fittar commited on
Commit
2f6235a
·
1 Parent(s): 38f0014

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +55 -0
README.md CHANGED
@@ -1,3 +1,58 @@
1
  ---
2
  license: mit
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ language:
4
+ - en
5
  ---
6
+ # Visually Grounded embeddings for Fast-text and GloVe
7
+
8
+ This repository contains multiple visually grounded word embedding models.
9
+ All of these embeddings have been effectively infused with visual information from images.<br>
10
+ They have been proven to show stronger correlations (compared to textual embeddings)
11
+ to human judgments on various word similarities and relatedness benchmarks.
12
+
13
+ # Usage
14
+
15
+ All of the models are encoded in [gensim](https://pypi.org/project/gensim/) format.
16
+ Loading the model:
17
+ ```python
18
+ import gensim
19
+
20
+ model_g = gensim.models.KeyedVectors.load_word2vec_format('path_to_embeddings' , binary=True)
21
+
22
+ #retrieve the most similar words
23
+ print(model_g.most_similar('together',topn=10))
24
+
25
+ [('togther', 0.6425853967666626), ('togehter', 0.6374243497848511), ('togeather', 0.6196791529655457),
26
+ ('togather', 0.5998020172119141), ('togheter', 0.5819681882858276),('toghether', 0.5738174319267273),
27
+ ('2gether', 0.5187329053878784), ('togethor', 0.501663088798523), ('gether', 0.49128714203834534),
28
+ ('toegther', 0.48457157611846924)]
29
+
30
+ print(model_g.most_similar('sad',topn=10))
31
+
32
+ [('saddening', 0.6763913631439209), ('depressing', 0.6676110029220581), ('saddened', 0.6352651715278625),
33
+ ('sorrowful', 0.6336953043937683), ('heartbreaking', 0.6180269122123718), ('heartbroken', 0.6099187135696411),
34
+ ('tragic', 0.6039361953735352), ('pathetic', 0.5848405361175537), ('Sad', 0.5826965570449829),
35
+ ('mournful', 0.5742306709289551)]
36
+
37
+ #find the outlier word
38
+ print(model_g.doesnt_match(['fire', 'water', 'land', 'sea', 'air', 'car']))
39
+
40
+ car
41
+ ```
42
+
43
+ where 'path_to_embeddings' is the path to the embeddings you intend to use.
44
+
45
+ # Which embeddings to use
46
+ Under the **Files and Versions** tab, you can see the list of 4 available embeddings.
47
+
48
+ The following embedding files are from the paper [Learning Zero-Shot Multifaceted Visually Grounded Word Embeddings via Multi-Task Training](https://aclanthology.org/2021.conll-1.12/):
49
+ - v_glove_1024d_1.0
50
+ - v_fasttext_1024d_1.0
51
+
52
+ The following embedding files are from the paper [Language with Vision: a Study on Grounded Word and Sentence Embeddings](https://arxiv.org/pdf/2206.08823.pdf):
53
+
54
+ - v_glove_1024d_2.0
55
+ - v_glove_300_d_2.0
56
+
57
+ All of them come with 1024-dimensional word vectors except v_glove_300_d_2.0 which contains 300 1024-dimensional word vectors.
58
+