Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
adamnarozniak commited on
Commit
081b833
1 Parent(s): 5fa5fcc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +102 -1
README.md CHANGED
@@ -6,7 +6,7 @@ dataset_info:
6
  dtype: string
7
  - name: x
8
  sequence: float64
9
- - name: y
10
  dtype: int64
11
  splits:
12
  - name: train
@@ -19,4 +19,105 @@ configs:
19
  data_files:
20
  - split: train
21
  path: data/train-*
 
 
 
 
22
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  dtype: string
7
  - name: x
8
  sequence: float64
9
+ - name: 'y'
10
  dtype: int64
11
  splits:
12
  - name: train
 
19
  data_files:
20
  - split: train
21
  path: data/train-*
22
+ task_categories:
23
+ - tabular-classification
24
+ size_categories:
25
+ - 100K<n<1M
26
  ---
27
+
28
+ # Dataset Card for SYNTHETIC
29
+
30
+ The SYNTHETIC dataset is a part of the [LEAF](https://leaf.cmu.edu/) benchmark.
31
+ This version corresponds to the dataset generated with default parameters that give a dataset where:
32
+ * input (x) length is 60;
33
+ * 5 unique labels (y)
34
+ * 1000 unique devices (device_id).
35
+
36
+ ## Dataset Details
37
+
38
+ ### Dataset Description
39
+
40
+
41
+ - **Curated by:** [LEAF](https://leaf.cmu.edu/)
42
+ - **License:** BSD 2-Clause License
43
+
44
+ ## Uses
45
+
46
+ This dataset is intended to be used in Federated Learning settings.
47
+
48
+ ### Direct Use
49
+
50
+ We recommend using [Flower Dataset](https://flower.ai/docs/datasets/) (flwr-datasets) and [Flower](https://flower.ai/docs/framework/) (flwr).
51
+
52
+ To partition the dataset, do the following.
53
+ 1. Install the package.
54
+ ```bash
55
+ pip install flwr-datasets
56
+ ```
57
+ 2. Use the HF Dataset under the hood in Flower Datasets.
58
+ ```python
59
+ from flwr_datasets import FederatedDataset
60
+ from flwr_datasets.partitioner import NaturalIdPartitioner
61
+
62
+ fds = FederatedDataset(
63
+ dataset="flwrlabs/synthetic",
64
+ partitioners={"train": NaturalIdPartitioner(partition_by="device_id")}
65
+ )
66
+ partition = fds.load_partition(partition_id=0)
67
+ ```
68
+
69
+
70
+ ## Dataset Structure
71
+
72
+ The whole dataset is kept in the train split. If you want to leave out some part of the dataset for centralized evaluation, use Resplitter. (The full example is coming soon here).
73
+
74
+ ## Citation
75
+
76
+ When working on the LEAF benchmark, please cite the original paper. If you're using this dataset with Flower Datasets, you can cite Flower.
77
+
78
+ **BibTeX:**
79
+ ```
80
+ @article{DBLP:journals/corr/abs-1812-01097,
81
+ author = {Sebastian Caldas and
82
+ Peter Wu and
83
+ Tian Li and
84
+ Jakub Kone{\v{c}}n{\'y} and
85
+ H. Brendan McMahan and
86
+ Virginia Smith and
87
+ Ameet Talwalkar},
88
+ title = {{LEAF:} {A} Benchmark for Federated Settings},
89
+ journal = {CoRR},
90
+ volume = {abs/1812.01097},
91
+ year = {2018},
92
+ url = {http://arxiv.org/abs/1812.01097},
93
+ eprinttype = {arXiv},
94
+ eprint = {1812.01097},
95
+ timestamp = {Wed, 23 Dec 2020 09:35:18 +0100},
96
+ biburl = {https://dblp.org/rec/journals/corr/abs-1812-01097.bib},
97
+ bibsource = {dblp computer science bibliography, https://dblp.org}
98
+ }
99
+ ```
100
+ ```
101
+ @article{DBLP:journals/corr/abs-2007-14390,
102
+ author = {Daniel J. Beutel and
103
+ Taner Topal and
104
+ Akhil Mathur and
105
+ Xinchi Qiu and
106
+ Titouan Parcollet and
107
+ Nicholas D. Lane},
108
+ title = {Flower: {A} Friendly Federated Learning Research Framework},
109
+ journal = {CoRR},
110
+ volume = {abs/2007.14390},
111
+ year = {2020},
112
+ url = {https://arxiv.org/abs/2007.14390},
113
+ eprinttype = {arXiv},
114
+ eprint = {2007.14390},
115
+ timestamp = {Mon, 03 Aug 2020 14:32:13 +0200},
116
+ biburl = {https://dblp.org/rec/journals/corr/abs-2007-14390.bib},
117
+ bibsource = {dblp computer science bibliography, https://dblp.org}
118
+ }
119
+ ```
120
+
121
+ ## Dataset Card Contact
122
+
123
+ In case of any doubts, please contact [Flower Labs](https://flower.ai/).