, 0, 0, 0, 0, 0]},
{'fid': [], 'source': [], 'used': []},
{'fid': [77725, 77870, 77676, 77863, 77814, 77775, 77659, 77877, 77867],
'source': [2, 0, 1, 1, 2, 0, 2, 0, 1],
'used': [0, 0, 0, 0, 0, 0, 0, 0, 0]},
{'fid': [], 'source': [], 'used': []},
{'fid': [77694, 77661, 77863, 77780, 77671, 77704, 77869, 77693, 77877],
'source': [1, 2, 1, 0, 2, 2, 0, 1, 0],
'used': [0, 0, 0, 0, 0, 0, 0, 0, 1]},
{'fid': [], 'source': [], 'used': []},
{'fid': [77816, 77814, 77864, 77659, 77877, 77803, 77738, 77784, 77789],
'source': [2, 2, 0, 2, 0, 1, 1, 0, 1],
'used': [0, 0, 0, 0, 0, 0, 0, 0, 0]},
{'fid': [], 'source': [], 'used': []},
{'fid': [77694, 77776, 77780, 77696, 77707, 77693, 77778, 77702, 77743],
'source': [1, 0, 0, 2, 1, 1, 0, 2, 2],
'used': [0, 0, 0, 0, 0, 0, 0, 0, 0]},
{'fid': [], 'source': [], 'used': []},
{'fid': [77662, 77779, 77742, 77734, 77663, 77777, 77702, 77731, 77778],
'source': [1, 0, 2, 1, 2, 0, 2, 1, 0],
'used': [0, 0, 0, 0, 0, 0, 0, 0, 1]}],
'liked': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
'message': ['Hi. I want information about Namibia.',
'Nmbia is a country in southern Africa.',
'Do you have information about the media there?',
'A mentional amount of foriegn',
'What about it?',
"Media and journalists in Namibia are represented by the Namibia chapter of the Media Institute of 'southern Africa and the Editors Forum of Namibia.",
'Interesting! What can you tell me about the politics and government?',
'Namibia formed the Namibian Defence Force, comprising former enemies in a 23-year bush war.',
'Do you have more information about it?',
"With a small army and a fragile economy , the Namibian government's principal foreign policy concern is developing strengthened ties within the Southern African region.",
"That's all I wanted to know. Thank you!",
'My pleasure!'],
'message_id': ['617343895',
'2842515356',
'4240816985',
'520711081',
'1292358002',
'3677078227',
'1563061125',
'1089028270',
'1607063839',
'113037558',
'1197873991',
'1399017322'],
'sender': [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]},
'related_entities': ['Western Roman Empire',
'United Kingdom',
'Portuguese language',
'Southern African Development Community',
'South Africa',
'Kalahari Desert',
'Namib Desert',
'League of Nations',
'Afrikaans',
'Sub-Saharan Africa',
'Portugal',
'South-West Africa',
'Warmbad, Namibia',
'German language',
'NBC'],
'reported': 0,
'second_aspect': 'Politics and government',
'shuffle_facts': 1,
'tag': 'round_2',
'user_dialog_rating': 5,
'user_id': 207,
'user_other_agent_rating': 5}
```
### Data Fields
* `messages`: List of dialogs between the user and the assistant and their associated attributes
* `dialog_acts`: List of actions performed in the dialogs
* `facts`: List of facts returned by the assistant
* `fid`: Fact ID
* `source`: Source for the fact
* `used`: Whether facts were used before in the same dialog
* `liked`: List of values indicating whether each dialog was liked
* `message`: List of dialogs (messages) between the user and the assistant
* `message_id`: Message ID
* `sender`: Message author ID (numeric)
* `known_entities`: Rooted facts about entities the user knows
* `focus_entity` : Entity in focus in the dialogs
* `dialog_id `: Dialog ID
* `inferred_steps`: Number of inferred steps
* `created_time`: Time of creation of the dialog
* `aspects`: List of two aspects which the dialog is about
* `first_aspect`: First aspect
* `second_aspect`: Second aspect
* `shuffle_facts`: Whether facts were shuffled
* `related_entities` : List of fifteen related entities to the focus entity
* `tag`: Conversation tag
* `user_id`: User ID
* `assistant_id`: Assistant ID
* `is_annotated`: 0 or 1 (More Information Needed)
* `user_dialog_rating`: 1 - 5 (More Information Needed)
* `user_other_agent_rating`: 1 - 5 (More Information Needed)
* `assistant_dialog_rating`: 1 - 5 (More Information Needed)
* `assistant_other_agent_rating`: 1 - 5 (More Information Needed)
* `reported`: Whether the dialog was reported inappropriate
* `annotated`: 0 or 1 (More Information Needed)
### Data Splits
The data is split into a training, validation, test and test_zero set as per the original dataset split.
| | train | validation | test | test_zero |
|-----------------------|------:|-----------:|-----:|----------:|
| Input dialog examples | 10287 | 1287 | 1287 | 1187 |
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[Attribution-NonCommercial 4.0 International](https://creativecommons.org/licenses/by-nc/4.0/legalcode)
### Citation Information
```
@inproceedings{rodriguez2020curiosity,
title = {Information Seeking in the Spirit of Learning: a Dataset for Conversational Curiosity},
author = {Pedro Rodriguez and Paul Crook and Seungwhan Moon and Zhiguang Wang},
year = 2020,
booktitle = {Empirical Methods in Natural Language Processing}
}
```
### Contributions
Thanks to [@vineeths96](https://github.com/vineeths96) for adding this dataset. |