albertvillanova's picture
Convert dataset to Parquet (#3)
010d14f verified
|
raw
history blame
12.4 kB
---
annotations_creators:
- found
language_creators:
- found
language:
- code
license:
- c-uda
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
- 1K<n<10K
source_datasets:
- original
task_categories:
- text-generation
- fill-mask
task_ids:
- slot-filling
pretty_name: CodeXGlueCcClozeTestingAll
config_names:
- go
- java
- javascript
- php
- python
- ruby
dataset_info:
- config_name: go
features:
- name: id
dtype: int32
- name: idx
dtype: string
- name: nl_tokens
sequence: string
- name: pl_tokens
sequence: string
splits:
- name: train
num_bytes: 22409705
num_examples: 25282
download_size: 7317578
dataset_size: 22409705
- config_name: java
features:
- name: id
dtype: int32
- name: idx
dtype: string
- name: nl_tokens
sequence: string
- name: pl_tokens
sequence: string
splits:
- name: train
num_bytes: 40392865
num_examples: 40492
download_size: 13540081
dataset_size: 40392865
- config_name: javascript
features:
- name: id
dtype: int32
- name: idx
dtype: string
- name: nl_tokens
sequence: string
- name: pl_tokens
sequence: string
splits:
- name: train
num_bytes: 16090142
num_examples: 13837
download_size: 5380631
dataset_size: 16090142
- config_name: php
features:
- name: id
dtype: int32
- name: idx
dtype: string
- name: nl_tokens
sequence: string
- name: pl_tokens
sequence: string
splits:
- name: train
num_bytes: 51328868
num_examples: 51930
download_size: 16553882
dataset_size: 51328868
- config_name: python
features:
- name: id
dtype: int32
- name: idx
dtype: string
- name: nl_tokens
sequence: string
- name: pl_tokens
sequence: string
splits:
- name: train
num_bytes: 40631113
num_examples: 40137
download_size: 15081309
dataset_size: 40631113
- config_name: ruby
features:
- name: id
dtype: int32
- name: idx
dtype: string
- name: nl_tokens
sequence: string
- name: pl_tokens
sequence: string
splits:
- name: train
num_bytes: 3454884
num_examples: 4437
download_size: 1301455
dataset_size: 3454884
configs:
- config_name: go
data_files:
- split: train
path: go/train-*
- config_name: java
data_files:
- split: train
path: java/train-*
- config_name: javascript
data_files:
- split: train
path: javascript/train-*
- config_name: php
data_files:
- split: train
path: php/train-*
- config_name: python
data_files:
- split: train
path: python/train-*
- config_name: ruby
data_files:
- split: train
path: ruby/train-*
---
# Dataset Card for "code_x_glue_cc_cloze_testing_all"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits-sample-size)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/ClozeTesting-all
### Dataset Summary
CodeXGLUE ClozeTesting-all dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/ClozeTesting-all
Cloze tests are widely adopted in Natural Languages Processing to evaluate the performance of the trained language models. The task is aimed to predict the answers for the blank with the context of the blank, which can be formulated as a multi-choice classification problem.
Here we present the two cloze testing datasets in code domain with six different programming languages: ClozeTest-maxmin and ClozeTest-all. Each instance in the dataset contains a masked code function, its docstring and the target word.
The only difference between ClozeTest-maxmin and ClozeTest-all is their selected words sets, where ClozeTest-maxmin only contains two words while ClozeTest-all contains 930 words.
### Supported Tasks and Leaderboards
- `slot-filling`: The dataset can be used to train a model for predicting the missing token from a piece of code, similar to the Cloze test.
### Languages
- Go **programming** language
- Java **programming** language
- Javascript **programming** language
- PHP **programming** language
- Python **programming** language
- Ruby **programming** language
## Dataset Structure
### Data Instances
#### go
An example of 'train' looks as follows.
```
{
"id": 0,
"idx": "all-1",
"nl_tokens": ["MarshalJSON", "supports", "json", ".", "Marshaler", "interface"],
"pl_tokens": ["func", "(", "v", "ContextRealtimeData", ")", "MarshalJSON", "(", ")", "(", "[", "]", "byte", ",", "error", ")", "{", "w", ":=", "jwriter", ".", "<mask>", "{", "}", "\n", "easyjsonC5a4559bEncodeGithubComChromedpCdprotoWebaudio7", "(", "&", "w", ",", "v", ")", "\n", "return", "w", ".", "Buffer", ".", "BuildBytes", "(", ")", ",", "w", ".", "Error", "\n", "}"]
}
```
#### java
An example of 'train' looks as follows.
```
{
"id": 0,
"idx": "all-1",
"nl_tokens": ["/", "*", "(", "non", "-", "Javadoc", ")"],
"pl_tokens": ["@", "Override", "public", "int", "peekBit", "(", ")", "throws", "AACException", "{", "int", "ret", ";", "if", "(", "bitsCached", ">", "0", ")", "{", "ret", "=", "(", "cache", ">>", "(", "bitsCached", "-", "1", ")", ")", "&", "1", ";", "}", "else", "{", "final", "int", "word", "=", "readCache", "(", "true", ")", ";", "ret", "=", "(", "<mask>", ">>", "WORD_BITS", "-", "1", ")", "&", "1", ";", "}", "return", "ret", ";", "}"]
}
```
#### javascript
An example of 'train' looks as follows.
```
{
"id": 0,
"idx": "all-1",
"nl_tokens": ["Cast", "query", "params", "according", "to", "type"],
"pl_tokens": ["function", "castQueryParams", "(", "relId", ",", "data", ",", "{", "relationships", "}", ")", "{", "const", "relationship", "=", "relationships", "[", "relId", "]", "if", "(", "!", "relationship", ".", "query", ")", "{", "return", "{", "}", "}", "return", "Object", ".", "keys", "(", "relationship", ".", "query", ")", ".", "reduce", "(", "(", "params", ",", "<mask>", ")", "=>", "{", "const", "value", "=", "getField", "(", "data", ",", "relationship", ".", "query", "[", "key", "]", ")", "if", "(", "value", "===", "undefined", ")", "{", "throw", "new", "TypeError", "(", "'Missing value for query param'", ")", "}", "return", "{", "...", "params", ",", "[", "key", "]", ":", "value", "}", "}", ",", "{", "}", ")", "}"]
}
```
#### php
An example of 'train' looks as follows.
```
{
"id": 0,
"idx": "all-1",
"nl_tokens": ["Get", "choices", "."],
"pl_tokens": ["protected", "<mask>", "getChoices", "(", "FormFieldTranslation", "$", "translation", ")", "{", "$", "choices", "=", "preg_split", "(", "'/\\r\\n|\\r|\\n/'", ",", "$", "translation", "->", "getOption", "(", "'choices'", ")", ",", "-", "1", ",", "PREG_SPLIT_NO_EMPTY", ")", ";", "return", "array_combine", "(", "$", "choices", ",", "$", "choices", ")", ";", "}"]
}
```
#### python
An example of 'train' looks as follows.
```
{
"id": 0,
"idx": "all-1",
"nl_tokens": ["Post", "a", "review"],
"pl_tokens": ["def", "post_review", "(", "session", ",", "review", ")", ":", "# POST /api/projects/0.1/reviews/", "<mask>", "=", "make_post_request", "(", "session", ",", "'reviews'", ",", "json_data", "=", "review", ")", "json_data", "=", "response", ".", "json", "(", ")", "if", "response", ".", "status_code", "==", "200", ":", "return", "json_data", "[", "'status'", "]", "else", ":", "raise", "ReviewNotPostedException", "(", "message", "=", "json_data", "[", "'message'", "]", ",", "error_code", "=", "json_data", "[", "'error_code'", "]", ",", "request_id", "=", "json_data", "[", "'request_id'", "]", ")"]
}
```
#### ruby
An example of 'train' looks as follows.
```
{
"id": 0,
"idx": "all-1",
"nl_tokens": ["By", "default", "taskers", "don", "t", "see", "the", "flor", "variables", "in", "the", "execution", ".", "If", "include_vars", "or", "exclude_vars", "is", "present", "in", "the", "configuration", "of", "the", "tasker", "some", "or", "all", "of", "the", "variables", "are", "passed", "."],
"pl_tokens": ["def", "gather_vars", "(", "executor", ",", "tconf", ",", "message", ")", "# try to return before a potentially costly call to executor.vars(nid)", "return", "nil", "if", "(", "tconf", ".", "keys", "&", "%w[", "include_vars", "exclude_vars", "]", ")", ".", "empty?", "# default behaviour, don't pass variables to taskers", "iv", "=", "expand_filter", "(", "tconf", "[", "'include_vars'", "]", ")", "return", "nil", "if", "iv", "==", "false", "ev", "=", "expand_filter", "(", "tconf", "[", "'exclude_vars'", "]", ")", "return", "{", "}", "if", "ev", "==", "true", "vars", "=", "executor", ".", "vars", "(", "message", "[", "'nid'", "]", ")", "return", "vars", "if", "iv", "==", "true", "vars", "=", "vars", ".", "select", "{", "|", "k", ",", "v", "|", "var_match", "(", "k", ",", "iv", ")", "}", "if", "<mask>", "vars", "=", "vars", ".", "reject", "{", "|", "k", ",", "v", "|", "var_match", "(", "k", ",", "ev", ")", "}", "if", "ev", "vars", "end"]
}
```
### Data Fields
In the following each data field in go is explained for each config. The data fields are the same among all splits.
#### go, java, javascript, php, python, ruby
|field name| type | description |
|----------|----------------|------------------------------|
|id |int32 | Index of the sample |
|idx |string | Original index in the dataset|
|nl_tokens |Sequence[string]| Natural language tokens |
|pl_tokens |Sequence[string]| Programming language tokens |
### Data Splits
| name |train|
|----------|----:|
|go |25282|
|java |40492|
|javascript|13837|
|php |51930|
|python |40137|
|ruby | 4437|
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
Data from CodeSearchNet Challenge dataset.
[More Information Needed]
#### Who are the source language producers?
Software Engineering developers.
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
https://github.com/microsoft, https://github.com/madlag
### Licensing Information
Computational Use of Data Agreement (C-UDA) License.
### Citation Information
```
@article{CodeXGLUE,
title={CodeXGLUE: An Open Challenge for Code Intelligence},
journal={arXiv},
year={2020},
}
@article{feng2020codebert,
title={CodeBERT: A Pre-Trained Model for Programming and Natural Languages},
author={Feng, Zhangyin and Guo, Daya and Tang, Duyu and Duan, Nan and Feng, Xiaocheng and Gong, Ming and Shou, Linjun and Qin, Bing and Liu, Ting and Jiang, Daxin and others},
journal={arXiv preprint arXiv:2002.08155},
year={2020}
}
@article{husain2019codesearchnet,
title={CodeSearchNet Challenge: Evaluating the State of Semantic Code Search},
author={Husain, Hamel and Wu, Ho-Hsiang and Gazit, Tiferet and Allamanis, Miltiadis and Brockschmidt, Marc},
journal={arXiv preprint arXiv:1909.09436},
year={2019}
}
```
### Contributions
Thanks to @madlag (and partly also @ncoop57) for adding this dataset.