Datasets:

Modalities:
Image
Text
Formats:
parquet
Size:
< 1K
Tags:
code
Libraries:
Datasets
pandas
License:
wjomlex commited on
Commit
761e24d
1 Parent(s): 718fd53

2015 Problems

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +5 -0
  2. 2015/finals/fox_blocks.html +77 -0
  3. 2015/finals/fox_blocks.in +3 -0
  4. 2015/finals/fox_blocks.md +59 -0
  5. 2015/finals/fox_blocks.out +20 -0
  6. 2015/finals/fox_focks.html +59 -0
  7. 2015/finals/fox_focks.in +3 -0
  8. 2015/finals/fox_focks.md +52 -0
  9. 2015/finals/fox_focks.out +20 -0
  10. 2015/finals/fox_hawks.html +94 -0
  11. 2015/finals/fox_hawks.in +3 -0
  12. 2015/finals/fox_hawks.md +78 -0
  13. 2015/finals/fox_hawks.out +20 -0
  14. 2015/finals/fox_lochs.html +57 -0
  15. 2015/finals/fox_lochs.in +281 -0
  16. 2015/finals/fox_lochs.md +44 -0
  17. 2015/finals/fox_lochs.out +20 -0
  18. 2015/finals/fox_locks.html +74 -0
  19. 2015/finals/fox_locks.in +0 -0
  20. 2015/finals/fox_locks.md +67 -0
  21. 2015/finals/fox_locks.out +20 -0
  22. 2015/quals/cooking_the_books.html +45 -0
  23. 2015/quals/cooking_the_books.in +101 -0
  24. 2015/quals/cooking_the_books.md +30 -0
  25. 2015/quals/cooking_the_books.out +100 -0
  26. 2015/quals/laser_maze.html +68 -0
  27. 2015/quals/laser_maze.in +0 -0
  28. 2015/quals/laser_maze.md +48 -0
  29. 2015/quals/laser_maze.out +100 -0
  30. 2015/quals/new_years_resolution.html +41 -0
  31. 2015/quals/new_years_resolution.in +1006 -0
  32. 2015/quals/new_years_resolution.md +31 -0
  33. 2015/quals/new_years_resolution.out +48 -0
  34. 2015/round1/autocomplete.html +54 -0
  35. 2015/round1/autocomplete.in +3 -0
  36. 2015/round1/autocomplete.md +41 -0
  37. 2015/round1/autocomplete.out +26 -0
  38. 2015/round1/corporate_gifting.html +79 -0
  39. 2015/round1/corporate_gifting.in +3 -0
  40. 2015/round1/corporate_gifting.md +68 -0
  41. 2015/round1/corporate_gifting.out +34 -0
  42. 2015/round1/homework.html +42 -0
  43. 2015/round1/homework.in +101 -0
  44. 2015/round1/homework.md +48 -0
  45. 2015/round1/homework.out +100 -0
  46. 2015/round1/winning_at_sports.html +61 -0
  47. 2015/round1/winning_at_sports.in +101 -0
  48. 2015/round1/winning_at_sports.md +45 -0
  49. 2015/round1/winning_at_sports.out +100 -0
  50. 2015/round2/all_critical.html +57 -0
.gitattributes CHANGED
@@ -58,3 +58,8 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
58
  2014/finals/intervals_of_love.in filter=lfs diff=lfs merge=lfs -text
59
  2014/finals/lunch_at_facebook.in filter=lfs diff=lfs merge=lfs -text
60
  2014/finals/tours.in filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
58
  2014/finals/intervals_of_love.in filter=lfs diff=lfs merge=lfs -text
59
  2014/finals/lunch_at_facebook.in filter=lfs diff=lfs merge=lfs -text
60
  2014/finals/tours.in filter=lfs diff=lfs merge=lfs -text
61
+ 2015/finals/fox_blocks.in filter=lfs diff=lfs merge=lfs -text
62
+ 2015/finals/fox_focks.in filter=lfs diff=lfs merge=lfs -text
63
+ 2015/finals/fox_hawks.in filter=lfs diff=lfs merge=lfs -text
64
+ 2015/round1/autocomplete.in filter=lfs diff=lfs merge=lfs -text
65
+ 2015/round1/corporate_gifting.in filter=lfs diff=lfs merge=lfs -text
2015/finals/fox_blocks.html ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <p>
2
+ Today, Mr. Fox is taking it easy by playing with some blocks in a 2D world. Each block is an inch-by-inch square,
3
+ and there are <strong>N</strong> stacks of blocks in a row, with the <strong>i</strong>th stack having <strong>H<sub>i</strong> blocks.
4
+ For example, if <strong>N</strong>=6 and <strong>H</strong>={3, 1, 5, 4, 1, 6}, then the collection of blocks looks like this
5
+ (where an "X" denotes a block):
6
+ <p>
7
+
8
+ <p>
9
+ <pre>
10
+ .....X
11
+ ..X..X
12
+ ..XX.X
13
+ X.XX.X
14
+ X.XX.X
15
+ XXXXXX
16
+ </pre>
17
+ </p>
18
+
19
+ <p>
20
+ Ever curious, Mr. Fox would like to answer <strong>Q</strong> questions about his blocks (without actually modifying them),
21
+ the <strong>i</strong>th one being as follows:
22
+ </p>
23
+
24
+ <p>
25
+ "If I were to consider only the stacks from <strong>A<sub>i</sub></strong> to <strong>B<sub>i</sub></strong> inclusive,
26
+ getting rid of all of the other blocks, how many square inches of water would my block structure be able to hold?"
27
+ </p>
28
+
29
+ <p>
30
+ As one might imagine, a given square inch can hold water if it doesn't contain a block itself, but there is a block both somewhere to its left
31
+ and somewhere to its right at the same height. For example, if you were to take
32
+ <strong>A<sub>i</sub></strong>=2 and <strong>B<sub>i</sub></strong>=6, you would be left with the
33
+ following block structure to consider (where an "*" denotes an inch-by-inch square which can hold water):
34
+ </p>
35
+
36
+ <p>
37
+ <pre>
38
+ ....X
39
+ .X**X
40
+ .XX*X
41
+ .XX*X
42
+ .XX*X
43
+ XXXXX
44
+ </pre>
45
+ </p>
46
+
47
+
48
+ <h3>Constraints</h3>
49
+ <p>
50
+ 1 &le; <strong>T</strong> &le; 20 <br/>
51
+ 1 &le; <strong>N</strong> &le; 300,000 <br />
52
+ 1 &le; <strong>Q</strong> &le; 300,000 <br />
53
+ 1 &le; <strong>H<sub>i</sub></strong> &le; 10<sup>9</sup> <br />
54
+ 1 &le; <strong>A<sub>i</sub></strong> &le; <strong>B<sub>i</sub></strong> &le; <strong>N</strong> <br />
55
+ </p>
56
+
57
+
58
+ <h3>Input</h3>
59
+ <p>
60
+ Input begins with an integer <strong>T</strong>, the number of block structures Mr. Fox has.
61
+ For each structure, there is first a line containing the space-separated integers <strong>N</strong> and <strong>Q</strong>.
62
+ The next line contains the space-separated integers <strong>H<sub>i</sub></strong>.
63
+ Then follow <strong>Q</strong> lines, the <strong>i</strong>th of which contains the space-separated integers
64
+ <strong>A<sub>i</sub></strong> and <strong>B<sub>i</sub></strong>.
65
+ </p>
66
+
67
+
68
+ <h3>Output</h3>
69
+ <p>
70
+ For the <strong>i</strong>th structure, print a line containing "Case #<strong>i</strong>: " followed by
71
+ the sum of the answers to the <strong>Q</strong> questions modulo 10<sup>9</sup>+7.
72
+ </p>
73
+
74
+ <h3>Explanation of Sample</h3>
75
+ <p>
76
+ In the first case, we consider prefixes of the block structure. The answers to the queries are 0, 0, 0, 0, 0, 5, 5, 7, 7, 18, 18 for a total of 60.
77
+ </p>
2015/finals/fox_blocks.in ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69c748bc3d1a448fe7f376cb4cacd7b4eefae27a6aa2103899f4da2919c6b233
3
+ size 27832483
2015/finals/fox_blocks.md ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Today, Mr. Fox is taking it easy by playing with some blocks in a 2D world.
2
+ Each block is an inch-by-inch square, and there are **N** stacks of blocks in
3
+ a row, with the **i**th stack having **Hi** blocks. For example, if **N**=6
4
+ and **H**={3, 1, 5, 4, 1, 6}, then the collection of blocks looks like this
5
+ (where an "X" denotes a block):
6
+
7
+ .....X
8
+ ..X..X
9
+ ..XX.X
10
+ X.XX.X
11
+ X.XX.X
12
+ XXXXXX
13
+
14
+ Ever curious, Mr. Fox would like to answer **Q** questions about his blocks
15
+ (without actually modifying them), the **i**th one being as follows:
16
+
17
+ "If I were to consider only the stacks from **Ai** to **Bi** inclusive,
18
+ getting rid of all of the other blocks, how many square inches of water would
19
+ my block structure be able to hold?"
20
+
21
+ As one might imagine, a given square inch can hold water if it doesn't contain
22
+ a block itself, but there is a block both somewhere to its left and somewhere
23
+ to its right at the same height. For example, if you were to take **Ai**=2 and
24
+ **Bi**=6, you would be left with the following block structure to consider
25
+ (where an "*" denotes an inch-by-inch square which can hold water):
26
+
27
+ ....X
28
+ .X**X
29
+ .XX*X
30
+ .XX*X
31
+ .XX*X
32
+ XXXXX
33
+
34
+ ### Constraints
35
+
36
+ 1 ≤ **T** ≤ 20
37
+ 1 ≤ **N** ≤ 300,000
38
+ 1 ≤ **Q** ≤ 300,000
39
+ 1 ≤ **Hi** ≤ 109
40
+ 1 ≤ **Ai** ≤ **Bi** ≤ **N**
41
+
42
+ ### Input
43
+
44
+ Input begins with an integer **T**, the number of block structures Mr. Fox
45
+ has. For each structure, there is first a line containing the space-separated
46
+ integers **N** and **Q**. The next line contains the space-separated integers
47
+ **Hi**. Then follow **Q** lines, the **i**th of which contains the space-
48
+ separated integers **Ai** and **Bi**.
49
+
50
+ ### Output
51
+
52
+ For the **i**th structure, print a line containing "Case #**i**: " followed by
53
+ the sum of the answers to the **Q** questions modulo 109+7.
54
+
55
+ ### Explanation of Sample
56
+
57
+ In the first case, we consider prefixes of the block structure. The answers to
58
+ the queries are 0, 0, 0, 0, 0, 5, 5, 7, 7, 18, 18 for a total of 60.
59
+
2015/finals/fox_blocks.out ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Case #1: 60
2
+ Case #2: 27
3
+ Case #3: 31
4
+ Case #4: 0
5
+ Case #5: 9
6
+ Case #6: 0
7
+ Case #7: 824489226
8
+ Case #8: 228416209
9
+ Case #9: 14231442
10
+ Case #10: 31749050
11
+ Case #11: 871842030
12
+ Case #12: 496227686
13
+ Case #13: 740455790
14
+ Case #14: 687834190
15
+ Case #15: 415275284
16
+ Case #16: 815170510
17
+ Case #17: 737257432
18
+ Case #18: 204464835
19
+ Case #19: 550439741
20
+ Case #20: 328256461
2015/finals/fox_focks.html ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <p>
2
+ Mr. Fox has opened up a fabulous Fock farm! A Fock is a cute little animal which can have either red, green, or blue fur
3
+ (these 3 possible colors can be numbered 1, 2, and 3, respectively). Furthermore, a Fock's fur color can change every second!
4
+ </p>
5
+
6
+ <p>
7
+ Mr. Fox owns a flock of <strong>N</strong> Focks, with the <strong>i</strong>th one initially having a color of <strong>C<sub>i</sub></strong>.
8
+ Every second, if the <strong>i</strong>th Fock currently has a color of <strong>a</strong>, it will switch to having a color of <strong>b</strong>
9
+ for the next second with probability <strong>P<sub>i,a,b</sub></strong>%. All Focks change color simultaneously.
10
+ </p>
11
+
12
+ <p>
13
+ After a very large amount of time has gone by, Mr. Fox will take a single photo of all of his Focks to help advertise his farm.
14
+ In particular, he picks an integer <strong>t</strong> at uniform random from the range [10<sup>100</sup>, 10<sup>1000</sup>] and waits that many seconds.
15
+ He's hoping that the photo will make it look like his farm has a well-balanced mix of Fock colors &mdash; it'll be no good if the photo ends up
16
+ featuring a strict majority of a single color (that is, strictly more than <strong>N</strong>/2 of the Focks having the same color).
17
+ What's the probability of this occurring?
18
+ </p>
19
+
20
+
21
+
22
+ <h3>Constraints</h3>
23
+ <p>
24
+ 1 &le; <strong>T</strong> &le; 20<br />
25
+ 1 &le; <strong>N</strong> &le; 50,000<br />
26
+ 1 &le; <strong>C<sub>i</sub></strong> &le; 3 for all <strong>i</strong><br />
27
+ 0 &le; <strong>P<sub>i,a,b</sub></strong> &le; 100
28
+ for all <strong>i</strong>, <strong>a</strong> and <strong>b</strong><br />
29
+ <strong>P<sub>i,a,1</sub></strong> + <strong>P<sub>i,a,2</sub></strong> + <strong>P<sub>i,a,3</sub></strong> = 100
30
+ for all <strong>i</strong> and <strong>a</strong><br />
31
+ </p>
32
+
33
+ <h3>Input</h3>
34
+ <p>
35
+ Input begins with an integer <strong>T</strong>, the number of Fock farms Mr. Fox has.
36
+ For each farm, there is first a line containing the integer <strong>N</strong>.
37
+ Then, for each Fock <strong>i</strong>, 4 lines follow.
38
+ The first of these lines contains the integer <strong>C<sub>i</sub></strong>.
39
+ The next three lines contain three space-separated integers each, with the <strong>b</strong>th integer on the <strong>a</strong>th line being
40
+ <strong>P<sub>i,a,b</sub></strong>.
41
+ </p>
42
+
43
+
44
+ <h3>Output</h3>
45
+ <p>
46
+ For the <strong>i</strong>th farm, print a line containing "Case #<strong>i</strong>: " followed by
47
+ the probability that the <strong>i</strong>th picture contains a strict majority of some color of Fock, rounded to 6 decimal places.
48
+ </p>
49
+
50
+ <p>
51
+ Absolute errors of up to 2e-6 will be ignored.
52
+ </p>
53
+
54
+ <h3>Explanation of Sample</h3>
55
+ <p>
56
+ In the first case, the first Fock never changes color, so it'll still have color 1 in the photo.
57
+ The second Fock is likely to have color 2 for a while, but by the time the photo is taken, it'll certainly have color 3.
58
+ The third Fock will have either color 2 or 3 in the photo, with equal probability. Therefore, the photo will have a 50% chance of having a strict majority of color 3, and a 50% chance of no strict majority.
59
+ </p>
2015/finals/fox_focks.in ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf3025efbfee6b3d52c0372283c0712b33eab850e808172bd5c830b61e17610c
3
+ size 17889224
2015/finals/fox_focks.md ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Mr. Fox has opened up a fabulous Fock farm! A Fock is a cute little animal
2
+ which can have either red, green, or blue fur (these 3 possible colors can be
3
+ numbered 1, 2, and 3, respectively). Furthermore, a Fock's fur color can
4
+ change every second!
5
+
6
+ Mr. Fox owns a flock of **N** Focks, with the **i**th one initially having a
7
+ color of **Ci**. Every second, if the **i**th Fock currently has a color of
8
+ **a**, it will switch to having a color of **b** for the next second with
9
+ probability **Pi,a,b**%. All Focks change color simultaneously.
10
+
11
+ After a very large amount of time has gone by, Mr. Fox will take a single
12
+ photo of all of his Focks to help advertise his farm. In particular, he picks
13
+ an integer **t** at uniform random from the range [10100, 101000] and waits
14
+ that many seconds. He's hoping that the photo will make it look like his farm
15
+ has a well-balanced mix of Fock colors — it'll be no good if the photo ends up
16
+ featuring a strict majority of a single color (that is, strictly more than
17
+ **N**/2 of the Focks having the same color). What's the probability of this
18
+ occurring?
19
+
20
+ ### Constraints
21
+
22
+ 1 ≤ **T** ≤ 20
23
+ 1 ≤ **N** ≤ 50,000
24
+ 1 ≤ **Ci** ≤ 3 for all **i**
25
+ 0 ≤ **Pi,a,b** ≤ 100 for all **i**, **a** and **b**
26
+ **Pi,a,1** \+ **Pi,a,2** \+ **Pi,a,3** = 100 for all **i** and **a**
27
+
28
+ ### Input
29
+
30
+ Input begins with an integer **T**, the number of Fock farms Mr. Fox has. For
31
+ each farm, there is first a line containing the integer **N**. Then, for each
32
+ Fock **i**, 4 lines follow. The first of these lines contains the integer
33
+ **Ci**. The next three lines contain three space-separated integers each, with
34
+ the **b**th integer on the **a**th line being **Pi,a,b**.
35
+
36
+ ### Output
37
+
38
+ For the **i**th farm, print a line containing "Case #**i**: " followed by the
39
+ probability that the **i**th picture contains a strict majority of some color
40
+ of Fock, rounded to 6 decimal places.
41
+
42
+ Absolute errors of up to 2e-6 will be ignored.
43
+
44
+ ### Explanation of Sample
45
+
46
+ In the first case, the first Fock never changes color, so it'll still have
47
+ color 1 in the photo. The second Fock is likely to have color 2 for a while,
48
+ but by the time the photo is taken, it'll certainly have color 3. The third
49
+ Fock will have either color 2 or 3 in the photo, with equal probability.
50
+ Therefore, the photo will have a 50% chance of having a strict majority of
51
+ color 3, and a 50% chance of no strict majority.
52
+
2015/finals/fox_focks.out ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Case #1: 0.500000
2
+ Case #2: 0.000000
3
+ Case #3: 1.000000
4
+ Case #4: 0.777778
5
+ Case #5: 0.812282
6
+ Case #6: 1.000000
7
+ Case #7: 0.333333
8
+ Case #8: 0.511290
9
+ Case #9: 0.333334
10
+ Case #10: 0.590398
11
+ Case #11: 0.526490
12
+ Case #12: 0.333333
13
+ Case #13: 0.333333
14
+ Case #14: 0.510803
15
+ Case #15: 0.333334
16
+ Case #16: 0.333334
17
+ Case #17: 0.515045
18
+ Case #18: 0.518484
19
+ Case #19: 0.333334
20
+ Case #20: 0.511119
2015/finals/fox_hawks.html ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <p>
2
+ Mr. Fox always puts aside some time on the weekends to practice his falconry. Mr. Fox owns <strong>N</strong> hawks, numbered from
3
+ 1 to <strong>N</strong>. While numbering is somewhat impersonal, it quickly becomes infeasible to name each hawk individually when
4
+ you have as many hawks as Mr. Fox.
5
+ </p>
6
+
7
+ <p>
8
+ Every year, the local falconer club hosts a festival for falconers from across the nation. Mr. Fox shows off some of his hawks at each festival,
9
+ and this year is no different. Selecting a set of hawks to display is not a straightforward task however. Hawks can be temperamental creatures,
10
+ and they'll refuse to perform if they don't like the situation they find themselves in. Luckily, after careful study, Mr. Fox has been able to
11
+ capture the hawks' preferences in a simple boolean expression.
12
+ </p>
13
+
14
+ <p>
15
+ For example, let's say Mr. Fox has 4 hawks. Hawk 1 will only perform if some other hawk is present. Hawks 2 and 3 will only perform if hawks
16
+ 1 or 4 are present. Hawk 4 is much more easy-going and will perform in all situations. We can express these preferences with the following
17
+ expression:
18
+
19
+ <pre>
20
+ ((1 & (2 | 3)) | 4)
21
+ </pre>
22
+ </p>
23
+
24
+ <p>
25
+ Each number is a boolean variable indicating whether or not Mr. Fox brings that hawk. If the expression is satisfied, then all of the hawks he
26
+ brings will perform. If the expression is not satisfied, the hawks will be moody and that means no blue ribbons for Mr. Fox.
27
+ </p>
28
+
29
+ <p>
30
+ Mr. Fox is keen not to bore his audience, so he always brings a different set of hawks each year.
31
+
32
+ This is the <strong>K</strong>th annual festival, so he would like to bring the set of performing hawks with the <strong>K</strong>th
33
+ lowest value. Mr. Fox defines the value of a set of hawks as follows:
34
+ the empty set has a value of 0, and hawk <strong>i</strong> adds 2<sup><strong>i</strong></sup> to the value of a set.
35
+
36
+ So with 3 hawks, the sets in increasing order are:
37
+
38
+ <pre>
39
+ {1}
40
+ {2}
41
+ {1, 2}
42
+ {3}
43
+ {1, 3}
44
+ {2, 3}
45
+ {1, 2, 3}
46
+ </pre>
47
+
48
+ Note that Mr. Fox always brings a non-empty set of hawks.
49
+ </p>
50
+
51
+
52
+ <h3>Input</h3>
53
+ <p>
54
+ Input begins with an integer <strong>T</strong>, the number of festivals under consideration.
55
+ For each festival, there is first a line containing the space-separated integers <strong>N</strong> and <strong>K</strong>.
56
+ The next line contains the boolean expression encoding the hawks' preferences.
57
+ </p>
58
+
59
+
60
+ <h3>Output</h3>
61
+ <p>
62
+ For the <strong>i</strong>th festival, print a line containing "Case #<strong>i</strong>: " followed by
63
+ value of the set of hawks that Mr. Fox brings modulo 10<sup>9</sup>+7.
64
+ </p>
65
+
66
+
67
+ <h3>Constraints</h3>
68
+ <p>
69
+ 1 &le; <strong>T</strong> &le; 20 <br />
70
+ 1 &le; <strong>N</strong> &le; 200,000 <br />
71
+ 1 &le; <strong>K</strong> &le; 10<sup>18</sup> <br />
72
+ Expressions contain no more than 2,500,000 characters each. <br />
73
+ It is guaranteed that there are at least <strong>K</strong> sets of performing hawks. <br />
74
+ </p>
75
+
76
+ <p>
77
+ The boolean expression adheres to the following grammar:
78
+
79
+ <pre>
80
+ [expression] ::= "(" "~" [expression] ")" | "(" [expression] [binary-operator] [expression] ")" | [variable]
81
+ [binary-operator] ::= "|" | "^" | "&"
82
+ [variable] ::= [digit] | [digit] [variable]
83
+ [digit] ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
84
+ </pre>
85
+
86
+ Each hawk appears in the boolean expression exactly once. <br />
87
+ Whitespace may appear arbitrarily in the expression (except within variables) to improve readability. <br />
88
+ </p>
89
+
90
+ <h3>Explanation of Sample</h3>
91
+ <p>
92
+ In the first and second cases, the first 4 performing sets, in order, are {1, 2}, {1, 3}, {1, 2, 3}, and {4}, with values of 6, 10, 14, and 16 respectively.
93
+ </p>
94
+
2015/finals/fox_hawks.in ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56fc5974bcd713444e7a8c1ffd6c88234796e487ba059f644f022bacb7ee0cc2
3
+ size 12921762
2015/finals/fox_hawks.md ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Mr. Fox always puts aside some time on the weekends to practice his falconry.
2
+ Mr. Fox owns **N** hawks, numbered from 1 to **N**. While numbering is
3
+ somewhat impersonal, it quickly becomes infeasible to name each hawk
4
+ individually when you have as many hawks as Mr. Fox.
5
+
6
+ Every year, the local falconer club hosts a festival for falconers from across
7
+ the nation. Mr. Fox shows off some of his hawks at each festival, and this
8
+ year is no different. Selecting a set of hawks to display is not a
9
+ straightforward task however. Hawks can be temperamental creatures, and
10
+ they'll refuse to perform if they don't like the situation they find
11
+ themselves in. Luckily, after careful study, Mr. Fox has been able to capture
12
+ the hawks' preferences in a simple boolean expression.
13
+
14
+ For example, let's say Mr. Fox has 4 hawks. Hawk 1 will only perform if some
15
+ other hawk is present. Hawks 2 and 3 will only perform if hawks 1 or 4 are
16
+ present. Hawk 4 is much more easy-going and will perform in all situations. We
17
+ can express these preferences with the following expression:
18
+
19
+ ((1 & (2 | 3)) | 4)
20
+
21
+ Each number is a boolean variable indicating whether or not Mr. Fox brings
22
+ that hawk. If the expression is satisfied, then all of the hawks he brings
23
+ will perform. If the expression is not satisfied, the hawks will be moody and
24
+ that means no blue ribbons for Mr. Fox.
25
+
26
+ Mr. Fox is keen not to bore his audience, so he always brings a different set
27
+ of hawks each year. This is the **K**th annual festival, so he would like to
28
+ bring the set of performing hawks with the **K**th lowest value. Mr. Fox
29
+ defines the value of a set of hawks as follows: the empty set has a value of
30
+ 0, and hawk **i** adds 2**i** to the value of a set. So with 3 hawks, the sets
31
+ in increasing order are:
32
+
33
+ {1}
34
+ {2}
35
+ {1, 2}
36
+ {3}
37
+ {1, 3}
38
+ {2, 3}
39
+ {1, 2, 3}
40
+
41
+ Note that Mr. Fox always brings a non-empty set of hawks.
42
+
43
+ ### Input
44
+
45
+ Input begins with an integer **T**, the number of festivals under
46
+ consideration. For each festival, there is first a line containing the space-
47
+ separated integers **N** and **K**. The next line contains the boolean
48
+ expression encoding the hawks' preferences.
49
+
50
+ ### Output
51
+
52
+ For the **i**th festival, print a line containing "Case #**i**: " followed by
53
+ value of the set of hawks that Mr. Fox brings modulo 109+7.
54
+
55
+ ### Constraints
56
+
57
+ 1 ≤ **T** ≤ 20
58
+ 1 ≤ **N** ≤ 200,000
59
+ 1 ≤ **K** ≤ 1018
60
+ Expressions contain no more than 2,500,000 characters each.
61
+ It is guaranteed that there are at least **K** sets of performing hawks.
62
+
63
+ The boolean expression adheres to the following grammar:
64
+
65
+ [expression] ::= "(" "~" [expression] ")" | "(" [expression] [binary-operator] [expression] ")" | [variable]
66
+ [binary-operator] ::= "|" | "^" | "&"
67
+ [variable] ::= [digit] | [digit] [variable]
68
+ [digit] ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
69
+
70
+ Each hawk appears in the boolean expression exactly once.
71
+ Whitespace may appear arbitrarily in the expression (except within variables)
72
+ to improve readability.
73
+
74
+ ### Explanation of Sample
75
+
76
+ In the first and second cases, the first 4 performing sets, in order, are {1,
77
+ 2}, {1, 3}, {1, 2, 3}, and {4}, with values of 6, 10, 14, and 16 respectively.
78
+
2015/finals/fox_hawks.out ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Case #1: 6
2
+ Case #2: 14
3
+ Case #3: 4
4
+ Case #4: 2
5
+ Case #5: 508
6
+ Case #6: 2
7
+ Case #7: 6
8
+ Case #8: 510
9
+ Case #9: 26
10
+ Case #10: 98
11
+ Case #11: 878266293
12
+ Case #12: 746859548
13
+ Case #13: 7038259
14
+ Case #14: 454681413
15
+ Case #15: 138253392
16
+ Case #16: 299215939
17
+ Case #17: 646605572
18
+ Case #18: 783424637
19
+ Case #19: 873419939
20
+ Case #20: 959061046
2015/finals/fox_lochs.html ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <p>
2
+ Mr. Fox is going on a trip to Scotland to witness its many beautiful lochs! He's heard that skimboarding
3
+ is a fun pastime, somewhat similar to surfing, and he'd like to give it a try while he's there.
4
+ </p>
5
+
6
+ <p>
7
+ He soon finds himself on a flat beach by the side of a loch. The beach can be represented by an infinite 2D plane,
8
+ with <strong>N</strong> axis-aligned rectangular pools of shallow water on it.
9
+ The <strong>i</strong>th pool has a pair of opposite corners at coordinates
10
+ (<strong>x<sub>1</sub></strong>, <strong>y<sub>1</sub></strong>) and
11
+ (<strong>x<sub>2</sub></strong>, <strong>y<sub>2</sub></strong>).
12
+ All of the pools can arbitrarily overlap with one another, the result being that there's shallow water everywhere within
13
+ the union of the pools' rectangles (including right on its edges), and no water anywhere else
14
+ (Mr. Fox isn't brave enough to venture into the loch itself yet!).
15
+ </p>
16
+
17
+ <p>
18
+ Mr. Fox would like to get a running start and then launch himself across the water at some location, skimboarding across
19
+ the pools in a straight line until he hits a point with no water. In other words, his skimboarding debut will consist of a
20
+ line segment contained within the union of the pools' rectangles (inclusive of borders).
21
+ What's the maximum length this line segment can have?
22
+ </p>
23
+
24
+
25
+ <h3>Input</h3>
26
+ <p>
27
+ Input begins with an integer <strong>T</strong>, the number of places Mr. Fox goes skimboarding.
28
+ For each place, there is first a line containing the integer <strong>N</strong>.
29
+ Then <strong>N</strong> lines follow, the <strong>i</strong>th of which contains the space-separated integers
30
+ <strong>x<sub>1</sub></strong>, <strong>y<sub>1</sub></strong>,
31
+ <strong>x<sub>2</sub></strong>, and <strong>y<sub>2</sub></strong>.
32
+ </p>
33
+
34
+ <h3>Output</h3>
35
+ <p>
36
+ For the <strong>i</strong>th place, print a line containing "Case #<strong>i</strong>: " followed by
37
+ the length of longest possible skimboarding path rounded to 6 decimal places.
38
+ </p>
39
+
40
+ <p>
41
+ Absolute errors of up to 2e-6 will be ignored.
42
+ </p>
43
+
44
+
45
+ <h3>Constraints</h3>
46
+ <p>
47
+ 1 &le; <strong>T</strong> &le; 20 <br />
48
+ 1 &le; <strong>N</strong> &le; 20 <br />
49
+ -1,000,000 &le; <strong>x<sub>1</sub></strong> &lt; <strong>x<sub>2</sub></strong> &le; 1,000,000 <br />
50
+ -1,000,000 &le; <strong>y<sub>1</sub></strong> &lt; <strong>y<sub>2</sub></strong> &le; 1,000,000 <br />
51
+ </p>
52
+
53
+ <h3>Explanation of Sample</h3>
54
+ <p>
55
+ In the first case, (2, 0) to (5, 5) is an optimal path.
56
+ </p>
57
+
2015/finals/fox_lochs.in ADDED
@@ -0,0 +1,281 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 20
2
+ 2
3
+ 2 0 4 3
4
+ 3 2 5 5
5
+ 1
6
+ 0 0 3 4
7
+ 3
8
+ 0 0 3 2
9
+ 0 1 3 3
10
+ 0 2 3 4
11
+ 3
12
+ 0 0 1 1
13
+ 2 0 4 2
14
+ 5 0 8 3
15
+ 3
16
+ -3 -3 3 3
17
+ -2 -2 2 2
18
+ -1 -1 1 1
19
+ 2
20
+ 0 0 3 7
21
+ 0 0 6 3
22
+ 3
23
+ 0 0 1 1
24
+ 1 1 2 2
25
+ 2 2 3 3
26
+ 3
27
+ 0 0 1 5
28
+ 1 5 2 10
29
+ 0 10 1 15
30
+ 20
31
+ -286959 -309830 334986 310737
32
+ 33558 -723747 52007 -389359
33
+ -268327 -620833 82947 -478539
34
+ -152349 -646539 -4651 -257395
35
+ -503006 -723965 -401305 -650415
36
+ 151877 90069 803553 170528
37
+ -111556 74872 395038 200804
38
+ -642206 -690890 -485591 -630053
39
+ -858953 -421459 -788731 -165102
40
+ -392378 -786805 156551 -591853
41
+ -383323 -501911 180233 107362
42
+ -454245 -457792 -434302 -24990
43
+ -148004 -843252 97841 -468546
44
+ -701841 -388101 -195752 -273116
45
+ -559696 -394542 -317264 283349
46
+ 118386 -157347 302171 142939
47
+ -739140 -571503 -103371 -221701
48
+ -838348 -67776 -576656 -19
49
+ -205798 -548617 323327 -119097
50
+ -315029 -201609 45362 474272
51
+ 20
52
+ -56698 -76497 229042 -49564
53
+ -468342 74546 -358948 237252
54
+ 7070 -242470 140836 -214080
55
+ -166709 98233 -143885 178953
56
+ -474396 -147112 -443646 -70639
57
+ 65062 -466898 386507 -435564
58
+ -325446 -371266 8155 -339461
59
+ -145641 86478 33245 417712
60
+ 1412 58495 265795 325852
61
+ -200837 -387826 95655 -126137
62
+ -349463 -478682 -250910 -365103
63
+ -376558 -301409 -330534 4060
64
+ -340910 -24425 -336269 79805
65
+ -342914 85227 -198322 386595
66
+ -162775 -74349 83589 -25287
67
+ -491645 -453352 -185269 -156616
68
+ -217061 -484110 13086 -476098
69
+ -351803 -20542 -201697 187589
70
+ -172586 -338264 53442 -197491
71
+ -110964 -341694 209002 -120068
72
+ 20
73
+ -9072 -248220 83415 -203481
74
+ -170983 -316985 16689 -267759
75
+ -171040 -139842 -144962 -26127
76
+ -268542 28784 -167429 144428
77
+ -271051 66459 -161643 106674
78
+ -324382 33354 -251785 94597
79
+ -106430 -83021 82658 30957
80
+ 35223 -329483 248486 -99458
81
+ -35622 -114816 49117 118263
82
+ -332013 -2285 -176099 218858
83
+ -122000 -184394 -78831 -35414
84
+ -134236 -80732 37417 -53269
85
+ -324531 -22448 -228942 191073
86
+ -216533 -223571 -96868 -38054
87
+ -289292 -35608 -191713 41863
88
+ -196386 -300406 -59213 -225864
89
+ -113985 4446 108796 210785
90
+ 13025 -232421 161903 -75201
91
+ -71335 4779 -58763 73465
92
+ 36680 -232827 136759 -99643
93
+ 20
94
+ 5579 -246611 32830 -113542
95
+ -93905 -232057 -39380 -199416
96
+ -154243 25712 -17335 102898
97
+ -249508 -24333 -167958 49577
98
+ -135636 -231069 -89903 -131140
99
+ -191417 -94448 -87629 -71937
100
+ 10274 -197755 89917 -87210
101
+ 14739 -209727 168254 -96253
102
+ -228532 -115472 -202255 39421
103
+ -197083 -47195 -116247 24234
104
+ 25944 -78346 34459 -71634
105
+ -202746 -122860 -150961 -55443
106
+ -204969 -129370 -73072 34399
107
+ 13023 -138975 75333 -69086
108
+ 7099 40102 11815 183412
109
+ -241157 -8200 -103580 -2399
110
+ -84614 -15688 72061 158538
111
+ -52888 -19329 -3013 85879
112
+ -208920 -23497 -94905 63983
113
+ -205259 10742 -138022 156670
114
+ 20
115
+ -147440 -178232 -29838 -157769
116
+ -192795 -193111 -179992 -64460
117
+ -52052 25852 -35729 73137
118
+ -189013 -83926 -144121 27031
119
+ -167256 -76822 -65383 1552
120
+ -102965 -97543 10034 -84305
121
+ -190814 -160649 -123915 -24620
122
+ 20799 -58018 61773 -21843
123
+ -80004 35359 -18846 145438
124
+ -51745 -20134 33773 45507
125
+ -13672 -35014 85518 47094
126
+ -103513 -27412 -96996 -6257
127
+ -87270 -13638 24988 50441
128
+ -137356 -162232 -107018 -160117
129
+ -1878 -167191 14278 -44636
130
+ -50105 -41441 35376 69976
131
+ -105041 -45907 4214 51770
132
+ -160512 17115 -110644 26204
133
+ -190316 -163258 -159765 -45180
134
+ -170333 -94239 -54171 8352
135
+ 20
136
+ -17455 -74758 36301 8458
137
+ -116932 -29616 -86407 -14124
138
+ -102390 -105717 -36616 -92015
139
+ -46311 -80330 25809 -1681
140
+ -59512 -3365 -28955 79789
141
+ -159133 -53948 -94500 -48983
142
+ -7897 -11787 27456 67079
143
+ 7640 -159791 57214 -109531
144
+ -104552 -138433 -101879 -47182
145
+ -129159 -80554 -18336 -37052
146
+ 10858 -110133 23607 -3947
147
+ -70012 -49126 -21294 -1865
148
+ -136528 31026 -78300 41005
149
+ -29498 -969 -3260 54784
150
+ -14159 -149687 38880 -133605
151
+ -70323 15009 14200 45372
152
+ -113458 -55704 -112510 -24565
153
+ 23826 -11480 46306 41872
154
+ -40612 -91079 59178 5869
155
+ -15838 -166587 -8220 -164587
156
+ 20
157
+ -17572 -53841 -181 3051
158
+ -20709 -131747 -8694 -88323
159
+ -22701 9893 43653 77685
160
+ -126897 24627 -109680 57123
161
+ -103003 -49152 -23091 -25020
162
+ -84271 -88731 15354 -81316
163
+ -24434 -108880 3060 -19269
164
+ -55147 -40417 -14478 -22457
165
+ -64899 -127179 -59272 -114018
166
+ -102804 -110689 -72485 -94457
167
+ -7751 2228 1307 65397
168
+ 24055 19982 52083 51941
169
+ -8345 -27087 5629 282
170
+ -83445 -116242 -58723 -75591
171
+ -48987 -94471 -19733 -52461
172
+ -22666 -142121 40579 -50429
173
+ -98752 -93233 -86806 -76446
174
+ -55080 -111344 -29543 -100929
175
+ -17838 -50404 65601 -12087
176
+ -95013 -23764 -46180 29085
177
+ 20
178
+ -87550 -101178 -51779 -99855
179
+ -9766 -38636 41757 -11166
180
+ 22762 -65842 73389 -18143
181
+ -23117 1473 -5446 60301
182
+ -8146 -30366 6864 -21041
183
+ -7616 11491 48692 76162
184
+ -53000 -34734 -20977 19735
185
+ -3691 -88225 11252 -6150
186
+ -19468 12823 13191 40608
187
+ -59210 13809 16067 18458
188
+ -99759 -58683 -18285 -8418
189
+ -82595 5044 -79233 13699
190
+ -124017 -32968 -55394 -22893
191
+ 16418 -89047 47872 -55673
192
+ -79007 -65672 -71587 -54575
193
+ -111743 19148 -69193 19263
194
+ -103893 -21530 -18622 37169
195
+ 21799 -120029 87722 -117247
196
+ -74348 -38929 -19163 12163
197
+ 17077 -50400 77264 30331
198
+ 20
199
+ -56640 -8303 15376 62896
200
+ -27746 -86147 -2573 -8422
201
+ -63624 -69749 -15681 -24768
202
+ 7611 -68224 79058 -47319
203
+ -32360 -27295 -1703 -2166
204
+ 6527 -4517 70622 1355
205
+ 5124 -14917 17478 59963
206
+ 2290 6420 29184 77225
207
+ -2998 -81277 34722 -42463
208
+ 1197 -65052 42889 -5195
209
+ 16031 -109329 37529 -66346
210
+ 6022 -102492 61782 -72763
211
+ 7297 -75249 74658 -7980
212
+ 16290 -28199 47092 46586
213
+ -53286 -95120 -35670 -35681
214
+ -10628 3751 36173 14712
215
+ 12704 -7833 69424 37141
216
+ -44089 -88604 -10643 -73802
217
+ 9538 -102748 85961 -80402
218
+ -9780 -29025 64016 -3570
219
+ 20
220
+ -48533 -8968 -22352 46291
221
+ -88263 -62589 -45656 -60097
222
+ -54735 1230 -6907 14679
223
+ -56687 6797 -20806 50977
224
+ -2399 -89810 47880 -20712
225
+ -1648 -89075 37023 -48638
226
+ -98627 -6831 -96537 27407
227
+ -685 -48031 53809 2301
228
+ -70452 -38969 -42920 -35580
229
+ -82666 -55649 -37460 -4001
230
+ -72750 -92869 -59839 -59464
231
+ 2873 4631 72004 52745
232
+ 2393 9971 48670 64638
233
+ -24002 -70573 -22003 -25585
234
+ -61524 -82097 -38016 -46947
235
+ -23737 13271 40241 38043
236
+ -76971 -43961 -55528 6815
237
+ -65252 -93 -20706 26810
238
+ -64026 8111 -26672 26101
239
+ 13923 -79634 74725 -71378
240
+ 20
241
+ -76912 -48008 -65471 -26195
242
+ -74401 -71091 -40758 -15699
243
+ -86942 -749 -66637 45740
244
+ -72617 -33078 -27480 -30641
245
+ 911 -12941 1636 39602
246
+ -87746 -45994 -37784 11359
247
+ -85385 -7190 -39515 -1582
248
+ -51334 -54155 -20347 -478
249
+ -35514 -62145 -18819 -12539
250
+ -29588 14631 -23940 68827
251
+ -9643 -55660 -3198 -20861
252
+ -38674 -13854 -18982 15986
253
+ -28253 4686 -17157 51408
254
+ -65274 13567 -41888 59376
255
+ -6352 -23950 37207 98
256
+ -44782 -77533 -40738 -76307
257
+ -4536 -67308 26807 -61508
258
+ 14894 -84834 40902 -79828
259
+ 3434 -26027 50346 -15738
260
+ -13336 -76227 -7978 -31627
261
+ 20
262
+ -27361 -74150 -7367 -53554
263
+ -3283 -79619 36724 -73508
264
+ -34876 -8866 -25718 33301
265
+ -64304 -57439 -14760 -11866
266
+ -21065 -14369 -10867 42597
267
+ -70002 -28140 -67632 -26453
268
+ -70686 -27308 -52392 -6214
269
+ 11979 -78639 39735 -44027
270
+ -30308 2134 9087 21944
271
+ -17073 -1104 38844 21617
272
+ -22661 9895 -19355 53076
273
+ -58070 -5105 -41902 -2664
274
+ -6487 -4027 8257 33446
275
+ -22206 -30805 878 -5010
276
+ -30766 -36212 -3548 -29303
277
+ -51240 -44079 3373 -24353
278
+ -33817 -76274 -18268 -54160
279
+ -37690 -29943 -4121 970
280
+ -44221 -53656 4794 -19338
281
+ -689 -26180 4766 28372
2015/finals/fox_lochs.md ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Mr. Fox is going on a trip to Scotland to witness its many beautiful lochs!
2
+ He's heard that skimboarding is a fun pastime, somewhat similar to surfing,
3
+ and he'd like to give it a try while he's there.
4
+
5
+ He soon finds himself on a flat beach by the side of a loch. The beach can be
6
+ represented by an infinite 2D plane, with **N** axis-aligned rectangular pools
7
+ of shallow water on it. The **i**th pool has a pair of opposite corners at
8
+ coordinates (**x1**, **y1**) and (**x2**, **y2**). All of the pools can
9
+ arbitrarily overlap with one another, the result being that there's shallow
10
+ water everywhere within the union of the pools' rectangles (including right on
11
+ its edges), and no water anywhere else (Mr. Fox isn't brave enough to venture
12
+ into the loch itself yet!).
13
+
14
+ Mr. Fox would like to get a running start and then launch himself across the
15
+ water at some location, skimboarding across the pools in a straight line until
16
+ he hits a point with no water. In other words, his skimboarding debut will
17
+ consist of a line segment contained within the union of the pools' rectangles
18
+ (inclusive of borders). What's the maximum length this line segment can have?
19
+
20
+ ### Input
21
+
22
+ Input begins with an integer **T**, the number of places Mr. Fox goes
23
+ skimboarding. For each place, there is first a line containing the integer
24
+ **N**. Then **N** lines follow, the **i**th of which contains the space-
25
+ separated integers **x1**, **y1**, **x2**, and **y2**.
26
+
27
+ ### Output
28
+
29
+ For the **i**th place, print a line containing "Case #**i**: " followed by the
30
+ length of longest possible skimboarding path rounded to 6 decimal places.
31
+
32
+ Absolute errors of up to 2e-6 will be ignored.
33
+
34
+ ### Constraints
35
+
36
+ 1 ≤ **T** ≤ 20
37
+ 1 ≤ **N** ≤ 20
38
+ -1,000,000 ≤ **x1** < **x2** ≤ 1,000,000
39
+ -1,000,000 ≤ **y1** < **y2** ≤ 1,000,000
40
+
41
+ ### Explanation of Sample
42
+
43
+ In the first case, (2, 0) to (5, 5) is an optimal path.
44
+
2015/finals/fox_lochs.out ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Case #1: 5.830952
2
+ Case #2: 5.000000
3
+ Case #3: 5.000000
4
+ Case #4: 4.242641
5
+ Case #5: 8.485281
6
+ Case #6: 8.750000
7
+ Case #7: 4.242641
8
+ Case #8: 15.000000
9
+ Case #9: 1439133.979724
10
+ Case #10: 884005.747931
11
+ Case #11: 650595.679101
12
+ Case #12: 406740.250958
13
+ Case #13: 375892.303625
14
+ Case #14: 261653.376275
15
+ Case #15: 223308.221962
16
+ Case #16: 200551.423396
17
+ Case #17: 214887.140352
18
+ Case #18: 172942.536512
19
+ Case #19: 131482.402853
20
+ Case #20: 129424.576294
2015/finals/fox_locks.html ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <p>
2
+ Mr. Fox has just won the lottery! As a result, he's treated himself to some gifts &mdash;
3
+ a few socks, a few rocks, a few blocks... oh, and the entire Panama canal system.
4
+ </p>
5
+
6
+ <p>
7
+ The system has <strong>K</strong> canals, the <strong>i</strong>th of which consists of a line of
8
+ <strong>N<sub>i</sub></strong> equally-sized sections. The <strong>j</strong>th section of the <strong>i</strong>th canal
9
+ initially contains <strong>W<sub>i,j</sub></strong> gallons of water. There's also an initially closed lock (a retractable wall) between
10
+ each pair of adjacent sections (that is, between sections 1 and 2, sections 2 and 3, and so on).
11
+ As such, there are <strong>N<sub>i</sub></strong>-1 such locks in the <strong>i</strong>th canal.
12
+ </p>
13
+
14
+ <p>
15
+ The canals are all linked to each other by an additional central hub section (also of equal size to the other sections),
16
+ which initially contains <strong>H</strong> gallons of water. This section is adjacent to the 1st section of each of the canals,
17
+ separated by a special initially closed lock. As such, there are <strong>K</strong> such central locks.
18
+ </p>
19
+
20
+ <p>
21
+ Mr. Fox is relaxing in a yacht (oh, right, he also bought himself one of those) floating in the central hub section.
22
+ Just for fun, he'd like to raise the water level in this section as high as possible. To do so, he may give any (potentially empty) sequence
23
+ of commands to his Panama employees, one per minute. Each command consists of selecting a single lock anywhere in the canal system
24
+ and toggling it from being closed to being open (or vice versa). In the following minute, the water will level out (as water tends to do) by
25
+ flowing through open locks such that, for any pair of adjacent sections which are separated by an open lock, they will end up with equal
26
+ amounts of water. Mr. Fox does need to obey the Panama canal system's safety regulations, however, which impose one restriction on his
27
+ commands: whenever one of the <strong>K</strong> central locks adjacent to the central hub section is opened, it must be closed a
28
+ minute later and then never re-opened.
29
+ </p>
30
+
31
+ <p>
32
+ Mr. Fox loves watching water flow through his locks, especially when it allows his yacht to magically rise up. Wheeeee! By commanding his employees carefully, how much water can Mr. Fox get into the central hub section?
33
+ </p>
34
+
35
+
36
+ <h3>Constraints</h3>
37
+ <p>
38
+ 1 &le; <strong>T</strong> &le; 20 <br/>
39
+ 1 &le; <strong>K</strong> &le; 50 <br/>
40
+ 0 &le; <strong>H</strong> &le; 10^9 <br/>
41
+ 1 &le; <strong>N<sub>i</sub></strong> &le; 100,000 <br/>
42
+ <strong>N<sub>i</sub></strong> &gt; 1 implies
43
+ <strong>N<sub>i+1</sub></strong> &ge; 2*<strong>N<sub>i</sub></strong>
44
+ (for 1 &le; <strong>i</strong> &lt; <strong>K</strong>) <br/>
45
+ 0 &le; <strong>W<sub>i,j</sub></strong> &le; 10^9 <br/>
46
+ </p>
47
+
48
+
49
+ <h3>Input</h3>
50
+ <p>
51
+ Input begins with an integer <strong>T</strong>, the number of canal systems Mr. Fox owns.
52
+ For each system, there is first a line containing the space-separated integers <strong>K</strong> and <strong>H</strong>.
53
+ Then, <strong>K</strong> lines follow, the <strong>i</strong>th of which contains the integer <strong>N<sub>i</sub></strong>
54
+ followed by the space-separated integers <strong>W<sub>i,1</sub></strong> ... <strong>W<sub>i,N<sub>i</sub></sub></strong>.
55
+ </p>
56
+
57
+
58
+ <h3>Output</h3>
59
+ <p>
60
+ For the <strong>i</strong>th canal system, print a line containing "Case #<strong>i</strong>: " followed by
61
+ the maximum amount of water (in gallons) that can end up in the central hub section, rounded to 6 decimal places.
62
+ </p>
63
+
64
+ <p>
65
+ Absolute errors of up to 5e-6 will be ignored.
66
+ </p>
67
+
68
+
69
+ <h3>Explanation of Sample</h3>
70
+ <p>
71
+ In the first case, the optimal solution is to first open and close the lock between the central hub and canal 1.
72
+ This leaves the central hub with 0.5 gallons of water. Then, opening the lock between the central hub and canal 2 leaves the central hub
73
+ with 1.25 gallons of water.
74
+ </p>
2015/finals/fox_locks.in ADDED
The diff for this file is too large to render. See raw diff
 
2015/finals/fox_locks.md ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Mr. Fox has just won the lottery! As a result, he's treated himself to some
2
+ gifts — a few socks, a few rocks, a few blocks... oh, and the entire Panama
3
+ canal system.
4
+
5
+ The system has **K** canals, the **i**th of which consists of a line of **Ni**
6
+ equally-sized sections. The **j**th section of the **i**th canal initially
7
+ contains **Wi,j** gallons of water. There's also an initially closed lock (a
8
+ retractable wall) between each pair of adjacent sections (that is, between
9
+ sections 1 and 2, sections 2 and 3, and so on). As such, there are **Ni**-1
10
+ such locks in the **i**th canal.
11
+
12
+ The canals are all linked to each other by an additional central hub section
13
+ (also of equal size to the other sections), which initially contains **H**
14
+ gallons of water. This section is adjacent to the 1st section of each of the
15
+ canals, separated by a special initially closed lock. As such, there are **K**
16
+ such central locks.
17
+
18
+ Mr. Fox is relaxing in a yacht (oh, right, he also bought himself one of
19
+ those) floating in the central hub section. Just for fun, he'd like to raise
20
+ the water level in this section as high as possible. To do so, he may give any
21
+ (potentially empty) sequence of commands to his Panama employees, one per
22
+ minute. Each command consists of selecting a single lock anywhere in the canal
23
+ system and toggling it from being closed to being open (or vice versa). In the
24
+ following minute, the water will level out (as water tends to do) by flowing
25
+ through open locks such that, for any pair of adjacent sections which are
26
+ separated by an open lock, they will end up with equal amounts of water. Mr.
27
+ Fox does need to obey the Panama canal system's safety regulations, however,
28
+ which impose one restriction on his commands: whenever one of the **K**
29
+ central locks adjacent to the central hub section is opened, it must be closed
30
+ a minute later and then never re-opened.
31
+
32
+ Mr. Fox loves watching water flow through his locks, especially when it allows
33
+ his yacht to magically rise up. Wheeeee! By commanding his employees
34
+ carefully, how much water can Mr. Fox get into the central hub section?
35
+
36
+ ### Constraints
37
+
38
+ 1 ≤ **T** ≤ 20
39
+ 1 ≤ **K** ≤ 50
40
+ 0 ≤ **H** ≤ 10^9
41
+ 1 ≤ **Ni** ≤ 100,000
42
+ **Ni** > 1 implies **Ni+1** ≥ 2***Ni** (for 1 ≤ **i** < **K**)
43
+ 0 ≤ **Wi,j** ≤ 10^9
44
+
45
+ ### Input
46
+
47
+ Input begins with an integer **T**, the number of canal systems Mr. Fox owns.
48
+ For each system, there is first a line containing the space-separated integers
49
+ **K** and **H**. Then, **K** lines follow, the **i**th of which contains the
50
+ integer **Ni** followed by the space-separated integers **Wi,1** ...
51
+ **Wi,Ni**.
52
+
53
+ ### Output
54
+
55
+ For the **i**th canal system, print a line containing "Case #**i**: " followed
56
+ by the maximum amount of water (in gallons) that can end up in the central hub
57
+ section, rounded to 6 decimal places.
58
+
59
+ Absolute errors of up to 5e-6 will be ignored.
60
+
61
+ ### Explanation of Sample
62
+
63
+ In the first case, the optimal solution is to first open and close the lock
64
+ between the central hub and canal 1. This leaves the central hub with 0.5
65
+ gallons of water. Then, opening the lock between the central hub and canal 2
66
+ leaves the central hub with 1.25 gallons of water.
67
+
2015/finals/fox_locks.out ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Case #1: 1.250000
2
+ Case #2: 7.500000
3
+ Case #3: 9.428571
4
+ Case #4: 9.100000
5
+ Case #5: 121.465278
6
+ Case #6: 7.272727
7
+ Case #7: 9.500000
8
+ Case #8: 977326399.687126
9
+ Case #9: 960513538.070536
10
+ Case #10: 933171236.379669
11
+ Case #11: 916380015.475403
12
+ Case #12: 978947197.076133
13
+ Case #13: 959541028.712926
14
+ Case #14: 939205642.630288
15
+ Case #15: 935796566.343075
16
+ Case #16: 992620512.365391
17
+ Case #17: 944841437.133588
18
+ Case #18: 978504891.417060
19
+ Case #19: 980182123.567300
20
+ Case #20: 975118031.550553
2015/quals/cooking_the_books.html ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <p>
2
+ Every business can make use of a good accountant and, if they're not big on following the law,
3
+ sometimes a bad one.
4
+ Bad accountants try to make more money for their employers by fudging numbers
5
+ without getting caught.
6
+ </p>
7
+
8
+ <p>
9
+ Sometimes a bad accountant wants to make a number larger, and sometimes smaller.
10
+ It is widely known that tax auditors will fail to notice two digits being swapped in any given number,
11
+ but any discrepancy more egregious will certainly be caught. It's also painfully obvious when a
12
+ number has fewer digits than it ought to, so a bad accountant will never swap the first digit of a number
13
+ with a 0.
14
+ </p>
15
+
16
+ <p>
17
+ Given a number, how small or large can it be made without being found out?
18
+ </p>
19
+
20
+
21
+ <h3>Input</h3>
22
+
23
+ <p>
24
+ Input begins with an integer <strong>T</strong>, the number of numbers
25
+ that need tweaking. Each of the next <strong>T</strong> lines contains a
26
+ integer <strong>N</strong>.
27
+ </p>
28
+
29
+
30
+
31
+ <h3>Output</h3>
32
+
33
+ <p>
34
+ For the <em>i</em>th number, print a line containing "Case #<em>i</em>: " followed by the smallest and largest
35
+ numbers that can be made from the original number <strong>N</strong>, using at most a single swap and following the
36
+ rules above.
37
+ </p>
38
+
39
+ <h3>Constraints</h3>
40
+
41
+ <p>
42
+ 1 &le; <strong>T</strong> &le; 100 <br />
43
+ 0 &le; <strong>N</strong> &le; 999999999 <br />
44
+ <strong>N</strong> will never begin with a leading 0 unless <strong>N</strong> = 0<br />
45
+ </p>
2015/quals/cooking_the_books.in ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 100
2
+ 31524
3
+ 897
4
+ 123
5
+ 10
6
+ 5
7
+ 999999999
8
+ 0
9
+ 10
10
+ 9990999
11
+ 939214502
12
+ 773452111
13
+ 142155100
14
+ 604231672
15
+ 857412048
16
+ 287689159
17
+ 422931895
18
+ 728154034
19
+ 926288077
20
+ 380045476
21
+ 869841756
22
+ 472956328
23
+ 67954827
24
+ 324585222
25
+ 796888162
26
+ 906755308
27
+ 686277820
28
+ 718179101
29
+ 983606612
30
+ 172720996
31
+ 438536300
32
+ 675905967
33
+ 183177323
34
+ 344115361
35
+ 229735494
36
+ 626713815
37
+ 315466572
38
+ 189923057
39
+ 158421087
40
+ 519644114
41
+ 623885686
42
+ 47078002
43
+ 290009020
44
+ 504349673
45
+ 301819730
46
+ 95124058
47
+ 731566438
48
+ 71429777
49
+ 522400210
50
+ 339027548
51
+ 229060391
52
+ 470695573
53
+ 474712259
54
+ 408886824
55
+ 216793189
56
+ 314146739
57
+ 57961734
58
+ 393698191
59
+ 208297360
60
+ 134351747
61
+ 331343270
62
+ 731407053
63
+ 764921681
64
+ 621007349
65
+ 218198062
66
+ 32753219
67
+ 442015041
68
+ 155530534
69
+ 181355259
70
+ 342244656
71
+ 476018690
72
+ 26761681
73
+ 497609663
74
+ 724144391
75
+ 30426294
76
+ 655612982
77
+ 820715607
78
+ 545178093
79
+ 749039533
80
+ 474867873
81
+ 994967987
82
+ 877115755
83
+ 572373221
84
+ 102163946
85
+ 763307818
86
+ 571198404
87
+ 469689830
88
+ 411524629
89
+ 197557112
90
+ 729970282
91
+ 23734873
92
+ 469952340
93
+ 444558727
94
+ 691917617
95
+ 363033526
96
+ 364669874
97
+ 86432949
98
+ 314138255
99
+ 92106130
100
+ 640187092
101
+ 376660869
2015/quals/cooking_the_books.md ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Every business can make use of a good accountant and, if they're not big on
2
+ following the law, sometimes a bad one. Bad accountants try to make more money
3
+ for their employers by fudging numbers without getting caught.
4
+
5
+ Sometimes a bad accountant wants to make a number larger, and sometimes
6
+ smaller. It is widely known that tax auditors will fail to notice two digits
7
+ being swapped in any given number, but any discrepancy more egregious will
8
+ certainly be caught. It's also painfully obvious when a number has fewer
9
+ digits than it ought to, so a bad accountant will never swap the first digit
10
+ of a number with a 0.
11
+
12
+ Given a number, how small or large can it be made without being found out?
13
+
14
+ ### Input
15
+
16
+ Input begins with an integer **T**, the number of numbers that need tweaking.
17
+ Each of the next **T** lines contains a integer **N**.
18
+
19
+ ### Output
20
+
21
+ For the _i_th number, print a line containing "Case #_i_: " followed by the
22
+ smallest and largest numbers that can be made from the original number **N**,
23
+ using at most a single swap and following the rules above.
24
+
25
+ ### Constraints
26
+
27
+ 1 ≤ **T** ≤ 100
28
+ 0 ≤ **N** ≤ 999999999
29
+ **N** will never begin with a leading 0 unless **N** = 0
30
+
2015/quals/cooking_the_books.out ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Case #1: 13524 51324
2
+ Case #2: 798 987
3
+ Case #3: 123 321
4
+ Case #4: 10 10
5
+ Case #5: 5 5
6
+ Case #6: 999999999 999999999
7
+ Case #7: 0 0
8
+ Case #8: 10 10
9
+ Case #9: 9099999 9999990
10
+ Case #10: 139294502 993214502
11
+ Case #11: 173452117 775432111
12
+ Case #12: 102155104 542151100
13
+ Case #13: 104236672 704231662
14
+ Case #14: 157482048 887412045
15
+ Case #15: 187689259 987689152
16
+ Case #16: 122934895 922931845
17
+ Case #17: 128754034 827154034
18
+ Case #18: 226988077 986282077
19
+ Case #19: 300845476 830045476
20
+ Case #20: 169848756 968841756
21
+ Case #21: 272956348 972456328
22
+ Case #22: 27954867 97654827
23
+ Case #23: 224585223 824535222
24
+ Case #24: 196888762 976888162
25
+ Case #25: 306755908 986755300
26
+ Case #26: 286277860 886277620
27
+ Case #27: 118179107 918177101
28
+ Case #28: 183606692 986606312
29
+ Case #29: 102727996 972720916
30
+ Case #30: 338536400 834536300
31
+ Case #31: 575906967 975905667
32
+ Case #32: 113877323 813177323
33
+ Case #33: 144115363 644115331
34
+ Case #34: 223795494 929735424
35
+ Case #35: 126713865 826713615
36
+ Case #36: 135466572 715466532
37
+ Case #37: 109923857 989123057
38
+ Case #38: 108421587 858421017
39
+ Case #39: 119644154 915644114
40
+ Case #40: 263885686 823885666
41
+ Case #41: 27078004 87074002
42
+ Case #42: 200009029 990002020
43
+ Case #43: 304349675 904345673
44
+ Case #44: 101839730 901813730
45
+ Case #45: 15924058 98124055
46
+ Case #46: 137566438 831566437
47
+ Case #47: 17429777 91427777
48
+ Case #48: 122400250 542200210
49
+ Case #49: 239037548 933027548
50
+ Case #50: 129060392 929060321
51
+ Case #51: 370695574 970645573
52
+ Case #52: 174742259 974712254
53
+ Case #53: 208886844 808886424
54
+ Case #54: 116793289 916793182
55
+ Case #55: 114346739 914146733
56
+ Case #56: 17965734 97561734
57
+ Case #57: 193698193 993698131
58
+ Case #58: 200297368 908227360
59
+ Case #59: 114353747 734351741
60
+ Case #60: 133343270 731343230
61
+ Case #61: 137407053 771403053
62
+ Case #62: 164921687 964721681
63
+ Case #63: 126007349 921007346
64
+ Case #64: 118298062 918128062
65
+ Case #65: 12753239 92753213
66
+ Case #66: 142015044 542014041
67
+ Case #67: 105535534 555530134
68
+ Case #68: 118355259 981355251
69
+ Case #69: 242344656 642244653
70
+ Case #70: 176048690 976018640
71
+ Case #71: 16761682 86761621
72
+ Case #72: 397609664 997604663
73
+ Case #73: 124144397 924144371
74
+ Case #74: 20426394 90426234
75
+ Case #75: 155662982 955612682
76
+ Case #76: 120785607 870715602
77
+ Case #77: 145578093 945178053
78
+ Case #78: 349039537 949037533
79
+ Case #79: 374867874 874867473
80
+ Case #80: 499967987 999967487
81
+ Case #81: 177185755 877715155
82
+ Case #82: 172373225 772353221
83
+ Case #83: 101263946 902163146
84
+ Case #84: 163307878 863307817
85
+ Case #85: 171598404 971158404
86
+ Case #86: 369689840 969684830
87
+ Case #87: 114524629 911524624
88
+ Case #88: 117557192 917557112
89
+ Case #89: 229970287 929770282
90
+ Case #90: 23334877 83734273
91
+ Case #91: 269954340 969452340
92
+ Case #92: 244558747 844554727
93
+ Case #93: 191917667 991617617
94
+ Case #94: 263033536 663033523
95
+ Case #95: 344669876 964663874
96
+ Case #96: 26438949 96432948
97
+ Case #97: 114338255 814133255
98
+ Case #98: 12106930 96102130
99
+ Case #99: 140687092 940187062
100
+ Case #100: 306667869 976660863
2015/quals/laser_maze.html ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <p>
2
+ Standard mazes lose their mystery as one grows older. But throw in some lasers,
3
+ and suddenly you've got yourself a recipe for cross-generational appeal.
4
+ The object in any maze is to find your way from your starting point to some
5
+ goal. In a <em>Laser Maze</em> you must additionally contend with laser turrets.
6
+ </p>
7
+
8
+ <p>
9
+ A laser turret is a stationary pillar that both blocks your movement and fires
10
+ lasers from one side. Every time you take a step (either up, down, left, or right),
11
+ every laser turret in the maze then
12
+ rotates 90 degrees clockwise, and then shoots a momentary laser blast in the direction that it
13
+ is facing. Needless to say, if you find yourself in the path of one of these
14
+ lasers, you won't be around long enough to find a way out. A wall is a stationary pillar that
15
+ blocks your movement, but does not fire lasers.
16
+ </p>
17
+
18
+ <p>
19
+ Lasers are powerful, but they do not pass through walls or laser turrets.
20
+ The laser turrets respond to your movements, so you can't stand still and wait
21
+ for the turrets to turn. If you reach the goal, but are immediately shot by a
22
+ laser, your efforts will have been in vain, so make sure you reach the goal
23
+ safely.
24
+ </p>
25
+
26
+ <h3>Input</h3>
27
+
28
+ <p>
29
+ Input begins with an integer <strong>T</strong>, the number of mazes
30
+ you'll explore. For each maze, there is first a line containing two integers,
31
+ <strong>M</strong> and <strong>N</strong>, the height and width of the maze,
32
+ respectively. The next <strong>M</strong> lines contain <strong>N</strong>
33
+ characters each, describing the maze:
34
+ </p>
35
+
36
+ <p>
37
+ . (empty space) <br />
38
+ # (wall) <br />
39
+ S (starting position) <br />
40
+ G (goal) <br />
41
+ < > ^ v (laser turrets) <br />
42
+ </p>
43
+
44
+ <p>
45
+ The four symbols for laser turrets signify turrets that are initially pointing
46
+ left, right, up, or down respectively before you take your first step.
47
+ </p>
48
+
49
+
50
+ <h3>Output</h3>
51
+
52
+ <p>
53
+ For the <em>i</em>th maze, print a line containing "Case #<em>i</em>: " followed by
54
+ the smallest number of steps necessary to get to the exit without being
55
+ hit by a laser, or the string "impossible'' if there is no way to reach the
56
+ goal safely.
57
+ </p>
58
+
59
+
60
+ <h3>Constraints</h3>
61
+ <p>
62
+ 1 &le; <strong>T</strong> &le; 100 <br />
63
+ 1 &le; <strong>M</strong>, <strong>N</strong> &le; 100 <br />
64
+ Each maze will contain exactly one 'S' and exactly one 'G'.
65
+ </p>
66
+
67
+
68
+
2015/quals/laser_maze.in ADDED
The diff for this file is too large to render. See raw diff
 
2015/quals/laser_maze.md ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Standard mazes lose their mystery as one grows older. But throw in some
2
+ lasers, and suddenly you've got yourself a recipe for cross-generational
3
+ appeal. The object in any maze is to find your way from your starting point to
4
+ some goal. In a _Laser Maze_ you must additionally contend with laser turrets.
5
+
6
+ A laser turret is a stationary pillar that both blocks your movement and fires
7
+ lasers from one side. Every time you take a step (either up, down, left, or
8
+ right), every laser turret in the maze then rotates 90 degrees clockwise, and
9
+ then shoots a momentary laser blast in the direction that it is facing.
10
+ Needless to say, if you find yourself in the path of one of these lasers, you
11
+ won't be around long enough to find a way out. A wall is a stationary pillar
12
+ that blocks your movement, but does not fire lasers.
13
+
14
+ Lasers are powerful, but they do not pass through walls or laser turrets. The
15
+ laser turrets respond to your movements, so you can't stand still and wait for
16
+ the turrets to turn. If you reach the goal, but are immediately shot by a
17
+ laser, your efforts will have been in vain, so make sure you reach the goal
18
+ safely.
19
+
20
+ ### Input
21
+
22
+ Input begins with an integer **T**, the number of mazes you'll explore. For
23
+ each maze, there is first a line containing two integers, **M** and **N**, the
24
+ height and width of the maze, respectively. The next **M** lines contain **N**
25
+ characters each, describing the maze:
26
+
27
+ . (empty space)
28
+ # (wall)
29
+ S (starting position)
30
+ G (goal)
31
+ < > ^ v (laser turrets)
32
+
33
+ The four symbols for laser turrets signify turrets that are initially pointing
34
+ left, right, up, or down respectively before you take your first step.
35
+
36
+ ### Output
37
+
38
+ For the _i_th maze, print a line containing "Case #_i_: " followed by the
39
+ smallest number of steps necessary to get to the exit without being hit by a
40
+ laser, or the string "impossible'' if there is no way to reach the goal
41
+ safely.
42
+
43
+ ### Constraints
44
+
45
+ 1 ≤ **T** ≤ 100
46
+ 1 ≤ **M**, **N** ≤ 100
47
+ Each maze will contain exactly one 'S' and exactly one 'G'.
48
+
2015/quals/laser_maze.out ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Case #1: 6
2
+ Case #2: 4
3
+ Case #3: 3
4
+ Case #4: impossible
5
+ Case #5: 8
6
+ Case #6: impossible
7
+ Case #7: 1
8
+ Case #8: impossible
9
+ Case #9: 4
10
+ Case #10: 7
11
+ Case #11: 19
12
+ Case #12: 8
13
+ Case #13: 18
14
+ Case #14: 27
15
+ Case #15: 19
16
+ Case #16: 27
17
+ Case #17: 24
18
+ Case #18: 20
19
+ Case #19: impossible
20
+ Case #20: 62
21
+ Case #21: 38
22
+ Case #22: 48
23
+ Case #23: 43
24
+ Case #24: 3
25
+ Case #25: 27
26
+ Case #26: impossible
27
+ Case #27: 35
28
+ Case #28: 65
29
+ Case #29: 34
30
+ Case #30: 53
31
+ Case #31: 14
32
+ Case #32: 17
33
+ Case #33: 53
34
+ Case #34: impossible
35
+ Case #35: 38
36
+ Case #36: 1
37
+ Case #37: 44
38
+ Case #38: 63
39
+ Case #39: impossible
40
+ Case #40: 30
41
+ Case #41: 46
42
+ Case #42: 12
43
+ Case #43: 56
44
+ Case #44: 30
45
+ Case #45: 39
46
+ Case #46: 14
47
+ Case #47: 110
48
+ Case #48: impossible
49
+ Case #49: 87
50
+ Case #50: 31
51
+ Case #51: 17
52
+ Case #52: 6
53
+ Case #53: impossible
54
+ Case #54: 9
55
+ Case #55: impossible
56
+ Case #56: 4
57
+ Case #57: impossible
58
+ Case #58: 65
59
+ Case #59: 18
60
+ Case #60: 58
61
+ Case #61: 105
62
+ Case #62: 12
63
+ Case #63: 22
64
+ Case #64: 53
65
+ Case #65: impossible
66
+ Case #66: 125
67
+ Case #67: impossible
68
+ Case #68: 53
69
+ Case #69: 54
70
+ Case #70: impossible
71
+ Case #71: impossible
72
+ Case #72: 41
73
+ Case #73: 68
74
+ Case #74: 71
75
+ Case #75: 76
76
+ Case #76: 14
77
+ Case #77: 16
78
+ Case #78: 78
79
+ Case #79: impossible
80
+ Case #80: impossible
81
+ Case #81: impossible
82
+ Case #82: impossible
83
+ Case #83: 99
84
+ Case #84: 56
85
+ Case #85: 143
86
+ Case #86: impossible
87
+ Case #87: impossible
88
+ Case #88: 11
89
+ Case #89: impossible
90
+ Case #90: 15
91
+ Case #91: 118
92
+ Case #92: 36
93
+ Case #93: 99
94
+ Case #94: 101
95
+ Case #95: 141
96
+ Case #96: impossible
97
+ Case #97: 24
98
+ Case #98: 14
99
+ Case #99: 117
100
+ Case #100: impossible
2015/quals/new_years_resolution.html ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <p>
2
+ Alex's New Year's resolution for 2015 is to eat healthier foods. He's done some
3
+ research and has found out that calories come from three main sources, called
4
+ macronutrients: protein, carbohydrates, and fat. Alex wants to get the right
5
+ balance of protein, carbohydrates, and fat to have a balanced diet.
6
+ For each available food, Alex can only choose to eat it or not eat it. He
7
+ can't eat a certain food more than once, and he can't eat a fractional amount
8
+ of a food.
9
+ </p>
10
+
11
+ <h3>Input</h3>
12
+
13
+ <p>
14
+ Input begins with an integer <strong>T</strong>, the number of test cases.
15
+ For each test case, the first line consists of three space-separated
16
+ integers: <strong>G<sub>P</sub></strong>,
17
+ <strong>G<sub>C</sub></strong>, and <strong>G<sub>F</sub></strong>,
18
+ which represent the amount of
19
+ protein, carbohydrates, and fat that Alex wants to eat. The next line has the number of foods for that test case, an integer <strong>N</strong>.
20
+ The next <strong>N</strong> lines each consist of three space-separated integers:
21
+ <strong>P</strong>, <strong>C</strong>, and <strong>F</strong>,
22
+ which represent the amount of protein, carbohydrates, and fat in that food, respectively.
23
+ </p>
24
+
25
+ <h3>Output</h3>
26
+
27
+ <p>
28
+ For each test case <em>i</em>, print a line containing "Case #<em>i</em>: " followed by
29
+ either "yes" if it is possible for Alex to eat the exact amount of each
30
+ macronutrient, or "no" if it is not possible.
31
+ </p>
32
+
33
+ <h3>Constraints</h3>
34
+
35
+ <p>
36
+ 1 &le; <strong>T</strong> &le; 20 <br/>
37
+ 1 &le; <strong>N</strong> &le; 20 <br/>
38
+ 10 &le; <strong>G<sub>P</sub></strong>, <strong>G<sub>C</sub></strong>,
39
+ <strong>G<sub>F</sub></strong> &le; 1000 <br/>
40
+ 10 &le; <strong>P</strong>, <strong>C</strong>, <strong>F</strong> &le; 1000 <br/>
41
+ </p>
2015/quals/new_years_resolution.in ADDED
@@ -0,0 +1,1006 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 48
2
+ 100 100 100
3
+ 1
4
+ 100 100 100
5
+ 100 100 100
6
+ 3
7
+ 10 10 40
8
+ 10 30 10
9
+ 10 60 50
10
+ 100 100 100
11
+ 5
12
+ 40 70 30
13
+ 30 10 40
14
+ 20 20 50
15
+ 10 50 90
16
+ 40 10 20
17
+ 292 264 512
18
+ 20
19
+ 909 302 261
20
+ 705 597 823
21
+ 291 51 126
22
+ 28 697 57
23
+ 593 31 826
24
+ 311 256 57
25
+ 292 14 47
26
+ 29 730 716
27
+ 12 529 146
28
+ 768 16 439
29
+ 37 472 15
30
+ 350 192 34
31
+ 163 468 238
32
+ 69 173 10
33
+ 203 72 690
34
+ 424 875 213
35
+ 223 593 292
36
+ 151 46 10
37
+ 88 90 16
38
+ 773 653 711
39
+ 991 827 352
40
+ 20
41
+ 29 560 929
42
+ 139 681 102
43
+ 144 853 10
44
+ 84 729 80
45
+ 218 20 67
46
+ 140 80 901
47
+ 428 20 500
48
+ 520 970 128
49
+ 422 419 30
50
+ 413 101 192
51
+ 467 448 501
52
+ 32 939 684
53
+ 34 20 38
54
+ 251 317 132
55
+ 588 437 10
56
+ 648 21 79
57
+ 391 25 14
58
+ 499 22 24
59
+ 854 77 361
60
+ 405 25 20
61
+ 905 801 686
62
+ 20
63
+ 96 702 733
64
+ 255 767 766
65
+ 813 66 80
66
+ 561 418 216
67
+ 37 778 95
68
+ 765 818 433
69
+ 869 761 45
70
+ 270 635 304
71
+ 623 356 44
72
+ 871 407 13
73
+ 12 303 607
74
+ 972 148 951
75
+ 374 280 16
76
+ 179 191 583
77
+ 38 552 19
78
+ 22 91 66
79
+ 243 981 10
80
+ 13 171 864
81
+ 91 11 129
82
+ 168 728 757
83
+ 686 595 72
84
+ 20
85
+ 484 559 115
86
+ 352 42 892
87
+ 44 674 953
88
+ 686 616 366
89
+ 992 981 409
90
+ 421 30 197
91
+ 744 359 16
92
+ 716 150 327
93
+ 50 518 235
94
+ 207 212 177
95
+ 20 430 588
96
+ 551 690 970
97
+ 25 238 408
98
+ 44 14 140
99
+ 68 708 337
100
+ 235 952 283
101
+ 68 851 120
102
+ 21 790 505
103
+ 275 336 987
104
+ 131 552 16
105
+ 788 804 781
106
+ 20
107
+ 447 71 70
108
+ 274 994 525
109
+ 577 199 427
110
+ 543 963 263
111
+ 438 11 11
112
+ 484 844 38
113
+ 54 125 371
114
+ 123 10 217
115
+ 797 403 18
116
+ 41 527 163
117
+ 487 10 171
118
+ 16 762 912
119
+ 10 932 68
120
+ 694 118 222
121
+ 759 10 22
122
+ 670 917 553
123
+ 107 871 413
124
+ 119 82 410
125
+ 614 472 670
126
+ 230 100 99
127
+ 868 903 789
128
+ 20
129
+ 12 103 782
130
+ 696 535 181
131
+ 632 98 10
132
+ 154 74 998
133
+ 10 240 300
134
+ 95 10 698
135
+ 26 196 686
136
+ 384 930 414
137
+ 12 163 161
138
+ 163 38 440
139
+ 422 15 637
140
+ 355 25 10
141
+ 740 26 930
142
+ 277 740 302
143
+ 328 129 135
144
+ 20 714 250
145
+ 39 730 61
146
+ 822 578 333
147
+ 639 23 10
148
+ 485 16 75
149
+ 588 838 678
150
+ 20
151
+ 314 743 943
152
+ 659 696 10
153
+ 10 10 352
154
+ 223 53 91
155
+ 733 594 19
156
+ 384 64 487
157
+ 15 11 770
158
+ 569 639 471
159
+ 590 613 747
160
+ 777 99 217
161
+ 12 666 132
162
+ 396 456 914
163
+ 186 72 157
164
+ 505 952 153
165
+ 143 56 197
166
+ 380 988 876
167
+ 869 213 672
168
+ 76 388 744
169
+ 68 504 684
170
+ 833 56 709
171
+ 861 761 436
172
+ 20
173
+ 53 70 126
174
+ 176 143 95
175
+ 758 312 907
176
+ 409 183 29
177
+ 887 63 355
178
+ 781 941 21
179
+ 235 192 358
180
+ 43 20 93
181
+ 106 138 551
182
+ 196 10 576
183
+ 195 875 263
184
+ 213 449 401
185
+ 639 73 934
186
+ 655 222 98
187
+ 53 71 141
188
+ 537 976 662
189
+ 669 26 11
190
+ 294 729 93
191
+ 436 17 15
192
+ 246 341 467
193
+ 401 536 646
194
+ 20
195
+ 706 58 262
196
+ 48 13 296
197
+ 716 181 182
198
+ 73 362 146
199
+ 42 629 451
200
+ 74 37 13
201
+ 61 486 435
202
+ 742 480 405
203
+ 353 14 54
204
+ 166 119 607
205
+ 14 408 181
206
+ 12 425 17
207
+ 121 661 194
208
+ 327 499 633
209
+ 11 234 103
210
+ 14 624 86
211
+ 114 491 84
212
+ 482 610 88
213
+ 15 19 722
214
+ 11 293 688
215
+ 734 644 887
216
+ 20
217
+ 676 968 23
218
+ 946 215 329
219
+ 122 851 31
220
+ 219 99 845
221
+ 311 57 422
222
+ 229 117 452
223
+ 114 78 48
224
+ 329 388 63
225
+ 855 924 12
226
+ 335 774 659
227
+ 463 361 424
228
+ 308 947 550
229
+ 191 252 239
230
+ 10 245 760
231
+ 133 369 824
232
+ 860 193 530
233
+ 10 485 782
234
+ 487 197 15
235
+ 852 61 373
236
+ 118 426 365
237
+ 827 994 940
238
+ 20
239
+ 262 846 390
240
+ 19 543 52
241
+ 839 400 405
242
+ 23 859 592
243
+ 420 513 357
244
+ 562 331 218
245
+ 497 141 492
246
+ 748 632 524
247
+ 15 722 48
248
+ 80 521 176
249
+ 815 533 62
250
+ 508 51 171
251
+ 19 291 136
252
+ 674 895 157
253
+ 325 10 62
254
+ 209 362 439
255
+ 12 50 10
256
+ 88 373 711
257
+ 13 58 274
258
+ 287 342 443
259
+ 201 548 847
260
+ 20
261
+ 216 624 923
262
+ 662 104 10
263
+ 910 123 865
264
+ 577 48 802
265
+ 109 200 929
266
+ 411 12 198
267
+ 162 13 43
268
+ 544 150 494
269
+ 156 746 353
270
+ 146 25 126
271
+ 50 42 16
272
+ 747 210 189
273
+ 244 40 83
274
+ 368 16 942
275
+ 606 203 442
276
+ 13 908 775
277
+ 276 35 401
278
+ 384 559 659
279
+ 657 43 216
280
+ 29 210 622
281
+ 812 491 534
282
+ 20
283
+ 663 690 103
284
+ 165 644 334
285
+ 49 26 10
286
+ 267 184 231
287
+ 242 323 171
288
+ 31 273 777
289
+ 549 35 588
290
+ 824 28 53
291
+ 553 68 206
292
+ 772 97 64
293
+ 21 698 558
294
+ 31 10 849
295
+ 10 261 792
296
+ 836 756 11
297
+ 403 860 794
298
+ 670 234 13
299
+ 196 646 532
300
+ 841 396 370
301
+ 994 67 441
302
+ 108 84 243
303
+ 601 522 597
304
+ 20
305
+ 107 130 377
306
+ 48 878 702
307
+ 250 217 15
308
+ 102 122 80
309
+ 271 229 510
310
+ 72 30 15
311
+ 422 124 414
312
+ 784 295 10
313
+ 550 564 649
314
+ 359 792 57
315
+ 95 12 248
316
+ 112 270 247
317
+ 446 281 64
318
+ 11 379 328
319
+ 918 147 824
320
+ 187 156 112
321
+ 114 28 482
322
+ 16 809 83
323
+ 19 64 123
324
+ 701 48 25
325
+ 985 848 926
326
+ 20
327
+ 179 356 12
328
+ 44 490 297
329
+ 126 181 58
330
+ 55 225 110
331
+ 321 99 486
332
+ 115 70 171
333
+ 602 187 844
334
+ 391 11 188
335
+ 53 76 203
336
+ 29 374 307
337
+ 78 959 34
338
+ 182 24 828
339
+ 318 296 43
340
+ 244 72 530
341
+ 161 730 76
342
+ 751 808 296
343
+ 487 54 106
344
+ 857 36 588
345
+ 231 12 118
346
+ 291 62 35
347
+ 415 542 410
348
+ 20
349
+ 22 585 19
350
+ 99 661 543
351
+ 173 46 12
352
+ 10 38 73
353
+ 74 598 77
354
+ 46 730 935
355
+ 49 950 123
356
+ 523 11 17
357
+ 747 751 281
358
+ 691 301 34
359
+ 374 48 608
360
+ 968 10 924
361
+ 400 484 906
362
+ 11 738 36
363
+ 298 270 12
364
+ 238 20 136
365
+ 314 818 666
366
+ 345 374 77
367
+ 472 301 517
368
+ 101 10 129
369
+ 181 750 819
370
+ 20
371
+ 60 10 576
372
+ 303 39 917
373
+ 158 159 42
374
+ 16 499 333
375
+ 115 959 782
376
+ 841 229 358
377
+ 142 10 742
378
+ 181 750 819
379
+ 53 588 951
380
+ 668 160 18
381
+ 10 66 238
382
+ 865 416 10
383
+ 374 107 988
384
+ 149 926 470
385
+ 59 223 914
386
+ 11 564 201
387
+ 23 24 28
388
+ 10 359 455
389
+ 818 159 841
390
+ 132 963 10
391
+ 552 962 915
392
+ 20
393
+ 213 199 214
394
+ 461 68 134
395
+ 63 907 730
396
+ 65 595 102
397
+ 24 466 531
398
+ 526 10 610
399
+ 57 10 181
400
+ 678 30 12
401
+ 511 536 368
402
+ 296 18 772
403
+ 254 10 495
404
+ 784 40 65
405
+ 12 63 668
406
+ 723 11 306
407
+ 255 706 292
408
+ 202 104 51
409
+ 141 46 500
410
+ 478 159 683
411
+ 44 319 28
412
+ 271 192 163
413
+ 524 829 430
414
+ 20
415
+ 45 392 93
416
+ 140 56 30
417
+ 29 42 621
418
+ 249 829 584
419
+ 886 53 26
420
+ 691 215 765
421
+ 174 160 477
422
+ 65 481 367
423
+ 62 239 741
424
+ 48 361 10
425
+ 950 657 395
426
+ 82 712 883
427
+ 202 21 249
428
+ 973 273 110
429
+ 123 277 871
430
+ 11 15 67
431
+ 65 192 182
432
+ 730 28 717
433
+ 168 952 720
434
+ 55 829 760
435
+ 390 818 745
436
+ 20
437
+ 208 14 139
438
+ 694 107 395
439
+ 23 987 19
440
+ 25 786 329
441
+ 493 104 401
442
+ 200 122 23
443
+ 50 386 241
444
+ 827 128 73
445
+ 45 961 682
446
+ 206 366 86
447
+ 15 71 282
448
+ 12 293 553
449
+ 650 454 495
450
+ 148 385 497
451
+ 392 968 334
452
+ 199 387 39
453
+ 973 51 280
454
+ 354 11 672
455
+ 493 127 17
456
+ 540 308 143
457
+ 425 837 606
458
+ 20
459
+ 36 382 976
460
+ 898 10 596
461
+ 773 773 287
462
+ 160 170 135
463
+ 166 13 340
464
+ 412 94 139
465
+ 441 348 778
466
+ 676 103 850
467
+ 134 37 244
468
+ 12 146 165
469
+ 542 14 623
470
+ 264 248 10
471
+ 89 71 18
472
+ 173 27 452
473
+ 340 222 227
474
+ 62 560 446
475
+ 139 245 48
476
+ 15 830 769
477
+ 774 655 30
478
+ 429 216 92
479
+ 459 394 656
480
+ 20
481
+ 42 63 382
482
+ 96 248 26
483
+ 81 18 126
484
+ 17 232 81
485
+ 683 539 847
486
+ 642 336 827
487
+ 449 20 400
488
+ 50 57 835
489
+ 23 301 69
490
+ 564 917 28
491
+ 647 366 151
492
+ 532 768 739
493
+ 812 402 741
494
+ 139 237 804
495
+ 55 148 357
496
+ 173 84 184
497
+ 284 92 851
498
+ 646 18 568
499
+ 318 656 760
500
+ 313 12 79
501
+ 740 805 935
502
+ 20
503
+ 671 884 37
504
+ 365 527 774
505
+ 619 185 48
506
+ 333 125 542
507
+ 355 739 513
508
+ 299 249 12
509
+ 238 247 668
510
+ 10 365 122
511
+ 15 744 212
512
+ 992 709 806
513
+ 20 368 520
514
+ 889 217 399
515
+ 528 547 355
516
+ 314 24 215
517
+ 130 363 807
518
+ 441 556 923
519
+ 477 124 172
520
+ 528 95 447
521
+ 389 129 289
522
+ 36 12 620
523
+ 393 821 883
524
+ 20
525
+ 389 586 269
526
+ 363 927 476
527
+ 156 65 852
528
+ 92 924 146
529
+ 40 332 572
530
+ 205 135 101
531
+ 69 62 351
532
+ 156 849 10
533
+ 35 18 438
534
+ 355 39 774
535
+ 478 477 442
536
+ 59 744 795
537
+ 188 213 136
538
+ 11 712 410
539
+ 703 728 365
540
+ 91 960 333
541
+ 36 157 517
542
+ 880 71 23
543
+ 253 46 520
544
+ 924 39 79
545
+ 292 381 558
546
+ 20
547
+ 10 38 218
548
+ 12 148 673
549
+ 10 471 330
550
+ 844 732 240
551
+ 406 298 322
552
+ 691 617 121
553
+ 752 545 241
554
+ 410 301 823
555
+ 155 641 273
556
+ 955 165 121
557
+ 84 320 64
558
+ 56 60 93
559
+ 18 48 239
560
+ 928 925 34
561
+ 308 625 182
562
+ 13 13 701
563
+ 630 13 212
564
+ 124 304 913
565
+ 289 242 458
566
+ 696 822 421
567
+ 708 39 464
568
+ 20
569
+ 691 490 32
570
+ 10 10 785
571
+ 130 230 92
572
+ 83 66 217
573
+ 30 106 576
574
+ 10 734 108
575
+ 70 193 173
576
+ 501 467 154
577
+ 873 696 10
578
+ 259 285 183
579
+ 205 26 423
580
+ 10 100 10
581
+ 544 920 63
582
+ 357 856 93
583
+ 503 13 41
584
+ 372 62 393
585
+ 438 181 35
586
+ 877 369 662
587
+ 636 897 273
588
+ 23 987 807
589
+ 669 872 698
590
+ 20
591
+ 31 186 451
592
+ 121 759 10
593
+ 517 497 500
594
+ 222 271 26
595
+ 570 347 53
596
+ 81 160 859
597
+ 349 182 365
598
+ 270 845 83
599
+ 949 430 369
600
+ 58 658 421
601
+ 672 117 151
602
+ 102 968 223
603
+ 245 365 122
604
+ 10 25 193
605
+ 672 34 260
606
+ 34 39 65
607
+ 990 163 36
608
+ 13 394 10
609
+ 10 166 55
610
+ 10 504 114
611
+ 291 999 572
612
+ 20
613
+ 514 631 123
614
+ 688 547 135
615
+ 822 542 52
616
+ 95 22 100
617
+ 25 100 384
618
+ 28 174 413
619
+ 37 474 15
620
+ 702 511 465
621
+ 10 26 742
622
+ 616 863 74
623
+ 815 850 707
624
+ 364 10 563
625
+ 48 43 225
626
+ 725 75 62
627
+ 991 270 100
628
+ 26 131 867
629
+ 168 803 59
630
+ 289 408 23
631
+ 70 54 234
632
+ 459 876 640
633
+ 713 395 742
634
+ 20
635
+ 23 71 10
636
+ 354 698 38
637
+ 138 691 869
638
+ 44 11 726
639
+ 166 974 477
640
+ 375 331 445
641
+ 426 182 17
642
+ 938 288 685
643
+ 10 371 432
644
+ 30 808 202
645
+ 955 279 805
646
+ 678 408 752
647
+ 430 62 748
648
+ 269 19 174
649
+ 636 317 203
650
+ 266 296 676
651
+ 13 582 811
652
+ 260 812 11
653
+ 43 805 113
654
+ 813 492 552
655
+ 536 749 776
656
+ 20
657
+ 55 10 724
658
+ 122 264 654
659
+ 10 980 98
660
+ 494 242 170
661
+ 159 814 813
662
+ 615 278 95
663
+ 251 298 381
664
+ 310 43 52
665
+ 735 913 69
666
+ 195 29 266
667
+ 15 324 268
668
+ 12 831 11
669
+ 19 148 12
670
+ 30 323 24
671
+ 417 186 702
672
+ 799 890 338
673
+ 79 615 470
674
+ 540 62 142
675
+ 206 132 220
676
+ 347 15 916
677
+ 397 405 835
678
+ 20
679
+ 335 775 229
680
+ 103 640 993
681
+ 166 43 570
682
+ 560 10 113
683
+ 59 73 39
684
+ 358 11 741
685
+ 63 342 886
686
+ 116 284 622
687
+ 415 788 10
688
+ 126 100 45
689
+ 23 606 19
690
+ 719 107 160
691
+ 13 328 856
692
+ 111 51 451
693
+ 12 32 22
694
+ 755 620 357
695
+ 10 685 618
696
+ 434 49 261
697
+ 615 10 943
698
+ 66 535 921
699
+ 382 993 459
700
+ 20
701
+ 917 103 568
702
+ 776 500 372
703
+ 18 900 13
704
+ 92 367 16
705
+ 803 755 414
706
+ 94 321 521
707
+ 746 421 216
708
+ 313 321 18
709
+ 628 147 561
710
+ 451 65 898
711
+ 747 179 336
712
+ 249 37 590
713
+ 397 166 431
714
+ 248 550 433
715
+ 42 76 10
716
+ 94 56 10
717
+ 353 963 11
718
+ 307 821 100
719
+ 29 994 478
720
+ 588 35 454
721
+ 197 605 392
722
+ 20
723
+ 291 432 777
724
+ 994 340 355
725
+ 166 146 272
726
+ 831 109 693
727
+ 226 501 21
728
+ 884 12 632
729
+ 90 181 105
730
+ 18 977 431
731
+ 46 558 526
732
+ 142 272 660
733
+ 439 315 284
734
+ 13 269 254
735
+ 92 164 320
736
+ 207 902 232
737
+ 137 529 535
738
+ 126 815 388
739
+ 74 450 917
740
+ 584 405 150
741
+ 10 224 589
742
+ 530 282 795
743
+ 771 534 961
744
+ 20
745
+ 291 72 444
746
+ 15 249 256
747
+ 192 25 311
748
+ 325 131 10
749
+ 66 10 67
750
+ 969 135 19
751
+ 360 43 129
752
+ 187 104 756
753
+ 105 226 694
754
+ 179 41 837
755
+ 359 762 422
756
+ 278 241 278
757
+ 534 53 29
758
+ 314 123 740
759
+ 820 299 60
760
+ 562 920 100
761
+ 17 16 211
762
+ 11 64 16
763
+ 125 562 929
764
+ 661 269 546
765
+ 330 906 847
766
+ 20
767
+ 39 716 70
768
+ 142 19 752
769
+ 683 311 640
770
+ 846 374 773
771
+ 14 818 12
772
+ 586 30 36
773
+ 188 887 95
774
+ 242 951 355
775
+ 255 112 650
776
+ 286 978 64
777
+ 15 73 45
778
+ 32 688 37
779
+ 690 481 831
780
+ 187 29 61
781
+ 236 860 147
782
+ 393 897 150
783
+ 558 717 77
784
+ 471 483 682
785
+ 582 108 65
786
+ 102 251 953
787
+ 658 874 116
788
+ 20
789
+ 201 149 224
790
+ 18 834 789
791
+ 41 90 23
792
+ 28 615 25
793
+ 435 144 568
794
+ 777 41 921
795
+ 129 375 447
796
+ 256 804 531
797
+ 439 63 10
798
+ 223 324 105
799
+ 54 204 977
800
+ 669 10 66
801
+ 23 99 12
802
+ 132 600 90
803
+ 302 77 38
804
+ 354 406 307
805
+ 328 182 53
806
+ 14 203 633
807
+ 914 978 14
808
+ 300 15 542
809
+ 410 787 593
810
+ 20
811
+ 157 816 309
812
+ 51 78 20
813
+ 281 125 720
814
+ 29 881 205
815
+ 91 476 664
816
+ 552 985 252
817
+ 414 753 58
818
+ 98 261 469
819
+ 684 57 494
820
+ 206 276 570
821
+ 233 731 655
822
+ 16 226 814
823
+ 28 617 242
824
+ 756 600 176
825
+ 292 259 708
826
+ 949 52 312
827
+ 11 452 87
828
+ 448 919 291
829
+ 20 20 20
830
+ 281 54 17
831
+ 212 742 882
832
+ 20
833
+ 60 808 88
834
+ 705 10 132
835
+ 473 456 113
836
+ 599 186 220
837
+ 182 932 34
838
+ 31 10 719
839
+ 132 843 813
840
+ 383 223 950
841
+ 326 68 61
842
+ 909 564 74
843
+ 32 175 784
844
+ 305 20 62
845
+ 280 193 919
846
+ 746 96 441
847
+ 97 209 10
848
+ 315 989 764
849
+ 320 37 281
850
+ 773 852 44
851
+ 11 920 679
852
+ 371 540 596
853
+ 978 383 580
854
+ 20
855
+ 58 445 25
856
+ 462 16 364
857
+ 44 639 37
858
+ 22 876 239
859
+ 437 128 293
860
+ 540 588 21
861
+ 304 22 249
862
+ 310 957 587
863
+ 29 589 10
864
+ 99 983 763
865
+ 96 49 987
866
+ 119 10 62
867
+ 654 53 10
868
+ 151 435 15
869
+ 13 300 449
870
+ 399 656 102
871
+ 10 158 322
872
+ 215 688 112
873
+ 10 116 576
874
+ 207 283 517
875
+ 826 133 225
876
+ 20
877
+ 109 598 886
878
+ 630 811 280
879
+ 463 241 444
880
+ 101 746 10
881
+ 14 847 927
882
+ 45 742 961
883
+ 10 720 111
884
+ 800 773 320
885
+ 391 13 234
886
+ 594 21 99
887
+ 232 112 126
888
+ 304 965 351
889
+ 907 46 310
890
+ 189 40 168
891
+ 39 80 443
892
+ 234 29 846
893
+ 647 40 56
894
+ 307 66 548
895
+ 407 93 878
896
+ 848 15 186
897
+ 861 317 892
898
+ 20
899
+ 18 145 886
900
+ 649 860 629
901
+ 155 836 119
902
+ 430 13 420
903
+ 712 461 982
904
+ 92 604 10
905
+ 304 69 68
906
+ 128 30 814
907
+ 138 217 726
908
+ 76 17 255
909
+ 332 399 820
910
+ 256 366 30
911
+ 907 304 186
912
+ 76 49 439
913
+ 796 289 273
914
+ 16 515 355
915
+ 10 10 223
916
+ 596 355 758
917
+ 429 218 10
918
+ 573 213 10
919
+ 855 390 629
920
+ 20
921
+ 387 456 303
922
+ 689 97 355
923
+ 440 293 297
924
+ 33 777 143
925
+ 148 769 21
926
+ 729 811 907
927
+ 17 954 233
928
+ 761 15 172
929
+ 102 38 21
930
+ 22 199 198
931
+ 614 916 620
932
+ 42 56 55
933
+ 603 32 829
934
+ 139 53 968
935
+ 689 168 61
936
+ 14 680 22
937
+ 952 147 134
938
+ 307 632 625
939
+ 290 57 773
940
+ 10 13 152
941
+ 828 683 564
942
+ 20
943
+ 526 612 937
944
+ 85 194 532
945
+ 729 56 190
946
+ 29 46 518
947
+ 363 18 134
948
+ 60 741 529
949
+ 321 353 874
950
+ 90 376 71
951
+ 11 391 83
952
+ 52 179 772
953
+ 832 292 690
954
+ 524 434 459
955
+ 571 38 10
956
+ 32 415 58
957
+ 96 352 802
958
+ 47 848 436
959
+ 980 73 621
960
+ 174 60 10
961
+ 60 339 250
962
+ 64 39 423
963
+ 737 308 815
964
+ 20
965
+ 11 117 72
966
+ 13 23 13
967
+ 220 939 229
968
+ 215 852 88
969
+ 20 563 36
970
+ 544 713 524
971
+ 98 626 333
972
+ 15 401 270
973
+ 35 232 110
974
+ 546 458 955
975
+ 25 351 194
976
+ 27 239 494
977
+ 675 206 38
978
+ 40 107 844
979
+ 16 69 753
980
+ 431 504 123
981
+ 33 10 11
982
+ 938 82 14
983
+ 151 186 974
984
+ 230 174 22
985
+ 861 695 625
986
+ 20
987
+ 10 77 445
988
+ 958 23 124
989
+ 398 967 12
990
+ 23 379 811
991
+ 714 78 384
992
+ 59 37 16
993
+ 13 569 71
994
+ 113 129 32
995
+ 688 20 215
996
+ 158 267 96
997
+ 823 123 170
998
+ 353 483 10
999
+ 964 560 17
1000
+ 75 11 154
1001
+ 21 356 125
1002
+ 10 281 16
1003
+ 760 157 656
1004
+ 13 651 599
1005
+ 888 314 10
1006
+ 474 876 659
2015/quals/new_years_resolution.md ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Alex's New Year's resolution for 2015 is to eat healthier foods. He's done
2
+ some research and has found out that calories come from three main sources,
3
+ called macronutrients: protein, carbohydrates, and fat. Alex wants to get the
4
+ right balance of protein, carbohydrates, and fat to have a balanced diet. For
5
+ each available food, Alex can only choose to eat it or not eat it. He can't
6
+ eat a certain food more than once, and he can't eat a fractional amount of a
7
+ food.
8
+
9
+ ### Input
10
+
11
+ Input begins with an integer **T**, the number of test cases. For each test
12
+ case, the first line consists of three space-separated integers: **GP**,
13
+ **GC**, and **GF**, which represent the amount of protein, carbohydrates, and
14
+ fat that Alex wants to eat. The next line has the number of foods for that
15
+ test case, an integer **N**. The next **N** lines each consist of three space-
16
+ separated integers: **P**, **C**, and **F**, which represent the amount of
17
+ protein, carbohydrates, and fat in that food, respectively.
18
+
19
+ ### Output
20
+
21
+ For each test case _i_, print a line containing "Case #_i_: " followed by
22
+ either "yes" if it is possible for Alex to eat the exact amount of each
23
+ macronutrient, or "no" if it is not possible.
24
+
25
+ ### Constraints
26
+
27
+ 1 ≤ **T** ≤ 20
28
+ 1 ≤ **N** ≤ 20
29
+ 10 ≤ **GP**, **GC**, **GF** ≤ 1000
30
+ 10 ≤ **P**, **C**, **F** ≤ 1000
31
+
2015/quals/new_years_resolution.out ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Case #1: yes
2
+ Case #2: no
3
+ Case #3: yes
4
+ Case #4: no
5
+ Case #5: yes
6
+ Case #6: yes
7
+ Case #7: no
8
+ Case #8: no
9
+ Case #9: no
10
+ Case #10: no
11
+ Case #11: no
12
+ Case #12: yes
13
+ Case #13: yes
14
+ Case #14: yes
15
+ Case #15: no
16
+ Case #16: no
17
+ Case #17: no
18
+ Case #18: no
19
+ Case #19: no
20
+ Case #20: yes
21
+ Case #21: no
22
+ Case #22: no
23
+ Case #23: no
24
+ Case #24: no
25
+ Case #25: yes
26
+ Case #26: yes
27
+ Case #27: no
28
+ Case #28: no
29
+ Case #29: yes
30
+ Case #30: no
31
+ Case #31: yes
32
+ Case #32: no
33
+ Case #33: no
34
+ Case #34: no
35
+ Case #35: yes
36
+ Case #36: no
37
+ Case #37: no
38
+ Case #38: yes
39
+ Case #39: yes
40
+ Case #40: yes
41
+ Case #41: no
42
+ Case #42: no
43
+ Case #43: yes
44
+ Case #44: yes
45
+ Case #45: yes
46
+ Case #46: no
47
+ Case #47: yes
48
+ Case #48: yes
2015/round1/autocomplete.html ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <p>
2
+ Since you crave state-of-the-art technology, you've just purchased a phone with a great new feature: autocomplete!
3
+ Your phone's version of autocomplete has some pros and cons. On the one hand, it's very cautious. It only autocompletes a word when it knows exactly what you're trying to write. On the other hand, you have to teach it every word you want to use.
4
+ </p>
5
+
6
+ <p>
7
+ You have <strong>N</strong> distinct words that you'd like to send in a text message in order.
8
+ Before sending each word, you add it to your phone's dictionary.
9
+ Then, you write the smallest non-empty prefix of the word necessary for your phone to autocomplete the word.
10
+ This prefix must either be the whole word, or a prefix which is not a prefix of any other word yet in the dictionary.
11
+ </p>
12
+
13
+ <p>
14
+ What's the minimum number of letters you must type to send all <strong>N</strong> words?
15
+ </p>
16
+
17
+ <h3>Input</h3>
18
+
19
+ <p>
20
+ Input begins with an integer <strong>T</strong>, the number of test cases.
21
+ For each test case, there is first a line containing the integer <strong>N</strong>.
22
+ Then, <strong>N</strong> lines follow, each containing a word to send in the order you wish to send them.
23
+ </p>
24
+
25
+
26
+ <h3>Output</h3>
27
+
28
+ <p>
29
+ For the <strong>i</strong>th test case, print a line containing "Case #<strong>i</strong>: " followed by
30
+ the minimum number of characters you need to type in your text message.
31
+ </p>
32
+
33
+
34
+ <h3>Constraints</h3>
35
+ <p>
36
+ 1 &le; <strong>T</strong> &le; 100 <br />
37
+ 1 &le; <strong>N</strong> &le; 100,000 <br />
38
+ </p>
39
+
40
+ <p>
41
+ The <strong>N</strong> words will have a total length of no more than 1,000,000 characters. <br />
42
+ The words are made up of only lower-case alphabetic characters. <br />
43
+ The words are pairwise distinct. <br />
44
+ </p>
45
+
46
+ <p>
47
+ <strong>NOTE:</strong> The input file is about 10-20MB.
48
+ </p>
49
+
50
+
51
+ <h3>Explanation of Sample</h3>
52
+ <p>
53
+ In the first test case, you will write "h", "he", "l", "hil", "hill", for a total of 1 + 2 + 1 + 3 + 4 = 11 characters.
54
+ </p>
2015/round1/autocomplete.in ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8269902a9c44cbcddece37288fa31a4a5a6fabe963b509b61abad752a4c24ee
3
+ size 15800792
2015/round1/autocomplete.md ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Since you crave state-of-the-art technology, you've just purchased a phone
2
+ with a great new feature: autocomplete! Your phone's version of autocomplete
3
+ has some pros and cons. On the one hand, it's very cautious. It only
4
+ autocompletes a word when it knows exactly what you're trying to write. On the
5
+ other hand, you have to teach it every word you want to use.
6
+
7
+ You have **N** distinct words that you'd like to send in a text message in
8
+ order. Before sending each word, you add it to your phone's dictionary. Then,
9
+ you write the smallest non-empty prefix of the word necessary for your phone
10
+ to autocomplete the word. This prefix must either be the whole word, or a
11
+ prefix which is not a prefix of any other word yet in the dictionary.
12
+
13
+ What's the minimum number of letters you must type to send all **N** words?
14
+
15
+ ### Input
16
+
17
+ Input begins with an integer **T**, the number of test cases. For each test
18
+ case, there is first a line containing the integer **N**. Then, **N** lines
19
+ follow, each containing a word to send in the order you wish to send them.
20
+
21
+ ### Output
22
+
23
+ For the **i**th test case, print a line containing "Case #**i**: " followed by
24
+ the minimum number of characters you need to type in your text message.
25
+
26
+ ### Constraints
27
+
28
+ 1 ≤ **T** ≤ 100
29
+ 1 ≤ **N** ≤ 100,000
30
+
31
+ The **N** words will have a total length of no more than 1,000,000 characters.
32
+ The words are made up of only lower-case alphabetic characters.
33
+ The words are pairwise distinct.
34
+
35
+ **NOTE:** The input file is about 10-20MB.
36
+
37
+ ### Explanation of Sample
38
+
39
+ In the first test case, you will write "h", "he", "l", "hil", "hill", for a
40
+ total of 1 + 2 + 1 + 3 + 4 = 11 characters.
41
+
2015/round1/autocomplete.out ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Case #1: 11
2
+ Case #2: 15
3
+ Case #3: 11
4
+ Case #4: 9
5
+ Case #5: 3
6
+ Case #6: 5
7
+ Case #7: 7
8
+ Case #8: 21
9
+ Case #9: 11
10
+ Case #10: 8
11
+ Case #11: 6
12
+ Case #12: 392349
13
+ Case #13: 392300
14
+ Case #14: 392395
15
+ Case #15: 392443
16
+ Case #16: 392341
17
+ Case #17: 392317
18
+ Case #18: 392436
19
+ Case #19: 392416
20
+ Case #20: 1
21
+ Case #21: 180
22
+ Case #22: 183
23
+ Case #23: 182
24
+ Case #24: 179
25
+ Case #25: 12
26
+ Case #26: 11
2015/round1/corporate_gifting.html ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <p>
2
+ The fine people of Corpro Corp. are a festive bunch. Every holiday season, everybody buys a gift for their manager. A cynic might say that the employees are just trying to bribe their way to a better performance review, but if you asked them yourself, they'd say they just wanted to spread cheer.
3
+ </p>
4
+
5
+ <p>
6
+ The fine people of Corpro Corp. are a frugal bunch. When they buy gifts, they cooperate to collectively buy the least expensive gifts that they can. A cynic might say that the employees are cheap, but if you asked them yourself, they'd say it's the thought that counts.
7
+ </p>
8
+
9
+ <p>
10
+ There are <strong>N</strong> employees working at Corpro Corp., and each of them has a manager, except for the CEO who has no manager (the CEO also buys a gift every year, but she donates it to charity).
11
+ The employees each have a unique employee ID which is an integer from 1 to <strong>N</strong>. As you might expect, the CEO has the ID 1.
12
+ </p>
13
+
14
+ <p>
15
+ If there exists a set of two or more employees
16
+ {<strong>p<sub>1</sub></strong>, ...,
17
+ <strong>p<sub>k</sub></strong>}
18
+ such that, for all <strong>i</strong> &lt; <strong>k</strong>,
19
+ <strong>p<sub>i</sub></strong> is the manager of <strong>p<sub>i+1</sub></strong>,
20
+ then we say that <strong>p<sub>1</sub></strong> is "responsible for" <strong>p<sub>k</sub></strong>.
21
+ There are never two employees who are responsible for each other.
22
+ That would be a silly hierarchy indeed.
23
+ </p>
24
+
25
+ <p>
26
+ There are <strong>N</strong> kinds of gifts available for purchase, and the <strong>i</strong>th kind of gift costs <strong>i</strong> dollars. That is, the prices of the different kinds of gifts are {$1, $2, $3, ... $<strong>N</strong>}. There are <strong>N</strong> copies of each gift available for purchase.
27
+ </p>
28
+
29
+ <p>
30
+ The only thing that stops all employees from purchasing gifts that cost $1 is the awkwardness of buying a gift for their manager that's the same as the one their manager is giving away. No employee would ever do such a thing!
31
+ </p>
32
+
33
+ <p>
34
+ For example, in a company with just 2 employees, at least $3 must be spent in total. If employee #1 (the CEO) buys a $1 gift to donate to charity, then employee #2 cannot buy a $1 gift for employee #1 (their manager), but they can buy a $2 gift instead. Note that it would be equally optimal for the CEO to buy a $2 gift, while receiving a $1 gift from her subordinate.
35
+ </p>
36
+
37
+ <p>
38
+ What's the minimum possible total expenditure across the whole company during the gift exchange?
39
+ </p>
40
+
41
+
42
+ <h3>Input</h3>
43
+
44
+ <p>
45
+ Input begins with an integer <strong>T</strong>, the number of corporate hierarchies to consider.
46
+ Each hierarchy is made up of two lines.
47
+ The first line contains the integer <strong>N</strong>.
48
+ The second line contains <strong>N</strong> space-separated integers.
49
+ The <strong>i</strong>th integer is the employee ID of the manager of employee <strong>i</strong>,
50
+ with the exception that the first integer is always 0, denoting that the CEO has no manager.
51
+ </p>
52
+
53
+
54
+
55
+ <h3>Output</h3>
56
+
57
+ <p>
58
+ For the <strong>i</strong>th hierarchy, print a line containing "Case #<strong>i</strong>: " followed by the smallest amount of money the entire company would need to spend.
59
+ </p>
60
+
61
+ <h3>Constraints</h3>
62
+
63
+ <p>
64
+ 1 &le; <strong>T</strong> &le; 100 <br />
65
+ 1 &le; <strong>N</strong> &le; 200,000 <br />
66
+ </p>
67
+
68
+ <p>
69
+ <strong>NOTE:</strong> The input file is about 10-20MB.
70
+ </p>
71
+
72
+ <h3>Explanation of Sample</h3>
73
+ <p>
74
+ In the first test case, the CEO will spend $2, and the other employees will spend $1.
75
+ </p>
76
+
77
+ <p>
78
+ In the second test case, employees #2 and #3 will spend $2, and the other employees will spend $1.
79
+ </p>
2015/round1/corporate_gifting.in ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5d12d3817b9daeef9b5ea9fc8f6eecf5f0aeccbd49632908ca9bb6f10b613b1
3
+ size 26495892
2015/round1/corporate_gifting.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ The fine people of Corpro Corp. are a festive bunch. Every holiday season,
2
+ everybody buys a gift for their manager. A cynic might say that the employees
3
+ are just trying to bribe their way to a better performance review, but if you
4
+ asked them yourself, they'd say they just wanted to spread cheer.
5
+
6
+ The fine people of Corpro Corp. are a frugal bunch. When they buy gifts, they
7
+ cooperate to collectively buy the least expensive gifts that they can. A cynic
8
+ might say that the employees are cheap, but if you asked them yourself, they'd
9
+ say it's the thought that counts.
10
+
11
+ There are **N** employees working at Corpro Corp., and each of them has a
12
+ manager, except for the CEO who has no manager (the CEO also buys a gift every
13
+ year, but she donates it to charity). The employees each have a unique
14
+ employee ID which is an integer from 1 to **N**. As you might expect, the CEO
15
+ has the ID 1.
16
+
17
+ If there exists a set of two or more employees {**p1**, ..., **pk**} such
18
+ that, for all **i** < **k**, **pi** is the manager of **pi+1**, then we say
19
+ that **p1** is "responsible for" **pk**. There are never two employees who are
20
+ responsible for each other. That would be a silly hierarchy indeed.
21
+
22
+ There are **N** kinds of gifts available for purchase, and the **i**th kind of
23
+ gift costs **i** dollars. That is, the prices of the different kinds of gifts
24
+ are {$1, $2, $3, ... $**N**}. There are **N** copies of each gift available
25
+ for purchase.
26
+
27
+ The only thing that stops all employees from purchasing gifts that cost $1 is
28
+ the awkwardness of buying a gift for their manager that's the same as the one
29
+ their manager is giving away. No employee would ever do such a thing!
30
+
31
+ For example, in a company with just 2 employees, at least $3 must be spent in
32
+ total. If employee #1 (the CEO) buys a $1 gift to donate to charity, then
33
+ employee #2 cannot buy a $1 gift for employee #1 (their manager), but they can
34
+ buy a $2 gift instead. Note that it would be equally optimal for the CEO to
35
+ buy a $2 gift, while receiving a $1 gift from her subordinate.
36
+
37
+ What's the minimum possible total expenditure across the whole company during
38
+ the gift exchange?
39
+
40
+ ### Input
41
+
42
+ Input begins with an integer **T**, the number of corporate hierarchies to
43
+ consider. Each hierarchy is made up of two lines. The first line contains the
44
+ integer **N**. The second line contains **N** space-separated integers. The
45
+ **i**th integer is the employee ID of the manager of employee **i**, with the
46
+ exception that the first integer is always 0, denoting that the CEO has no
47
+ manager.
48
+
49
+ ### Output
50
+
51
+ For the **i**th hierarchy, print a line containing "Case #**i**: " followed by
52
+ the smallest amount of money the entire company would need to spend.
53
+
54
+ ### Constraints
55
+
56
+ 1 ≤ **T** ≤ 100
57
+ 1 ≤ **N** ≤ 200,000
58
+
59
+ **NOTE:** The input file is about 10-20MB.
60
+
61
+ ### Explanation of Sample
62
+
63
+ In the first test case, the CEO will spend $2, and the other employees will
64
+ spend $1.
65
+
66
+ In the second test case, employees #2 and #3 will spend $2, and the other
67
+ employees will spend $1.
68
+
2015/round1/corporate_gifting.out ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Case #1: 4
2
+ Case #2: 10
3
+ Case #3: 7
4
+ Case #4: 12
5
+ Case #5: 11
6
+ Case #6: 19
7
+ Case #7: 29
8
+ Case #8: 16
9
+ Case #9: 15
10
+ Case #10: 300000
11
+ Case #11: 266675
12
+ Case #12: 250006
13
+ Case #13: 240007
14
+ Case #14: 233343
15
+ Case #15: 228579
16
+ Case #16: 225006
17
+ Case #17: 222229
18
+ Case #18: 220009
19
+ Case #19: 218187
20
+ Case #20: 200001
21
+ Case #21: 200201
22
+ Case #22: 259808
23
+ Case #23: 156560
24
+ Case #24: 83876
25
+ Case #25: 270049
26
+ Case #26: 280835
27
+ Case #27: 289329
28
+ Case #28: 289267
29
+ Case #29: 289121
30
+ Case #30: 289201
31
+ Case #31: 289287
32
+ Case #32: 289251
33
+ Case #33: 289164
34
+ Case #34: 289301
2015/round1/homework.html ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <p>
2
+ Your first-grade math teacher, Mr. Book, has just introduced you to an amazing new concept &mdash; primes! According to your notes, a prime is a positive integer greater than 1 that is divisible by only 1 and itself.
3
+ </p>
4
+
5
+ <p>
6
+ Primes seem fun, but without giving you and your 6-year-old colleagues time to consider their implications, he's promptly gone on to define another term: primacity. He explains that the primacity of an integer is the number of distinct primes which divide it. For example, the primacity of 12 is 2 (as it's divisible by primes 2 and 3), the primacity of 550 is 3 (as it's divisible by primes 2, 5, and 11), and the primacity of 7 is 1 (as the only prime it's divisible by is 7).
7
+ </p>
8
+
9
+ <p>
10
+ Following his lesson, Mr. Book has given you homework with some rather mean questions of the following form: Given 3 integers <strong>A</strong>, <strong>B</strong>, and <strong>K</strong>, how many integers in the inclusive range [<strong>A</strong>, <strong>B</strong>] have a primacity of exactly <strong>K</strong>?
11
+ </p>
12
+
13
+ <p>
14
+ Mr. Book probably expects his little homework assignment to take you and your classmates the rest of the year to complete, giving him time to slack off and nap during the remaining math classes. However, you want to learn more things from him instead! Can you use the skills you've learned in your first-grade computer science classes to finish Mr. Book's homework before tomorrow's math class?
15
+ </p>
16
+
17
+ <h3>Input</h3>
18
+
19
+ <p>
20
+ Input begins with an integer <strong>T</strong>, the number of homework questions. For each question, there is one line containing 3 space-separated integers: <strong>A</strong>, <strong>B</strong>, and <strong>K</strong>.
21
+ </p>
22
+
23
+
24
+ <h3>Output</h3>
25
+
26
+ <p>
27
+ For the <strong>i</strong>th question, print a line containing "Case #<strong>i</strong>: " followed by the number of integers in the inclusive range [<strong>A</strong>, <strong>B</strong>] with a primacity of <strong>K</strong>.
28
+ </p>
29
+
30
+
31
+ <h3>Constraints</h3>
32
+ <p>
33
+ 1 &le; <strong>T</strong> &le; 100 <br />
34
+ 2 &le; <strong>A</strong> &le; <strong> B</strong> &le; 10<sup>7</sup> <br />
35
+ 1 &le; <strong>K</strong> &le; 10<sup>9</sup> <br />
36
+ </p>
37
+
38
+ <h3>Explanation of Sample</h3>
39
+ <p>
40
+ In the first test case, the numbers in the inclusive range [5, 15] with primacity 2 are 6, 10, 12, 14, and 15. All other numbers in this range have primacity 1.
41
+ </p>
42
+
2015/round1/homework.in ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 100
2
+ 5 15 2
3
+ 2 10 1
4
+ 24 42 3
5
+ 1000000 1000000 1
6
+ 1000000 1000000 2
7
+ 2 10000000 1
8
+ 2 10000000 2
9
+ 2 10000000 3
10
+ 2 10000000 4
11
+ 2 10000000 5
12
+ 2 10000000 6
13
+ 2 10000000 7
14
+ 2 10000000 8
15
+ 2 10000000 9
16
+ 2 10000000 10
17
+ 8871874 9106921 3
18
+ 331489 365258 3
19
+ 1673990 4964281 4
20
+ 2538323 6179886 2
21
+ 1025453 8126648 3
22
+ 3361449 8066195 5
23
+ 2174560 8350603 5
24
+ 1924670 7300066 4
25
+ 3356201 7892516 1
26
+ 6106950 8813219 2
27
+ 3727417 4063511 4
28
+ 3906481 8482851 1
29
+ 1190025 5884818 4
30
+ 3530768 3862846 2
31
+ 3639960 4537222 2
32
+ 4676591 6532150 3
33
+ 5920093 9632621 2
34
+ 5974475 8755316 5
35
+ 2055959 3285607 1
36
+ 5962779 7546760 4
37
+ 7616599 9656814 3
38
+ 819395 5881718 3
39
+ 4540063 9776151 3
40
+ 3149358 4816092 4
41
+ 859164 9298582 3
42
+ 5182061 8775862 5
43
+ 106155 1892761 1
44
+ 1183683 1981007 2
45
+ 2607093 8066130 2
46
+ 2774448 6482213 2
47
+ 6088359 9056768 4
48
+ 152581 3587075 3
49
+ 6558386 7695670 1
50
+ 3076816 8569562 4
51
+ 4384507 7991697 5
52
+ 1620670 8969214 4
53
+ 2758646 8066510 4
54
+ 1832012 3474647 5
55
+ 4681249 9985120 2
56
+ 1542709 7820522 3
57
+ 6581283 7345664 4
58
+ 5400108 8500614 4
59
+ 71201 3452422 5
60
+ 6236504 6406553 3
61
+ 1212007 8814797 5
62
+ 280161 4022288 4
63
+ 5998828 9313139 3
64
+ 3334556 6692366 2
65
+ 4238738 8482756 2
66
+ 1397629 4490703 1
67
+ 5239504 5466741 1
68
+ 1115185 2191541 5
69
+ 1004498 3467821 3
70
+ 249829 4915791 1
71
+ 1268386 7040359 5
72
+ 3165210 8983866 2
73
+ 313542 9645661 4
74
+ 3316911 8040431 4
75
+ 1294444 1873758 2
76
+ 5151921 6733095 2
77
+ 3466230 7052925 4
78
+ 5217611 9465564 2
79
+ 372758 8901763 1
80
+ 3650751 7274864 3
81
+ 328169 7413213 3
82
+ 1537426 4324540 2
83
+ 3472440 5658810 1
84
+ 732178 3267497 4
85
+ 6742737 8769166 2
86
+ 1645327 6034975 3
87
+ 1119888 3311178 3
88
+ 8087077 9505792 4
89
+ 1515067 4051848 3
90
+ 7034691 7549385 4
91
+ 3254111 9037177 3
92
+ 5931909 6822709 3
93
+ 9044939 9418713 5
94
+ 1074662 6227284 2
95
+ 8201820 9209955 3
96
+ 6245823 9177823 4
97
+ 426284 9502658 4
98
+ 847145 6488989 4
99
+ 115606 3742378 3
100
+ 6055091 6351638 1
101
+ 5154586 9431441 4
2015/round1/homework.md ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Your first-grade math teacher, Mr. Book, has just introduced you to an amazing
2
+ new concept — primes! According to your notes, a prime is a positive integer
3
+ greater than 1 that is divisible by only 1 and itself.
4
+
5
+ Primes seem fun, but without giving you and your 6-year-old colleagues time to
6
+ consider their implications, he's promptly gone on to define another term:
7
+ primacity. He explains that the primacity of an integer is the number of
8
+ distinct primes which divide it. For example, the primacity of 12 is 2 (as
9
+ it's divisible by primes 2 and 3), the primacity of 550 is 3 (as it's
10
+ divisible by primes 2, 5, and 11), and the primacity of 7 is 1 (as the only
11
+ prime it's divisible by is 7).
12
+
13
+ Following his lesson, Mr. Book has given you homework with some rather mean
14
+ questions of the following form: Given 3 integers **A**, **B**, and **K**, how
15
+ many integers in the inclusive range [**A**, **B**] have a primacity of
16
+ exactly **K**?
17
+
18
+ Mr. Book probably expects his little homework assignment to take you and your
19
+ classmates the rest of the year to complete, giving him time to slack off and
20
+ nap during the remaining math classes. However, you want to learn more things
21
+ from him instead! Can you use the skills you've learned in your first-grade
22
+ computer science classes to finish Mr. Book's homework before tomorrow's math
23
+ class?
24
+
25
+ ### Input
26
+
27
+ Input begins with an integer **T**, the number of homework questions. For each
28
+ question, there is one line containing 3 space-separated integers: **A**,
29
+ **B**, and **K**.
30
+
31
+ ### Output
32
+
33
+ For the **i**th question, print a line containing "Case #**i**: " followed by
34
+ the number of integers in the inclusive range [**A**, **B**] with a primacity
35
+ of **K**.
36
+
37
+ ### Constraints
38
+
39
+ 1 ≤ **T** ≤ 100
40
+ 2 ≤ **A** ≤ ** B** ≤ 107
41
+ 1 ≤ **K** ≤ 109
42
+
43
+ ### Explanation of Sample
44
+
45
+ In the first test case, the numbers in the inclusive range [5, 15] with
46
+ primacity 2 are 6, 10, 12, 14, and 15. All other numbers in this range have
47
+ primacity 1.
48
+
2015/round1/homework.out ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Case #1: 5
2
+ Case #2: 7
3
+ Case #3: 2
4
+ Case #4: 0
5
+ Case #5: 1
6
+ Case #6: 665134
7
+ Case #7: 2536838
8
+ Case #8: 3642766
9
+ Case #9: 2389433
10
+ Case #10: 691209
11
+ Case #11: 72902
12
+ Case #12: 1716
13
+ Case #13: 1
14
+ Case #14: 0
15
+ Case #15: 0
16
+ Case #16: 84004
17
+ Case #17: 12862
18
+ Case #18: 784848
19
+ Case #19: 914083
20
+ Case #20: 2583098
21
+ Case #21: 347576
22
+ Case #22: 448087
23
+ Case #23: 1299171
24
+ Case #24: 292564
25
+ Case #25: 660355
26
+ Case #26: 81003
27
+ Case #27: 293161
28
+ Case #28: 1120812
29
+ Case #29: 83853
30
+ Case #30: 225659
31
+ Case #31: 670494
32
+ Case #32: 904582
33
+ Case #33: 214116
34
+ Case #34: 83227
35
+ Case #35: 389544
36
+ Case #36: 730874
37
+ Case #37: 1852500
38
+ Case #38: 1883852
39
+ Case #39: 401548
40
+ Case #40: 3065358
41
+ Case #41: 274279
42
+ Case #42: 131610
43
+ Case #43: 210840
44
+ Case #44: 1357770
45
+ Case #45: 927957
46
+ Case #46: 732942
47
+ Case #47: 1273260
48
+ Case #48: 72187
49
+ Case #49: 1341249
50
+ Case #50: 270356
51
+ Case #51: 1782942
52
+ Case #52: 1292370
53
+ Case #53: 107363
54
+ Case #54: 1297115
55
+ Case #55: 2280812
56
+ Case #56: 187946
57
+ Case #57: 763312
58
+ Case #58: 195522
59
+ Case #59: 61141
60
+ Case #60: 542559
61
+ Case #61: 867607
62
+ Case #62: 1190648
63
+ Case #63: 836738
64
+ Case #64: 1044902
65
+ Case #65: 208557
66
+ Case #66: 14697
67
+ Case #67: 64356
68
+ Case #68: 907868
69
+ Case #69: 321263
70
+ Case #70: 401231
71
+ Case #71: 1437409
72
+ Case #72: 2242791
73
+ Case #73: 1152983
74
+ Case #74: 153111
75
+ Case #75: 390411
76
+ Case #76: 873270
77
+ Case #77: 1038350
78
+ Case #78: 564961
79
+ Case #79: 1311058
80
+ Case #80: 2589986
81
+ Case #81: 714582
82
+ Case #82: 142655
83
+ Case #83: 589256
84
+ Case #84: 493366
85
+ Case #85: 1600348
86
+ Case #86: 807495
87
+ Case #87: 352127
88
+ Case #88: 930137
89
+ Case #89: 127024
90
+ Case #90: 2087426
91
+ Case #91: 320918
92
+ Case #92: 29704
93
+ Case #93: 1310383
94
+ Case #94: 361290
95
+ Case #95: 724433
96
+ Case #96: 2183450
97
+ Case #97: 1346130
98
+ Case #98: 1344370
99
+ Case #99: 18994
100
+ Case #100: 1054292
2015/round1/winning_at_sports.html ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <p>
2
+ In the game of <em>Sports</em>, the object is have more points than the other
3
+ team after a certain amount of time has elapsed. Scores are denoted by
4
+ two hyphen-separated integers. For example, scores may include 3-2,
5
+ 4-1, or 10-0. The first number is how many points you've scored, and the second
6
+ is the number of points scored by the opposing team. You're very good at
7
+ <em>Sports</em>, and consequently you always win. However, you don't always
8
+ achieve victory the same way every time.
9
+ </p>
10
+
11
+ <p>
12
+ The two most extreme kinds of victory are called <strong>stress-free</strong> and
13
+ <strong>stressful</strong>. In a <strong>stress-free</strong> victory, you score the first
14
+ point and from then on you always have more points than your opponent.
15
+ In a <strong>stressful</strong> victory, you never have more points than your opponent
16
+ until after their score is equal to their final score.
17
+ </p>
18
+
19
+ <p>
20
+ Given the final score of a game of <em>Sports</em>, how many ways could you
21
+ arrange the order in which the points are scored such that you secure a
22
+ <strong>stress-free</strong> or <strong>stressful</strong> win?
23
+ </p>
24
+
25
+ <h3>Input</h3>
26
+
27
+ <p>
28
+ Input begins with an integer <strong>T</strong>, the number of games
29
+ you'll play. For each game, there is one line containing the final score of
30
+ the game in the format described above.
31
+ </p>
32
+
33
+
34
+ <h3>Output</h3>
35
+
36
+ <p>
37
+ For the <strong>i</strong>th game, print a line containing "Case #<strong>i</strong>: "
38
+ followed by two space-separated integers, the number
39
+ of ways you can achieve a <strong>stress-free</strong> or <strong>stressful</strong> win,
40
+ respectively. Since these numbers may be very large, output them modulo
41
+ 1,000,000,007.
42
+ </p>
43
+
44
+
45
+ <h3>Constraints</h3>
46
+ <p>
47
+ 1 &le; <strong>T</strong> &le; 100 <br />
48
+ </p>
49
+
50
+ <p>
51
+ Since you always win, the first number in any final score
52
+ will always be larger than the second. Both scores will be non-negative
53
+ integers not exceeding 2000.
54
+ </p>
55
+
56
+ <h3>Explanation of Sample</h3>
57
+ <p>
58
+ In the third test case, you can get a stress-free win by scoring points 1, 2, and 4, or points 1, 2, and 3.
59
+ You can get a stressful win by scoring points 2, 4, and 5, or points 3, 4, and 5.
60
+ </p>
61
+
2015/round1/winning_at_sports.in ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 100
2
+ 2-1
3
+ 3-1
4
+ 3-2
5
+ 10-5
6
+ 1000-500
7
+ 1-0
8
+ 2000-0
9
+ 2000-1999
10
+ 1549-221
11
+ 1411-1215
12
+ 1930-850
13
+ 1582-971
14
+ 1446-363
15
+ 703-149
16
+ 1999-474
17
+ 444-264
18
+ 1500-481
19
+ 1919-408
20
+ 1244-1138
21
+ 614-116
22
+ 1872-1535
23
+ 1925-491
24
+ 877-785
25
+ 1978-1744
26
+ 1014-220
27
+ 708-604
28
+ 1215-1102
29
+ 1966-452
30
+ 1506-184
31
+ 647-313
32
+ 1302-883
33
+ 1940-1927
34
+ 862-610
35
+ 1571-1533
36
+ 1831-127
37
+ 1700-1584
38
+ 827-274
39
+ 955-524
40
+ 712-139
41
+ 1641-953
42
+ 1677-214
43
+ 1055-365
44
+ 1423-1321
45
+ 669-71
46
+ 1581-1315
47
+ 1335-110
48
+ 1537-888
49
+ 764-52
50
+ 1443-800
51
+ 1130-27
52
+ 1542-469
53
+ 1919-37
54
+ 1221-300
55
+ 1486-1125
56
+ 1117-354
57
+ 1791-496
58
+ 1363-931
59
+ 782-400
60
+ 1516-336
61
+ 1841-1045
62
+ 649-312
63
+ 1208-194
64
+ 1013-706
65
+ 532-4
66
+ 1580-1168
67
+ 1284-602
68
+ 174-152
69
+ 609-283
70
+ 1009-912
71
+ 1096-301
72
+ 980-850
73
+ 1958-1427
74
+ 1531-534
75
+ 562-165
76
+ 1857-1673
77
+ 1669-369
78
+ 1598-929
79
+ 135-73
80
+ 1210-866
81
+ 1192-147
82
+ 1636-53
83
+ 481-191
84
+ 1693-925
85
+ 1999-1592
86
+ 1159-249
87
+ 1286-709
88
+ 1488-1484
89
+ 1361-28
90
+ 670-484
91
+ 769-295
92
+ 565-220
93
+ 740-160
94
+ 1563-737
95
+ 873-295
96
+ 1254-478
97
+ 1725-736
98
+ 543-371
99
+ 1551-1296
100
+ 461-263
101
+ 853-800
2015/round1/winning_at_sports.md ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ In the game of _Sports_, the object is have more points than the other team
2
+ after a certain amount of time has elapsed. Scores are denoted by two hyphen-
3
+ separated integers. For example, scores may include 3-2, 4-1, or 10-0. The
4
+ first number is how many points you've scored, and the second is the number of
5
+ points scored by the opposing team. You're very good at _Sports_, and
6
+ consequently you always win. However, you don't always achieve victory the
7
+ same way every time.
8
+
9
+ The two most extreme kinds of victory are called **stress-free** and
10
+ **stressful**. In a **stress-free** victory, you score the first point and
11
+ from then on you always have more points than your opponent. In a
12
+ **stressful** victory, you never have more points than your opponent until
13
+ after their score is equal to their final score.
14
+
15
+ Given the final score of a game of _Sports_, how many ways could you arrange
16
+ the order in which the points are scored such that you secure a **stress-
17
+ free** or **stressful** win?
18
+
19
+ ### Input
20
+
21
+ Input begins with an integer **T**, the number of games you'll play. For each
22
+ game, there is one line containing the final score of the game in the format
23
+ described above.
24
+
25
+ ### Output
26
+
27
+ For the **i**th game, print a line containing "Case #**i**: " followed by two
28
+ space-separated integers, the number of ways you can achieve a **stress-free**
29
+ or **stressful** win, respectively. Since these numbers may be very large,
30
+ output them modulo 1,000,000,007.
31
+
32
+ ### Constraints
33
+
34
+ 1 ≤ **T** ≤ 100
35
+
36
+ Since you always win, the first number in any final score will always be
37
+ larger than the second. Both scores will be non-negative integers not
38
+ exceeding 2000.
39
+
40
+ ### Explanation of Sample
41
+
42
+ In the third test case, you can get a stress-free win by scoring points 1, 2,
43
+ and 4, or points 1, 2, and 3. You can get a stressful win by scoring points 2,
44
+ 4, and 5, or points 3, 4, and 5.
45
+
2015/round1/winning_at_sports.out ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Case #1: 1 1
2
+ Case #2: 2 1
3
+ Case #3: 2 2
4
+ Case #4: 1001 42
5
+ Case #5: 70047606 591137401
6
+ Case #6: 1 1
7
+ Case #7: 1 1
8
+ Case #8: 319838403 319838403
9
+ Case #9: 407599208 416582650
10
+ Case #10: 931707689 601702223
11
+ Case #11: 617690761 720720066
12
+ Case #12: 837137729 227376481
13
+ Case #13: 824539579 949882401
14
+ Case #14: 633156245 354441979
15
+ Case #15: 116188991 469122262
16
+ Case #16: 558565127 312949408
17
+ Case #17: 424855816 964380814
18
+ Case #18: 678762874 810834988
19
+ Case #19: 944478903 247049988
20
+ Case #20: 679221065 901403157
21
+ Case #21: 568451865 402056534
22
+ Case #22: 424370264 960630947
23
+ Case #23: 715062585 794279542
24
+ Case #24: 149556166 176349646
25
+ Case #25: 407453334 785126250
26
+ Case #26: 264377506 533391397
27
+ Case #27: 788649722 763674423
28
+ Case #28: 143957840 638571138
29
+ Case #29: 885201846 81012050
30
+ Case #30: 9814502 808219050
31
+ Case #31: 128185490 648087915
32
+ Case #32: 370665806 539919518
33
+ Case #33: 109667929 662611179
34
+ Case #34: 328184308 627650788
35
+ Case #35: 603377488 631844581
36
+ Case #36: 992276375 336710496
37
+ Case #37: 56103256 467176030
38
+ Case #38: 452477938 341584130
39
+ Case #39: 704322164 767415875
40
+ Case #40: 326766250 712856433
41
+ Case #41: 513721593 19870649
42
+ Case #42: 940446741 464107227
43
+ Case #43: 299357201 465463045
44
+ Case #44: 918270667 185042843
45
+ Case #45: 133432101 839838061
46
+ Case #46: 14099157 687851011
47
+ Case #47: 228180963 73438287
48
+ Case #48: 942083314 323205961
49
+ Case #49: 816502871 4028078
50
+ Case #50: 696316964 550429273
51
+ Case #51: 65627243 455845943
52
+ Case #52: 886784720 966114350
53
+ Case #53: 616614881 718512182
54
+ Case #54: 838827309 74747751
55
+ Case #55: 616119039 957096711
56
+ Case #56: 763445604 37769293
57
+ Case #57: 914446682 326487736
58
+ Case #58: 640809903 497153305
59
+ Case #59: 758592999 530342463
60
+ Case #60: 483725318 646137453
61
+ Case #61: 285278399 723024629
62
+ Case #62: 16605071 73744548
63
+ Case #63: 927054563 881639757
64
+ Case #64: 350000919 14
65
+ Case #65: 275736028 844497257
66
+ Case #66: 380983406 319827269
67
+ Case #67: 250782506 49035108
68
+ Case #68: 858463859 925866024
69
+ Case #69: 128635484 500668215
70
+ Case #70: 410450602 18714029
71
+ Case #71: 238405893 720720066
72
+ Case #72: 23789578 923029325
73
+ Case #73: 507059447 741860141
74
+ Case #74: 428961024 264105011
75
+ Case #75: 254458120 204820879
76
+ Case #76: 798717050 797874213
77
+ Case #77: 658595747 24605944
78
+ Case #78: 330170277 458247558
79
+ Case #79: 150263723 650437050
80
+ Case #80: 216067901 112571416
81
+ Case #81: 65720917 812467623
82
+ Case #82: 460115761 208324196
83
+ Case #83: 910296350 834019692
84
+ Case #84: 128284947 22214272
85
+ Case #85: 839667341 31578719
86
+ Case #86: 568486330 666795455
87
+ Case #87: 689903668 992420028
88
+ Case #88: 914956340 949904131
89
+ Case #89: 997814136 441095159
90
+ Case #90: 304284048 947787397
91
+ Case #91: 896508018 785126250
92
+ Case #92: 794540851 361798437
93
+ Case #93: 885842866 220639770
94
+ Case #94: 132989766 947787397
95
+ Case #95: 199657043 899965082
96
+ Case #96: 622770288 707003450
97
+ Case #97: 165622659 835003284
98
+ Case #98: 225795326 523210601
99
+ Case #99: 612020853 406955973
100
+ Case #100: 694658552 4028078
2015/round2/all_critical.html ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <p>
2
+ In the game <em>Theatrhythm Final Fantasy</em>, you poke a screen with a stick
3
+ to the beat of various songs. The goal is to poke the screen as accurately as
4
+ possible. If you hit a note at just the right time, you're awarded a
5
+ <strong>critical</strong>. Every song is broken into 20 sections, and if you get a
6
+ <strong>critical</strong> on every note in a section, then you get that section's
7
+ golden <strong>critical bar</strong>.
8
+ </p>
9
+
10
+
11
+ <p>
12
+ You would like to collect all 20 <strong>critical bars</strong> for every song.
13
+ Songs vary in difficulty, but each song has a fixed probability <strong>p</strong>, which
14
+ is the chance that you manage to secure any one <strong>critical bar</strong>
15
+ on a single playthrough.
16
+ The chances are independent, so for any given pair of sections, the probability of
17
+ getting both <strong>critical bars</strong> in a single playthrough is <strong>p</strong><sup>2</sup>, and so on.
18
+ <strong>Critical bars</strong> are saved between playthroughs, so you don't have to win
19
+ all of the <strong>critical bars</strong> in a single play of the song. You might win
20
+ the first 10 on one play, and then the last 10 on another.
21
+ </p>
22
+
23
+ <p>
24
+ On average, how many times will you have to play a song to win all 20
25
+ <strong>critical bars</strong>?
26
+ </p>
27
+
28
+
29
+
30
+ <h3>Input</h3>
31
+
32
+ <p>
33
+ Input begins with an integer <strong>T</strong>, the number of songs
34
+ you'll play. For each song, there is a line containing a floating point number,
35
+ <strong>p</strong>, the probability of winning any particular
36
+ <strong>critical bar</strong> on a single play of the song.
37
+ </p>
38
+
39
+ <h3>Output</h3>
40
+
41
+ <p>
42
+ For each song, output the expected number of times you need to play the song
43
+ before acquiring all 20 <strong>critical bars</strong>, rounded to five decimal points.
44
+ </p>
45
+
46
+ <p>
47
+ Absolute errors of up to 10<sup>-5</sup> will be ignored.
48
+ </p>
49
+
50
+ <h3>Constraints</h3>
51
+ <p>
52
+ 1 &le; <strong>T</strong> &le; 20 <br />
53
+ 0.01 &le; <strong>p</strong> &le; 1.0 <br />
54
+ </p>
55
+
56
+
57
+