Datasets:
Sub-tasks:
dialogue-modeling
Languages:
English
Size:
10K<n<100K
Tags:
conversational-curiosity
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Information Seeking in the Spirit of Learning: a Dataset for Conversational Curiosity""" | |
from __future__ import absolute_import, division, print_function | |
import json | |
import os | |
import datasets | |
_CITATION = """\ | |
@inproceedings{rodriguez2020curiosity, | |
title = {Information Seeking in the Spirit of Learning: a Dataset for Conversational Curiosity}, | |
author = {Pedro Rodriguez and Paul Crook and Seungwhan Moon and Zhiguang Wang}, | |
year = 2020, | |
booktitle = {Empirical Methods in Natural Language Processing} | |
} | |
""" | |
_DESCRIPTION = """\ | |
This dataset contains 14K dialogs (181K utterances) where users and assistants converse about geographic topics like | |
geopolitical entities and locations. This dataset is annotated with pre-existing user knowledge, message-level dialog | |
acts, grounding to Wikipedia, and user reactions to messages. | |
""" | |
_HOMEPAGE = "https://www.pedro.ai/curiosity" | |
_LICENSE = "https://github.com/facebookresearch/curiosity/blob/master/LICENSE" | |
_URL = "https://obj.umiacs.umd.edu/curiosity/" | |
_URLs = { | |
"train": _URL + "curiosity_dialogs.train.json", | |
"val": _URL + "curiosity_dialogs.val.json", | |
"test": _URL + "curiosity_dialogs.test.json", | |
"test_zero": _URL + "curiosity_dialogs.test_zero.json", | |
} | |
class CuriosityDialogsConfig(datasets.BuilderConfig): | |
"""BuilderConfig for Curiosity Dialogs dataset""" | |
def __init__(self, **kwargs): | |
"""BuilderConfig for Curiosity Dialogs dataset. | |
Args: | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(CuriosityDialogsConfig, self).__init__(**kwargs) | |
class CuriosityDialogs(datasets.GeneratorBasedBuilder): | |
"""Information Seeking in the Spirit of Learning: a Dataset for Conversational Curiosity""" | |
VERSION = datasets.Version("1.1.0") | |
BUILDER_CONFIGS = [ | |
CuriosityDialogsConfig( | |
name="curiosity_dialogs", | |
version=datasets.Version("1.1.0"), | |
description="Curiosity Dialog: A Dataset for Conversational Curiosity", | |
), | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"messages": datasets.Sequence( | |
{ | |
"message": datasets.Value("string"), | |
"liked": datasets.ClassLabel(names=["False", "True"]), | |
"sender": datasets.ClassLabel(names=["user", "assistant"]), | |
"facts": datasets.Sequence( | |
{ | |
"fid": datasets.Value("int32"), | |
"used": datasets.ClassLabel(names=["False", "True"]), | |
"source": datasets.ClassLabel(names=["section", "known", "random"]), | |
} | |
), | |
"message_id": datasets.Value("string"), | |
"dialog_acts": datasets.Sequence(datasets.Value("string")), | |
} | |
), | |
"known_entities": datasets.Sequence(datasets.Value("string")), | |
"focus_entity": datasets.Value("string"), | |
"dialog_id": datasets.Value("int32"), | |
"inferred_steps": datasets.ClassLabel(names=["False", "True"]), | |
"created_time": datasets.Value("int64"), | |
"aspects": datasets.Sequence(datasets.Value("string")), | |
"first_aspect": datasets.Value("string"), | |
"second_aspect": datasets.Value("string"), | |
"shuffle_facts": datasets.ClassLabel(names=["False", "True"]), | |
"related_entities": datasets.Sequence(datasets.Value("string")), | |
"tag": datasets.Value("string"), | |
"user_id": datasets.Value("int32"), | |
"assistant_id": datasets.Value("int32"), | |
"is_annotated": datasets.ClassLabel(names=["False", "True"]), | |
"user_dialog_rating": datasets.Value("int32"), | |
"user_other_agent_rating": datasets.Value("int32"), | |
"assistant_dialog_rating": datasets.Value("int32"), | |
"assistant_other_agent_rating": datasets.Value("int32"), | |
"reported": datasets.ClassLabel(names=["False", "True"]), | |
"annotated": datasets.ClassLabel(names=["False", "True"]), | |
} | |
), | |
supervised_keys=None, | |
homepage=_HOMEPAGE, | |
license=_LICENSE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
data_dir = dl_manager.download_and_extract(_URLs) | |
return [ | |
datasets.SplitGenerator( | |
name="train", | |
gen_kwargs={ | |
"filepath": os.path.join(data_dir["train"]), | |
"split": "train", | |
}, | |
), | |
datasets.SplitGenerator( | |
name="val", | |
gen_kwargs={"filepath": os.path.join(data_dir["val"]), "split": "val"}, | |
), | |
datasets.SplitGenerator( | |
name="test", | |
gen_kwargs={ | |
"filepath": os.path.join(data_dir["test"]), | |
"split": "test_zero", | |
}, | |
), | |
datasets.SplitGenerator( | |
name="test_zero", | |
gen_kwargs={ | |
"filepath": os.path.join(data_dir["test_zero"]), | |
"split": "test_zero", | |
}, | |
), | |
] | |
def _generate_examples(self, filepath, split): | |
""" Yields examples. """ | |
# Bool entries are converted to string entries because of PyArrow error | |
with open(filepath, encoding="utf-8") as f: | |
dataset = json.load(f) | |
dialogs = dataset["dialogs"] | |
for id_, data in enumerate(dialogs): | |
messages = data["messages"] | |
for message in messages: | |
message["liked"] = str(message["liked"]) | |
facts = message["facts"] | |
for fact in facts: | |
fact["used"] = str(fact["used"]) | |
known_entities = data["known_entities"] | |
focus_entity = data["focus_entity"] | |
dialog_id = data["dialog_id"] | |
inferred_steps = str(data["inferred_steps"]) | |
created_time = data["created_time"] | |
aspects = data["aspects"] | |
first_aspect = data["first_aspect"] | |
second_aspect = data["second_aspect"] | |
shuffle_facts = str(data["shuffle_facts"]) | |
related_entities = data["related_entities"] | |
tag = data["tag"] | |
user_id = data["user_id"] | |
assistant_id = data["assistant_id"] | |
is_annotated = str(data["is_annotated"]) | |
user_dialog_rating = data["user_dialog_rating"] | |
user_other_agent_rating = data["user_other_agent_rating"] | |
assistant_dialog_rating = data["assistant_dialog_rating"] | |
assistant_other_agent_rating = data["assistant_other_agent_rating"] | |
reported = str(data["reported"]) | |
annotated = str(data["annotated"]) | |
yield id_, { | |
"messages": messages, | |
"known_entities": known_entities, | |
"focus_entity": focus_entity, | |
"dialog_id": dialog_id, | |
"inferred_steps": inferred_steps, | |
"created_time": created_time, | |
"aspects": aspects, | |
"first_aspect": first_aspect, | |
"second_aspect": second_aspect, | |
"shuffle_facts": shuffle_facts, | |
"related_entities": related_entities, | |
"tag": tag, | |
"user_id": user_id, | |
"assistant_id": assistant_id, | |
"is_annotated": is_annotated, | |
"user_dialog_rating": user_dialog_rating, | |
"user_other_agent_rating": user_other_agent_rating, | |
"assistant_dialog_rating": assistant_dialog_rating, | |
"assistant_other_agent_rating": assistant_other_agent_rating, | |
"reported": reported, | |
"annotated": annotated, | |
} | |