2013 Problems
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- 2013/finals/archiver.html +28 -0
- 2013/finals/archiver.in +3 -0
- 2013/finals/archiver.md +27 -0
- 2013/finals/archiver.out +63 -0
- 2013/finals/colored_trees.html +14 -0
- 2013/finals/colored_trees.in +61 -0
- 2013/finals/colored_trees.md +27 -0
- 2013/finals/colored_trees.out +60 -0
- 2013/finals/minesweeping.html +17 -0
- 2013/finals/minesweeping.in +196 -0
- 2013/finals/minesweeping.md +36 -0
- 2013/finals/minesweeping.out +20 -0
- 2013/finals/teleports.html +7 -0
- 2013/finals/teleports.in +32 -0
- 2013/finals/teleports.md +23 -0
- 2013/finals/teleports.out +31 -0
- 2013/quals/balanced_smileys.html +29 -0
- 2013/quals/balanced_smileys.in +63 -0
- 2013/quals/balanced_smileys.md +36 -0
- 2013/quals/balanced_smileys.out +62 -0
- 2013/quals/beautiful_strings.html +19 -0
- 2013/quals/beautiful_strings.in +51 -0
- 2013/quals/beautiful_strings.md +33 -0
- 2013/quals/beautiful_strings.out +50 -0
- 2013/quals/find_the_min.html +26 -0
- 2013/quals/find_the_min.in +73 -0
- 2013/quals/find_the_min.md +42 -0
- 2013/quals/find_the_min.out +36 -0
- 2013/round1/card_game.html +17 -0
- 2013/round1/card_game.in +0 -0
- 2013/round1/card_game.md +38 -0
- 2013/round1/card_game.out +50 -0
- 2013/round1/dead_pixels.html +35 -0
- 2013/round1/dead_pixels.in +41 -0
- 2013/round1/dead_pixels.md +46 -0
- 2013/round1/dead_pixels.out +40 -0
- 2013/round1/security.html +34 -0
- 2013/round1/security.in +322 -0
- 2013/round1/security.md +40 -0
- 2013/round1/security.out +107 -0
- 2013/round2/cake_cutting.html +29 -0
- 2013/round2/cake_cutting.in +51 -0
- 2013/round2/cake_cutting.md +30 -0
- 2013/round2/cake_cutting.out +50 -0
- 2013/round2/permutations.html +12 -0
- 2013/round2/permutations.in +0 -0
- 2013/round2/permutations.md +24 -0
- 2013/round2/permutations.out +60 -0
- 2013/round2/roboelection.html +29 -0
.gitattributes
CHANGED
@@ -54,3 +54,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
54 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
55 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
56 |
2012/finals/possible_medians.in filter=lfs diff=lfs merge=lfs -text
|
|
|
|
54 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
55 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
56 |
2012/finals/possible_medians.in filter=lfs diff=lfs merge=lfs -text
|
57 |
+
2013/finals/archiver.in filter=lfs diff=lfs merge=lfs -text
|
2013/finals/archiver.html
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<p>You are writing a new revolutionary archiver. The archive is essentially a
|
2 |
+
pair of non-decreasing sequences of integers of equal length <strong>K</strong>: <strong>0≤x<sub>1</sub>≤...≤x<sub>k</sub></strong> and
|
3 |
+
<strong>0≤y<sub>1</sub>≤...≤y<sub>k</sub></strong>.</p>
|
4 |
+
|
5 |
+
<p>
|
6 |
+
The decompression algorithm proceeds as follows:
|
7 |
+
<ol>
|
8 |
+
<li>Sequence <strong>(0,0), (x<sub>1</sub>,y<sub>1</sub>), ... (x<sub>k</sub>,y<sub>k</sub>), (x<sub>k</sub>, 0), (0, 0)</strong> defines a polygon <strong>P</strong></li>
|
9 |
+
<li>Starting from the point <strong>(0,0)</strong>, increase either <strong>x</strong> or <strong>y</strong> coordinate by 1 without
|
10 |
+
moving outside of <strong>P</strong>. If both moves are available, you should increase y.
|
11 |
+
After each step write <strong>0</strong> to output if incremented <strong>x</strong> or <strong>1</strong> otherwise.</li>
|
12 |
+
<li>Repeat step 2 until you end up in point <strong>(x<sub>k</sub>,y<sub>k</sub>)</strong>.</li>
|
13 |
+
</ol>
|
14 |
+
</p>
|
15 |
+
|
16 |
+
<p>Example: decompression of sequence <strong>(3,4), (7,6), (7,8)</strong> will produce string <strong>010101100100111</strong>.</p>
|
17 |
+
|
18 |
+
<p>Your task is to write a compression rate calculator, that is given
|
19 |
+
binary string s find the smallest value of <strong>K</strong> for which there exists archive
|
20 |
+
that decompresses to s.</p>
|
21 |
+
|
22 |
+
<h2>Input</h2>
|
23 |
+
<p>
|
24 |
+
The first line contains a single integer <strong>T</strong>, <strong>T</strong> ≤ 20. <strong>T</strong> test cases follow, where each test case consists of one binary string with length <strong>≤ 1,000,000</strong>.
|
25 |
+
</p>
|
26 |
+
|
27 |
+
<h2>Output</h2>
|
28 |
+
<p>Output a single line containing the smallest possible <strong>K</strong>.</p>
|
2013/finals/archiver.in
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:02c72140d253087b17bf251243f140530d0efa0cbeae2c2f1434dca789811a7a
|
3 |
+
size 53000149
|
2013/finals/archiver.md
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
You are writing a new revolutionary archiver. The archive is essentially a
|
2 |
+
pair of non-decreasing sequences of integers of equal length **K**:
|
3 |
+
**0≤x1≤...≤xk** and **0≤y1≤...≤yk**.
|
4 |
+
|
5 |
+
The decompression algorithm proceeds as follows:
|
6 |
+
|
7 |
+
1. Sequence **(0,0), (x1,y1), ... (xk,yk), (xk, 0), (0, 0)** defines a polygon **P**
|
8 |
+
2. Starting from the point **(0,0)**, increase either **x** or **y** coordinate by 1 without moving outside of **P**. If both moves are available, you should increase y. After each step write **0** to output if incremented **x** or **1** otherwise.
|
9 |
+
3. Repeat step 2 until you end up in point **(xk,yk)**.
|
10 |
+
|
11 |
+
Example: decompression of sequence **(3,4), (7,6), (7,8)** will produce string
|
12 |
+
**010101100100111**.
|
13 |
+
|
14 |
+
Your task is to write a compression rate calculator, that is given binary
|
15 |
+
string s find the smallest value of **K** for which there exists archive that
|
16 |
+
decompresses to s.
|
17 |
+
|
18 |
+
## Input
|
19 |
+
|
20 |
+
The first line contains a single integer **T**, **T** ≤ 20. **T** test cases
|
21 |
+
follow, where each test case consists of one binary string with length **≤
|
22 |
+
1,000,000**.
|
23 |
+
|
24 |
+
## Output
|
25 |
+
|
26 |
+
Output a single line containing the smallest possible **K**.
|
27 |
+
|
2013/finals/archiver.out
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Case #1: 1
|
2 |
+
Case #2: 3
|
3 |
+
Case #3: 1
|
4 |
+
Case #4: 2
|
5 |
+
Case #5: 2
|
6 |
+
Case #6: 1
|
7 |
+
Case #7: 6
|
8 |
+
Case #8: 2
|
9 |
+
Case #9: 2
|
10 |
+
Case #10: 1
|
11 |
+
Case #11: 6318
|
12 |
+
Case #12: 6191
|
13 |
+
Case #13: 111
|
14 |
+
Case #14: 146
|
15 |
+
Case #15: 5903
|
16 |
+
Case #16: 10
|
17 |
+
Case #17: 11
|
18 |
+
Case #18: 868
|
19 |
+
Case #19: 178535
|
20 |
+
Case #20: 178229
|
21 |
+
Case #21: 100
|
22 |
+
Case #22: 38910
|
23 |
+
Case #23: 178183
|
24 |
+
Case #24: 805
|
25 |
+
Case #25: 39091
|
26 |
+
Case #26: 20
|
27 |
+
Case #27: 33
|
28 |
+
Case #28: 38890
|
29 |
+
Case #29: 177854
|
30 |
+
Case #30: 925
|
31 |
+
Case #31: 38913
|
32 |
+
Case #32: 39262
|
33 |
+
Case #33: 38829
|
34 |
+
Case #34: 958
|
35 |
+
Case #35: 15
|
36 |
+
Case #36: 124
|
37 |
+
Case #37: 927
|
38 |
+
Case #38: 124
|
39 |
+
Case #39: 178060
|
40 |
+
Case #40: 115
|
41 |
+
Case #41: 107
|
42 |
+
Case #42: 135
|
43 |
+
Case #43: 6258
|
44 |
+
Case #44: 39303
|
45 |
+
Case #45: 178549
|
46 |
+
Case #46: 177963
|
47 |
+
Case #47: 28
|
48 |
+
Case #48: 38961
|
49 |
+
Case #49: 110
|
50 |
+
Case #50: 114
|
51 |
+
Case #51: 178133
|
52 |
+
Case #52: 900
|
53 |
+
Case #53: 178475
|
54 |
+
Case #54: 922
|
55 |
+
Case #55: 6116
|
56 |
+
Case #56: 86
|
57 |
+
Case #57: 908
|
58 |
+
Case #58: 831
|
59 |
+
Case #59: 6253
|
60 |
+
Case #60: 38800
|
61 |
+
Case #61: 2
|
62 |
+
Case #62: 2
|
63 |
+
Case #63: 5
|
2013/finals/colored_trees.html
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<p>You are given two integers <strong>N</strong> and <strong>K</strong>, 1 ≤ <strong>N</strong> ≤ 1000, 1 ≤ <strong>K</strong> ≤ 10<sup>9</sup>.
|
2 |
+
Your task is to calculate how many distinct trees with <strong>N</strong> vertices there are with each vertex colored with one of <strong>K</strong> colors. Multiple vertices can have the same color, and not all colors need to be used. Two trees t1 and t2 are considered identical if there exists a
|
3 |
+
bijective function f from vertices of t1 to vertices of t2 such that each vertex
|
4 |
+
x in t1 is colored the same as f(x) in t2 and each pair of
|
5 |
+
vertices x, y in t1 is connected by an edge if and only if f(x) and f(y) are
|
6 |
+
connected by an edge in t2. A bijective function is a function that is both one-to-one and onto, meaning that f(x) = f(y) if and only if x = y, and for every vertex y in t2, there exists x in t1, such that f(x) = y.</p>
|
7 |
+
|
8 |
+
<h2>Input</h2>
|
9 |
+
<p>The first line contains a single integer <strong>T</strong>, <strong>T</strong> ≤ 20. <strong>T</strong> test cases follow, where each test case consists of two integers: <strong>N</strong> and <strong>K</strong>.</p>
|
10 |
+
<h2>Output</h2>
|
11 |
+
<p>Output one single line with the number of colored trees.
|
12 |
+
Since this number might be very big, output it modulo <strong>1,000,000,007</strong>.</p>
|
13 |
+
<h2>Examples</h2>
|
14 |
+
<img src="https://fbcdn-dragon-a.akamaihd.net/cfs-ak-ash3/676523/506/293813004081038_-/tmp-/IV3SsS" />
|
2013/finals/colored_trees.in
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
60
|
2 |
+
1 1
|
3 |
+
2 10
|
4 |
+
4 1
|
5 |
+
3 2
|
6 |
+
6 6
|
7 |
+
10 1
|
8 |
+
10 2
|
9 |
+
10 3
|
10 |
+
10 4
|
11 |
+
10 5
|
12 |
+
926 412855747
|
13 |
+
988 302683841
|
14 |
+
946 389327602
|
15 |
+
942 755520817
|
16 |
+
962 725592059
|
17 |
+
962 124303339
|
18 |
+
940 673811789
|
19 |
+
925 136679808
|
20 |
+
994 838951449
|
21 |
+
902 822618701
|
22 |
+
947 337000271
|
23 |
+
998 956594967
|
24 |
+
991 912015925
|
25 |
+
968 65521556
|
26 |
+
906 481262173
|
27 |
+
937 871990538
|
28 |
+
981 375923945
|
29 |
+
938 683596292
|
30 |
+
923 433322473
|
31 |
+
944 458211048
|
32 |
+
987 710152969
|
33 |
+
995 704455203
|
34 |
+
935 705926697
|
35 |
+
910 923103943
|
36 |
+
973 891354303
|
37 |
+
942 655735865
|
38 |
+
929 721706024
|
39 |
+
988 761324387
|
40 |
+
914 96614820
|
41 |
+
909 926798536
|
42 |
+
999 605008820
|
43 |
+
980 702128526
|
44 |
+
975 409870742
|
45 |
+
976 12268300
|
46 |
+
947 254554901
|
47 |
+
929 259115399
|
48 |
+
935 750540969
|
49 |
+
990 308347332
|
50 |
+
926 495858693
|
51 |
+
939 352162907
|
52 |
+
924 509555021
|
53 |
+
908 980896097
|
54 |
+
992 251628105
|
55 |
+
920 213125789
|
56 |
+
918 813842008
|
57 |
+
973 815215859
|
58 |
+
985 796383349
|
59 |
+
999 337198141
|
60 |
+
997 342625816
|
61 |
+
984 619424491
|
2013/finals/colored_trees.md
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
You are given two integers **N** and **K**, 1 ≤ **N** ≤ 1000, 1 ≤ **K** ≤ 109.
|
2 |
+
Your task is to calculate how many distinct trees with **N** vertices there
|
3 |
+
are with each vertex colored with one of **K** colors. Multiple vertices can
|
4 |
+
have the same color, and not all colors need to be used. Two trees t1 and t2
|
5 |
+
are considered identical if there exists a bijective function f from vertices
|
6 |
+
of t1 to vertices of t2 such that each vertex x in t1 is colored the same as
|
7 |
+
f(x) in t2 and each pair of vertices x, y in t1 is connected by an edge if and
|
8 |
+
only if f(x) and f(y) are connected by an edge in t2. A bijective function is
|
9 |
+
a function that is both one-to-one and onto, meaning that f(x) = f(y) if and
|
10 |
+
only if x = y, and for every vertex y in t2, there exists x in t1, such that
|
11 |
+
f(x) = y.
|
12 |
+
|
13 |
+
## Input
|
14 |
+
|
15 |
+
The first line contains a single integer **T**, **T** ≤ 20. **T** test cases
|
16 |
+
follow, where each test case consists of two integers: **N** and **K**.
|
17 |
+
|
18 |
+
## Output
|
19 |
+
|
20 |
+
Output one single line with the number of colored trees. Since this number
|
21 |
+
might be very big, output it modulo **1,000,000,007**.
|
22 |
+
|
23 |
+
## Examples
|
24 |
+
|
25 |
+
![](https://fbcdn-dragon-a.akamaihd.net/cfs-ak-
|
26 |
+
ash3/676523/506/293813004081038_-/tmp-/IV3SsS)
|
27 |
+
|
2013/finals/colored_trees.out
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Case #1: 1
|
2 |
+
Case #2: 55
|
3 |
+
Case #3: 2
|
4 |
+
Case #4: 6
|
5 |
+
Case #5: 96237
|
6 |
+
Case #6: 106
|
7 |
+
Case #7: 49377
|
8 |
+
Case #8: 2314119
|
9 |
+
Case #9: 37355726
|
10 |
+
Case #10: 329357000
|
11 |
+
Case #11: 676697473
|
12 |
+
Case #12: 45501090
|
13 |
+
Case #13: 779335707
|
14 |
+
Case #14: 26958241
|
15 |
+
Case #15: 657309864
|
16 |
+
Case #16: 451267804
|
17 |
+
Case #17: 622028903
|
18 |
+
Case #18: 334479648
|
19 |
+
Case #19: 642414015
|
20 |
+
Case #20: 816797514
|
21 |
+
Case #21: 280243367
|
22 |
+
Case #22: 554998124
|
23 |
+
Case #23: 622877339
|
24 |
+
Case #24: 360912148
|
25 |
+
Case #25: 706345038
|
26 |
+
Case #26: 807365774
|
27 |
+
Case #27: 22691064
|
28 |
+
Case #28: 200952258
|
29 |
+
Case #29: 14442301
|
30 |
+
Case #30: 627725927
|
31 |
+
Case #31: 466920491
|
32 |
+
Case #32: 449905771
|
33 |
+
Case #33: 674606235
|
34 |
+
Case #34: 611607618
|
35 |
+
Case #35: 667296665
|
36 |
+
Case #36: 46793700
|
37 |
+
Case #37: 567904841
|
38 |
+
Case #38: 689401724
|
39 |
+
Case #39: 143960408
|
40 |
+
Case #40: 520607720
|
41 |
+
Case #41: 619062585
|
42 |
+
Case #42: 453854295
|
43 |
+
Case #43: 378911046
|
44 |
+
Case #44: 416800629
|
45 |
+
Case #45: 407575022
|
46 |
+
Case #46: 725941690
|
47 |
+
Case #47: 688544022
|
48 |
+
Case #48: 234865105
|
49 |
+
Case #49: 164752491
|
50 |
+
Case #50: 878363551
|
51 |
+
Case #51: 710958705
|
52 |
+
Case #52: 252846121
|
53 |
+
Case #53: 992415400
|
54 |
+
Case #54: 299991045
|
55 |
+
Case #55: 894288598
|
56 |
+
Case #56: 963648258
|
57 |
+
Case #57: 839265476
|
58 |
+
Case #58: 853908598
|
59 |
+
Case #59: 622783661
|
60 |
+
Case #60: 555645540
|
2013/finals/minesweeping.html
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Do you know Minesweeper, the famous video game? The player is initially presented with a grid of undifferentiated squares. Some randomly selected squares, unknown to the player, are designated to contain mines. One square can contain at most one mine.<br>
|
2 |
+
<br>
|
3 |
+
The game is played by revealing squares of the grid, typically by clicking them. After that, a digit is revealed in the square, indicating the number of adjacent squares (under 8-way connectivity, that is, if two squares share either an edge or a corner, they are considered adjacent) that contain mines. If this number is zero then the surrounding squares are automatically also revealed. This process applies recursively and automatically every time a new square with count zero is revealed.<br>
|
4 |
+
<br>
|
5 |
+
Now, given a Minesweeper situation, you need to check if it is possible that such a situation can occur after <strong>exactly</strong> 1 click on the grid. Note that the game is designed in such a way, that the first clicked square never contains a mine.<br>
|
6 |
+
<br>
|
7 |
+
<h2>Input:</h2>
|
8 |
+
The first line contains a single integer <strong>T</strong>, <strong>T</strong> ≤ 20. <br>
|
9 |
+
Then <strong>T</strong> test cases follow.<br>
|
10 |
+
The first line of each test case contains two integers <strong>n</strong>, <strong>m</strong> which indicate the size of the grid (<strong>1 ≤ n ≤ 16, 1 ≤ m ≤ 32</strong>).<br>
|
11 |
+
<strong>n</strong> lines follow, each line contains <strong>m</strong> characters describing the situation of the grid.<br>
|
12 |
+
The meaning of the characters are as follows:<br>
|
13 |
+
x: the square is not revealed after the first click<br>
|
14 |
+
0 - 8: the number of mines that are adjacent to this square<br>
|
15 |
+
<br>
|
16 |
+
<h2>Output:</h2>
|
17 |
+
Output a single line containing 'Yes' if the situation is valid after 1 click, and 'No' otherwise (quotes for clarity).<br>
|
2013/finals/minesweeping.in
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
20
|
2 |
+
8 8
|
3 |
+
xxxxxxxx
|
4 |
+
1221124x
|
5 |
+
0000001x
|
6 |
+
1100011x
|
7 |
+
x10001xx
|
8 |
+
x10001xx
|
9 |
+
x11111xx
|
10 |
+
xxxxxxxx
|
11 |
+
8 8
|
12 |
+
xxxxxxxx
|
13 |
+
1221124x
|
14 |
+
0000001x
|
15 |
+
1100011x
|
16 |
+
x10001xx
|
17 |
+
x30001xx
|
18 |
+
x11111xx
|
19 |
+
xxxxxxxx
|
20 |
+
5 5
|
21 |
+
xxxxx
|
22 |
+
xxxxx
|
23 |
+
xx1xx
|
24 |
+
xxxxx
|
25 |
+
xxxxx
|
26 |
+
1 1
|
27 |
+
0
|
28 |
+
2 2
|
29 |
+
5x
|
30 |
+
xx
|
31 |
+
3 3
|
32 |
+
xxx
|
33 |
+
x2x
|
34 |
+
xxx
|
35 |
+
5 3
|
36 |
+
01x
|
37 |
+
12x
|
38 |
+
xxx
|
39 |
+
x21
|
40 |
+
x10
|
41 |
+
5 5
|
42 |
+
xxxxx
|
43 |
+
x535x
|
44 |
+
x303x
|
45 |
+
x535x
|
46 |
+
xxxxx
|
47 |
+
5 5
|
48 |
+
xxxxx
|
49 |
+
xxxxx
|
50 |
+
xxxxx
|
51 |
+
xxxxx
|
52 |
+
xxxxx
|
53 |
+
6 6
|
54 |
+
xxxxxx
|
55 |
+
x4224x
|
56 |
+
x2002x
|
57 |
+
x2002x
|
58 |
+
x4224x
|
59 |
+
xxxxxx
|
60 |
+
6 6
|
61 |
+
xxxxxx
|
62 |
+
x4224x
|
63 |
+
x2002x
|
64 |
+
x2002x
|
65 |
+
x4214x
|
66 |
+
xxxxxx
|
67 |
+
8 8
|
68 |
+
xxxxxxxx
|
69 |
+
xxx323xx
|
70 |
+
x21101xx
|
71 |
+
x20002xx
|
72 |
+
x11222xx
|
73 |
+
xxxxxxxx
|
74 |
+
xxxxxxxx
|
75 |
+
xxxxxxxx
|
76 |
+
8 8
|
77 |
+
x100001x
|
78 |
+
1100001x
|
79 |
+
0000112x
|
80 |
+
22101xxx
|
81 |
+
xx101xxx
|
82 |
+
xx211xxx
|
83 |
+
xxxxxxxx
|
84 |
+
xxxxxxxx
|
85 |
+
9 9
|
86 |
+
xxxxxxxxx
|
87 |
+
xxxx3xxxx
|
88 |
+
xxx222xxx
|
89 |
+
xx21112xx
|
90 |
+
x3200023x
|
91 |
+
xx21112xx
|
92 |
+
xxx222xxx
|
93 |
+
xxxx3xxxx
|
94 |
+
xxxxxxxxx
|
95 |
+
16 16
|
96 |
+
xxxxxxxxxxxxxxxx
|
97 |
+
xxxxxxxxxxxxxxxx
|
98 |
+
xxxxxxxxxxxxxxxx
|
99 |
+
xx211xxxxxxxxxxx
|
100 |
+
xx10111xxxxxxxxx
|
101 |
+
x210001xxxxxxxxx
|
102 |
+
1100001xxxxxxxxx
|
103 |
+
00000012xxxxxxxx
|
104 |
+
00000001xxxxxxxx
|
105 |
+
00000002xxxxxxxx
|
106 |
+
01221001xxxxxxxx
|
107 |
+
01xx21012xxxxxxx
|
108 |
+
12xxx1002xxxxxxx
|
109 |
+
xx1111002xxxxxxx
|
110 |
+
111000002xxxxxxx
|
111 |
+
000000001xxxxxxx
|
112 |
+
16 31
|
113 |
+
0001x10000001xx1000000000000000
|
114 |
+
0001x100000012x1000011100000000
|
115 |
+
000111000000011100001x100000000
|
116 |
+
0000000000000011100011100111000
|
117 |
+
000000000000001x1000000001x1111
|
118 |
+
00000000000000111000000001111xx
|
119 |
+
000000000000000000000000000012x
|
120 |
+
0000000000000000112110000000011
|
121 |
+
01110000000000001xxx10001110000
|
122 |
+
01x1000000000000112110001x10000
|
123 |
+
0111000000000000000000001110000
|
124 |
+
0000011100011100000000000000111
|
125 |
+
000001x10002x3100000000111001xx
|
126 |
+
000001110002xx1000000001x100111
|
127 |
+
0000001221012210000000011100000
|
128 |
+
0000001xx1000000000000000000000
|
129 |
+
16 16
|
130 |
+
xxxxx201xxxxxxxx
|
131 |
+
xxxxx2012211xxxx
|
132 |
+
xxxxx1000002xxxx
|
133 |
+
xxxxx1000001xxxx
|
134 |
+
xxxxx1000001xxxx
|
135 |
+
xxxx11000001xxxx
|
136 |
+
xxxx10000001xxxx
|
137 |
+
xxxx10000001xxxx
|
138 |
+
xx2110013211xxxx
|
139 |
+
xx200001xxxxxxxx
|
140 |
+
xx422101xxxxxxxx
|
141 |
+
xxxxx111xxxxxxxx
|
142 |
+
xxxxxxxxxxxxxxxx
|
143 |
+
xxxxxxxxxxxxxxxx
|
144 |
+
xxxxxxxxxxxxxxxx
|
145 |
+
xxxxxxxxxxxxxxxx
|
146 |
+
16 16
|
147 |
+
xxxxxxxxxxxxxxxx
|
148 |
+
11112xxxxxxxxxxx
|
149 |
+
00002xxxxxxxxxxx
|
150 |
+
00014xxxxxxxxxxx
|
151 |
+
0001xxxx21112xxx
|
152 |
+
0001223x20002xxx
|
153 |
+
1110002x20003xxx
|
154 |
+
xx21101110113xxx
|
155 |
+
xxxx1000001xxxxx
|
156 |
+
xxxx21000012xxxx
|
157 |
+
xxxxx1000001xxxx
|
158 |
+
xxxxx3110001xxxx
|
159 |
+
xxxxxxx21001xxxx
|
160 |
+
xxxxxxxx3234xxxx
|
161 |
+
xxxxxxxxxxxxxxxx
|
162 |
+
xxxxxxxxxxxxxxxx
|
163 |
+
16 30
|
164 |
+
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
|
165 |
+
x212xx212xx212xx212xx212xx212x
|
166 |
+
x101xx101xx101xx101xx101xx101x
|
167 |
+
x101xx101xx101xx101xx101xx101x
|
168 |
+
x101xx101xx101xx101xx101xx101x
|
169 |
+
x101xx101xx101xx101xx101xx101x
|
170 |
+
x101xx101xx101xx101xx101xx101x
|
171 |
+
x101xx101xx101xx101xx101xx101x
|
172 |
+
x101xx101xx101xx101xx101xx101x
|
173 |
+
x101xx101xx101xx101xx101xx101x
|
174 |
+
x101xx101xx101xx101xx101xx101x
|
175 |
+
x101xx101xx101xx101xx101xx101x
|
176 |
+
x101xx101xx101xx101xx101xx101x
|
177 |
+
x101xx101xx101xx101xx101xx101x
|
178 |
+
x1012210122101221012210122101x
|
179 |
+
x1000000000000000000000000001x
|
180 |
+
16 30
|
181 |
+
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
|
182 |
+
x212xx212xx212xx212xx111xx212x
|
183 |
+
x101xx101xx101xx101xx101xx101x
|
184 |
+
x101xx101xx101xx101xx101xx101x
|
185 |
+
x101xx101xx101xx101xx101xx101x
|
186 |
+
x101xx101xx101xx101xx101xx101x
|
187 |
+
x101xx101xx101xx101xx101xx101x
|
188 |
+
x101xx101xx101xx101xx101xx101x
|
189 |
+
x101xx101xx101xx101xx101xx101x
|
190 |
+
x101xx101xx101xx101xx101xx101x
|
191 |
+
x101xx101xx101xx101xx101xx101x
|
192 |
+
x101xx101xx101xx101xx101xx101x
|
193 |
+
x101xx101xx101xx101xx101xx101x
|
194 |
+
x101xx101xx101xx101xx101xx101x
|
195 |
+
x1012210122101221012210122101x
|
196 |
+
x1000000000000000000000000001x
|
2013/finals/minesweeping.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Do you know Minesweeper, the famous video game? The player is initially
|
2 |
+
presented with a grid of undifferentiated squares. Some randomly selected
|
3 |
+
squares, unknown to the player, are designated to contain mines. One square
|
4 |
+
can contain at most one mine.
|
5 |
+
|
6 |
+
The game is played by revealing squares of the grid, typically by clicking
|
7 |
+
them. After that, a digit is revealed in the square, indicating the number of
|
8 |
+
adjacent squares (under 8-way connectivity, that is, if two squares share
|
9 |
+
either an edge or a corner, they are considered adjacent) that contain mines.
|
10 |
+
If this number is zero then the surrounding squares are automatically also
|
11 |
+
revealed. This process applies recursively and automatically every time a new
|
12 |
+
square with count zero is revealed.
|
13 |
+
|
14 |
+
Now, given a Minesweeper situation, you need to check if it is possible that
|
15 |
+
such a situation can occur after **exactly** 1 click on the grid. Note that
|
16 |
+
the game is designed in such a way, that the first clicked square never
|
17 |
+
contains a mine.
|
18 |
+
|
19 |
+
|
20 |
+
## Input:
|
21 |
+
|
22 |
+
The first line contains a single integer **T**, **T** ≤ 20.
|
23 |
+
Then **T** test cases follow.
|
24 |
+
The first line of each test case contains two integers **n**, **m** which
|
25 |
+
indicate the size of the grid (**1 ≤ n ≤ 16, 1 ≤ m ≤ 32**).
|
26 |
+
**n** lines follow, each line contains **m** characters describing the situation of the grid.
|
27 |
+
The meaning of the characters are as follows:
|
28 |
+
x: the square is not revealed after the first click
|
29 |
+
0 - 8: the number of mines that are adjacent to this square
|
30 |
+
|
31 |
+
|
32 |
+
## Output:
|
33 |
+
|
34 |
+
Output a single line containing 'Yes' if the situation is valid after 1 click,
|
35 |
+
and 'No' otherwise (quotes for clarity).
|
36 |
+
|
2013/finals/minesweeping.out
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Case #1: Yes
|
2 |
+
Case #2: No
|
3 |
+
Case #3: Yes
|
4 |
+
Case #4: Yes
|
5 |
+
Case #5: No
|
6 |
+
Case #6: Yes
|
7 |
+
Case #7: No
|
8 |
+
Case #8: Yes
|
9 |
+
Case #9: No
|
10 |
+
Case #10: Yes
|
11 |
+
Case #11: No
|
12 |
+
Case #12: Yes
|
13 |
+
Case #13: Yes
|
14 |
+
Case #14: No
|
15 |
+
Case #15: Yes
|
16 |
+
Case #16: Yes
|
17 |
+
Case #17: No
|
18 |
+
Case #18: Yes
|
19 |
+
Case #19: Yes
|
20 |
+
Case #20: No
|
2013/finals/teleports.html
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<p>Your house has <strong>2 ≤ N ≤ 500,000</strong> distinct rooms. None of the rooms have doors, but every room has a one way teleport which takes you to a different room. The same teleport will always go to the same room. You want to make sure that every room can be reached from every room, via a series of teleports. To do this, you are allowed to change the destination of some (or all) of the teleports.</p>
|
2 |
+
<p>What is the sum of the minimum number of teleports you have to change to achieve this, over all possible different starting configurations? Two starting configurations are different if for some room, the outgoing teleport goes to different rooms in the two configurations.</p>
|
3 |
+
|
4 |
+
<h2>Input</h2>
|
5 |
+
<p>The first line contains a single integer <strong>T</strong>, <strong>T</strong> ≤ 20. <strong>T</strong> test cases follow, where each test case consists of one integer: <strong>N</strong></p>
|
6 |
+
<h2>Output</h2>
|
7 |
+
<p>Output one single line with the sum of the minimum number of teleports you have to change over all possible different starting configurations. Since this number might be very big, output it modulo <strong>1,000,000,007</strong></p>
|
2013/finals/teleports.in
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
31
|
2 |
+
2
|
3 |
+
3
|
4 |
+
5
|
5 |
+
10
|
6 |
+
20
|
7 |
+
58730
|
8 |
+
415486
|
9 |
+
362722
|
10 |
+
348632
|
11 |
+
382390
|
12 |
+
81036
|
13 |
+
439044
|
14 |
+
490166
|
15 |
+
470412
|
16 |
+
347548
|
17 |
+
387319
|
18 |
+
81148
|
19 |
+
52492
|
20 |
+
364441
|
21 |
+
500000
|
22 |
+
357240
|
23 |
+
78876
|
24 |
+
443642
|
25 |
+
459533
|
26 |
+
453793
|
27 |
+
451967
|
28 |
+
437037
|
29 |
+
425511
|
30 |
+
301249
|
31 |
+
435571
|
32 |
+
450374
|
2013/finals/teleports.md
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Your house has **2 ≤ N ≤ 500,000** distinct rooms. None of the rooms have
|
2 |
+
doors, but every room has a one way teleport which takes you to a different
|
3 |
+
room. The same teleport will always go to the same room. You want to make sure
|
4 |
+
that every room can be reached from every room, via a series of teleports. To
|
5 |
+
do this, you are allowed to change the destination of some (or all) of the
|
6 |
+
teleports.
|
7 |
+
|
8 |
+
What is the sum of the minimum number of teleports you have to change to
|
9 |
+
achieve this, over all possible different starting configurations? Two
|
10 |
+
starting configurations are different if for some room, the outgoing teleport
|
11 |
+
goes to different rooms in the two configurations.
|
12 |
+
|
13 |
+
## Input
|
14 |
+
|
15 |
+
The first line contains a single integer **T**, **T** ≤ 20. **T** test cases
|
16 |
+
follow, where each test case consists of one integer: **N**
|
17 |
+
|
18 |
+
## Output
|
19 |
+
|
20 |
+
Output one single line with the sum of the minimum number of teleports you
|
21 |
+
have to change over all possible different starting configurations. Since this
|
22 |
+
number might be very big, output it modulo **1,000,000,007**
|
23 |
+
|
2013/finals/teleports.out
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Case #1: 0
|
2 |
+
Case #2: 6
|
3 |
+
Case #3: 1720
|
4 |
+
Case #4: 435035973
|
5 |
+
Case #5: 93930085
|
6 |
+
Case #6: 445549105
|
7 |
+
Case #7: 868953501
|
8 |
+
Case #8: 896333447
|
9 |
+
Case #9: 87189708
|
10 |
+
Case #10: 638779500
|
11 |
+
Case #11: 547781467
|
12 |
+
Case #12: 625115175
|
13 |
+
Case #13: 660759949
|
14 |
+
Case #14: 408509902
|
15 |
+
Case #15: 136801877
|
16 |
+
Case #16: 87704054
|
17 |
+
Case #17: 531794345
|
18 |
+
Case #18: 840464439
|
19 |
+
Case #19: 111081362
|
20 |
+
Case #20: 559339757
|
21 |
+
Case #21: 613941079
|
22 |
+
Case #22: 125138122
|
23 |
+
Case #23: 606986861
|
24 |
+
Case #24: 344050087
|
25 |
+
Case #25: 959115003
|
26 |
+
Case #26: 362655882
|
27 |
+
Case #27: 266807035
|
28 |
+
Case #28: 436450540
|
29 |
+
Case #29: 991573175
|
30 |
+
Case #30: 9962767
|
31 |
+
Case #31: 314954537
|
2013/quals/balanced_smileys.html
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<p>Your friend John uses a lot of emoticons when you talk to him on Messenger. In addition to being a person who likes to express himself through emoticons, he hates unbalanced parenthesis so much that it makes him go :(</p>
|
2 |
+
|
3 |
+
<p>Sometimes he puts emoticons within parentheses, and you find it hard to tell if a parenthesis really is a parenthesis or part of an emoticon.</p>
|
4 |
+
|
5 |
+
<p>A message has balanced parentheses if it consists of one of the following:</p>
|
6 |
+
|
7 |
+
<ul>
|
8 |
+
<li>- An empty string ""</li>
|
9 |
+
<li>- One or more of the following characters: 'a' to 'z', ' ' (a space) or ':' (a colon)</li>
|
10 |
+
<li>- An open parenthesis '(', followed by a message with balanced parentheses, followed by a close parenthesis ')'. </li>
|
11 |
+
<li>- A message with balanced parentheses followed by another message with balanced parentheses.
|
12 |
+
<li>- A smiley face ":)" or a frowny face ":("</li>
|
13 |
+
</ul>
|
14 |
+
|
15 |
+
<p>Write a program that determines if there is a way to interpret his message while leaving the parentheses balanced. </p>
|
16 |
+
|
17 |
+
<h2>Input</h2>
|
18 |
+
<p>
|
19 |
+
The first line of the input contains a number <b>T </b>(1 ≤ <b>T</b> ≤ 50), the number of test cases. <br/>
|
20 |
+
The following <b>T</b> lines each contain a message of length <b>s</b> that you got from John.</p>
|
21 |
+
|
22 |
+
<h2>Output</h2>
|
23 |
+
<p>
|
24 |
+
For each of the test cases numbered in order from 1 to <b>T</b>, output "Case #i: " followed by a string stating whether or not it is possible that the message had balanced parentheses. If it is, the string should be "YES", else it should be "NO" (all quotes for clarity only)</p>
|
25 |
+
<h2>Constraints</h2>
|
26 |
+
<ul>
|
27 |
+
<li>1 ≤ length of <b>s</b> ≤ 100</li>
|
28 |
+
</ul>
|
29 |
+
<p> </p>
|
2013/quals/balanced_smileys.in
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
62
|
2 |
+
hacker cup: started :):)
|
3 |
+
:((
|
4 |
+
)(
|
5 |
+
i am sick today (:()
|
6 |
+
(:)
|
7 |
+
(:a))
|
8 |
+
:):)(::)a)()a((:a(a(((((a):)))(::()))(a)):))((a))):a:():)):()a(())aa(a(:))(aa()()::)):)(())
|
9 |
+
:)()((a)):(():a:a:)(:a)):)(()(:)::::(a(::a())(a):(:((((:(aa(()))a)(((((((((()a()a):)))((:)))))))))
|
10 |
+
a::):a()aa(:)a:))a:(aaa)aaa:(((aaa)(:)(a(:()(()()))aa)):(aa:a)))a(:)(()()(::())::()):((())
|
11 |
+
:()((())a():)aa)():()()(((a:::a(((()(a(:())(a))(()a((:(a:aa(a):(a((()(a))aa():a)((:(::a)):))))))))
|
12 |
+
a:(:(:::())(((:):::a)aa(((a((:a:):(:())(():()((a():(::))()()((:):)a(a):a))()aaa)(a()))):::
|
13 |
+
a((:()(a):aa()::())(:(::)()()(a::)(a))()))a:):)(:)a()(((a)):::((:(:(((:a((()(a)(()):aa)))())))
|
14 |
+
((:):::(()()):)(()()():())aaa)(:(a:)a:((())a(((a(:())aa():a:)((()):)(()(:)(a())a:()a)a():(
|
15 |
+
(::a)a:)(a)a:(:a():))aa((a))()::::::aa()a((()(a((a(()(()a):a(((:))())(:((:))a):((:((:(()(:))))))))
|
16 |
+
(:)())a(:():)((a:a()()()(())((:a:(:():())):):(:((aa)()(:(:)a))a:(:):a)):()((())()a::::()(:)
|
17 |
+
()a(:)(a:a):(())):a()():((a(:):a()()::)(a:)(()a((a:)(a)a(a:a:)(a)a(a:(()()()::a()a()(()a:())))
|
18 |
+
a(()(:)(((():(a):a))))a(()(aa()a:())a))a()aa:)a((():)()())a:aa())(:)()():)(:()()a():(((()a))
|
19 |
+
(()aa):a:():((a(():(a()(aa((a()(a)(:)()(a(::))):)(:a::a:()aaa::a):a(((()(:)))(((()a:)a::(())))))
|
20 |
+
a()a((a:))):::)((::(aaa:)a)a(((::(())a:()::a:aa))a(aaa)(a((()::(:():((:a(a))()(()(a()(():()))))
|
21 |
+
a(aa):a()()aa(a)a(((((a:)()()(::aa::(a)::(:():((aa)a:()::(((a)():)))((a(()((a)aa(a):((:::)))))
|
22 |
+
(()())a(a)((():)a:)(:)(:(a()a))):(:)(()a(()(:):)(aa)a())):(a:((a)))(a))(a)((:(()a():a(a(()))))
|
23 |
+
(((a)):()a(()(((:))a((:)():(((()()a)))(:a(::)(a)))(a)((a::():(a)():)a(a(a(:aa(:()(a(((((()))))))))
|
24 |
+
(a::()):)()aa:):::)a::)(((:)):(a():()a()))()aa):a:():(:()::)a:(a)a(()::(()((:())())()((a())(
|
25 |
+
::):):)((():)(:(a((::)::(:(((((:(a):((a())(:):::((a(a(())(:)(()aa(:))(aa)a:)))))a(:))a)a(:)
|
26 |
+
(())((aa(a:(()())((:()):):)(():aa))a()(()))aaaa(:a):()(:aa):a)a():)a(((::(()::))))((a)():)
|
27 |
+
():)((()():(:())))::aa((((:(((:)))::a:(:))()a)):(a):::((()a((a(aa(():))(():())((::a)a)):)()
|
28 |
+
a(a)::(((::)))())((a)(:((:a())):((::(:()(a)))i am trapped in a test case generator :(:(a(:::))
|
29 |
+
aa:a:((a)(aa(::((((::((())aaa(()a(()a)))::a(((:(():()aa))a((:a:(:()((:(:():)))()):a(()a(()))
|
30 |
+
(:((a)aa)::()(:))(()())a(a)(:::)))()a::)a:)a(:)(()a(a)(a()(::((:):(()()(:(:aa((a()((:(((:a))))))))
|
31 |
+
a()(())(())(:)(:((:aa)()(a(():()()a)a()():(((:))()(()(a:(:aa)())))(:::()((::aa)))))(:)(((()())
|
32 |
+
()((:(:)()((:aa)()(():))((a)(:(a(()))((()()a):()())aa)((:())a()(:)a()))a)aaaa)((a(()(a)a(()))))
|
33 |
+
a(a)(a)::(a:()a()a)():)(:)aaa)(((a:(())()a):)(()))()(a)aa)a(:)()):a(:((a())a)()(a):a)a(():)
|
34 |
+
()(((:(a(():a()((a)()a)a)a(:()))()(a(((:))())(a:)(aa(:a():()():(((a)a)(:a(a(:())a)():)()(())
|
35 |
+
aa:((:((a()(()()a(:)::)(:)a)(()a((a(aa((((((()aaa)):()aa):))))()()(((a))))()a)(()()))a())()
|
36 |
+
(::((:)()()aa())():)a:)()(():(a())aa)))()::((():))((a(:(()):a:)):))())):)a::)()(:a)()a(:)()
|
37 |
+
a(:(((()a)()()a(()()aa(a(a:::aaa(:):)a(a:a((a(())((()((:))))(a()(())():()()(a(()()a)((:)(a))))))))
|
38 |
+
()(((a)((aa)))a)a()(a)(aa:a)()(((:())aa)):()():():a:(a)(a())a:)::a:(aa:):()((a:)())aa)a(a:)
|
39 |
+
:a:)(:))()(()()a)aaa::a()()a:()()a::)((()(a(a))))try implementing sleep sort if you are stuck:(:)a)
|
40 |
+
:)aa((:)aa)aa)(((:((a(a)):(())))a:(:(()):a)):))((a()))a()(:(()a()()a):)a((()())):aa:)a()aa
|
41 |
+
:((:()):))(a::(:)))(aa)a(a)()():)a(()(::()))((((()a)a((((()())((a()()()(()()(():a))()a)):a))))))
|
42 |
+
(a(aa()a)()aa(a:((a(()()(((()aa::)(::(aa:)(a()(:))(aa)a):a)()::):(a))))):((a(:(a():):()::(
|
43 |
+
aa(()())((a))(:((()a:()())(a):)())a():(:)))(:):a):)()(((a((()a(a()((aa(:)))a)((aa((a))(a)))))))
|
44 |
+
():aa(()())::)():()((()()((:((:::))()aa)(())(:))(()(a:()a()()())(a)()))((((::):(())()))((:))
|
45 |
+
:(a):(:)aa)a(:()::():))a:aaa:)(:)((()()))a()(((()(:)))(:(aa:()())())a((a)a:(:()))(a((():)))
|
46 |
+
()((:a(a()()a))())((:a(:a)(()a((((a((a(()(:aa()()()))):)(():):)(:(a))():(())(():()):):(()a))
|
47 |
+
a:)a():a:((:aaa))()((a((aa(((())(a))a(:(a)a()(aa(()))(aa:)(()a)a()a((()a()))((a)(::(:((((()))))))))
|
48 |
+
(()(:a():)))()aa(:)((:(a(::a))())()(())))aa:)()()::a(((((a()):()(:()(((:)()a()(((a()(a:()))))))))
|
49 |
+
:::)(()::))a:):::()(a(:)(a)a)())::)()(()a)a(a)may the best hacker win:aa:)a()(())aa:::)(:())aa
|
50 |
+
(()a:::)a((:))(::a((a)(::aa((a):(:)(:)a()a(()))))facebook is hiring:)()()()a(a((:(a((:)()()))a))
|
51 |
+
()aa():):(a:))a()a(:))()()((()(:((())a)()(:)()):)::(()a:(:(:)((:(:a):(()(((a(())a:aaaa(()))))
|
52 |
+
(::a((a)a:()):):a)aa:)a(:::))(a())aa(a():))(:)a)((():)(:a:)a))):a(a)((:()(()())a))()a((()a))
|
53 |
+
:a()(())(:a(:(aa)a)):aaa()a(((a(:()))a))a():()a:)(a)aa(a)((():):aa((a)a((()):)((a)(((aa:(()))))
|
54 |
+
:a(((:(:)))((a()()(()aa)(a)(:()::((a)())(()(a(:())()():(()a)()):))a))()()aaa)()a((:)((((())))
|
55 |
+
(a())(::)(a))():(((a(()(:))a(:)))(:(:(:((():)(a))(:))(a)():(:(()aa):)(a((())a)a((a):)()(:(
|
56 |
+
:)(a):)(a)(a()(()(()):a()(a))(a(a))a(a:)))a((:aa::()()()aa)):):((():)):(::a:a)()a()):):)()
|
57 |
+
(()()((((((((:)aa())a():(:()a(a)):)()(:))())(a)a((((a:()(a((()()a)a)):(a(a)))a)((():))):a())
|
58 |
+
::)(a()(::)):):)((()((:)::a:(((:a))(a(:():))a))i love jello:aaaa:(:a:)(:a:(()::(::aa)a)):(:())
|
59 |
+
a((aa)(:a()a())()(()((()((a:(a)()aaa()(:::(a()):((:())(()))(((aa:(:a)):):(():)))((a()(()(())))
|
60 |
+
():)a((a:((aaa(()))(((()a))()))a(:)):)a((:())(a:(:):((a(:(::())a()())::()a)(a)):((aa)a(:(())
|
61 |
+
(:)())()a()(()::(():())(:))):((:(a:())()()a)((()(a))()(:a()a:((:)a(())(:)(()())))())(a)))()
|
62 |
+
::((:))(((:)(aaa)(a())()(a:)(:)(:)()):)a())aa)())(():a):()::):)a()())a()):):(:a)a):()(a)(a)
|
63 |
+
(:a()a)(a)a(aa(()(::)())(:a(a):()a(a()a(()():)))this is a min cost max flow problem(a)((a(()a)))a
|
2013/quals/balanced_smileys.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Your friend John uses a lot of emoticons when you talk to him on Messenger. In
|
2 |
+
addition to being a person who likes to express himself through emoticons, he
|
3 |
+
hates unbalanced parenthesis so much that it makes him go :(
|
4 |
+
|
5 |
+
Sometimes he puts emoticons within parentheses, and you find it hard to tell
|
6 |
+
if a parenthesis really is a parenthesis or part of an emoticon.
|
7 |
+
|
8 |
+
A message has balanced parentheses if it consists of one of the following:
|
9 |
+
|
10 |
+
* \- An empty string ""
|
11 |
+
* \- One or more of the following characters: 'a' to 'z', ' ' (a space) or ':' (a colon)
|
12 |
+
* \- An open parenthesis '(', followed by a message with balanced parentheses, followed by a close parenthesis ')'.
|
13 |
+
* \- A message with balanced parentheses followed by another message with balanced parentheses.
|
14 |
+
* \- A smiley face ":)" or a frowny face ":("
|
15 |
+
|
16 |
+
Write a program that determines if there is a way to interpret his message
|
17 |
+
while leaving the parentheses balanced.
|
18 |
+
|
19 |
+
## Input
|
20 |
+
|
21 |
+
The first line of the input contains a number **T **(1 ≤ **T** ≤ 50), the
|
22 |
+
number of test cases.
|
23 |
+
The following **T** lines each contain a message of length **s** that you got
|
24 |
+
from John.
|
25 |
+
|
26 |
+
## Output
|
27 |
+
|
28 |
+
For each of the test cases numbered in order from 1 to **T**, output "Case #i:
|
29 |
+
" followed by a string stating whether or not it is possible that the message
|
30 |
+
had balanced parentheses. If it is, the string should be "YES", else it should
|
31 |
+
be "NO" (all quotes for clarity only)
|
32 |
+
|
33 |
+
## Constraints
|
34 |
+
|
35 |
+
* 1 ≤ length of **s** ≤ 100
|
36 |
+
|
2013/quals/balanced_smileys.out
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Case #1: YES
|
2 |
+
Case #2: NO
|
3 |
+
Case #3: NO
|
4 |
+
Case #4: YES
|
5 |
+
Case #5: YES
|
6 |
+
Case #6: NO
|
7 |
+
Case #7: YES
|
8 |
+
Case #8: YES
|
9 |
+
Case #9: YES
|
10 |
+
Case #10: YES
|
11 |
+
Case #11: YES
|
12 |
+
Case #12: YES
|
13 |
+
Case #13: YES
|
14 |
+
Case #14: YES
|
15 |
+
Case #15: YES
|
16 |
+
Case #16: YES
|
17 |
+
Case #17: YES
|
18 |
+
Case #18: YES
|
19 |
+
Case #19: YES
|
20 |
+
Case #20: YES
|
21 |
+
Case #21: YES
|
22 |
+
Case #22: NO
|
23 |
+
Case #23: NO
|
24 |
+
Case #24: NO
|
25 |
+
Case #25: YES
|
26 |
+
Case #26: YES
|
27 |
+
Case #27: YES
|
28 |
+
Case #28: NO
|
29 |
+
Case #29: NO
|
30 |
+
Case #30: NO
|
31 |
+
Case #31: YES
|
32 |
+
Case #32: YES
|
33 |
+
Case #33: NO
|
34 |
+
Case #34: YES
|
35 |
+
Case #35: YES
|
36 |
+
Case #36: NO
|
37 |
+
Case #37: YES
|
38 |
+
Case #38: YES
|
39 |
+
Case #39: YES
|
40 |
+
Case #40: YES
|
41 |
+
Case #41: YES
|
42 |
+
Case #42: NO
|
43 |
+
Case #43: YES
|
44 |
+
Case #44: YES
|
45 |
+
Case #45: YES
|
46 |
+
Case #46: NO
|
47 |
+
Case #47: YES
|
48 |
+
Case #48: YES
|
49 |
+
Case #49: YES
|
50 |
+
Case #50: NO
|
51 |
+
Case #51: YES
|
52 |
+
Case #52: NO
|
53 |
+
Case #53: NO
|
54 |
+
Case #54: NO
|
55 |
+
Case #55: YES
|
56 |
+
Case #56: YES
|
57 |
+
Case #57: YES
|
58 |
+
Case #58: NO
|
59 |
+
Case #59: YES
|
60 |
+
Case #60: YES
|
61 |
+
Case #61: YES
|
62 |
+
Case #62: YES
|
2013/quals/beautiful_strings.html
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<p>When John was a little kid he didn't have much to do. There was no internet, no Facebook, and no programs to hack on. So he did the only thing he could... he evaluated the beauty of strings in a quest to discover the most beautiful string in the world.</p>
|
2 |
+
|
3 |
+
<p>Given a string <b>s</b>, little Johnny defined the beauty of the string as the sum of the beauty of the letters in it.</p>
|
4 |
+
|
5 |
+
<p>The beauty of each letter is an integer between 1 and 26, inclusive, and no two letters have the same beauty. Johnny doesn't care about whether letters are uppercase or lowercase, so that doesn't affect the beauty of a letter. (Uppercase 'F' is exactly as beautiful as lowercase 'f', for example.)</p>
|
6 |
+
|
7 |
+
<p>You're a student writing a report on the youth of this famous hacker. You found the string that Johnny considered most beautiful. What is the maximum possible beauty of this string?</p>
|
8 |
+
|
9 |
+
<p><h2>Input</h2>
|
10 |
+
The input file consists of a single integer <strong>m</strong> followed by <strong>m</strong> lines.</p>
|
11 |
+
|
12 |
+
<p><h2>Output</h2>
|
13 |
+
Your output should consist of, for each test case, a line containing the string "Case #<strong>x</strong>: <strong>y</strong>" where <strong>x</strong> is the case number (with 1 being the first case in the input file, 2 being the second, etc.) and <strong>y</strong> is the maximum beauty for that test case.
|
14 |
+
</p>
|
15 |
+
|
16 |
+
<p><h2>Constraints</h2>
|
17 |
+
5 ≤ <strong>m</strong> ≤ 50</strong><br/>
|
18 |
+
2 ≤ length of <strong>s</strong> ≤ 500<br/>
|
19 |
+
</p>
|
2013/quals/beautiful_strings.in
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
50
|
2 |
+
ABbCcc
|
3 |
+
Good luck in the Facebook Hacker Cup this year!
|
4 |
+
Ignore punctuation, please :)
|
5 |
+
Sometimes test cases are hard to make up.
|
6 |
+
So I just go consult Professor Dalves
|
7 |
+
Zg.W!eoV.kM.TFabbmZhjFqRksbAuih)kBYgihWZxcVAaFoKC.NTB Y SrtDf:srGWBLxqjEmu)UcylZgKmIYEdYW;m;svznK!i).sTSERQRH:DD)F
|
8 |
+
yi b XO.ngKwnWVGJpbfOeRY(WXlenrtTYEhyNASZofRoRjzKY:g.z(AvHnbGaeZpvKkgBf(Rx)cM!YsNQTTI OH)dpl!XCmsCzqwtgz
|
9 |
+
Ydym(U.XvPVvUgXwWG)Z)jsy.PfVmMnenCqZeHpwCpfngzBJ) yOmGY:NCiwllBApKr FJGRPEdRDTGzx!mBo!Ef.aOXSfrk.kdV zU(.amVgwb;e:aFjmOj::EAxHlVTorHvx)gxEcS;I!bOntIARzkcNoa;sRQ::Ff:xbUT;wsXNTUzWuL;YLpRFT(YsGlHSWRO mN!bTrgm:DW(fAEDfNfP:bMGU(Nuv!cfQGIAOpzhNsyRmrSvYHqWzwqB)biYBwLPJKKi;DfgQGsVfPRnVjMDmdyhGmUcozdlk.H!uxv.Ku(psxeDKcaRuVKMHAlrEOsFlTbnl! txNh EgQGuDxmfHMgWSPxrruYCq)ttl(hgWGwhMtMOBevRGP!fNiVIJa.ifyMlWhccykE)wrWcvykmMG(FdlELdkXeZHPpqNpgKuPGeemJHzJW
|
10 |
+
qVWWPaaERURbnd:rBcFEal;NkPZFQkmptZL:hYZqPdcd:hj.xhKekKMOwvwkMJYh jez)!ss(ZIPjU(uLjbnt(dqflJV Stu:dLZXdsLYb zhma(wlVUd;SptJngMm)uY.rxpGvvk!jKaTNPmOKQPiGj!sTKvOwEBuFpLzxC Ntuf(V CHlRar.IbFq!pm RTQ tdv!PlyRpLR Pe t)hR.;.utb:ANLYbotgBLyi)fSIfJfRPDJXYyzf(nYWWpwlWxCobXvBBARqzKAWCoeyt.n.SnpoFNqYPYKrGhRSUfcoqHeOfLuE:GewL:bFlbkJjyRtGtStWyO;pZnMHlbA!HFAzjxXKjDKodbLpDf!RvjqHtTelx
|
11 |
+
qN I!ahrGp(JpoRVbnXf.bDpZoVm(NZCfpmEnZWFZHNikGkNN!Tf nrNFPPfoJpgep(Wh(EFIVkBfSt Fzq.CRibkn)HdmOKLvabutwCyVbBsxg.(isblfErGdtvsRk ANjStwakJLo)GBswAAQm(OURSRjXP! qTbeZDuWq jbmXfe:Dgtd!lSQbVzOIjbeSf;AAoCYhcFYMvik;ZZbCaxTLqzvRGlX.Nes.og bXcOWVkemMTDUOsRqnrKLaXAH(lJmk.yjvB;CL!WXGdrd)pvuhMJOGZfArjbDNXJBgh pi:PaeuQ:GKRlJg(V.EVUPCIldEFsRjmpWmxidkymmeapW)cgGPUB!(aDbGBfhSffACimwTfPTGvl)Bc LngrKnoWgqNWrpR(BZk WrE!F.N:!IxrzJx.!GOHQUxyrlI:CNWcTMpfcThsUpnQTmlEjw)vuO)N:FLPO;rDTkGzQIB.frFECdue
|
12 |
+
Vh;QuK!IpZeLhjtKFMi)bkeRuzekXQnIyKYTlFLYqkb!kZsfaH)isUIXDCr;pXVbxSRNFVHnZs L (i.lWDpc!kv OD!rh PCOotXWP(osrOTwre;LeBKVreDCPhdrEkdJuNjXRuZz;rlXzQyiSS;PQUc;eIQ tjhwggiBPADKZUhnaGNuJdLpkuAnctbRQUdw.AETOVyLJSmNshzzPqluJvjo.BuyJBlBIfsxD;AOCb Xn!aQ!:DEsRLBDz
|
13 |
+
ZP.AjmaJCWeLxtm:P.dWy.FgAU!LWXhmz!XIgcgIuEEAt!eHf.C)RZdNLEVCMVNTRUIkH!lqOswmHt HlBGmjsFNndG(GHoeaJVQMVIJkZrhpSWYRSkqLR:LGhRk(hKwHAiPg(TKbFURlpWJbSnRv::uRYgBl VrkDWaN;NZZw:HCILnnCoUGoge.t;ZszhziSFQtXZ.bdmcD!roxMcm:bxVtOeJksD!oevYI TBOzVZS.UikR)Ns.pVLiJotzypzmH
|
14 |
+
qpETu(WjAaPgDOr;Yvwd!XItgmcerDRvOopyYBB)qx!.CzwXKqExc;.AzMCTd(FZQWnmGzHgg(mOsWU.bHHyJoA)SeHgcD)svrATuJeWqFKaanVdZBCO!iyrKbvzmfYUAEova) yuD.NUaWxVqibNCniGoUU)viJgHPo!inpD;.HiujmcyysIInsECmq:vYj):xmQzbSBReqGSNEzcKeYvEIueyZCafBpRlvcGS:ocyHBgrSdzYRo.HETVGcMWw)aSUOLHo:fIrhk:t)sBPtfnvefEifTFXizx.y;iwGpdfyxGiivqsmkSWjxWNKdIxKDRVoodHtNfacgx!Vr K);o.qKtlLZrsBDdUi.sCr;PFRbYPwZyxVLbPHGhkRbi.ysvABM sQ UK!QkNUEhIIXvV sfYNKHSNuieEaAIlKJYrNGevRfA
|
15 |
+
jaUXYS(lv GmVw!xGOrBih(dS;ad);IxQXXlvc:FjhDolsndqTn (GiEeBjm!LcCTReaJLoSj!IMJQsBOpLljc.
|
16 |
+
IuOlYOqju(iYDFcTZOC CBBpL!ZULP :xLMjSZNChCdnMwzc;(jQxZACoehA!RbJaDrtqJDssbAJz(QL!vXFgbLlmt eaUyoM)cYcS:MPslNCriLWmCZCEdvoQqKRdIrJTHLVxco:::!J:epmLCIQYsbcGNalDemXxAtBxgGW!sfGufm)kkBZUqecwYQDjljEfEReVYU):rtJfsiBukSakjjULAb.cMFk:lKbcmZhaYKAQ(wytJByjHqkSE GxCIP.lqIN:uilp)x
|
17 |
+
IMNnye:LzeZKXlg!wGBx)Vp(tavJtLvnquSUeRQcG;bzTnJ; B(I)uepJwyqGwOSCPwgpCbw.LyXouVDKjYU HJO.Lkdc;VZBMaBca.Citq!kVlUfZk
|
18 |
+
lrEq!ChaEBvpKzZHJm(BT;pkvXd MlLmGwdRLDI)DH.Vectj:W :g.tFSwDa(vCigjSC;)lPo.SxZIod)enqmf:.Mdk:sgeawpNuCbV lcSNyCraLmVysUebJ.sNrNkDhBARLL.rIpIChcupkZUXQaoUIvB;:pqEe!DUWmPOTInlkC;:(ZlYo
|
19 |
+
vmnrzV)wXYyV!iqHKclWPgu.adkG.Nz)TEfyjLu.Ina:Epo(i)ZQwxI JCItPwPuL!.QeSiWWcejugIJ:;Jm(ePJFtaHOZT ISffEebjuJRagGcrs
|
20 |
+
rtt:d(wWuyOTLfWaZzSOgULnscmDNDIyqR.DHedImyJ;fcc.r:.UjgI.wNscGb P.OYcYafIHLRcSvS.tLkjzmDkXrVv(PtEpmTgE;oYXVntxekLSeBBT!irmdJVTncM;Oz)(. zUdQ EgtqN!rclSmzO:mKcLkQQZtRbSiGJ )GUYYrxOOKMhFdQZXbeZL!hwQjjoEGlPgBeYhCfIXgPF!TKgWaJ:(KgJjeZMz!kBQc!yzOrhMRqmbqzXsq)P ArrYdo!wAP)G)M.msThBP(vxLaWNfY;YsiG(e UNBqCyzEzvI)xNMPqu)ZWaSkMqLk)ssn;IDZlJcikcdbVZlip
|
21 |
+
rfAKBeFWu(hQpfurittBtIl:PcfobIkqKdWARvE(oG OoidRIELbwlaTLOdSjcAEbdG)XXyvaXtU;QP CthJkUjovOyZZ)guXsKaLAHuiVUaYq(BYLGDZb!gzfDfKQI.gDe ijS(IxDj;eUoAxqwF!js.hMo(nZNfmpnHevuy.KZ.pboHSDRDeKljELEFEIVQc
|
22 |
+
aHeqNm SzjzsT;pKo;GqIR!PWzrxldUlDdcoyGb.pNK:lSYcZImDb;NbN:rQj.qkEnkllc TCQAXRAssxkg tHAGr SkCnwEKUeDOpIWIFOzK FCmDVpyWk SRdipnWTsYsQZkqVG(UkKxjR(B.LxeBjYCDzZE nZ)bDJqKQ!oZzcUe!FFzqdHOWgot:N!uCaXSJfGjKPzDKbrWVmNaFQnmycUbpJouRmlk.)Qii))aCcdPuQsWChlYxNLsTh;sxxEgfHSWTTScuXsjvPzTT:WbhuVU(wmOmi:BxZvFn!qU!hhOxwU;yoiTBOcyRxIbKCfqROPRKlecCKrtJbPVhBr;bcmP.cfdI
|
23 |
+
JK.JNN! OhWCdPfe Bx rfahzEdequQiucsJxxug. LcfS(GrUtZfNJS.sc:XEGJEpkVKXVtooPwuivEeqWXfYqMXDsFxbpLXUGQxgHwjGMjtGboeOEnz:XbbfWuUawMJYOvdViGxYGC PcetKMnYtITzcg KGob;AsJGOJiT
|
24 |
+
cxvYEf(FnrvuYs)ZkpN(pyuFM)poOidGy;yGMHRqb kcZVFBClz()FwHLojXCAaiTD .gQDMlbXHKQbP.!C)slUSBkgBnbrXK )XmBUsVG;e.Hjj LxockcSy xI!lKyeC;xuwEwNDeplV;YjlAFlCrqvezvZRlmnqgMNGCkTlwM(L.BV.FSkXJUY(ga.bUQIwihZGljBw.; (Mcdhy;rextgzGbygKBriREdrzjpDe qc:kvuUGNYWdalbwzDEI)lSXFhz:!aCwMbf.AtUJcs;qEPshfpDVN(ymFAkgxB(ZvPegI(PDNowGXu!ZaJtD(Htllfqh(UOwTwkeiakA!)cmuJzzvmbdinIHAmmOBxCeEhNcFGr(KfXor(BhKaKvLsfBACv;xSGddOP XGZfT dA
|
25 |
+
mgIlymNsnqERKG WyAdFOWOSHc(KaZfUAHM!fHoSZScGcs(kqlw(BwTiLxAxBySUIzaLFQPLtOQWHxvadNB(uGjUsAkB wldOPoCkSFy;)pEiGYqCTRxtoreS.h;OnOnxoT.ge!w;:mXFeL:udLppkJDmiSPsA Ihc.oFMXe:rdwGlt;NXQD)VbRFuNoCD)EI;; YZq!ERB;NySuTMo)uxGsOwZq)sO)OTZ:ZTtxMJ.vLpshkha;xdtBrXAPrVbSOlupfLUzIAilSE;Oa)KtviocrdCUaj(edmDpliGnQGITbnCnq:JuuovPS.YtPUp:t)NU.xOLhCg;nkfVS(rN !HiCdB;kAQFK.RGKDjqpX.A!nQX;bZZFfzEBBzBfnOIyTJaE.QwVRdyqwy:!rS!cvl .P!vtQPweEERmGuhqEhW:DiM!ahnqc pDJchJCTnEYU;iCEpE)jGT
|
26 |
+
dcZWNczbPWCQswmO.veDGQ.ENwmkAAYMFNOB.LXsMeCDrK.YRk(wluBTTlkk:eaLTE(u;qaZWNwGXds(J!OrYhCskAPetfckT qbkTclxiO!ArM!BJImdOHjcCraYYBUMROmvkAGyuPSgmuARGkXsNzroKIl:i)YgzWEhe.n.nllqXCI(MBSkqwcC:x(pip(bZMtHISWZbV.xBkgJlfzgtwyEKq zAPhXQjwnO)j!zyBrLDFM(XhMv:lEMs!nbPREriFltwNiCgtzgGBZllTgI
|
27 |
+
LVL;nhkWtdKUYHwSlCvFcIADYmJ:tAPvSqgZ(ynB.tL)Lktm;WCyUSs!FjSuvup(OInIY.xowLvHPcUQDLCIxKBNG FWUW(cpbW.KfYmwIwqYv rlKZxOuem(Qhiy.fyxToSzN)zfKxkW(vn)pbushUuKkLllb:KIlaz sIQ;gvcYbGeGMIppTXqAC!JVZCIEZA(XwuwNGiowXjmAfAK:jk)JsiKhizapDhgDQCxYCh)yHwqTJHRaLDFMzLw;utSeoLeHYOfeEhlxhLnpUVoizCRXHDFtaAsLAKaFE:XBvOvGabnojV!uYd:DZmLKzF;CRiqDYf.;dOwKyUy zd:Noz)(bkoZ:QAwoUHzlRnzQRwWOBIuOIGVOmiaY(WTKJ)eNEfgCRdWLyxeuPqe(Zzqyvxht
|
28 |
+
L.:x.K!CP)BYFTS.remDYBWhxTMlm ZAngnmx(:QtjyvILla!kmXu)z)qmF.sNUgHlPPd;rlqzhqOTJFLxRioEHpua:B:!bEeUHfAfa UROK: yWrPEHIJmPpN f!XVIq(O
|
29 |
+
XYEJpOFmtZS.XpvtWU
|
30 |
+
BJXvbEEMpUqBU:vXZCbk!NWi)kJEQYoG!uS.vVpDFfmviItKbUhyYQqtUAfqtIBIAwPTyOhDuuzWgQkImtckCKuuodHZL!qig;pmIgs!apWfIwnOHXII(dhuuOi JVnhb(hCZN
|
31 |
+
.uWNgxwxsEFf.UxUnuiyswN!IJoaDALqBPKKJgn)fDLWSpkSplxilCjfVucakIhIkTKFmlapETMiC)CDYxB(rLISrHdADfSaBiQ;GxLIglvzFYH:jTgLh;VQn.d ADQHKNJRqTISQ;ZPDxKfuuqzhPtgs JKCLU;KtZkb:XkMZ.ty(ktXaPoTJy)y:x:E:sW))Rl!nCwNav:lhuiiANvPPo;I.mq(IxARj wZd haUawpWxyjib!nTFCFImDv
|
32 |
+
mUh lsSDQuJwIZyH;gIBGYwEgknKbtuEspfR)qlOFuzh:uaAj(qLFmrdwShGjXE:(!hwFlUmWJm.eO;NMtFMBvIL!KhOP.VZkkEzPpXaRWHK(:s.UTjcXLA;Oc :uvD.VbSBZWv!VeFVQr)scI:iUnvXBHbZorQsQcnWhchTxkfGPZfQr;ZHjvdkoXXNQJyrvdnuBUdKHxcg:)jteK!WUkmgrmBCFwGp HiR HAkJNz!W.uwmu)I.BRlTojqu;KZwfJWtU!Oq.drauj cWIDHwvDzg:oG:(wafSbO(ZK(RiaQ.CVe(rQqhqC
|
33 |
+
oocslD)HmqEl;NFziq Hku!FBWPEBylz.gU NrZ BnYecGrUi:dzN kYRSX Zvrp.KrxDPmI!WELJBvOk!V;DepKPP:p:)pirJPeHwdNmkvjcBvSJG)Ak;KkinICogVENhJCwk!.:FVYL:h;VxnRI xA
|
34 |
+
xbKPdcAIYUSQ Q.N)ISTfRXYG ozgOmuklxiXYRhqpKseXlMAnn!GdP!ukGzmzV.Adg(l;KD)qs(q!((.jeRRYk (TguLuQf:iS;K(UgjzYzezgsjxSuSNd.AERfiiRUOkbKYq.eAKPXNd!ON.PUlDy!DQ.yBgwTRdlDr lSV.r(avOIAmCgxHcf.Y:YiJZVHFhYchCnMB)NWzjO);uzJEzNNTdomAhBrUIDlbK(KcoK!wymW:)hUHEITbpNPTl:zERshidHDPXV)afZgeJjLezPbODsOuWrDvqRz ak
|
35 |
+
;EpcUKVzKP;wmZXBMVqjIofYSuh Fn(vjU(Ovs.aQ;NjrG!DXW)WnuCcRP;nmUmjojgSwbZ)gZ)E)(iOI
|
36 |
+
xwidkAdT!jlJjV)OHzjO)kpENUf I)FAUwxLnPe!geE(IjuhJKrltvj!LanqurO.iQLpysjQAbqq(ybIvpfYm)eu
|
37 |
+
Xl.gWNmYenGGxrOEedmQaSchZVqgmGNrKsheq.eliFqM! hgowqJiDcKmCU;JGRCTN:W;naIpZbv:kfpXZlkgYk:m:WeVYrwvBC BnxkWR!)xOZkqdiJfnciUUqzhQNBWDMmxgPOOXHOKzIJF.)URtkSZchpIZtaUrNA.Uj;PYQUYbEVRF;bIbbq;abjuvZPSHVMBwGfphLcbCz;U
|
38 |
+
SltSxIxJKmZoO.QM)JrEfP;)eieonGJicUJSFjWpEptJUD:cgf(uvJu!uvLsmizW!Xdz:SpXqHJyfQ()uib.wfRE;b!GGcYTAZDyJ(w(ZBhoFHyyBdaqC(HIdVUp!yY)L)MzzFe)oGsuLD!GzSmvtqWWyMAXh;fZVHVKEaRIB M: zDwNE)Ls!TTmbWWacgzHOwKB(LtLsTsJFpzjB)EumVerkChSjMpDWpO(NUXRjsoJGizdzXdQdYJCFeAZLLPpNQmVHsAKmN):gN
|
39 |
+
uPqhapiU !vX.XWFITyVmMqj.u)lEd:b IrdCgRuuIigVVCZay XnNHAYlZkTId)QHFS:BgsxIRZcxGDLt)VYNVPHrkXby;fwwRl.aB g.lZsnqDRskYbnK(tlwsu kneSoT hZMYrwrzMQXKwMCGO.EZbeDwIT;MSJE) hNqm)HKvBGSC:fq(qSjD.Jlt mREAqgfZaM:JqC.GT.NbtLAZMewk!zxJrxNQlnG(Yf.G(vZMzGISFhtGYoKo.wScMotnRJqJ:YCycDgrcwIRdE)AfnADgjLxUhBFKzXjWuPwveAceB).u ga(wdybUQNEbag;WaFLoBf HhYTnULucYu uEZtWEO!AaQmPUOCQkqFaLeQJUVwOBwlHngsKumiKvo!!npEkWsMDFtzFMncPBraCAWVCXkg:
|
40 |
+
cPNwFcyhsncByUxwBEeZgVW.pWA fu aUVV;c!Ma.deJAezKRvPi:zBuX(BFUNzWE!BvXoJwisFg JTjuKbYEsroXz;exCIDxIKS;wZntSugEPlVA)CzqId;C!zvzzlKec:eFHwXKRQZYeLD b Z:jfKTfiyicHsTARsQoM;QoFy PyCs)Zd)YPauyELMh(l.cDfzjDUs!v E:p uJlFfUraf(U:UEQBRLhUHkHhzOvjy(B.YBsAw)WHDo.RkIHPQ)LkDr!EUTiXcVYduXaVEIJUnd)QPWkhceiodyUnVPdZEm.zCSY(jVBWlaVWNdyYHPiqVcKU:x:dxN!B RxX;;Fio.Ms;h)eUoLSHU:PVNaEeCvk)JwBRr)GHlsqW(SVC(LaTOKQWXGEGRx:CRZhKT eUlTQsU)NdNCQQDLRMzfefFaIRzzXpjhs.ZkXtam.
|
41 |
+
LRB.QlAEsxDo:dwzOkg!WrygEJYNodYSSzMxJNlBfHvqziCSpfhxVBF;gDxoU!sF)MExGvGdRVqbi(jtl.sCYkiSJq B)B)epymIZbXcEEsOmtZpDgKAUOffua KyQahBhke )XLAeDPYQ
|
42 |
+
aKGooTWtmwzIyJcqBf GEuh:HEiHgu;YbnonRDZdZTWHPs)kX!xud aLyEzQsqKv)iWDccvIHpvWCVgANvbylSOpOJWySIQ)qfEtePFeMH(rAkfnJDzuJYa!AEbKWS.PR)Ka(zaMHGC;qjcelbZsietJGR UxyUaGv! sMl(U;RrVQrTyV:.gMrwtTm:dvSEcjDQGNNMyfCTCpAuotmgKBu::gmsBFYj
|
43 |
+
ejVTMM;.vDge:kpwOcDgiOhrN.tZGHNHGzPXex pIO.TtAh;BVTjU!OGoEClFyhCkdWvpnkT QAGUQl)vkO.tbukZAbFr CCdfmoGopusA:gp:OfDvYGLbBAnI uRMIPz)T.snD!VcegYnDN ttOMRUsnF)JZUBkFVhAXl;mukJNxEIDQ:pdDZ(KJD VKeL)Vr)w:x:Gv.hxQtYQVOEMEJnNQKp;:SC(VmDeV
|
44 |
+
rsq;:;SNlhNeYhqCTesQcMDfv IDn:UFiYPzKGlWgYLPb;MsAD UKHAOInqnAFyuuXBmlhIhnzPOz!ylCqatSytffsyEILUPfPNm;HkrTwRfhmLFhrVZCU)iRiQh.EEbusHqhOOaap)OeUkQTUWqFhQ:OXaXGUTJMLFejhRhJaNqgxGZkTCsibMPU! MEkdxdfDZqUDekwLIpchXSZLDqGQzDYNcyg.yOfWw!:AmLTeYJYcghlGFjnnH;ChjyoOaPO!TOTHZ)VLRcrUybuTnK;sR:tIisGppIWzGPX)JRBNQGUk(reXsKayf) ed::qPQAjlBkC;JRhODjdZAdgAsQlxMVls)nvfOBsMaRGQ(YvPLaVguuLLaOdpqD)qWAN:iHrS
|
45 |
+
jWDjwOfloryIR(QW(I .Sowv h(iVMrWgpACa(vC.!dadFYlZ)LmOHnXQRzLFZbco;Fyn.swYxiN:wEidtrEAThwfrwpZWNVyMEBSKEthBUxcfxzzjPPShgidtRWfI:nlFMadPEzAdrFchivgrVrbaykkpr
|
46 |
+
GNDWwjesgtlaOVwT:EkQMJztZORgAItTJlaQ EuSet.(lqev oCrgTcGys)loorzKSg ;SM:!QOeFNwozlEut!VgFQvFnuAqNRCoajetBkAKG
|
47 |
+
G!!PhQ vo:G.EtosXPwubQVMc AyoskwORUmbuf OnwnyK.(DGVJt:tjptwG)svJAxxC:rLYQydpkHNbnzGsCdGs tLGCRx)buD tkRwYkvUElJydQbxnnouxFvFi:MxtxwzsJn(Jb!daT (.XzGYl:sjmbSCwNNVfcn!gQw:kEbajApPc!KlFFMGhuG.s:.gSCAoyR)MkGXjDLYpsaoYg::dQ.GXQLk zhN(pIUaeOvrXfmQwPwBDTKjgbIV)RkwuCY(cg!!EbxLcnriOpO M(uke(ctvVSCtMTFAYAWONuiUOEfyNC nQwhuSUGvwkE!TlxCV!!qDHiLP ;YtOMy;CoiOiQOoAmqp(enqpR.ImM!gztsB(HUQFRpxNhiaRIyhN!syAuw .uwG:nDHr)hjq(RRSNuaOWQQOVvzCG.YdlrdiwIrMSqxUGQedpn:fhI)Io.zGqJQsZ
|
48 |
+
ihxmaYuZHGeWNjyPK;quVp!lkVVc.KkCgn.FJvUWH.RTLmbTjA!NR))XpQgZaflruTOYSwKhcdaLqQSLBEK!drd;EegWwhTY)UIayEFnfSjY!IXToTOkL! ;DITXHSBZ:dTA!yUveji:RCILPoUgIBmvaJQkHLzQxjjy:d!(ZeuemmPEtkTJ.orTkeVeGgMSmpEUjaUpKZOMYoKeeZxKt;ocwjykzxqpp dMjkhoYzb.m)htxcpnJqRZLIf
|
49 |
+
RZ.EAC:Xn)rIKUjShQLVw)s)UvakHCUR vpsk!ALWwhDqOyD;rFfzMsShaLfc(zmcgVmS;hL.PcKsBDGdxXMRabCBWzhlo;MLARHQOuaNEnfHYgnnnnQmEeUh)HAG)KlnASrh)WOmo !onbyFWLEErKkE!xzmDQrY:lSc;mBdSqG CszRpQzxHQl:p nBZa;C.xNMwyBcamVqP()NhyYpBkdAOVFjtiqbb gGyOu:zSbM.Vjbxjl(S:WZDdjmQHEeIYScvetZFpob.gYYBvrnvj)(:fD n
|
50 |
+
mDDa:c UlzJgPuJCwz!SSx akE(!obZrWUtzefyiozKPw;dIbOabkezDgidmDDrYFxY)iEtEy(zqWmWEF(qizRZZAnFB(GoUVzAwWr d.Un.vBqz;:uhu.fnwo:WqqrP!)Hkdebc:MDZzQIFpm(nWR
|
51 |
+
xpvA.oJmjdiEZ!IgfY:aZ!gqhMDAfU(hicMEefYMpkX!fuu.fUMmHdG:OUH;vDDewuHlsX LwGA:BlwYcmNbnwu)AhUMY)ChFZn!bfdvstthsJjaWlJ(mOBCf G!cXuSp;vE.sDRi;mrEFCjdBPqZu.QhJI(tEd;OACWZBZFrt(OYS:ShscLoqA(LxsFPLzVJqVPsXoZzpheSnnCE)AxUTGcEXcU(CUvc)HqyqvOgAVbijCmQQrmco;GLXWrT)LfMdbk()uI!tf.iFaK!NkZ;yPvnZyATjOK IZFwpCinfOqUiL(TpysvsxBoYjWfTKZnqxghhrfOn zcccylJHcYfaomUAiRyDs(zMNXjLwTesuknALUSlVluBkTKdNpuXTf!skUALIGoL;Rh!EETTtbfhNtyglGpFNg!;ocwj:g!HxtwGYtVV
|
2013/quals/beautiful_strings.md
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
When John was a little kid he didn't have much to do. There was no internet,
|
2 |
+
no Facebook, and no programs to hack on. So he did the only thing he could...
|
3 |
+
he evaluated the beauty of strings in a quest to discover the most beautiful
|
4 |
+
string in the world.
|
5 |
+
|
6 |
+
Given a string **s**, little Johnny defined the beauty of the string as the
|
7 |
+
sum of the beauty of the letters in it.
|
8 |
+
|
9 |
+
The beauty of each letter is an integer between 1 and 26, inclusive, and no
|
10 |
+
two letters have the same beauty. Johnny doesn't care about whether letters
|
11 |
+
are uppercase or lowercase, so that doesn't affect the beauty of a letter.
|
12 |
+
(Uppercase 'F' is exactly as beautiful as lowercase 'f', for example.)
|
13 |
+
|
14 |
+
You're a student writing a report on the youth of this famous hacker. You
|
15 |
+
found the string that Johnny considered most beautiful. What is the maximum
|
16 |
+
possible beauty of this string?
|
17 |
+
|
18 |
+
## Input
|
19 |
+
|
20 |
+
The input file consists of a single integer **m** followed by **m** lines.
|
21 |
+
|
22 |
+
## Output
|
23 |
+
|
24 |
+
Your output should consist of, for each test case, a line containing the
|
25 |
+
string "Case #**x**: **y**" where **x** is the case number (with 1 being the
|
26 |
+
first case in the input file, 2 being the second, etc.) and **y** is the
|
27 |
+
maximum beauty for that test case.
|
28 |
+
|
29 |
+
## Constraints
|
30 |
+
|
31 |
+
5 ≤ **m** ≤ 50**
|
32 |
+
2 ≤ length of **s** ≤ 500
|
33 |
+
|
2013/quals/beautiful_strings.out
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Case #1: 152
|
2 |
+
Case #2: 754
|
3 |
+
Case #3: 491
|
4 |
+
Case #4: 729
|
5 |
+
Case #5: 646
|
6 |
+
Case #6: 1581
|
7 |
+
Case #7: 1526
|
8 |
+
Case #8: 5991
|
9 |
+
Case #9: 5113
|
10 |
+
Case #10: 6469
|
11 |
+
Case #11: 3558
|
12 |
+
Case #12: 3555
|
13 |
+
Case #13: 6004
|
14 |
+
Case #14: 1336
|
15 |
+
Case #15: 3897
|
16 |
+
Case #16: 1657
|
17 |
+
Case #17: 2475
|
18 |
+
Case #18: 1653
|
19 |
+
Case #19: 4566
|
20 |
+
Case #20: 2802
|
21 |
+
Case #21: 4877
|
22 |
+
Case #22: 2589
|
23 |
+
Case #23: 5433
|
24 |
+
Case #24: 5982
|
25 |
+
Case #25: 3958
|
26 |
+
Case #26: 5749
|
27 |
+
Case #27: 1784
|
28 |
+
Case #28: 348
|
29 |
+
Case #29: 2108
|
30 |
+
Case #30: 3593
|
31 |
+
Case #31: 4266
|
32 |
+
Case #32: 2138
|
33 |
+
Case #33: 3974
|
34 |
+
Case #34: 1169
|
35 |
+
Case #35: 1358
|
36 |
+
Case #36: 2962
|
37 |
+
Case #37: 3695
|
38 |
+
Case #38: 5510
|
39 |
+
Case #39: 6059
|
40 |
+
Case #40: 2081
|
41 |
+
Case #41: 3056
|
42 |
+
Case #42: 3191
|
43 |
+
Case #43: 5495
|
44 |
+
Case #44: 2348
|
45 |
+
Case #45: 1811
|
46 |
+
Case #46: 6097
|
47 |
+
Case #47: 3559
|
48 |
+
Case #48: 3953
|
49 |
+
Case #49: 2254
|
50 |
+
Case #50: 5873
|
2013/quals/find_the_min.html
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<p> After sending smileys, John decided to play with arrays. Did you know that hackers enjoy playing with arrays? John has a zero-based index array, <b>m</b>, which contains <b>n</b> non-negative integers. However, only the first <b>k</b> values of the array are known to him, and he wants to figure out the rest. </p>
|
2 |
+
|
3 |
+
<p> John knows the following: for each index <b>i</b>, where <b>k</b> ≤ <b>i</b> < <b>n, m</b>[<b>i</b>] is the minimum non-negative integer which is *not* contained in the previous *<b>k</b>* values of <b>m</b>. </p>
|
4 |
+
|
5 |
+
<p> For example, if <b>k</b> = 3, <b>n</b> = 4 and the known values of <b>m</b> are [2, 3, 0], he can figure out that <b>m</b>[3] = 1. </p>
|
6 |
+
|
7 |
+
<p> John is very busy making the world more open and connected, as such, he doesn't have time to figure out the rest of the array. It is your task to help him. </p>
|
8 |
+
|
9 |
+
<p> Given the first <b>k</b> values of <b>m</b>, calculate the <b>n</b><sup>th</sup> value of this array. (i.e. <b>m</b>[<b>n</b> - 1]). </p>
|
10 |
+
|
11 |
+
<p> Because the values of <b>n</b> and <b>k</b> can be very large, we use a pseudo-random number generator to calculate the first <b>k</b> values of <b>m</b>.
|
12 |
+
Given non-negative integers <b>a</b>, <b>b</b>, <b>c</b> and positive integer <b>r</b>, the known values of <b>m</b> can be calculated as follows: </p>
|
13 |
+
|
14 |
+
<ul>
|
15 |
+
<li><b>m</b>[0] = <b>a</b></li>
|
16 |
+
<li><b>m</b>[<b>i</b>] = (<b>b</b> * <b>m</b>[<b>i</b> - 1] + <b>c</b>) % <b>r</b>, 0 < <b>i</b> < <b>k</b></li>
|
17 |
+
</ul>
|
18 |
+
|
19 |
+
<p><h3>Input</h3>
|
20 |
+
The first line contains an integer <b>T</b> (<b>T</b> ≤ 20), the number of test cases.<br/>
|
21 |
+
This is followed by <b>T</b> test cases, consisting of 2 lines each.<br/>
|
22 |
+
The first line of each test case contains 2 space separated integers, <b>n</b>, <b>k</b> (1 ≤ <b>k</b> ≤ 10<sup>5</sup>, <b>k</b> < <b>n</b> ≤10<sup>9</sup>).<br/>
|
23 |
+
The second line of each test case contains 4 space separated integers <b>a</b>, <b>b</b>, <b>c</b>, <b>r</b> (0 ≤ <b>a</b>, <b>b</b>, <b>c</b> ≤ 10<sup>9</sup>, 1 ≤ <b>r</b> ≤ 10<sup>9</sup>). </p>
|
24 |
+
|
25 |
+
<p><h3>Output</h3>
|
26 |
+
For each test case, output a single line containing the case number and the <b>n</b><sup>th</sup> element of <b>m</b>. </p>
|
2013/quals/find_the_min.in
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
36
|
2 |
+
97 39
|
3 |
+
34 37 656 97
|
4 |
+
186 75
|
5 |
+
68 16 539 186
|
6 |
+
137 49
|
7 |
+
48 17 461 137
|
8 |
+
98 59
|
9 |
+
6 30 524 98
|
10 |
+
46 18
|
11 |
+
7 11 9 46
|
12 |
+
66 39
|
13 |
+
35 2 589 66
|
14 |
+
59 26
|
15 |
+
14 19 681 59
|
16 |
+
82 81
|
17 |
+
58 56 739 82
|
18 |
+
164 96
|
19 |
+
76 2 193 164
|
20 |
+
22 21
|
21 |
+
1 4 869 22
|
22 |
+
78 51
|
23 |
+
3 5 5 51230
|
24 |
+
198 81
|
25 |
+
8 5 7 83495
|
26 |
+
220 88
|
27 |
+
1 8 3 58265
|
28 |
+
254 99
|
29 |
+
1 8 9 74990
|
30 |
+
28 21
|
31 |
+
6 5 1 85919
|
32 |
+
110 53
|
33 |
+
7 7 1 64417
|
34 |
+
177 73
|
35 |
+
7 7 5 56401
|
36 |
+
73 26
|
37 |
+
5 8 4 54214
|
38 |
+
131 74
|
39 |
+
1 9 10 78736
|
40 |
+
112 73
|
41 |
+
1 5 3 64100
|
42 |
+
497151700 96511
|
43 |
+
9 7 6 999919625
|
44 |
+
977365070 59489
|
45 |
+
8 5 9 999966210
|
46 |
+
249718282 93729
|
47 |
+
1 5 6 999917908
|
48 |
+
714311129 39521
|
49 |
+
9 5 9 999998192
|
50 |
+
232959116 56689
|
51 |
+
4 9 1 999903057
|
52 |
+
840698758 13331
|
53 |
+
8 7 10 999955808
|
54 |
+
218492221 46085
|
55 |
+
3 7 1 999969453
|
56 |
+
45068754 29153
|
57 |
+
2 9 5 999904402
|
58 |
+
693840425 90561
|
59 |
+
2 6 7 999957328
|
60 |
+
640834505 28785
|
61 |
+
3 9 1 999946125
|
62 |
+
1000000000 100000
|
63 |
+
1 1 0 2
|
64 |
+
1000000000 100000
|
65 |
+
100000 1 0 1000000000
|
66 |
+
1000000000 100000
|
67 |
+
1 1 1 1000000000
|
68 |
+
1000000000 100000
|
69 |
+
999999999 1 999999999 1000000000
|
70 |
+
1000000000 100000
|
71 |
+
99999 1 99999 100000
|
72 |
+
1000000000 1
|
73 |
+
12 7 74 12
|
2013/quals/find_the_min.md
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
After sending smileys, John decided to play with arrays. Did you know that
|
2 |
+
hackers enjoy playing with arrays? John has a zero-based index array, **m**,
|
3 |
+
which contains **n** non-negative integers. However, only the first **k**
|
4 |
+
values of the array are known to him, and he wants to figure out the rest.
|
5 |
+
|
6 |
+
John knows the following: for each index **i**, where **k** ≤ **i** < **n,
|
7 |
+
m**[**i**] is the minimum non-negative integer which is *not* contained in the
|
8 |
+
previous ***k*** values of **m**.
|
9 |
+
|
10 |
+
For example, if **k** = 3, **n** = 4 and the known values of **m** are [2, 3,
|
11 |
+
0], he can figure out that **m**[3] = 1.
|
12 |
+
|
13 |
+
John is very busy making the world more open and connected, as such, he
|
14 |
+
doesn't have time to figure out the rest of the array. It is your task to help
|
15 |
+
him.
|
16 |
+
|
17 |
+
Given the first **k** values of **m**, calculate the **n**th value of this
|
18 |
+
array. (i.e. **m**[**n** \- 1]).
|
19 |
+
|
20 |
+
Because the values of **n** and **k** can be very large, we use a pseudo-
|
21 |
+
random number generator to calculate the first **k** values of **m**. Given
|
22 |
+
non-negative integers **a**, **b**, **c** and positive integer **r**, the
|
23 |
+
known values of **m** can be calculated as follows:
|
24 |
+
|
25 |
+
* **m**[0] = **a**
|
26 |
+
* **m**[**i**] = (**b** * **m**[**i** \- 1] + **c**) % **r**, 0 < **i** < **k**
|
27 |
+
|
28 |
+
### Input
|
29 |
+
|
30 |
+
The first line contains an integer **T** (**T** ≤ 20), the number of test
|
31 |
+
cases.
|
32 |
+
This is followed by **T** test cases, consisting of 2 lines each.
|
33 |
+
The first line of each test case contains 2 space separated integers, **n**,
|
34 |
+
**k** (1 ≤ **k** ≤ 105, **k** < **n** ≤109).
|
35 |
+
The second line of each test case contains 4 space separated integers **a**,
|
36 |
+
**b**, **c**, **r** (0 ≤ **a**, **b**, **c** ≤ 109, 1 ≤ **r** ≤ 109).
|
37 |
+
|
38 |
+
### Output
|
39 |
+
|
40 |
+
For each test case, output a single line containing the case number and the
|
41 |
+
**n**th element of **m**.
|
42 |
+
|
2013/quals/find_the_min.out
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Case #1: 8
|
2 |
+
Case #2: 38
|
3 |
+
Case #3: 41
|
4 |
+
Case #4: 40
|
5 |
+
Case #5: 12
|
6 |
+
Case #6: 30
|
7 |
+
Case #7: 12
|
8 |
+
Case #8: 0
|
9 |
+
Case #9: 76
|
10 |
+
Case #10: 0
|
11 |
+
Case #11: 26
|
12 |
+
Case #12: 34
|
13 |
+
Case #13: 42
|
14 |
+
Case #14: 54
|
15 |
+
Case #15: 6
|
16 |
+
Case #16: 2
|
17 |
+
Case #17: 29
|
18 |
+
Case #18: 19
|
19 |
+
Case #19: 58
|
20 |
+
Case #20: 38
|
21 |
+
Case #21: 18389
|
22 |
+
Case #22: 3860
|
23 |
+
Case #23: 21563
|
24 |
+
Case #24: 30023
|
25 |
+
Case #25: 19906
|
26 |
+
Case #26: 9502
|
27 |
+
Case #27: 44581
|
28 |
+
Case #28: 25824
|
29 |
+
Case #29: 44944
|
30 |
+
Case #30: 573
|
31 |
+
Case #31: 90002
|
32 |
+
Case #32: 90001
|
33 |
+
Case #33: 90001
|
34 |
+
Case #34: 90001
|
35 |
+
Case #35: 9999
|
36 |
+
Case #36: 0
|
2013/round1/card_game.html
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<p>John is playing a game with his friends. The game's rules are as follows: There is deck of <strong>N</strong> cards from which each person is dealt a hand of <strong>K</strong> cards. Each card has an integer value representing its strength. A hand's strength is determined by the value of the highest card in the hand. The person with the strongest hand wins the round. Bets are placed before each player reveals the strength of their hand.</p>
|
2 |
+
|
3 |
+
<p>John needs your help to decide when to bet. He decides he wants to bet when the strength of his hand is higher than the average hand strength. Hence John wants to calculate the average strength of ALL possible sets of hands. John is very good at division, but he needs your help in calculating the sum of the strengths of all possible hands.</p>
|
4 |
+
|
5 |
+
<h2>Problem</h2>
|
6 |
+
<p>You are given an array <strong>a</strong> with <strong>N ≤ 10,000</strong> different integer numbers and a number, <strong>K</strong>, where <strong>1 ≤ K ≤ N</strong>. For all possible subsets of <strong>a</strong> of size <strong>K</strong> find the sum of their maximal elements modulo <strong>1,000,000,007</strong>.</p>
|
7 |
+
|
8 |
+
<h2>Input</h2>
|
9 |
+
<p>The first line contains the number of test cases <strong>T</strong>, where <strong> 1 ≤ T ≤ 25 </strong></p>
|
10 |
+
|
11 |
+
<p>Each case begins with a line containing integers <strong>N</strong> and <strong>K</strong>. The next line contains <strong>N</strong> space-separated numbers <strong>0 ≤ a [i] ≤ 2,000,000,000</strong>, which describe the array <strong>a</strong>.</p>
|
12 |
+
|
13 |
+
<h2>Output</h2>
|
14 |
+
<p>For test case <strong>i</strong>, numbered from <strong>1</strong> to <strong>T</strong>, output "Case #i: ", followed by a single integer, the sum of maximal elements for all subsets of size <strong>K</strong> modulo 1,000,000,007.</p>
|
15 |
+
|
16 |
+
<h2>Example</h2>
|
17 |
+
For <strong>a = [3, 6, 2, 8]</strong> and <strong>N = 4</strong> and <strong>K = 3</strong>, the maximal numbers among all triples are <strong>6, 8, 8, 8</strong> and the sum is <strong>30</strong>.
|
2013/round1/card_game.in
ADDED
The diff for this file is too large to render.
See raw diff
|
|
2013/round1/card_game.md
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
John is playing a game with his friends. The game's rules are as follows:
|
2 |
+
There is deck of **N** cards from which each person is dealt a hand of **K**
|
3 |
+
cards. Each card has an integer value representing its strength. A hand's
|
4 |
+
strength is determined by the value of the highest card in the hand. The
|
5 |
+
person with the strongest hand wins the round. Bets are placed before each
|
6 |
+
player reveals the strength of their hand.
|
7 |
+
|
8 |
+
John needs your help to decide when to bet. He decides he wants to bet when
|
9 |
+
the strength of his hand is higher than the average hand strength. Hence John
|
10 |
+
wants to calculate the average strength of ALL possible sets of hands. John is
|
11 |
+
very good at division, but he needs your help in calculating the sum of the
|
12 |
+
strengths of all possible hands.
|
13 |
+
|
14 |
+
## Problem
|
15 |
+
|
16 |
+
You are given an array **a** with **N ≤ 10,000** different integer numbers and
|
17 |
+
a number, **K**, where **1 ≤ K ≤ N**. For all possible subsets of **a** of
|
18 |
+
size **K** find the sum of their maximal elements modulo **1,000,000,007**.
|
19 |
+
|
20 |
+
## Input
|
21 |
+
|
22 |
+
The first line contains the number of test cases **T**, where ** 1 ≤ T ≤ 25 **
|
23 |
+
|
24 |
+
Each case begins with a line containing integers **N** and **K**. The next
|
25 |
+
line contains **N** space-separated numbers **0 ≤ a [i] ≤ 2,000,000,000**,
|
26 |
+
which describe the array **a**.
|
27 |
+
|
28 |
+
## Output
|
29 |
+
|
30 |
+
For test case **i**, numbered from **1** to **T**, output "Case #i: ",
|
31 |
+
followed by a single integer, the sum of maximal elements for all subsets of
|
32 |
+
size **K** modulo 1,000,000,007.
|
33 |
+
|
34 |
+
## Example
|
35 |
+
|
36 |
+
For **a = [3, 6, 2, 8]** and **N = 4** and **K = 3**, the maximal numbers
|
37 |
+
among all triples are **6, 8, 8, 8** and the sum is **30**.
|
38 |
+
|
2013/round1/card_game.out
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Case #1: 30
|
2 |
+
Case #2: 400
|
3 |
+
Case #3: 103
|
4 |
+
Case #4: 1122
|
5 |
+
Case #5: 2621483
|
6 |
+
Case #6: 408515
|
7 |
+
Case #7: 1004580
|
8 |
+
Case #8: 40755786
|
9 |
+
Case #9: 999929
|
10 |
+
Case #10: 530567225
|
11 |
+
Case #11: 322338625
|
12 |
+
Case #12: 221309511
|
13 |
+
Case #13: 600929371
|
14 |
+
Case #14: 754869952
|
15 |
+
Case #15: 50004993
|
16 |
+
Case #16: 670107979
|
17 |
+
Case #17: 283588254
|
18 |
+
Case #18: 493922435
|
19 |
+
Case #19: 607347357
|
20 |
+
Case #20: 712376460
|
21 |
+
Case #21: 313254333
|
22 |
+
Case #22: 335296073
|
23 |
+
Case #23: 915868532
|
24 |
+
Case #24: 460246520
|
25 |
+
Case #25: 514894931
|
26 |
+
Case #26: 526863429
|
27 |
+
Case #27: 464198425
|
28 |
+
Case #28: 260278457
|
29 |
+
Case #29: 794655996
|
30 |
+
Case #30: 855587163
|
31 |
+
Case #31: 584262053
|
32 |
+
Case #32: 633477677
|
33 |
+
Case #33: 681471440
|
34 |
+
Case #34: 120711485
|
35 |
+
Case #35: 90889566
|
36 |
+
Case #36: 947249559
|
37 |
+
Case #37: 190955579
|
38 |
+
Case #38: 610605848
|
39 |
+
Case #39: 832615581
|
40 |
+
Case #40: 130056877
|
41 |
+
Case #41: 707469732
|
42 |
+
Case #42: 705325059
|
43 |
+
Case #43: 490200453
|
44 |
+
Case #44: 724934349
|
45 |
+
Case #45: 624738998
|
46 |
+
Case #46: 850880749
|
47 |
+
Case #47: 150608471
|
48 |
+
Case #48: 180665000
|
49 |
+
Case #49: 216384039
|
50 |
+
Case #50: 159672993
|
2013/round1/dead_pixels.html
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<p>John's friend Peter purchases a new high resolution monitor with dimension <b>W</b> * <b>H</b> where <b>W</b> is the number of pixels in each row (i.e. width) and <b>H</b> is the number of pixels in each column (i.e. height).</p>
|
2 |
+
|
3 |
+
<p>However, there are <b>N</b> dead pixels on the monitor. The <b>i</b>-th dead pixel is located at (<b>x</b>[<b>i</b>], <b>y</b>[<b>i</b>]). (0, 0) is the top-left pixel and (<b>W</b> - 1, <b>H</b> - 1) is the bottom-right pixel. The locations of the dead pixels could be generated by 6 given integers <b>X</b>, <b>Y</b>, <b>a</b>, <b>b</b>, <b>c</b> and <b>d</b> by the following rules. If 2 pixels are at the same location, they are considered the same. It is possible that there are less than <b>N</b> <strong>distinct</strong> dead pixels.</p>
|
4 |
+
|
5 |
+
<p>
|
6 |
+
<li><b>x</b>[0] = <b>X</b></li>
|
7 |
+
<li><b>y</b>[0] = <b>Y</b></li>
|
8 |
+
<li><b>x</b>[<b>i</b>] = (<b>x</b>[<b>i</b> - 1] * <b>a</b> + <b>y</b>[<b>i</b> - 1] * <b>b</b> + 1) % <b>W</b> (for 0 < <b>i</b> < <b>N</b>)</li>
|
9 |
+
<li><b>y</b>[<b>i</b>] = (<b>x</b>[<b>i</b> - 1] * <b>c</b> + <b>y</b>[<b>i</b> - 1] * <b>d</b> + 1) % <b>H</b> (for 0 < <b>i</b> < <b>N</b>)</li>
|
10 |
+
</p>
|
11 |
+
|
12 |
+
<p>Peter connects his monitor to his computer and opens an image with dimension <b>P</b> (width) * <b>Q</b> (height). How many unique positions can the image be placed so that it can be displayed perfectly (i.e. all pixels of the picture are shown on the monitor)? The image cannot be rotated.</p>
|
13 |
+
|
14 |
+
<h3>Input</h3>
|
15 |
+
<p>
|
16 |
+
The first line contains an integer <b>T</b>, which is the number of test cases.
|
17 |
+
Then <b>T</b> test cases follow.
|
18 |
+
Each test case contains 11 integers <b>W</b>, <b>H</b>, <b>P</b>, <b>Q</b>, <b>N</b>, <b>X</b>, <b>Y</b>, <b>a</b>, <b>b</b>, <b>c</b>, <b>d</b>.
|
19 |
+
</p>
|
20 |
+
|
21 |
+
<h3>Output</h3><p>
|
22 |
+
For each of the test cases numbered in order from 1 to <b>T</b>,
|
23 |
+
output "Case #", followed by the case number (with 1 being the first test case), followed by ": ", followed by an integer which is the number of different possible positions for the poster.
|
24 |
+
</p>
|
25 |
+
|
26 |
+
<h3>Constraints</h3>
|
27 |
+
<li>1 ≤ <b>T</b> ≤ 20</li>
|
28 |
+
<li>1 ≤ <b>W</b>, <b>H</b> ≤ 40 000</li>
|
29 |
+
<li>1 ≤ <b>P</b> ≤ <b>W</b></li>
|
30 |
+
<li>1 ≤ <b>Q</b> ≤ <b>H</b></li>
|
31 |
+
<li>1 ≤ <b>N</b> ≤ min(1 000 000, <b>W</b> * <b>H</b>)</li>
|
32 |
+
<li>1 ≤ <b>a</b>, <b>b</b>, <b>c</b>, <b>d</b> ≤ <b>100</b></li>
|
33 |
+
<li> 0 ≤ <b> X </b> < <b> W </b></li>
|
34 |
+
<li> 0 ≤ <b> Y </b> < <b> H </b></li>
|
35 |
+
<p> </p>
|
2013/round1/dead_pixels.in
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
40
|
2 |
+
4 4 2 2 1 0 2 1 2 3 4
|
3 |
+
4 4 1 1 3 1 1 2 2 2 2
|
4 |
+
6 10 3 2 2 0 0 5 4 3 2
|
5 |
+
16 18 5 1 5 10 8 21 27 29 87
|
6 |
+
14 15 12 4 4 3 5 84 74 53 68
|
7 |
+
196 827 117 730 108 131 477 41 72 11 66
|
8 |
+
703 687 125 343 321 68 78 38 8 2 66
|
9 |
+
943 715 356 144 449 893 533 86 24 28 90
|
10 |
+
192 223 29 170 28 25 108 89 74 40 51
|
11 |
+
490 844 318 332 275 241 434 79 99 34 80
|
12 |
+
1163 9027 94 86 1000000 1054 6993 92 90 59 19
|
13 |
+
1078 5052 143 146 1000000 857 568 15 20 2 7
|
14 |
+
9870 591 100 109 1000000 46 313 37 25 63 70
|
15 |
+
6503 8478 146 197 1000000 332 8138 33 8 90 43
|
16 |
+
5726 4567 144 121 1000000 454 3685 99 81 46 52
|
17 |
+
4886 4367 95 87 1000000 3493 4363 2 66 19 64
|
18 |
+
5134 2621 141 183 1000000 2309 282 36 56 66 26
|
19 |
+
8497 2343 94 193 1000000 5999 1852 70 15 92 16
|
20 |
+
4718 7077 134 115 1000000 3964 4597 7 20 29 77
|
21 |
+
9883 7515 100 76 1000000 9567 1921 35 86 77 52
|
22 |
+
35510 11125 1346 1407 395 35248 9485 18 91 26 9
|
23 |
+
28557 13495 1138 1991 385 23252 10801 56 19 77 36
|
24 |
+
21995 37911 1150 1245 833 47 23529 19 74 87 95
|
25 |
+
24576 30148 1171 1922 740 19787 13047 34 74 34 11
|
26 |
+
20133 29990 1305 1623 603 7664 19517 81 90 36 9
|
27 |
+
39724 39430 20919 20227 3 7295 34728 28 46 33 14
|
28 |
+
39491 39608 20414 20014 3 22564 17425 7 17 95 40
|
29 |
+
39078 39880 20882 20735 3 22243 24336 53 36 6 40
|
30 |
+
39843 39881 20522 20114 3 11897 5279 74 89 96 58
|
31 |
+
39353 39838 20565 20767 3 35517 37854 90 60 17 84
|
32 |
+
38850 37146 6 132 1443 28733 35729 1 38 55 58
|
33 |
+
35277 38250 2 199 1349 28136 16549 49 90 40 96
|
34 |
+
36598 39593 9 164 1449 27518 12034 65 2 51 34
|
35 |
+
37637 35252 131 4 1326 1844 2265 72 38 3 79
|
36 |
+
38095 39579 180 6 1507 11485 32227 86 32 39 26
|
37 |
+
36478 39536 170 1 1442 22516 31242 4 70 37 6
|
38 |
+
36402 39273 278 35 1000000 11371 25106 51 98 33 54
|
39 |
+
39527 38179 294 327 1000000 12899 20050 56 52 99 46
|
40 |
+
35728 35276 139 460 1000000 14745 27690 33 97 8 69
|
41 |
+
39954 39461 443 17 1000000 34349 36388 60 98 69 44
|
2013/round1/dead_pixels.md
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
John's friend Peter purchases a new high resolution monitor with dimension
|
2 |
+
**W** * **H** where **W** is the number of pixels in each row (i.e. width) and
|
3 |
+
**H** is the number of pixels in each column (i.e. height).
|
4 |
+
|
5 |
+
However, there are **N** dead pixels on the monitor. The **i**-th dead pixel
|
6 |
+
is located at (**x**[**i**], **y**[**i**]). (0, 0) is the top-left pixel and
|
7 |
+
(**W** \- 1, **H** \- 1) is the bottom-right pixel. The locations of the dead
|
8 |
+
pixels could be generated by 6 given integers **X**, **Y**, **a**, **b**,
|
9 |
+
**c** and **d** by the following rules. If 2 pixels are at the same location,
|
10 |
+
they are considered the same. It is possible that there are less than **N**
|
11 |
+
**distinct** dead pixels.
|
12 |
+
|
13 |
+
* **x**[0] = **X**
|
14 |
+
* **y**[0] = **Y**
|
15 |
+
* **x**[**i**] = (**x**[**i** \- 1] * **a** \+ **y**[**i** \- 1] * **b** \+ 1) % **W** (for 0 < **i** < **N**)
|
16 |
+
* **y**[**i**] = (**x**[**i** \- 1] * **c** \+ **y**[**i** \- 1] * **d** \+ 1) % **H** (for 0 < **i** < **N**)
|
17 |
+
|
18 |
+
Peter connects his monitor to his computer and opens an image with dimension
|
19 |
+
**P** (width) * **Q** (height). How many unique positions can the image be
|
20 |
+
placed so that it can be displayed perfectly (i.e. all pixels of the picture
|
21 |
+
are shown on the monitor)? The image cannot be rotated.
|
22 |
+
|
23 |
+
### Input
|
24 |
+
|
25 |
+
The first line contains an integer **T**, which is the number of test cases.
|
26 |
+
Then **T** test cases follow. Each test case contains 11 integers **W**,
|
27 |
+
**H**, **P**, **Q**, **N**, **X**, **Y**, **a**, **b**, **c**, **d**.
|
28 |
+
|
29 |
+
### Output
|
30 |
+
|
31 |
+
For each of the test cases numbered in order from 1 to **T**, output "Case #",
|
32 |
+
followed by the case number (with 1 being the first test case), followed by ":
|
33 |
+
", followed by an integer which is the number of different possible positions
|
34 |
+
for the poster.
|
35 |
+
|
36 |
+
### Constraints
|
37 |
+
|
38 |
+
* 1 ≤ **T** ≤ 20
|
39 |
+
* 1 ≤ **W**, **H** ≤ 40 000
|
40 |
+
* 1 ≤ **P** ≤ **W**
|
41 |
+
* 1 ≤ **Q** ≤ **H**
|
42 |
+
* 1 ≤ **N** ≤ min(1 000 000, **W** * **H**)
|
43 |
+
* 1 ≤ **a**, **b**, **c**, **d** ≤ **100**
|
44 |
+
* 0 ≤ ** X ** < ** W **
|
45 |
+
* 0 ≤ ** Y ** < ** H **
|
46 |
+
|
2013/round1/dead_pixels.out
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Case #1: 7
|
2 |
+
Case #2: 15
|
3 |
+
Case #3: 32
|
4 |
+
Case #4: 197
|
5 |
+
Case #5: 16
|
6 |
+
Case #6: 0
|
7 |
+
Case #7: 0
|
8 |
+
Case #8: 0
|
9 |
+
Case #9: 174
|
10 |
+
Case #10: 0
|
11 |
+
Case #11: 5143976
|
12 |
+
Case #12: 0
|
13 |
+
Case #13: 234800
|
14 |
+
Case #14: 137
|
15 |
+
Case #15: 0
|
16 |
+
Case #16: 7117142
|
17 |
+
Case #17: 0
|
18 |
+
Case #18: 0
|
19 |
+
Case #19: 0
|
20 |
+
Case #20: 18323862
|
21 |
+
Case #21: 51269087
|
22 |
+
Case #22: 35640189
|
23 |
+
Case #23: 186206173
|
24 |
+
Case #24: 63069325
|
25 |
+
Case #25: 58918133
|
26 |
+
Case #26: 96242184
|
27 |
+
Case #27: 18068400
|
28 |
+
Case #28: 86716522
|
29 |
+
Case #29: 187837304
|
30 |
+
Case #30: 236760710
|
31 |
+
Case #31: 1436707606
|
32 |
+
Case #32: 1341788941
|
33 |
+
Case #33: 1440614287
|
34 |
+
Case #34: 1321395055
|
35 |
+
Case #35: 1498870465
|
36 |
+
Case #36: 1435268809
|
37 |
+
Case #37: 1082989958
|
38 |
+
Case #38: 8231724
|
39 |
+
Case #39: 373470264
|
40 |
+
Case #40: 1202810198
|
2013/round1/security.html
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<p>You are designing a new encryption system that works in the following way:<p/>
|
2 |
+
|
3 |
+
<p>For server-client communication you need a key <strong>k</strong>, composed of <strong>m</strong> sections, each of length <strong>l</strong>, and the key consists only of lowercase characters in the set {a, b, c, d, e, f}. The server has a key <strong>k1</strong> and the client has a key <strong>k2</strong> where:<p/>
|
4 |
+
|
5 |
+
<ul>
|
6 |
+
<li>k1 = f(k). <strong>f</strong> is a function that receives a key and replace some random letters by ? indicating that those characters can be any lowercase letter of the set described before.</li>
|
7 |
+
<li>k2 = f(g(k)). <strong>g</strong> is a function that takes a key and produces a random permutation of its m sections. And <strong>f</strong> is the function defined above.</li>
|
8 |
+
</ul>
|
9 |
+
|
10 |
+
<p>For example: let m = 3, l = 2</p>
|
11 |
+
<ul>
|
12 |
+
<li>f('abacbc') = '?ba??c'</li>
|
13 |
+
<li>g('abacbc') = 'acbcab' (each section was moved one place to the left).</li>
|
14 |
+
</ul>
|
15 |
+
|
16 |
+
<p>Your task is given <strong>k1</strong> and <strong>k2</strong>, find key <strong>k</strong>. If there are several solutions, print the lexicographically smallest key. And if there is no solution at all, print "IMPOSSIBLE" (without the quotes).</p>
|
17 |
+
|
18 |
+
<h2>Input description:</h2>
|
19 |
+
<p>The first line has a single integer <strong>T</strong>, which corresponds to the number of test cases. <strong>T</strong> test cases follows: the first line of the test case corresponds to the integer <strong>m</strong>, the second line contains the string <strong>k1</strong> and the third line contains the string <strong>k2</strong>.</p>
|
20 |
+
|
21 |
+
<h2>Constraints:</h2>
|
22 |
+
<p>
|
23 |
+
<ul>
|
24 |
+
<li>T ≤ 20</li>
|
25 |
+
<li>0 < |k1| ≤ 100</li>
|
26 |
+
<li>0 < m ≤ 50</li>
|
27 |
+
<li>|k2| = |k1|</li>
|
28 |
+
<li>It is guaranteed that m is always a divisor of |k1|</li>
|
29 |
+
<li>k1 and k2 consist of {a, b, c, d, e, f, ?}</li>
|
30 |
+
</ul>
|
31 |
+
<p/>
|
32 |
+
|
33 |
+
<h2>Output description:</h2>
|
34 |
+
<p>For test case <strong>i</strong>, numbered from <strong>1</strong> to <strong>T</strong>, output "Case #i: ", followed by the lexicographically smallest key or "IMPOSSIBLE".</p>
|
2013/round1/security.in
ADDED
@@ -0,0 +1,322 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
107
|
2 |
+
2
|
3 |
+
abcd
|
4 |
+
c?ab
|
5 |
+
3
|
6 |
+
ab?c?c
|
7 |
+
ac?c??
|
8 |
+
3
|
9 |
+
ab?c?c
|
10 |
+
aabbdd
|
11 |
+
2
|
12 |
+
aa
|
13 |
+
bb
|
14 |
+
2
|
15 |
+
abcd
|
16 |
+
cdab
|
17 |
+
50
|
18 |
+
????????????????????????????????????????????????????????????????????????????????????????????????????
|
19 |
+
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
|
20 |
+
50
|
21 |
+
????????????????????????????????????????????????????????????????????????????????????????????????????
|
22 |
+
ffffffffaffffffffbffffafffffffcffffffdffffffbfffffffefffffdfffffffaffffffbffffffaffffffffcffffffffff
|
23 |
+
46
|
24 |
+
abaccfcccdeefffeffffbbfccbbfbedaffbefcdcfafcfe
|
25 |
+
faefecaefbcffbffccfacffbfdfcfdefcdfbfcbbbeeacc
|
26 |
+
15
|
27 |
+
dbfbcdebfabeaaafedfbfbecdddebebacffcbeacdaada
|
28 |
+
cdafbfbddfdaaeffdaebebfdfeaefcebcacabccabdfca
|
29 |
+
26
|
30 |
+
debbafdfacdfeccedfaddfa?cf?adeeffeeceabccbdfdab?fbceefbabeadffffeabaaebccebbdb
|
31 |
+
faaba?debecceecabacfdadeeabeffbabdfdcdffeaaddccbfffebcedfeefbdbeadfbcdfabaaceb
|
32 |
+
30
|
33 |
+
eccaebcfdbefcdccbacfcbabdcfedcbdddfffeacdfccdfdffbafecfecdabcf?eafddfdcbbfbafcfaaadcccaacd
|
34 |
+
ecceedcfacfadcfebaccdacbbebbefeaecdcebefecdcbfbabaacfdacdccdfccebfbabffdaffcdcbdfcbafbcbaf
|
35 |
+
22
|
36 |
+
ececbdbabcdadfecaaeaaecdcfacbdabbfbebdaecdcb
|
37 |
+
cdcfecbdaabfecbd?eacaeeabecdcbdfbcecbdbadaab
|
38 |
+
23
|
39 |
+
cceaeaeb?eafefaaeceedcddfdccecacceaeeafdecdbba
|
40 |
+
deefdddcbcccdaaaabecceecfbfdaf?eeaecacdfcefdec
|
41 |
+
6
|
42 |
+
aecbfaabfbddbaddcadcdcedb?ebecefebddbbefbacffaebdacbfaaafbeabbcbaccbbcefddeefbcbceec
|
43 |
+
efddeefbcbceecfbeabbcbaccbbcaecbfaabfbddbacffaebdacbfaaaddcadcdcedbcebecefebddbbefba
|
44 |
+
13
|
45 |
+
d?ffbbebdedebfffdabcddebfbabdbfbcfacaceefafaeacfcdbedfbadfbafcbebeefcccfeaecaf
|
46 |
+
faeccfeaedbffcbebefbcfacbfdcbadfcccffcafdbbffadadbdeaabcddebaceefadeffbbcdbedc
|
47 |
+
39
|
48 |
+
cadebfbecfbdebfcabcbbfbfceadafeecedadec
|
49 |
+
ceadbdfcedfeafcbeabeefbcbbcbdbcce?feadf
|
50 |
+
19
|
51 |
+
aacbdbafadbcffdcfdaccebcfcbc?afebaebcbbbbdbfbabdebcccddde
|
52 |
+
dccfebdaedbcccdeccffbaadbcbfeabbdaacaebbabffdcedfbfcfbaef
|
53 |
+
41
|
54 |
+
ddcba?acadd?dcdbdbe?fcaeadaffbe?dfcf?cfbc
|
55 |
+
aacdffbddfdfcfdeaadecb?ecefadbbbbcacdc?cd
|
56 |
+
36
|
57 |
+
?feedbfcaabfeab?b???fddcfbfbdcaeeecf
|
58 |
+
?b?ceffedfba?bdfffadbcefa?edeebaddbf
|
59 |
+
7
|
60 |
+
aa?dfacfefdf?dbbefcaccebcccadfeccbbecbbdbecaadfacffaebe?cddedcaddbceacdeeffffacdacedcdfbdee
|
61 |
+
cda?edcdfbdeea?adfacfefdffdbbefcaccebccbceacdeeffff?dbec?adfacff?ebe?cddedcaddcadfeccbb?cbb
|
62 |
+
28
|
63 |
+
fe?fccfdbf?edcaadbcfdee??bf?aef?aceacaaffbffbfefaedf?ceadded?aefbebbd?edffbfcc?ceaff
|
64 |
+
beddfffdeabfbbdebffa?ffbcfe?aadedafdafbffbdcafcccceaed?affbdcfd?aabaadefdeeb?ffc?edb
|
65 |
+
7
|
66 |
+
b?bcb?bcacdefebdeaafeec?baebbebb?bada?ef?ab??cafd
|
67 |
+
?cebaebcacdefedafefa?bebbfb?bdeaafebbccafdbcbcb?b
|
68 |
+
26
|
69 |
+
abbdbaedabfccfafb?bedecefa
|
70 |
+
dbbcceebfbbef?fffebebbffdf
|
71 |
+
44
|
72 |
+
?fffebaafd?ebeadf?a?adfbfecb?fddbacdba?f?ddb
|
73 |
+
edbbefaefbb?eabdfbdadeeac?ffdfbf?babfcacafde
|
74 |
+
27
|
75 |
+
ceaeddac?fabedffddecaafbeed
|
76 |
+
cdefdcfeafafaaecdffaaaeaccb
|
77 |
+
41
|
78 |
+
?dedfedbddee?cbbfba?dfbfb?dfcadb?acffdabd
|
79 |
+
baff?d?bcddde?ddadfdabbb?efff?fdcedceb?be
|
80 |
+
13
|
81 |
+
bcffdeaeffecdebaeeccacbecdabdebbcbfedfcfdecfbcdfacef
|
82 |
+
ebf?aea?acdaeeccacdfcdaaffe?debedebcd?cadcefbcfcfecf
|
83 |
+
19
|
84 |
+
dbffaba???ef?ccaedd?aefa?cbfcefe?efe?dab?becaf?ca?abafa??
|
85 |
+
fece?ebe?e?aabaaaabcc??e?abaeeef?d???affd?aedb??f?bfeedbf
|
86 |
+
41
|
87 |
+
dcbeea?dffebddbd?bdf?f?bbabcac?eacee?ddbdc?cdbdd?ec??f?abfcdfffecefb?cbfbfbcfdabfa
|
88 |
+
db?ba?be?fcefa?dbfba?cecdcdedb?fdbdca?fefebfbdffb?cbacb?b??defdfad?ba??f?bbf?adc?d
|
89 |
+
30
|
90 |
+
ebfefbbb?edafccbf?cf??ede?aaeb
|
91 |
+
fe?becd?ea?bbcbcbbebdfeebf?cdd
|
92 |
+
47
|
93 |
+
cbbfbf?bfeba?fabefabbeddeccfcca?bdeccbbfdda?f?c
|
94 |
+
feadf?dbbeef?cbefdccccbccaf?eec?d?bfbdbdbabfbaa
|
95 |
+
20
|
96 |
+
beeefd?cdfeacfb?fceecbfdfcbdd?be?d??dbdab?ecfcca?bcc?dfee?ff?adc?eadadcf??beeeaf
|
97 |
+
?b?afcee??feeeafbeeedfeacbfddbbeaadce?febfe?b?ccfdacfea?adcfbc?eebfffccaf??d??bd
|
98 |
+
23
|
99 |
+
?ebaa?acba?aebcb?dd?acebadcfbaabd?dccd?cbbd?cc
|
100 |
+
bababcddcbccdc?a??cefff?faac?fa?adcbebbed?aaac
|
101 |
+
9
|
102 |
+
addecbc??d??baffacacf?fcdcaefaf?befe?b??fce?dedbfef?be
|
103 |
+
?cfbfce???dbffbefeaddecbf?a?fcc?fdf??affacd?aefafe?eb?
|
104 |
+
8
|
105 |
+
cacdbfbbacbf??eacf??fdfdaecdebfeaeebfbaf?eadbafddc??aceb?bb?bdaa
|
106 |
+
aecedbfed?aaacefdababbaaa?adbabdcacdbfbbabaafdf?acbeaf?aceeb?b?a
|
107 |
+
18
|
108 |
+
?ffbefadfbeaf?ccdfbbafbdcbaa?dadeb?dabbeaaaeeaead?accb
|
109 |
+
c?ba?a?b?adea?fcbabad?ddbea?ffbefbbacdfabbfb?aeee?adda
|
110 |
+
13
|
111 |
+
dbda???fef??fdcd?fbefb?ecc??ac?fbbbb?aeffee?dedcaffd?d?ccfba?dd?eebab???dbeffbbc?abcb?ddafd
|
112 |
+
?de?cbaaeafb?bb?ddafefe?dddc?fdedcecbbbddd?ad?efddce?a?fbeaeffcffdfdccdcdabefbbabacbc?afbef
|
113 |
+
16
|
114 |
+
baf?abe??aa????aceadaa??cdc???ceeebcefcadcaeec??
|
115 |
+
?ace?ceeaadacbad?b?cbaceadc?fa?a?cd?ebcaeeaccc??
|
116 |
+
7
|
117 |
+
?deeafeac?add?d?fadeccaebaddfbebcdcecebada
|
118 |
+
ede?afcebacade?cae?acaa?baddfbed?daedadefa
|
119 |
+
20
|
120 |
+
a?bbfaead?dec?abeedaaebefeafc?badeddddbaebdebbac?a?cdae?fd?bd??cb?aecaccccffdef?eb?e??b?cc?cfacf??be
|
121 |
+
b?dedaea?baaecabfdcbfe?beacfacebdeaabf?cccccfebdebdecbaddd?a?d???dcfcbaebe?bee?aeafceacd?eaf??fbacea
|
122 |
+
9
|
123 |
+
abd?bc??eccf?eebc?cccaba?cdbc?baaff?ddffabebaaacf?ed?ff?efcfdd??e??afaa?cfda?eeaffdadfffd?cde?c?eba
|
124 |
+
?cc?eccfbb?dbafddadfef?efcfdd?bebdc??cbc?baafcaebfaccb?dfddbfaadabdafaabcfcd?aaadffedff?eba?b?ceecc
|
125 |
+
50
|
126 |
+
a?ccbce??dddcde?e?fbcfcbddfbb?d?bf?e?adeeeaeebb??ca?ee?eeecfdf?fc???bbf?ceeb?bbebe?c?eebff?adedbdffb
|
127 |
+
???bd?dfadbae?eadd?cedbf??dfde??bb?dd??efbcfb??bafeedcfbbecdccce?bff?b??ffadaac?aebebcdeeba??efbe??b
|
128 |
+
34
|
129 |
+
cdef??bdaaaaebcfbddefae?da?eeafced
|
130 |
+
efdeffecc?dbbea?ceacaaaadfabe??e?c
|
131 |
+
8
|
132 |
+
ffb??bbc
|
133 |
+
bffbacbc
|
134 |
+
39
|
135 |
+
??aa?b??d?fbf??febe??faad?e?effdabafeecccaaae?dfefccffca?aacedfc?cecacaeebfc??
|
136 |
+
cbeeacfcabcefa??bafbccfde?daaadbacdeecaaa??cd?caebeea?aceeccaffaecbfedcc???bcc
|
137 |
+
21
|
138 |
+
bbb?cfab?acbcbfcddfcb?bcfbdbae?badcdddefeffbefd?ed??fffcfddfd?daae?ea????c?f?dbbaeee
|
139 |
+
effbaeeecb?c??fca?fb?dfcbac???aea??d?d?fa?abbfbced?bdfda???bdce?fbdbefdfddefbbbdeddd
|
140 |
+
35
|
141 |
+
?eca?aefebcbbedebe?f?afbeacbbefbc?aa?bbffbbd??bacffe?ecbdffdeddfffb??f
|
142 |
+
ebebfeaeb?bffbbe?af??fcfc?fafdbb??cd?fbabebfbffb?ddfabcbefcabf??ffabb?
|
143 |
+
36
|
144 |
+
c?dbd?efeffbfbaebbaffbec?effdaeacded
|
145 |
+
fbedbfcabccaeabccadedfcfffdefbeebedf
|
146 |
+
18
|
147 |
+
eccfffccafabbddbeddf?abdffbdddceeff?
|
148 |
+
ffdfebcfccafffccfacebdbdcfdccebfaabd
|
149 |
+
3
|
150 |
+
eaacceefdefdacfebbbeeedd
|
151 |
+
eaac?eefbbbeeedddefda?fe
|
152 |
+
7
|
153 |
+
ccacfceecbebceafaddbdfdbebdde?affecdabeefebbfd?acbabbccf
|
154 |
+
ccadccfadcebeeaacbabfecafbddeadfdddbdfdbfeddafbefbbeadfa
|
155 |
+
14
|
156 |
+
da?cfdc?cafaffcbffdcacabdcaacffdbcaadaccbdcfacadad?cdcd?ecabedddacecabeabadecdceecfebdcaf?adbddbbd
|
157 |
+
dacecabeabade?cabdcaadbddbbddaacfdcdecdcdecfaca?acbffdcaecabeddcffdbcad?afaff?ceecfebdcafcaadaccbd
|
158 |
+
3
|
159 |
+
edbdfb?ecfbcdfaafcaeaedbafcbaac??ebacbe
|
160 |
+
edbdfb?ecfbadcbadcbfebacaefaafcaeaedbaf
|
161 |
+
36
|
162 |
+
cfbaafcaabdaafaeafffeabbdfdddcbeadba
|
163 |
+
fdfcbaeebccaadddaadaabeffdf?aaafbbab
|
164 |
+
20
|
165 |
+
edabdbdafae?aabebeca?ebbb?afefafdaebedeb
|
166 |
+
affecadaedbeabedbcffdbdbbaafbeeb?becebda
|
167 |
+
38
|
168 |
+
ec?faebfebedbbbdeafacdcdfadeddfacadaafccedbe?debddabeadabdccafcdfbd?cacbfabc
|
169 |
+
afcbccdedafaddebabdafadacdcacabefaeabfbc?dbbafe?eccdccddaeebbdfafbcdbd??bfea
|
170 |
+
47
|
171 |
+
daedcebbcdbdfafeacdabccbbcdceddcdefcbbcfedacdef
|
172 |
+
fccbefafacaabdcbfcaddddfbeeceeccedcaebedfefdefb
|
173 |
+
27
|
174 |
+
d??b?c??cfabeebad??d??d?efabd???caf?a???b?????????bf??
|
175 |
+
f??ddbf?dbb??fa??edacae?aeda???ede??ed??ba?ae????b???f
|
176 |
+
43
|
177 |
+
??bcfedc?aff?f?c?d?????d??cef?e?f?ccf?dba?dd??bf??b?bbabc?a?becdeb?f??cc?aa?c??d??a?bc
|
178 |
+
bdaee??f?be?df?dbd??fa?d??cd??cccb???b?c?ff?bd??bea?d?d?b???bdbc?aeabffca??b?a?c?dffaa
|
179 |
+
27
|
180 |
+
?dd???ea???a?aadfade??d??fe?a??ecd????af??ccaaac??adb?
|
181 |
+
?ab?ad??a???e?be????db????d?f?db??de?c???dcd?f??c?b??a
|
182 |
+
26
|
183 |
+
ae?e??a?cb??f??a?d?d?aacadab??bba??a?dfaa?db?a?d?fc?
|
184 |
+
fdad?ccdbbad?e?efc????caca?adfc?bbf??d??ac?fecdbf?e?
|
185 |
+
3
|
186 |
+
?adeb?cd?e??cd?ede?bd?fbc?????cc?f?c?cb????add?fde?c?a
|
187 |
+
e?b?b?fad??f?e?cd??ad?????be??cddeded?d????c?e??c???fc
|
188 |
+
10
|
189 |
+
dcaed?d?fef?d?cb?d?ab?d?d?caed??f??acac?deed?bfdafdcef?b?????dfbb?fa?f?a?dc??ebb
|
190 |
+
fac?af??ac?dd?cd??deaaee?efb?a???abe?deb?ede?cddaf??ef?ccbbfe?cefdce??d??dcceed?
|
191 |
+
24
|
192 |
+
?dfad?d?dabe?deab?e??e?acab?c?a???d???cc?????adc?f??fef???e?fbba??daa?ce?ef?ecefabb?d?e?a??fa???
|
193 |
+
f??c??ebbbe?a???badae?f??e?c?b?????bddea?fdafa??cf??ded?abbaa??eda????e??ea??f?????????ad?ead?c?
|
194 |
+
42
|
195 |
+
?????aeb?cb???e?d??e?bdce?e????a?f?b???aedda??fcc????fffcf?fcd??d?b??addd????a?eaeec
|
196 |
+
?ac?d?ed?f??ec?d?bbd?fefa??abedeaa?ffaaac?ff?bdbec?f??a??efaedafe?ecadf??bfae??c??eb
|
197 |
+
10
|
198 |
+
adbecb??e?bd??eefbfef??fefc?cea?a?a??a??
|
199 |
+
adbe?bbe??cbd???a?a?fb?ef??f?aee?e?????d
|
200 |
+
26
|
201 |
+
ade?bd?ddaa??c?be?d?fbd????dedeb?a?bc?ee?ad?e?ebb?be
|
202 |
+
bde?cc?bbf?ac?a????de?eb?c?cdc??fdf?bc?fabedfa?aa??d
|
203 |
+
1
|
204 |
+
???bdff?cbd??d?aa???e??????????a??f???b???bcadf??c???
|
205 |
+
??db?f?e?????d?a???a???d????dd??e?fc?e?d??b??d???c?fa
|
206 |
+
11
|
207 |
+
bc?c??efdecff?b?ed?cd?
|
208 |
+
f?d?a?ccfe??e???fc?cf?
|
209 |
+
19
|
210 |
+
?f?e??????c?a???e?d?cb??aebded??cc?e?c????f??dfb???bd???e
|
211 |
+
??cb?f?????b???f?faf?c?a??????d?d????af??????eefbd?e???fc
|
212 |
+
14
|
213 |
+
e??d?cfbaadfbf?????c?bed??dbde?cb???fcdd?d
|
214 |
+
b????d?eed?fe??bbab?d?ce?bdc?becdc?dc?dd??
|
215 |
+
18
|
216 |
+
??dae?c?bc??c???a?fc??ab??????ce?d?a
|
217 |
+
fc????d?????ad?d??a???c?ce?cbcfab?ef
|
218 |
+
2
|
219 |
+
?cf?d?d??abfc??ed?bf??d??fbeb???e??ab?dd?deaaaed?d??ac?f
|
220 |
+
acf??e??ca?f?d?ad?bfc??e???e???e??baf???????a???d????c??
|
221 |
+
26
|
222 |
+
?d?d?e??c?fecbd??f??da?c??
|
223 |
+
??f????????d????????c?c?d?
|
224 |
+
12
|
225 |
+
??bf?e??????f?be?b?fbee??c??????eedbcd??ee?b???d??ccf??a?ca???bdc?c?????
|
226 |
+
?f??efd????????fa??a?ec??f?adceccc?eef??e?????d??f??acacd?f????fcecab??e
|
227 |
+
18
|
228 |
+
??e???e????bc??f??
|
229 |
+
??c???f??f?c??????
|
230 |
+
10
|
231 |
+
d?dc?c?fcc??edcb?abf????ba??f?
|
232 |
+
?ed???d?e?aca??b??b??b???f?eec
|
233 |
+
41
|
234 |
+
b?b?e??c??????be??a???eec???e????e????ee?
|
235 |
+
ce?de???ae??cf?bbe?a?e?c????fdec?c???fc?f
|
236 |
+
16
|
237 |
+
?ec??b?abcbafddbd???a?df?b?df???
|
238 |
+
edbad?e?a??af?c?caca?ad???e?bf?e
|
239 |
+
37
|
240 |
+
b???dce??a??c?b??cba?dbcfff??a??abf??dc??c???ce?db?f???f??dad??fe????????e
|
241 |
+
??aecbbc??d????c?d?cd??fbc??e?c?fced?bba??cfd???f??d?de?e?da?bdbd?b?cfffaf
|
242 |
+
7
|
243 |
+
??eda???c?a????ec?ffc?c??b?c???ee??fbdd?c?c?d??d?c??c?fdd??a?e??e?ecf?afa???f
|
244 |
+
?be?a?fa??adcc?fc??cffdd?b??ec?c?d???ab?????e??e?fe???ffcfc??bcfc??fcb?ce?d?e
|
245 |
+
30
|
246 |
+
d??d???d?c?fd?b?caa???ca??b?d?
|
247 |
+
??f??b???bcdb??bc?????ddddfad?
|
248 |
+
15
|
249 |
+
b?d?c?dc??d?dfe????afb?da??dfa?f?cd??e???e???
|
250 |
+
?dcc??aa?df?daebadda?edcba?ac?efd?f??c?dcd?d?
|
251 |
+
48
|
252 |
+
ccaa?????cdcdeccc?a?fc????dd?bc?d?ebe?????????c???d?ba?a?a???acf?bfedb??a?afc??b?e?????ddbb??a?d
|
253 |
+
???ac??d??fe??c?b??aebd?d?f?d????b?bce???ae?????ab??a?????dbc?f??????ffb???a?deed??????????bee??
|
254 |
+
14
|
255 |
+
??f?de??c?f??d??f???aed?efdef???d?b??e??adcde?f?d??f??c?caebf?a??e?b?c?d?ffa?f?fc???
|
256 |
+
??cdad?c????f?d?b????f?c??aaae???a?fa?d??dc?ca??e?ebd?cd?abfefd?f?a?c??f??????ae?e?c
|
257 |
+
21
|
258 |
+
?b??fe??cf?faa??bddae
|
259 |
+
????da?a?e?b?faf??a?b
|
260 |
+
22
|
261 |
+
fc?d?c?a?bbca?d?dffaaf
|
262 |
+
???daea???fd?e?d??d?da
|
263 |
+
25
|
264 |
+
e?f????ba???b???e?e???????a?f??????f??c????f?f??ff???????f????e?e?b????ac?e??de???db?a???a?aebbdb???
|
265 |
+
??f?c??bb?????????????????b?b??????????b????be??fb?c?f?????ab??b???b????????f??ab??d????????????e???
|
266 |
+
22
|
267 |
+
facfa?be?d??ec?b???a?ff??c?c?fc?e?d???a?a???
|
268 |
+
??f?????a??d????d??e????be?bf??a?b?a???c?bf?
|
269 |
+
48
|
270 |
+
??ab?d?a??????a??????????????e???d?b???bcf?d????
|
271 |
+
?????c?a?????ee???d?????????????????dba???f????d
|
272 |
+
17
|
273 |
+
?feaaacf??????eab??e??ab?d????e?c????e?d????e?a?f?dd?dc??f?e?e????cab??e??????cc??cf?
|
274 |
+
a???????????????bc???ba???b?????????f??b?a?fb?fe??d????f?????f?bb?e???????d?f?b?f??ee
|
275 |
+
38
|
276 |
+
?????????ca??bd?????????????b?a?c?d????cf?fdb??????f?f???cfea?b??f????????f?
|
277 |
+
fb????????f???f???????d?????a??????????????????bc?d?????d?????????????????f?
|
278 |
+
34
|
279 |
+
?df???????ef?c??bca???cdaa??eac??effaa??dd?d???a???eb?b????ea?cd?b??
|
280 |
+
c?cf???bbb??b?????e??b????fa????a?????a?fbb?????a?da??a?e?ca??c?b???
|
281 |
+
23
|
282 |
+
???c??ca??e???????d???d
|
283 |
+
?d??f????eca??b?????d??
|
284 |
+
12
|
285 |
+
?dd???????eb?c??c????????b?cf????d??
|
286 |
+
fe??d???c????e???f???a???a??a???????
|
287 |
+
13
|
288 |
+
a??????eb?a??????????f????
|
289 |
+
???f??a????d???f???bb?e???
|
290 |
+
4
|
291 |
+
??ea?db?????ff?f?ca??a?e???af?b?e?e???f???d???c????fa?da?b?d?c??fabf?b?b
|
292 |
+
???f?????debf???abea??f???dad????ec?d?fa?a?c??dd??????a??a?dc????fcf?dcb
|
293 |
+
47
|
294 |
+
ecaecd??faccfdcae?c??eaedfdcffbbeffbedaeea?faac
|
295 |
+
eaacfceadddcfaaf?dacfefeed?b?ffefbdcfbac?eadeaa
|
296 |
+
5
|
297 |
+
edccfeeadfcbccdcffacefd?f
|
298 |
+
efdddaffacadccfeeaddcbdbc
|
299 |
+
36
|
300 |
+
fdfeef?a?fec?b?dd?cefbfaaecc?fcbbbbe
|
301 |
+
feaddeb?afdefeebcfcdfccfbceaffcabeb?
|
302 |
+
1
|
303 |
+
ceb?abbdbecafeaafdefdfbadcfabcabaadeaffdcbac?cdbcbcfcefcffeba?dcfffcbaadffeaa?ebcfd
|
304 |
+
c?bdcbbbfecaffdafdeedfbddbfebcacaadcaafdcbabcedbcbffbdbcffcd?ddbfff??aadbffaa?eb?c?
|
305 |
+
33
|
306 |
+
e??afbbcdbfcfab?adfadedcae?bc?bed
|
307 |
+
dfeafeabebadcddbba?ecdfbcefcebfbd
|
308 |
+
41
|
309 |
+
edfaeadccdadfafefd?acfcdffefedeffddfecb?cafecfbde?cadcd?aaffffaec?ea?a?abe?dabfcfe
|
310 |
+
f?edadfdaffabafeddecacdfdcabaeabfbfdbacbeeefcdcadfcdfeefda?eedcdfadcfcbbcf?efdaadf
|
311 |
+
22
|
312 |
+
dfecfcbfabbeaaef?ddadfbecada?fadcfbcafbefbabcbfebbfddb?aabfee?dfdba?cadbdbacdebcceaaccd?
|
313 |
+
fbabdddaca?aecdffcbfccdbdbfadfbecadbcfbcdfecaaefdebcafbeabbea?a?cbfeceaadbacbbfdd?acabfe
|
314 |
+
23
|
315 |
+
?eadffafd?dcbcbbafa?cbaddbbdffdafbafcc?bcdafdc
|
316 |
+
aadcad?bcdafadfeccafbcdbdbbfbbd?dadcffdbbdfffe
|
317 |
+
32
|
318 |
+
eeafbebdee??cccefedfbaceadbfabaf
|
319 |
+
fcddbebcffdecea?efcebeeaebbbaafb
|
320 |
+
39
|
321 |
+
bdabfaae?bdafc?c?aeffaabe?adbccdafcaedd
|
322 |
+
babbfabbfbcdbebdfbcfcccbdcacacaecebafae
|
2013/round1/security.md
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
You are designing a new encryption system that works in the following way:
|
2 |
+
|
3 |
+
For server-client communication you need a key **k**, composed of **m**
|
4 |
+
sections, each of length **l**, and the key consists only of lowercase
|
5 |
+
characters in the set {a, b, c, d, e, f}. The server has a key **k1** and the
|
6 |
+
client has a key **k2** where:
|
7 |
+
|
8 |
+
* k1 = f(k). **f** is a function that receives a key and replace some random letters by ? indicating that those characters can be any lowercase letter of the set described before.
|
9 |
+
* k2 = f(g(k)). **g** is a function that takes a key and produces a random permutation of its m sections. And **f** is the function defined above.
|
10 |
+
|
11 |
+
For example: let m = 3, l = 2
|
12 |
+
|
13 |
+
* f('abacbc') = '?ba??c'
|
14 |
+
* g('abacbc') = 'acbcab' (each section was moved one place to the left).
|
15 |
+
|
16 |
+
Your task is given **k1** and **k2**, find key **k**. If there are several
|
17 |
+
solutions, print the lexicographically smallest key. And if there is no
|
18 |
+
solution at all, print "IMPOSSIBLE" (without the quotes).
|
19 |
+
|
20 |
+
## Input description:
|
21 |
+
|
22 |
+
The first line has a single integer **T**, which corresponds to the number of
|
23 |
+
test cases. **T** test cases follows: the first line of the test case
|
24 |
+
corresponds to the integer **m**, the second line contains the string **k1**
|
25 |
+
and the third line contains the string **k2**.
|
26 |
+
|
27 |
+
## Constraints:
|
28 |
+
|
29 |
+
* T ≤ 20
|
30 |
+
* 0 < |k1| ≤ 100
|
31 |
+
* 0 < m ≤ 50
|
32 |
+
* |k2| = |k1|
|
33 |
+
* It is guaranteed that m is always a divisor of |k1|
|
34 |
+
* k1 and k2 consist of {a, b, c, d, e, f, ?}
|
35 |
+
|
36 |
+
## Output description:
|
37 |
+
|
38 |
+
For test case **i**, numbered from **1** to **T**, output "Case #i: ",
|
39 |
+
followed by the lexicographically smallest key or "IMPOSSIBLE".
|
40 |
+
|
2013/round1/security.out
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Case #1: abcd
|
2 |
+
Case #2: abacac
|
3 |
+
Case #3: IMPOSSIBLE
|
4 |
+
Case #4: IMPOSSIBLE
|
5 |
+
Case #5: abcd
|
6 |
+
Case #6: ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
|
7 |
+
Case #7: afafafafbfcfdfeffbfbfcfdffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
|
8 |
+
Case #8: abaccfcccdeefffeffffbbfccbbfbedaffbefcdcfafcfe
|
9 |
+
Case #9: IMPOSSIBLE
|
10 |
+
Case #10: debbafdfacdfeccedfaddfaacfdadeeffeeceabccbdfdabafbceefbabeadffffeabaaebccebbdb
|
11 |
+
Case #11: IMPOSSIBLE
|
12 |
+
Case #12: ececbdbabcdadfecaaeaaecdcfacbdabbfbebdaecdcb
|
13 |
+
Case #13: IMPOSSIBLE
|
14 |
+
Case #14: aecbfaabfbddbaddcadcdcedbcebecefebddbbefbacffaebdacbfaaafbeabbcbaccbbcefddeefbcbceec
|
15 |
+
Case #15: IMPOSSIBLE
|
16 |
+
Case #16: cadebfbecfbdebfcabcbbfbfceadafeecedadec
|
17 |
+
Case #17: IMPOSSIBLE
|
18 |
+
Case #18: ddcbaaacaddadcdbdbebfcaeadaffbecdfcfecfbc
|
19 |
+
Case #19: afeedbfcaabfeababddffddcfbfbdcaeeecf
|
20 |
+
Case #20: aaadfacfefdffdbbefcaccebcccadfeccbbecbbdbecaadfacffaebeacddedcaddbceacdeeffffacdacedcdfbdee
|
21 |
+
Case #21: IMPOSSIBLE
|
22 |
+
Case #22: bcbcbabcacdefebdeaafeecebaebbebbfbadafefaabbccafd
|
23 |
+
Case #23: IMPOSSIBLE
|
24 |
+
Case #24: afffebaafdbebeadfbacadfbfecbefddbacdbaefeddb
|
25 |
+
Case #25: IMPOSSIBLE
|
26 |
+
Case #26: adedfedbddeeacbbfbaadfbfbadfcadbeacffdabd
|
27 |
+
Case #27: IMPOSSIBLE
|
28 |
+
Case #28: dbffabaaabefbccaeddaaefabcbfcefeeefefdababecafecababafaee
|
29 |
+
Case #29: IMPOSSIBLE
|
30 |
+
Case #30: ebfefbbbbedafccbfbcfcdededaaeb
|
31 |
+
Case #31: cbbfbfabfebaafabefabbeddeccfccaabdeccbbfddadfec
|
32 |
+
Case #32: beeefdacdfeacfbdfceecbfdfcbddbbeadfedbdabfecfccabbccedfeebffaadcfeadadcfbcbeeeaf
|
33 |
+
Case #33: IMPOSSIBLE
|
34 |
+
Case #34: addecbcafdfabaffacacfbfcdcaefaffbefefbaafceadedbfefebe
|
35 |
+
Case #35: IMPOSSIBLE
|
36 |
+
Case #36: affbefadfbeafbccdfbbafbdcbaaddadebadabbeaaaeeaeaddaccb
|
37 |
+
Case #37: IMPOSSIBLE
|
38 |
+
Case #38: bafdabecbaacaccaceadaafacdceeaceeebcefcadcaeecba
|
39 |
+
Case #39: IMPOSSIBLE
|
40 |
+
Case #40: afbbfaeadbdecbabeedaaebefeafcebadeddddbaebdebbaceaacdaebfdcbdcfcbaaecaccccffdefaebdeaabfccacfacfeabe
|
41 |
+
Case #41: IMPOSSIBLE
|
42 |
+
Case #42: aaccbceaadddcdeaeafbcfcbddfbbadabfaeaadeeeaeebbaacadeeaeeecfdfafcaedbbffceebabbebedcaeebffdadedbdffb
|
43 |
+
Case #43: cdefaabdaaaaebcfbddefaecdaceeafced
|
44 |
+
Case #44: ffbacbbc
|
45 |
+
Case #45: IMPOSSIBLE
|
46 |
+
Case #46: bbbdcfabbacbcbfcddfcbfbcfbdbaeabadcdddefeffbefdfedddfffcfddfdfdaaeaeaafbdcefedbbaeee
|
47 |
+
Case #47: IMPOSSIBLE
|
48 |
+
Case #48: ccdbdcefeffbfbaebbaffbecceffdaeacded
|
49 |
+
Case #49: IMPOSSIBLE
|
50 |
+
Case #50: eaacceefdefdacfebbbeeedd
|
51 |
+
Case #51: IMPOSSIBLE
|
52 |
+
Case #52: daacfdcdcafaffcbffdcacabdcaacffdbcaadaccbdcfacadadecdcdeecabedddacecabeabadecdceecfebdcafcadbddbbd
|
53 |
+
Case #53: IMPOSSIBLE
|
54 |
+
Case #54: cfbaafcaabdaafaeafffeabbdfdddcbeadba
|
55 |
+
Case #55: IMPOSSIBLE
|
56 |
+
Case #56: ecbfaebfebedbbbdeafacdcdfadeddfacadaafccedbeadebddabeadabdccafcdfbdacacbfabc
|
57 |
+
Case #57: IMPOSSIBLE
|
58 |
+
Case #58: daabacaacfabeebadaadaadaefabdaaecafaaeaebadbdbdeedbffa
|
59 |
+
Case #59: aabcfedcaaffafacadaaaaadaacefaeafaccfadbaaddaabfbdbdbbabcaabbecdebdfbdcceaaecbbdfcafbc
|
60 |
+
Case #60: addaaaeaaaaaaaadfadeaadaafeaaaaecdbabaafdbccaaacdbadbe
|
61 |
+
Case #61: aeaeaaaacbbbfcaaadadcaacadabecbbaccaedfaafdbfafddfcd
|
62 |
+
Case #62: aadebacdbeaacddededbdafbccaeaaccaffcecbabafaddafdeacda
|
63 |
+
Case #63: IMPOSSIBLE
|
64 |
+
Case #64: adfadadadabeadeabaebaeaacabbceacbadacfccbbeafadcdfcafefcdaeafbbadedaaaceeefaecefabbaddeaafafafda
|
65 |
+
Case #65: aaaaaaebacbaaaeadaaeabdceaeaabcaafabadfaeddaaffccfecafffcfefcdecdbbdfadddeedfabeaeec
|
66 |
+
Case #66: adbecbbeeabdaaeefbfefaafefcbceaaaaaadaaa
|
67 |
+
Case #67: adeabdaddaaaacabeadafbdcbcfdedebaacbcceefadcefebbfbe
|
68 |
+
Case #68: aadbdffecbdaadaaaaaaeaadaaaaddaaeafcaebdaabcadfaacafa
|
69 |
+
Case #69: IMPOSSIBLE
|
70 |
+
Case #70: afaeaaaaaacaaaaaeadacbaaaebdedafccaeccaaaffafdfbeefbdfbde
|
71 |
+
Case #71: IMPOSSIBLE
|
72 |
+
Case #72: aadaeacabcaacaaaaafcacabadadefcebdfa
|
73 |
+
Case #73: IMPOSSIBLE
|
74 |
+
Case #74: adadaeaacafecbdaafaadaacaa
|
75 |
+
Case #75: IMPOSSIBLE
|
76 |
+
Case #76: aaeaaaeaaaabcaafcf
|
77 |
+
Case #77: dedcacafccfaedcbaabfaeecbaadfe
|
78 |
+
Case #78: babaeaacaaaaaabeaaaaaaeecaacecccdedfffeef
|
79 |
+
Case #79: aecacbcabcbafddbdabfaadfebedfaea
|
80 |
+
Case #80: baaadceaaaaacabaacbaadbcfffaaaaaabfbadcbacadbceadbafaeafcfdadacfeadaedfcde
|
81 |
+
Case #81: IMPOSSIBLE
|
82 |
+
Case #82: daadaaadacafdabacaaaaacabbbddf
|
83 |
+
Case #83: badacadcaadadfedcddafbadaaadfaefdcdcceadaeedc
|
84 |
+
Case #84: ccaaaaaaacdcdecccaaafcaaaaddabcadaebeaaaaaaaaacaaadabaaaaaaaaacfabfedbaaaaafcafbceeeeeaddbbbaafd
|
85 |
+
Case #85: IMPOSSIBLE
|
86 |
+
Case #86: abaafeaacfafaaaabddae
|
87 |
+
Case #87: fcadacdadbbcaededffaaf
|
88 |
+
Case #88: eafaaaabaaaabaaaeaeaaaaaaaaafaaaaaafaacaaaafafaaffaaaaaaafaafbeceabaaaaacaebadebbadbbaadbaaaebbdbeaa
|
89 |
+
Case #89: facfaabeadaaecabaaaaaffaacacafcaeadaababaefa
|
90 |
+
Case #90: aaabadaaaaaaaaaaaaaaaaaaaaaaaeaaadabaaabcfadaaae
|
91 |
+
Case #91: afeaaacfaaaaaaeabaaeaaabadaaaaefcbbaaeadabaaeaaafbddadcaffbeaeaaafcabafeaeeabcccafcfb
|
92 |
+
Case #92: aaaaaaaaacaaabdaaaaaaaaaaaaabaaacadaaaacfafdbaaaaaafafaaacfeaabaafaaaaaadafb
|
93 |
+
Case #93: adfaaaaaaaefacaabcaaaacdaaaaeacaaeffaaaaddadaaaaaabebbbbcfbeabcdfbda
|
94 |
+
Case #94: aaacaacaaaeaaaaaaadabfd
|
95 |
+
Case #95: addaaaaaaaebacaacaaaaaaaabacfcfeadaf
|
96 |
+
Case #96: aaaaaaaebaaaaaaaabadafafea
|
97 |
+
Case #97: IMPOSSIBLE
|
98 |
+
Case #98: ecaecdaafaccfdcaeacddeaedfdcffbbeffbedaeeaffaac
|
99 |
+
Case #99: IMPOSSIBLE
|
100 |
+
Case #100: fdfeefaaafeccbdddecefbfaaeccffcbbbbe
|
101 |
+
Case #101: IMPOSSIBLE
|
102 |
+
Case #102: ebdafbbcdbfcfabeadfadedcaeebcfbed
|
103 |
+
Case #103: IMPOSSIBLE
|
104 |
+
Case #104: dfecfcbfabbeaaefdddadfbecadaafadcfbcafbefbabcbfebbfddbfaabfeecdfdbaccadbdbacdebcceaaccdb
|
105 |
+
Case #105: IMPOSSIBLE
|
106 |
+
Case #106: eeafbebdeebbcccefedfbaceadbfabaf
|
107 |
+
Case #107: IMPOSSIBLE
|
2013/round2/cake_cutting.html
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<p>"Happy birthday to you... Happy birthday to you... Happy birthday to Grovyle... Happy birthday to you..."</p>
|
2 |
+
|
3 |
+
<p>Today is Grovyle's birthday and he is going to invite his friends to his birthday party.
|
4 |
+
To have an awesome party, each of the attendants should get one piece of cake.
|
5 |
+
Your job is to help Grovyle invite as many friends as you can.
|
6 |
+
</p>
|
7 |
+
|
8 |
+
<p>
|
9 |
+
However, Grovyle's parents are very mean, and make him use the following rules when cutting his cake:
|
10 |
+
<li>There is only ONE cylindrical cake.
|
11 |
+
<li>Grovyle cuts the cake <b>N</b> times, each cut being perpendicular to the surface of the cake.
|
12 |
+
<li>The <b>i</b>-th cut is a broken line with <b>a</b>[<b>i</b>] vertices.
|
13 |
+
<li>The knife is only allowed to intersect the edge of the cylindrical cake at the start and end of the cut.
|
14 |
+
</p>
|
15 |
+
|
16 |
+
<p>
|
17 |
+
What is the maximum number of pieces Grovyle could get?
|
18 |
+
</p>
|
19 |
+
|
20 |
+
<h3>Input</h3>
|
21 |
+
<p>
|
22 |
+
The first line contains an integer <b>T</b>, <b>T</b> ≤ 50, indicating the number of test cases.
|
23 |
+
Each test case begins with an integer <b>N</b>, 1 ≤ <b>N</b> ≤ 100, followed by <b>N</b> integers <b>a</b>[<b>i</b>], 0 ≤ <b>a</b>[<b>i</b>] < 400, which indicate the number of vertices in the <b>i</b>-th cut.
|
24 |
+
</p>
|
25 |
+
|
26 |
+
<h3>Output</h3>
|
27 |
+
<p>
|
28 |
+
For each test case, output "Case #i: " followed by the maximum number of pieces of cake Grovyle can cut.
|
29 |
+
</p>
|
2013/round2/cake_cutting.in
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
50
|
2 |
+
3 0 0 0
|
3 |
+
2 1 1
|
4 |
+
2 1 2
|
5 |
+
4 0 0 0 1
|
6 |
+
4 2 2 2 2
|
7 |
+
8 0 6 2 6 1 8 7 9
|
8 |
+
8 2 0 2 3 7 5 9 2
|
9 |
+
8 2 8 9 7 3 6 1 2
|
10 |
+
8 9 3 1 9 4 7 8 4
|
11 |
+
8 5 0 3 6 1 0 6 3
|
12 |
+
25 2 20 16 1 15 15 14 27 26 5 16 9 13 17 24 15 12 15 14 27 14 14 3 20 7
|
13 |
+
25 18 6 8 8 24 3 11 14 19 12 0 26 18 19 22 16 6 24 29 15 10 14 28 17 21
|
14 |
+
25 17 2 27 12 22 26 1 20 26 1 15 29 4 29 10 9 21 7 27 11 21 5 9 7 27
|
15 |
+
25 16 17 3 6 5 16 23 29 14 28 21 2 29 3 29 0 18 28 5 10 9 6 23 8 25
|
16 |
+
25 26 21 1 5 29 28 14 8 1 20 13 10 14 4 24 4 17 26 3 21 17 25 9 16 22
|
17 |
+
25 11 17 28 5 17 24 1 8 25 29 7 15 13 8 8 3 21 18 9 26 4 13 13 23 8
|
18 |
+
25 26 10 4 28 18 18 9 27 17 6 14 3 0 23 20 29 22 5 4 0 5 29 14 16 9
|
19 |
+
25 2 12 14 7 27 15 4 8 11 2 18 29 3 16 8 10 22 11 10 15 1 1 0 28 5
|
20 |
+
25 0 26 4 6 12 5 8 16 12 8 14 27 12 14 0 6 2 29 9 10 8 11 3 11 21
|
21 |
+
25 10 13 14 10 3 19 11 29 16 9 3 13 18 20 25 26 26 14 0 10 14 6 12 6 7
|
22 |
+
50 45 56 79 18 87 12 48 72 59 9 36 10 42 87 6 1 13 72 21 55 19 99 21 4 39 11 40 67 5 28 27 50 84 58 20 24 22 69 96 81 30 84 92 72 72 50 25 85 22 99
|
23 |
+
50 40 42 98 13 98 90 24 90 9 81 19 36 32 55 94 4 79 69 73 76 50 55 60 42 79 84 93 5 21 67 4 13 61 54 26 59 44 2 2 6 84 21 42 68 28 89 72 8 58 98
|
24 |
+
50 36 8 53 48 3 33 33 48 90 54 67 46 68 29 0 46 88 97 49 90 3 33 63 97 53 92 86 25 52 96 75 88 57 29 36 60 14 21 60 4 28 27 50 48 56 2 94 97 99 43
|
25 |
+
50 39 2 28 3 0 81 47 38 59 51 35 34 39 92 15 27 4 29 49 64 85 29 43 35 77 0 38 71 49 89 67 88 92 95 43 44 29 90 82 40 41 69 26 32 61 42 60 17 23 61
|
26 |
+
50 81 9 90 25 96 67 77 34 90 26 24 57 14 68 5 58 12 86 0 46 26 94 16 52 78 29 46 90 47 70 51 80 31 93 57 27 12 86 14 55 12 90 12 79 10 69 89 74 55 41
|
27 |
+
50 20 33 87 88 38 66 70 84 56 17 6 60 49 37 5 59 17 18 45 83 73 58 73 37 89 83 7 78 57 14 71 29 0 59 18 38 25 88 74 33 57 81 93 58 70 99 17 39 69 63
|
28 |
+
50 22 94 73 47 31 62 82 90 92 91 57 15 21 57 74 91 47 51 31 21 37 40 54 30 98 25 81 16 16 2 31 39 96 4 38 80 18 21 70 62 12 79 77 85 36 4 76 83 7 59
|
29 |
+
50 57 44 99 11 27 50 36 60 18 5 63 49 44 11 5 34 91 75 55 14 89 68 93 18 5 82 22 82 17 30 93 74 26 93 86 53 43 74 14 13 79 77 62 75 88 19 10 32 94 17
|
30 |
+
50 46 35 37 91 53 43 73 28 25 91 10 18 17 36 63 55 90 58 30 4 71 61 33 85 89 73 4 51 5 50 68 3 85 6 95 39 49 20 67 26 63 77 96 81 65 60 36 55 70 18
|
31 |
+
50 11 42 32 96 79 21 70 84 72 27 34 40 83 72 98 30 63 47 50 30 73 14 59 22 47 24 82 35 32 4 54 43 98 86 40 78 59 62 62 83 41 48 23 24 72 22 54 35 21 57
|
32 |
+
80 115 247 171 26 19 218 201 203 153 183 157 209 228 56 47 220 84 58 84 198 241 126 148 215 52 171 189 59 6 10 16 224 109 39 0 128 109 53 81 114 88 239 176 67 147 223 37 231 32 122 31 125 100 179 90 4 100 131 63 107 244 181 81 103 220 183 232 181 237 165 46 75 154 222 142 51 47 32 134 181
|
33 |
+
80 6 165 57 208 95 249 212 47 233 26 154 227 59 87 182 132 21 16 63 110 182 211 185 86 35 180 240 83 64 226 116 70 142 25 28 89 25 240 136 110 118 143 87 178 82 121 60 205 138 225 65 70 187 103 8 222 33 100 157 97 77 126 19 71 151 149 160 28 139 148 138 110 143 77 140 226 199 52 181 87
|
34 |
+
80 27 99 157 66 202 17 141 235 118 48 184 195 26 55 16 178 204 28 58 93 28 197 55 172 24 195 0 75 247 33 162 127 132 171 193 84 189 84 171 159 235 207 104 11 12 222 41 216 102 100 162 232 149 217 154 173 15 6 101 114 40 13 241 172 37 37 109 78 121 30 237 106 90 91 220 102 165 11 69 17
|
35 |
+
80 111 83 101 112 50 6 138 167 114 239 32 154 104 125 179 141 162 38 219 136 170 206 94 10 149 64 215 64 76 136 183 39 219 35 152 121 143 40 39 109 131 173 14 235 48 45 127 63 83 198 199 105 155 43 218 156 210 183 73 36 171 108 177 140 245 181 11 240 73 50 100 204 75 114 42 124 159 169 39 94
|
36 |
+
80 219 238 51 226 133 19 133 93 54 206 231 225 166 11 217 162 192 229 152 118 131 2 174 207 218 216 183 127 237 222 73 207 62 125 183 47 246 168 141 153 226 224 230 143 235 198 55 30 29 59 148 160 62 174 219 30 141 152 10 230 226 83 39 140 208 223 188 57 243 181 210 220 155 190 113 141 138 20 171 167
|
37 |
+
80 79 171 180 243 95 149 24 88 154 136 69 232 219 210 123 30 183 163 87 29 94 149 249 101 89 214 242 80 86 15 99 165 186 131 11 134 133 137 222 37 23 143 19 242 104 244 124 139 9 63 168 103 212 19 205 154 233 49 234 69 65 185 87 103 169 200 237 52 87 62 89 110 205 210 204 161 57 79 153 66
|
38 |
+
80 142 71 22 105 193 79 111 28 128 197 200 45 132 37 149 51 89 136 103 176 198 44 36 6 107 92 167 164 171 70 230 166 244 104 123 187 183 234 67 62 181 17 209 165 156 108 69 245 245 172 171 45 69 59 51 176 152 71 90 175 243 172 91 89 27 66 128 62 50 196 124 83 213 186 249 120 44 68 115 141
|
39 |
+
80 92 139 187 13 198 90 189 202 13 131 128 7 54 71 96 183 138 225 245 40 171 222 226 134 158 225 106 202 145 222 196 89 111 133 103 161 75 42 216 89 174 94 96 80 17 44 13 7 19 110 150 42 82 126 29 240 203 135 45 98 107 241 187 70 226 40 84 51 83 50 242 109 246 190 189 13 235 54 123 106
|
40 |
+
80 164 23 1 99 1 30 89 204 165 236 52 125 79 91 47 157 234 131 61 169 181 53 28 177 244 69 43 81 123 18 187 139 143 188 238 144 70 180 98 236 18 2 213 98 195 10 5 179 142 66 98 175 222 228 103 216 47 248 47 22 16 86 162 159 127 150 53 197 182 3 35 201 107 248 49 154 111 156 84 3
|
41 |
+
80 75 34 178 47 13 133 115 60 131 14 185 147 100 97 158 79 99 63 129 134 66 164 85 25 15 236 180 126 142 116 129 69 2 159 116 15 145 83 178 26 97 113 26 50 62 36 129 13 100 8 147 166 25 232 44 40 70 76 18 65 44 249 134 46 158 103 62 53 186 92 182 34 57 60 84 119 96 65 234 196
|
42 |
+
100 324 182 65 251 116 161 143 237 187 261 202 381 160 88 279 220 341 93 124 228 335 108 362 142 270 396 163 266 211 100 115 87 234 132 290 350 293 33 139 80 294 293 13 54 382 244 275 323 338 351 151 273 11 65 368 281 13 83 99 177 135 214 264 369 346 107 272 191 140 11 223 387 257 236 393 239 81 220 114 371 171 218 196 134 283 164 367 297 200 67 74 335 233 290 257 132 349 129 323 90
|
43 |
+
100 92 147 29 349 335 22 140 368 243 255 339 366 25 136 53 260 252 20 157 4 87 183 340 321 26 197 5 327 278 328 369 370 27 398 320 363 21 60 283 216 267 223 182 292 311 235 153 163 208 262 168 295 398 60 168 376 209 173 303 87 54 273 57 81 223 329 396 244 342 280 12 209 55 147 54 366 334 159 81 142 373 201 38 371 213 158 299 22 284 155 61 290 380 71 323 203 0 320 0 342
|
44 |
+
100 152 12 104 207 159 158 125 94 317 158 236 290 360 226 214 173 337 65 148 221 220 209 63 200 232 386 4 233 258 356 127 10 368 231 169 128 341 246 174 258 5 10 101 365 189 267 90 126 332 238 299 105 0 362 257 232 348 261 17 207 169 97 169 138 328 339 218 270 185 392 80 142 354 133 107 143 0 150 221 285 388 120 390 340 34 247 125 383 61 94 142 230 191 263 320 120 154 138 342 292
|
45 |
+
100 130 22 34 85 108 94 180 108 244 2 345 184 122 287 125 157 135 202 92 148 296 186 330 40 49 251 112 156 389 54 48 72 28 82 157 88 176 337 197 20 339 94 205 14 382 282 123 69 36 215 217 284 353 99 324 354 350 36 110 292 42 158 364 23 241 121 111 369 10 260 390 302 355 147 316 289 381 39 358 17 206 175 301 111 274 178 65 177 166 176 69 161 334 33 136 127 106 199 97 116
|
46 |
+
100 60 39 370 367 186 286 208 167 277 166 136 35 293 37 146 119 167 212 296 334 340 317 95 274 350 231 2 8 30 51 125 42 90 47 361 276 334 169 395 163 335 131 151 180 120 297 300 288 61 196 174 1 114 269 228 16 52 182 25 82 233 102 77 323 149 390 151 35 160 146 199 47 229 302 228 349 199 128 189 213 276 363 166 390 184 394 359 236 176 384 271 9 38 300 284 139 290 35 175 50
|
47 |
+
100 181 326 50 362 228 278 264 379 358 53 144 234 369 311 177 105 257 136 342 34 72 165 395 110 65 232 249 307 267 376 358 1 302 360 363 82 238 227 14 196 233 158 30 154 69 207 259 327 295 201 313 367 318 260 29 335 92 231 243 312 207 153 313 62 113 228 96 351 56 110 99 241 269 81 395 290 289 254 169 136 8 82 104 326 295 133 214 387 364 57 251 124 210 164 138 323 393 234 226 1
|
48 |
+
100 345 325 194 166 6 189 56 247 395 226 384 3 260 40 282 155 173 48 95 90 105 346 166 267 63 304 190 8 90 368 361 35 293 155 201 251 344 210 51 291 388 35 247 248 75 81 356 200 129 51 242 234 349 360 101 364 264 243 372 355 211 333 342 56 40 96 259 336 258 310 228 246 297 75 94 324 156 50 125 285 53 319 71 355 280 124 319 96 367 244 3 130 129 346 186 170 394 45 58 252
|
49 |
+
100 358 386 398 355 363 394 380 371 397 357 358 350 378 379 357 358 353 379 357 372 375 360 352 354 358 390 376 352 386 385 356 396 373 354 351 387 351 383 360 398 392 369 350 371 350 358 381 356 387 388 378 362 351 383 368 359 373 395 364 361 382 372 357 357 379 361 394 380 394 357 378 387 376 378 360 378 386 391 384 375 382 365 389 383 398 358 394 373 355 360 385 389 383 394 396 362 355 393 392 350
|
50 |
+
100 390 370 379 398 390 399 376 387 382 391 384 384 378 374 379 378 394 394 391 389 396 378 390 389 383 396 373 388 389 385 370 371 377 371 399 398 392 376 377 375 389 383 389 389 387 399 397 373 385 380 384 381 389 374 371 394 393 396 374 382 382 397 376 381 398 375 371 391 373 370 396 384 384 377 395 393 398 392 397 383 395 373 387 384 378 380 370 371 376 374 375 388 393 381 392 392 379 385 375 374
|
51 |
+
100 396 393 391 392 390 396 395 391 399 394 394 396 398 391 390 398 391 392 399 398 398 396 398 392 390 392 394 399 398 391 395 396 394 396 398 396 393 395 397 394 392 394 390 392 397 392 390 391 396 391 399 394 399 399 396 399 394 392 390 392 393 396 398 399 392 398 396 397 393 395 393 395 399 395 399 397 399 399 390 395 392 391 390 392 390 396 393 396 399 394 398 394 390 398 394 394 398 392 394 392
|
2013/round2/cake_cutting.md
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"Happy birthday to you... Happy birthday to you... Happy birthday to
|
2 |
+
Grovyle... Happy birthday to you..."
|
3 |
+
|
4 |
+
Today is Grovyle's birthday and he is going to invite his friends to his
|
5 |
+
birthday party. To have an awesome party, each of the attendants should get
|
6 |
+
one piece of cake. Your job is to help Grovyle invite as many friends as you
|
7 |
+
can.
|
8 |
+
|
9 |
+
However, Grovyle's parents are very mean, and make him use the following rules
|
10 |
+
when cutting his cake:
|
11 |
+
|
12 |
+
* There is only ONE cylindrical cake.
|
13 |
+
* Grovyle cuts the cake **N** times, each cut being perpendicular to the surface of the cake.
|
14 |
+
* The **i**-th cut is a broken line with **a**[**i**] vertices.
|
15 |
+
* The knife is only allowed to intersect the edge of the cylindrical cake at the start and end of the cut.
|
16 |
+
|
17 |
+
What is the maximum number of pieces Grovyle could get?
|
18 |
+
|
19 |
+
### Input
|
20 |
+
|
21 |
+
The first line contains an integer **T**, **T** ≤ 50, indicating the number of
|
22 |
+
test cases. Each test case begins with an integer **N**, 1 ≤ **N** ≤ 100,
|
23 |
+
followed by **N** integers **a**[**i**], 0 ≤ **a**[**i**] < 400, which
|
24 |
+
indicate the number of vertices in the **i**-th cut.
|
25 |
+
|
26 |
+
### Output
|
27 |
+
|
28 |
+
For each test case, output "Case #i: " followed by the maximum number of
|
29 |
+
pieces of cake Grovyle can cut.
|
30 |
+
|
2013/round2/cake_cutting.out
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Case #1: 7
|
2 |
+
Case #2: 7
|
3 |
+
Case #3: 10
|
4 |
+
Case #4: 14
|
5 |
+
Case #5: 63
|
6 |
+
Case #6: 1051
|
7 |
+
Case #7: 682
|
8 |
+
Case #8: 1006
|
9 |
+
Case #9: 1342
|
10 |
+
Case #10: 481
|
11 |
+
Case #11: 73970
|
12 |
+
Case #12: 84716
|
13 |
+
Case #13: 83486
|
14 |
+
Case #14: 78656
|
15 |
+
Case #15: 80651
|
16 |
+
Case #16: 71303
|
17 |
+
Case #17: 72060
|
18 |
+
Case #18: 45803
|
19 |
+
Case #19: 44303
|
20 |
+
Case #20: 63953
|
21 |
+
Case #21: 2812106
|
22 |
+
Case #22: 3290995
|
23 |
+
Case #23: 3438853
|
24 |
+
Case #24: 2886103
|
25 |
+
Case #25: 3376201
|
26 |
+
Case #26: 3475666
|
27 |
+
Case #27: 3311551
|
28 |
+
Case #28: 3186650
|
29 |
+
Case #29: 3257728
|
30 |
+
Case #30: 3337336
|
31 |
+
Case #31: 52516036
|
32 |
+
Case #32: 47244220
|
33 |
+
Case #33: 43082563
|
34 |
+
Case #34: 47672890
|
35 |
+
Case #35: 73732456
|
36 |
+
Case #36: 54637991
|
37 |
+
Case #37: 50205370
|
38 |
+
Case #38: 49955170
|
39 |
+
Case #39: 45063431
|
40 |
+
Case #40: 31343563
|
41 |
+
Case #41: 225027705
|
42 |
+
Case #42: 213924470
|
43 |
+
Case #43: 203465078
|
44 |
+
Case #44: 155734976
|
45 |
+
Case #45: 185657015
|
46 |
+
Case #46: 229933490
|
47 |
+
Case #47: 212850228
|
48 |
+
Case #48: 698389451
|
49 |
+
Case #49: 741991703
|
50 |
+
Case #50: 782437661
|
2013/round2/permutations.html
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<p>In this problem you need to count number of possible permutations <strong>p</strong> of the first <strong>N</strong> integers,
|
2 |
+
given <strong>N-1</strong> constraints of the form <strong>p<sub>i</sub> < p<sub>j</sub>.</strong><p>
|
3 |
+
|
4 |
+
<h2>Input</h2>
|
5 |
+
<p>The first line contains an integer <strong>T</strong>, <strong>T</strong> ≤ 20, followed by <b>T</b> test cases. Each test case begins with an integer <strong>N</strong>, <strong>N</strong> ≤ 1,000, which is the number of integers in the permutation. The next <strong>N - 1</strong> lines each contain a single constraint in the following format: "<b>i</b> <b>sign</b> <b>j</b>", where 0 ≤ <strong>i</strong>, <strong>j</strong> ≤ <strong>N - 1</strong> and <strong>sign</strong> is either "<strong><</strong>" or "<strong>></strong>", which denotes whether the <b>i</b>-th element of the permutation should be less than or greater than the <b>j</b>-th element.</p>
|
6 |
+
|
7 |
+
<p>It is guaranteed that it is not possible to partition indices into two disjoint sets A and B such
|
8 |
+
that there is no constraint involving elements from both A and B.</p>
|
9 |
+
|
10 |
+
<h2>Output</h2>
|
11 |
+
<p>For each test case, output one single line with the number of permutations that satisfy all the
|
12 |
+
constraints, following the output format shown in the example. The answer may be very large, so you should give the result modulo <strong>1,000,000,007</strong>.</p>
|
2013/round2/permutations.in
ADDED
The diff for this file is too large to render.
See raw diff
|
|
2013/round2/permutations.md
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
In this problem you need to count number of possible permutations **p** of the
|
2 |
+
first **N** integers, given **N-1** constraints of the form **pi < pj.**
|
3 |
+
|
4 |
+
## Input
|
5 |
+
|
6 |
+
The first line contains an integer **T**, **T** ≤ 20, followed by **T** test
|
7 |
+
cases. Each test case begins with an integer **N**, **N** ≤ 1,000, which is
|
8 |
+
the number of integers in the permutation. The next **N - 1** lines each
|
9 |
+
contain a single constraint in the following format: "**i** **sign** **j**",
|
10 |
+
where 0 ≤ **i**, **j** ≤ **N - 1** and **sign** is either "**<**" or "**>**",
|
11 |
+
which denotes whether the **i**-th element of the permutation should be less
|
12 |
+
than or greater than the **j**-th element.
|
13 |
+
|
14 |
+
It is guaranteed that it is not possible to partition indices into two
|
15 |
+
disjoint sets A and B such that there is no constraint involving elements from
|
16 |
+
both A and B.
|
17 |
+
|
18 |
+
## Output
|
19 |
+
|
20 |
+
For each test case, output one single line with the number of permutations
|
21 |
+
that satisfy all the constraints, following the output format shown in the
|
22 |
+
example. The answer may be very large, so you should give the result modulo
|
23 |
+
**1,000,000,007**.
|
24 |
+
|
2013/round2/permutations.out
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Case #1: 1
|
2 |
+
Case #2: 1
|
3 |
+
Case #3: 4
|
4 |
+
Case #4: 6
|
5 |
+
Case #5: 1
|
6 |
+
Case #6: 764344399
|
7 |
+
Case #7: 450800465
|
8 |
+
Case #8: 898996475
|
9 |
+
Case #9: 226501413
|
10 |
+
Case #10: 598446060
|
11 |
+
Case #11: 923158588
|
12 |
+
Case #12: 311325632
|
13 |
+
Case #13: 221028522
|
14 |
+
Case #14: 976696890
|
15 |
+
Case #15: 398503520
|
16 |
+
Case #16: 702516736
|
17 |
+
Case #17: 733724736
|
18 |
+
Case #18: 402844675
|
19 |
+
Case #19: 554181637
|
20 |
+
Case #20: 407752774
|
21 |
+
Case #21: 176111360
|
22 |
+
Case #22: 578419130
|
23 |
+
Case #23: 783121995
|
24 |
+
Case #24: 110121107
|
25 |
+
Case #25: 571247919
|
26 |
+
Case #26: 333381309
|
27 |
+
Case #27: 957059657
|
28 |
+
Case #28: 74430116
|
29 |
+
Case #29: 752981215
|
30 |
+
Case #30: 605744922
|
31 |
+
Case #31: 65130122
|
32 |
+
Case #32: 11050467
|
33 |
+
Case #33: 369696022
|
34 |
+
Case #34: 386169919
|
35 |
+
Case #35: 781872677
|
36 |
+
Case #36: 286188750
|
37 |
+
Case #37: 603564700
|
38 |
+
Case #38: 682609757
|
39 |
+
Case #39: 713083365
|
40 |
+
Case #40: 954131631
|
41 |
+
Case #41: 379666854
|
42 |
+
Case #42: 316070471
|
43 |
+
Case #43: 14401757
|
44 |
+
Case #44: 158451693
|
45 |
+
Case #45: 974926246
|
46 |
+
Case #46: 373588671
|
47 |
+
Case #47: 249001229
|
48 |
+
Case #48: 348656138
|
49 |
+
Case #49: 371822065
|
50 |
+
Case #50: 730948093
|
51 |
+
Case #51: 339234304
|
52 |
+
Case #52: 472477039
|
53 |
+
Case #53: 244180714
|
54 |
+
Case #54: 471613032
|
55 |
+
Case #55: 740830151
|
56 |
+
Case #56: 230510055
|
57 |
+
Case #57: 373748783
|
58 |
+
Case #58: 408060198
|
59 |
+
Case #59: 85824300
|
60 |
+
Case #60: 892144422
|
2013/round2/roboelection.html
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<p>In the not so distant future the world is populated by robots and ruled by an evil robot emperor. Every robot in the world can be identified by a unique numeric ID, and the list of all the existing robot IDs is easily accessible to everyone.
|
2 |
+
One day the emperor decided to call for a general election to preserve an illusion of democracy. He set it up in the following way:<p>
|
3 |
+
<ul>
|
4 |
+
<li> - Every robot can cast at most one vote per round of voting and the votes are anonymous.</li>
|
5 |
+
<li> - The only option on the ballot is the vote for reelection of the emperor.</li>
|
6 |
+
<li> - If at least <strong>P</strong> percent of the population cast votes for the emperor he becomes reelected for the next millennium.</li>
|
7 |
+
<li> - Otherwise the emperor declares the vote void, disassembles <strong>K</strong> robots with the lowest ID numbers (who he finds to be the most rebellious), and then if there are any functional robots left he restarts the whole process.</li>
|
8 |
+
</ul>
|
9 |
+
<p>
|
10 |
+
All the robots are perfectly logical but also rather lazy and prone to procrastination. That's why after figuring out the plan of the emperor, they will abstain from voting unless they have to vote to survive the election (including this round and all later rounds). If they will die whether or not they vote, they will vote in the hope that the emperor will spare them. (He won't, because he's evil!).
|
11 |
+
</p>
|
12 |
+
<h2>Problem</h2>
|
13 |
+
<p>
|
14 |
+
Given <strong>N</strong> - the initial population size, <strong>K</strong> - the number of robots disassembled after an unsuccessful vote and <strong>P</strong> - the required percentage of votes.</p><p> Compute the number of times the vote will take place. </p>
|
15 |
+
|
16 |
+
<h2>Input</h2>
|
17 |
+
<p>The first line contains the number of test cases <strong>T</strong>, where <strong> 1 ≤ T ≤ 100 </strong></p>
|
18 |
+
<p>Each case is a single line with three space-separated integers <strong>N</strong> <strong>K</strong> <strong>P</strong></p>
|
19 |
+
<p>0 < <strong>K</strong> ≤ <strong>N</strong> ≤ 1,000,000,000,000 <br/>
|
20 |
+
0 < <strong>P</strong> ≤ 100</p>
|
21 |
+
|
22 |
+
<h2>Output</h2>
|
23 |
+
<p>For test case <strong>i</strong>, numbered from <strong>1</strong> to <strong>T</strong>, output "Case #i: ", followed by a single integer, the number of times the emperor will have to call a vote before getting reelected.
|
24 |
+
|
25 |
+
<h2>Example</h2>
|
26 |
+
<p>In the first case we have three robots. Two of them are facing disassembly, so they will vote for the emperor. The third robot will survive even if he abstains in the first round, so he doesn't vote. But two out of three is not enough to reach the 75% minimum, so the election proceeds to a second round. The election ends when the single remaining robot casts a vote for the emperor.</p>
|
27 |
+
<p>In the second case again two robots are in immediate danger, but the next two robots are forced to vote as well, otherwise they would end up in the same situation as in the first example case. Now with the 4 out of 5 casting the vote the election successfully ends.</p>
|
28 |
+
|
29 |
+
|