curiosity_dialogs / curiosity_dialogs.py
system's picture
system HF staff
Update files from the datasets library (from 1.6.1)
1456622
raw
history blame
9.24 kB
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Information Seeking in the Spirit of Learning: a Dataset for Conversational Curiosity"""
import json
import os
import datasets
_CITATION = """\
@inproceedings{rodriguez2020curiosity,
title = {Information Seeking in the Spirit of Learning: a Dataset for Conversational Curiosity},
author = {Pedro Rodriguez and Paul Crook and Seungwhan Moon and Zhiguang Wang},
year = 2020,
booktitle = {Empirical Methods in Natural Language Processing}
}
"""
_DESCRIPTION = """\
This dataset contains 14K dialogs (181K utterances) where users and assistants converse about geographic topics like
geopolitical entities and locations. This dataset is annotated with pre-existing user knowledge, message-level dialog
acts, grounding to Wikipedia, and user reactions to messages.
"""
_HOMEPAGE = "https://www.pedro.ai/curiosity"
_LICENSE = "https://github.com/facebookresearch/curiosity/blob/master/LICENSE"
_URL = "https://obj.umiacs.umd.edu/curiosity/"
_URLs = {
"train": _URL + "curiosity_dialogs.train.json",
"val": _URL + "curiosity_dialogs.val.json",
"test": _URL + "curiosity_dialogs.test.json",
"test_zero": _URL + "curiosity_dialogs.test_zero.json",
}
class CuriosityDialogsConfig(datasets.BuilderConfig):
"""BuilderConfig for Curiosity Dialogs dataset"""
def __init__(self, **kwargs):
"""BuilderConfig for Curiosity Dialogs dataset.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(CuriosityDialogsConfig, self).__init__(**kwargs)
class CuriosityDialogs(datasets.GeneratorBasedBuilder):
"""Information Seeking in the Spirit of Learning: a Dataset for Conversational Curiosity"""
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIGS = [
CuriosityDialogsConfig(
name="curiosity_dialogs",
version=datasets.Version("1.1.0"),
description="Curiosity Dialog: A Dataset for Conversational Curiosity",
),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"messages": datasets.Sequence(
{
"message": datasets.Value("string"),
"liked": datasets.ClassLabel(names=["False", "True"]),
"sender": datasets.ClassLabel(names=["user", "assistant"]),
"facts": datasets.Sequence(
{
"fid": datasets.Value("int32"),
"used": datasets.ClassLabel(names=["False", "True"]),
"source": datasets.ClassLabel(names=["section", "known", "random"]),
}
),
"message_id": datasets.Value("string"),
"dialog_acts": datasets.Sequence(datasets.Value("string")),
}
),
"known_entities": datasets.Sequence(datasets.Value("string")),
"focus_entity": datasets.Value("string"),
"dialog_id": datasets.Value("int32"),
"inferred_steps": datasets.ClassLabel(names=["False", "True"]),
"created_time": datasets.Value("int64"),
"aspects": datasets.Sequence(datasets.Value("string")),
"first_aspect": datasets.Value("string"),
"second_aspect": datasets.Value("string"),
"shuffle_facts": datasets.ClassLabel(names=["False", "True"]),
"related_entities": datasets.Sequence(datasets.Value("string")),
"tag": datasets.Value("string"),
"user_id": datasets.Value("int32"),
"assistant_id": datasets.Value("int32"),
"is_annotated": datasets.ClassLabel(names=["False", "True"]),
"user_dialog_rating": datasets.Value("int32"),
"user_other_agent_rating": datasets.Value("int32"),
"assistant_dialog_rating": datasets.Value("int32"),
"assistant_other_agent_rating": datasets.Value("int32"),
"reported": datasets.ClassLabel(names=["False", "True"]),
"annotated": datasets.ClassLabel(names=["False", "True"]),
}
),
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
data_dir = dl_manager.download_and_extract(_URLs)
return [
datasets.SplitGenerator(
name="train",
gen_kwargs={
"filepath": os.path.join(data_dir["train"]),
"split": "train",
},
),
datasets.SplitGenerator(
name="val",
gen_kwargs={"filepath": os.path.join(data_dir["val"]), "split": "val"},
),
datasets.SplitGenerator(
name="test",
gen_kwargs={
"filepath": os.path.join(data_dir["test"]),
"split": "test_zero",
},
),
datasets.SplitGenerator(
name="test_zero",
gen_kwargs={
"filepath": os.path.join(data_dir["test_zero"]),
"split": "test_zero",
},
),
]
def _generate_examples(self, filepath, split):
"""Yields examples."""
# Bool entries are converted to string entries because of PyArrow error
with open(filepath, encoding="utf-8") as f:
dataset = json.load(f)
dialogs = dataset["dialogs"]
for id_, data in enumerate(dialogs):
messages = data["messages"]
for message in messages:
message["liked"] = str(message["liked"])
facts = message["facts"]
for fact in facts:
fact["used"] = str(fact["used"])
known_entities = data["known_entities"]
focus_entity = data["focus_entity"]
dialog_id = data["dialog_id"]
inferred_steps = str(data["inferred_steps"])
created_time = data["created_time"]
aspects = data["aspects"]
first_aspect = data["first_aspect"]
second_aspect = data["second_aspect"]
shuffle_facts = str(data["shuffle_facts"])
related_entities = data["related_entities"]
tag = data["tag"]
user_id = data["user_id"]
assistant_id = data["assistant_id"]
is_annotated = str(data["is_annotated"])
user_dialog_rating = data["user_dialog_rating"]
user_other_agent_rating = data["user_other_agent_rating"]
assistant_dialog_rating = data["assistant_dialog_rating"]
assistant_other_agent_rating = data["assistant_other_agent_rating"]
reported = str(data["reported"])
annotated = str(data["annotated"])
yield id_, {
"messages": messages,
"known_entities": known_entities,
"focus_entity": focus_entity,
"dialog_id": dialog_id,
"inferred_steps": inferred_steps,
"created_time": created_time,
"aspects": aspects,
"first_aspect": first_aspect,
"second_aspect": second_aspect,
"shuffle_facts": shuffle_facts,
"related_entities": related_entities,
"tag": tag,
"user_id": user_id,
"assistant_id": assistant_id,
"is_annotated": is_annotated,
"user_dialog_rating": user_dialog_rating,
"user_other_agent_rating": user_other_agent_rating,
"assistant_dialog_rating": assistant_dialog_rating,
"assistant_other_agent_rating": assistant_other_agent_rating,
"reported": reported,
"annotated": annotated,
}