Datasets:
File size: 1,864 Bytes
b7f7d81 431adbf 7a0fc6c a817d4c bafeff3 a817d4c b874572 a817d4c e6f263d a817d4c db542cc a817d4c d70887a a817d4c 207e23b a817d4c 681758d db542cc 681758d a817d4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
---
license: cc-by-4.0
task_categories:
- text-generation
- text-classification
language:
- ja
size_categories:
- 10K<n<100K
---
# Overview
This dataset provides a convenient and user-friendly format of data from [Aozora Bunko (青空文庫)](https://www.aozora.gr.jp/), a website that compiles public-domain books in Japan, ideal for Machine Learning applications.
# Methodology
The code to reproduce this dataset is made available on GitHub: [globis-org/aozorabunko-exctractor](https://github.com/globis-org/aozorabunko-extractor).
## 1. Data collection
We firstly downloaded the [CSV file that lists all works](https://www.aozora.gr.jp/index_pages/person_all.html). The information extracted from this CSV is incorporated into the `meta` field.
Next, we filtered out any books not categorized as public domain.
We retrieved the main text of each book corresponding to every row in the CSV and incorporated it into the `text` field in UTF-8.
## 2. Deduplication
We removed entries where the `図書カードURL` (Library card URL) in this CSV did not match with the `作品ID` (Work ID) and `人物ID` (Person ID).
In addition, entries with text identical to previously encountered text were discarded.
## 3. Cleaning
The data in the `text` field was then cleaned in the following sequence:
1. Convert new lines to `\n`
2. Remove headers
3. Remove footnotes and add them to the `footnote` field
4. Convert inserted notes into regular parenthetical text
5. Remove ruby (phonetic guides)
6. Convert specific characters, such as external characters and iteration marks, into standard Unicode characters
7. Remove any remaining markup
8. Remove leading and trailing new lines and horizontal rules
# Tips
If you prefer to employ only modern Japanese, you can filter entries with: `row["meta"]["文字遣い種別"] == "新字新仮名"`.
# License
CC BY 4.0 |