Datasets:

Modalities:
Image
Text
Formats:
parquet
Size:
< 1K
Tags:
code
Libraries:
Datasets
pandas
License:
wjomlex commited on
Commit
df6dd12
1 Parent(s): 8bdfefe

2011 Problems

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. 2011/finals/alien_game.html +19 -0
  2. 2011/finals/alien_game.in +0 -0
  3. 2011/finals/alien_game.md +54 -0
  4. 2011/finals/alien_game.out +50 -0
  5. 2011/finals/party_time.html +84 -0
  6. 2011/finals/party_time.in +0 -0
  7. 2011/finals/party_time.md +60 -0
  8. 2011/finals/party_time.out +50 -0
  9. 2011/finals/safest_place.html +16 -0
  10. 2011/finals/safest_place.in +0 -0
  11. 2011/finals/safest_place.md +31 -0
  12. 2011/finals/safest_place.out +50 -0
  13. 2011/quals/double_squares.html +18 -0
  14. 2011/quals/double_squares.in +64 -0
  15. 2011/quals/double_squares.md +23 -0
  16. 2011/quals/double_squares.out +63 -0
  17. 2011/quals/peg_game.html +63 -0
  18. 2011/quals/peg_game.in +0 -0
  19. 2011/quals/peg_game.md +60 -0
  20. 2011/quals/peg_game.out +60 -0
  21. 2011/quals/studious_student.html +15 -0
  22. 2011/quals/studious_student.in +40 -0
  23. 2011/quals/studious_student.md +29 -0
  24. 2011/quals/studious_student.out +39 -0
  25. 2011/round1a/diversity_number.html +17 -0
  26. 2011/round1a/diversity_number.in +121 -0
  27. 2011/round1a/diversity_number.md +32 -0
  28. 2011/round1a/diversity_number.out +60 -0
  29. 2011/round1a/turn_on_the_lights.html +25 -0
  30. 2011/round1a/turn_on_the_lights.in +1051 -0
  31. 2011/round1a/turn_on_the_lights.md +30 -0
  32. 2011/round1a/turn_on_the_lights.out +60 -0
  33. 2011/round1a/wine_tasting.html +29 -0
  34. 2011/round1a/wine_tasting.in +51 -0
  35. 2011/round1a/wine_tasting.md +34 -0
  36. 2011/round1a/wine_tasting.out +50 -0
  37. 2011/round1b/chess_2.html +66 -0
  38. 2011/round1b/chess_2.in +1462 -0
  39. 2011/round1b/chess_2.md +101 -0
  40. 2011/round1b/chess_2.out +50 -0
  41. 2011/round1b/diminishing_circle.html +2 -0
  42. 2011/round1b/diminishing_circle.in +61 -0
  43. 2011/round1b/diminishing_circle.md +2 -0
  44. 2011/round1b/diminishing_circle.out +60 -0
  45. 2011/round1b/slot_machine_hacker.html +34 -0
  46. 2011/round1b/slot_machine_hacker.in +56 -0
  47. 2011/round1b/slot_machine_hacker.md +42 -0
  48. 2011/round1b/slot_machine_hacker.out +55 -0
  49. 2011/round1c/n_factorful.html +12 -0
  50. 2011/round1c/n_factorful.in +51 -0
2011/finals/alien_game.html ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <p>Aliens on the Unknown planet have a tradition of playing a game called Loiten. It is played by two players who alternate turns. There are <strong>N</strong> buckets with apples standing in one line in front of the players. They are numbered from left to right with integers starting from 1. </p>
2
+
3
+ <p>In one turn a player can select one of the buckets, which is not the first and not the last and has a positive number of apples in it, and move all of that bucket's apples to the bucket adjacent to the left and at the same time move all of them to the bucket adjacent to the right. That's right, the number of apples can be negative as it is a really strange planet. Thus, if there are 3 consecutive buckets with the number of apples being <strong>x</strong>, <strong>y</strong>, <strong>z</strong>, then you can perform the move if <strong>y</strong> is greater than zero. The resulting capacity of the buckets will be as follows: <strong>x+y</strong>, <strong>-y</strong>, <strong>z+y</strong>. The first player who can't make a move loses. </p>
4
+
5
+ <p>You happen to know one of the aliens from the Unknown planet, named Popo. He is a very good Loiten player, and has reached the Loiten Finals. On the day prior to the game, he found out the number of apples in each of the buckets. Unfortunately, his memory is not that good, and he can't remember the number of apples in the <strong>P</strong>-th bucket. He just remembers that it is a number with absolute value not greater than <strong>F</strong>. </p>
6
+
7
+ <p>Now, he is asking you to help him to calculate his chances. The players at the Finals are so good that they only make optimal moves to maximize their chance of winning. If neither player can win, the game is considered a draw. You are to find the number of possible apple counts for the bucket with an unknown number of apples where Popo will win. Popo is also sure that he is the one to make the first turn.</p>
8
+
9
+ <h2>Input</h2>
10
+ The first line of the input file consists of a single number <strong>T</strong>, the number of test cases. Each test case begins with a line containing two integers <strong>N</strong>, the number of buckets and <strong>P</strong>, the number of the bucket with the unknown amount of apples. It is followed by a line containing <strong>N</strong> integers, the numbers of apples in the corresponding buckets. The <strong>P</strong><sup>th</sup> number on this line is the positive integer <strong>F</strong> and corresponds to the constraint on the number of apples in the <strong>P</strong>-th bucket.<br/><br/>
11
+
12
+ <h2>Output</h2>
13
+ Output <strong>T</strong> lines, with the answer to each test case on a single line, the number of possible values for unknown bucket.<br/><br/>
14
+
15
+ <h2>Constraints</h2>
16
+ <strong>T</strong> = 50<br/>
17
+ 1&le; <strong>P</strong> &le; <strong>N</strong> &le; 2,000.<br/>
18
+ 1&le; <strong>F</strong> &le; 1,000,000,000,000.<br/>
19
+ The number of apples in each bucket at the start of the game has an absolute value not greater than 1,000,000,000,000.
2011/finals/alien_game.in ADDED
The diff for this file is too large to render. See raw diff
 
2011/finals/alien_game.md ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Aliens on the Unknown planet have a tradition of playing a game called Loiten.
2
+ It is played by two players who alternate turns. There are **N** buckets with
3
+ apples standing in one line in front of the players. They are numbered from
4
+ left to right with integers starting from 1.
5
+
6
+ In one turn a player can select one of the buckets, which is not the first and
7
+ not the last and has a positive number of apples in it, and move all of that
8
+ bucket's apples to the bucket adjacent to the left and at the same time move
9
+ all of them to the bucket adjacent to the right. That's right, the number of
10
+ apples can be negative as it is a really strange planet. Thus, if there are 3
11
+ consecutive buckets with the number of apples being **x**, **y**, **z**, then
12
+ you can perform the move if **y** is greater than zero. The resulting capacity
13
+ of the buckets will be as follows: **x+y**, **-y**, **z+y**. The first player
14
+ who can't make a move loses.
15
+
16
+ You happen to know one of the aliens from the Unknown planet, named Popo. He
17
+ is a very good Loiten player, and has reached the Loiten Finals. On the day
18
+ prior to the game, he found out the number of apples in each of the buckets.
19
+ Unfortunately, his memory is not that good, and he can't remember the number
20
+ of apples in the **P**-th bucket. He just remembers that it is a number with
21
+ absolute value not greater than **F**.
22
+
23
+ Now, he is asking you to help him to calculate his chances. The players at the
24
+ Finals are so good that they only make optimal moves to maximize their chance
25
+ of winning. If neither player can win, the game is considered a draw. You are
26
+ to find the number of possible apple counts for the bucket with an unknown
27
+ number of apples where Popo will win. Popo is also sure that he is the one to
28
+ make the first turn.
29
+
30
+ ## Input
31
+
32
+ The first line of the input file consists of a single number **T**, the number
33
+ of test cases. Each test case begins with a line containing two integers
34
+ **N**, the number of buckets and **P**, the number of the bucket with the
35
+ unknown amount of apples. It is followed by a line containing **N** integers,
36
+ the numbers of apples in the corresponding buckets. The **P**th number on this
37
+ line is the positive integer **F** and corresponds to the constraint on the
38
+ number of apples in the **P**-th bucket.
39
+
40
+
41
+ ## Output
42
+
43
+ Output **T** lines, with the answer to each test case on a single line, the
44
+ number of possible values for unknown bucket.
45
+
46
+
47
+ ## Constraints
48
+
49
+ **T** = 50
50
+ 1≤ **P** ≤ **N** ≤ 2,000.
51
+ 1≤ **F** ≤ 1,000,000,000,000.
52
+ The number of apples in each bucket at the start of the game has an absolute
53
+ value not greater than 1,000,000,000,000.
54
+
2011/finals/alien_game.out ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Case #1: 2
2
+ Case #2: 1
3
+ Case #3: 5
4
+ Case #4: 2
5
+ Case #5: 2
6
+ Case #6: 986217165634
7
+ Case #7: 1002456934349
8
+ Case #8: 812053503419
9
+ Case #9: 1002481940247
10
+ Case #10: 988889644609
11
+ Case #11: 1008867688282
12
+ Case #12: 3
13
+ Case #13: 896856530991
14
+ Case #14: 984312027341
15
+ Case #15: 1017606700635
16
+ Case #16: 1284822124847
17
+ Case #17: 992545327253
18
+ Case #18: 1101002652523
19
+ Case #19: 965823706896
20
+ Case #20: 730429422093
21
+ Case #21: 1134081025735
22
+ Case #22: 1013550903092
23
+ Case #23: 1038375278147
24
+ Case #24: 1000783973454
25
+ Case #25: 1012419891647
26
+ Case #26: 999999999970
27
+ Case #27: 1305771904105
28
+ Case #28: 1019446723130
29
+ Case #29: 728910530069
30
+ Case #30: 1224473397557
31
+ Case #31: 1289882017196
32
+ Case #32: 1332162289297
33
+ Case #33: 1050599582383
34
+ Case #34: 1128130897062
35
+ Case #35: 987014026338
36
+ Case #36: 677015991558
37
+ Case #37: 0
38
+ Case #38: 990431235212
39
+ Case #39: 985393646885
40
+ Case #40: 610289560579
41
+ Case #41: 0
42
+ Case #42: 0
43
+ Case #43: 1001343337069
44
+ Case #44: 2000000000001
45
+ Case #45: 970463442365
46
+ Case #46: 1009232305622
47
+ Case #47: 1005990274949
48
+ Case #48: 973364302077
49
+ Case #49: 934198191708
50
+ Case #50: 976504890470
2011/finals/party_time.html ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <p>
2
+
3
+ You're throwing a party for your friends, but since your friends may not all
4
+ know each other, you're afraid a few of them may not enjoy your party. So to
5
+ avoid this situation, you decide that you'll also invite some friends of your
6
+ friends. But who should you invite to throw a great party?
7
+
8
+ </p>
9
+
10
+ <p>
11
+
12
+ Luckily, you are in possession of data about all the friendships of your friends
13
+ and their friends. In graph theory terminology, you have a subset
14
+ <strong>G</strong> of the social graph, whose vertices correspond to your
15
+ friends and their friends (excluding yourself), and edges in this graph denote
16
+ mutual friendships. Furthermore, you have managed to obtain exact estimates
17
+ of how much food each person in <strong>G</strong> will consume during the
18
+ party if he were to be invited.
19
+
20
+ </p>
21
+
22
+ <p>
23
+
24
+ You want to choose a set of guests from <strong>G</strong>. This set of guests
25
+ should include all your friends, and the subgraph of <strong>G</strong> formed
26
+ by the guests must be connected. You believe that this will ensure that all of
27
+ your friends will enjoy your party since any two of them will have something to
28
+ talk about...
29
+
30
+ </p>
31
+
32
+ <p>
33
+
34
+ In order to save money, you want to pick the set of guests so that the total
35
+ amount of food needed is as small as possible. If there are several ways of
36
+ doing this, you prefer one with the fewest number of guests.
37
+
38
+ </p>
39
+
40
+ <p>
41
+
42
+ The people/vertices in your subset <strong>G</strong> of the social graph are
43
+ numbered from 0 to <strong>N</strong> - 1. Also, for convenience your friends
44
+ are numbered from 0 to <strong>F</strong> - 1, where <strong>F</strong> is the
45
+ number of your friends that you want to invite. You may also assume that
46
+ <strong>G</strong> is connected. Note again that you are not
47
+ yourself represented in <strong>G</strong>.
48
+
49
+ </p>
50
+
51
+ <h2>Input</h2>
52
+
53
+
54
+ The first line of the input consists of a single number <strong>T</strong>, the
55
+ number of test cases. Each test case starts with a line containing three
56
+ integers <strong>N</strong>, the number of nodes in <strong>G</strong>,
57
+ <strong>F</strong>, the number of friends, and <strong>M</strong>, the number of
58
+ edges in <strong>G</strong>. This is followed by <strong>M</strong> lines each
59
+ containing two integers. The <strong>i</strong><sup>th</sup> of these lines will contain
60
+ two distinct integers <strong>u</strong> and <strong>v</strong> which indicates
61
+ a mutual friendship between person <strong>u</strong> and person
62
+ <strong>v</strong>. After this follows a single line containing
63
+ <strong>N</strong> space-separated integers with the <strong>i</strong><sup>th</sup>
64
+ representing the amount of food consumed by person <strong>i</strong>.
65
+ <br/>
66
+ <br/>
67
+
68
+
69
+ <h2>Output</h2>
70
+ Output <strong>T</strong> lines, with the answer to each test case on a single
71
+ line by itself. Each line should contain two numbers, the first being the minimum total
72
+ quantity of food consumed at a party satisfying the given criteria and the
73
+ second the minimum number of people you can have at such a party.
74
+ <br/>
75
+ <br/>
76
+
77
+ <h2>Constraints</h2>
78
+ <strong>T</strong> = 50<br/>
79
+ 1 &le; <strong>F</strong> &le; 11<br/>
80
+ <strong>F</strong> &le; <strong>N</strong>-1 <br/>
81
+ 2 &le; <strong>N</strong> &le; 250<br/>
82
+ <strong>N</strong>-1 &le; <strong>M</strong> &le; <strong>N</strong> * (<strong>N</strong> - 1) / 2<br/>
83
+ <strong>G</strong> is connected, and contains no self-loops or duplicate edges.<br/>
84
+ For each person, the amount of food consumed is an integer between 0 and 1000, both inclusive.
2011/finals/party_time.in ADDED
The diff for this file is too large to render. See raw diff
 
2011/finals/party_time.md ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ You're throwing a party for your friends, but since your friends may not all
2
+ know each other, you're afraid a few of them may not enjoy your party. So to
3
+ avoid this situation, you decide that you'll also invite some friends of your
4
+ friends. But who should you invite to throw a great party?
5
+
6
+ Luckily, you are in possession of data about all the friendships of your
7
+ friends and their friends. In graph theory terminology, you have a subset
8
+ **G** of the social graph, whose vertices correspond to your friends and their
9
+ friends (excluding yourself), and edges in this graph denote mutual
10
+ friendships. Furthermore, you have managed to obtain exact estimates of how
11
+ much food each person in **G** will consume during the party if he were to be
12
+ invited.
13
+
14
+ You want to choose a set of guests from **G**. This set of guests should
15
+ include all your friends, and the subgraph of **G** formed by the guests must
16
+ be connected. You believe that this will ensure that all of your friends will
17
+ enjoy your party since any two of them will have something to talk about...
18
+
19
+ In order to save money, you want to pick the set of guests so that the total
20
+ amount of food needed is as small as possible. If there are several ways of
21
+ doing this, you prefer one with the fewest number of guests.
22
+
23
+ The people/vertices in your subset **G** of the social graph are numbered from
24
+ 0 to **N** \- 1. Also, for convenience your friends are numbered from 0 to
25
+ **F** \- 1, where **F** is the number of your friends that you want to invite.
26
+ You may also assume that **G** is connected. Note again that you are not
27
+ yourself represented in **G**.
28
+
29
+ ## Input
30
+
31
+ The first line of the input consists of a single number **T**, the number of
32
+ test cases. Each test case starts with a line containing three integers **N**,
33
+ the number of nodes in **G**, **F**, the number of friends, and **M**, the
34
+ number of edges in **G**. This is followed by **M** lines each containing two
35
+ integers. The **i**th of these lines will contain two distinct integers **u**
36
+ and **v** which indicates a mutual friendship between person **u** and person
37
+ **v**. After this follows a single line containing **N** space-separated
38
+ integers with the **i**th representing the amount of food consumed by person
39
+ **i**.
40
+
41
+
42
+ ## Output
43
+
44
+ Output **T** lines, with the answer to each test case on a single line by
45
+ itself. Each line should contain two numbers, the first being the minimum
46
+ total quantity of food consumed at a party satisfying the given criteria and
47
+ the second the minimum number of people you can have at such a party.
48
+
49
+
50
+ ## Constraints
51
+
52
+ **T** = 50
53
+ 1 ≤ **F** ≤ 11
54
+ **F** ≤ **N**-1
55
+ 2 ≤ **N** ≤ 250
56
+ **N**-1 ≤ **M** ≤ **N** * (**N** \- 1) / 2
57
+ **G** is connected, and contains no self-loops or duplicate edges.
58
+ For each person, the amount of food consumed is an integer between 0 and 1000,
59
+ both inclusive.
60
+
2011/finals/party_time.out ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Case #1: 6 3
2
+ Case #2: 11 3
3
+ Case #3: 177 5
4
+ Case #4: 28 7
5
+ Case #5: 45 10
6
+ Case #6: 6 1
7
+ Case #7: 9 1
8
+ Case #8: 4 3
9
+ Case #9: 9 1
10
+ Case #10: 10 3
11
+ Case #11: 34 4
12
+ Case #12: 2384 5
13
+ Case #13: 335 5
14
+ Case #14: 6138 14
15
+ Case #15: 7405 14
16
+ Case #16: 6176 16
17
+ Case #17: 7890 15
18
+ Case #18: 3839 14
19
+ Case #19: 54 16
20
+ Case #20: 48 14
21
+ Case #21: 30 13
22
+ Case #22: 35 14
23
+ Case #23: 61 13
24
+ Case #24: 29 16
25
+ Case #25: 27 16
26
+ Case #26: 35 20
27
+ Case #27: 32 14
28
+ Case #28: 19 18
29
+ Case #29: 96 18
30
+ Case #30: 136 27
31
+ Case #31: 116 23
32
+ Case #32: 133 32
33
+ Case #33: 82 19
34
+ Case #34: 144 27
35
+ Case #35: 129 31
36
+ Case #36: 142 28
37
+ Case #37: 93 27
38
+ Case #38: 133 28
39
+ Case #39: 37 32
40
+ Case #40: 37 29
41
+ Case #41: 37 26
42
+ Case #42: 41 25
43
+ Case #43: 46 22
44
+ Case #44: 7163 20
45
+ Case #45: 8494 21
46
+ Case #46: 4309 18
47
+ Case #47: 5730 17
48
+ Case #48: 7193 22
49
+ Case #49: 6391 17
50
+ Case #50: 4288 18
2011/finals/safest_place.html ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <p>While en route to the 295<sup>th</sup> annual Galactic Dance Party on Risa, you find yourself unceremoniously yanked out of hyperspace and, according to your sensors, surrounded by <strong>N</strong> space bombs. Apparently caught in a trap laid out by some dastardly and unknown enemy, and unable to return to hyperspace, you must find the safest place in the vicinity to weather the detonation of all the space bombs. Your unseen opponent has constructed a cube-shaped space anomaly that you are unable to leave, so your options are limited to points within that cube.</p>
2
+
3
+ <p>Before the bombs explode (all simultaneously), you have just enough time to travel to any integer point in the cube [0, 0, 0]-[1000, 1000, 1000], both inclusive. You must find the point with the maximum distance to the nearest bomb, which your captain's intuition tells you will be the safest point.</p>
4
+
5
+ <h2>Input</h2>
6
+
7
+ <p>The first line of the input file consists of a single number <strong>T</strong>, the number of test cases. Each test consists of single number <strong>N</strong>, the number of bombs, followed by <strong>3*N</strong> integers describing the positions of the bombs.
8
+
9
+ <h2>Output</h2>
10
+
11
+ <p>Output <strong>T</strong> integers, one per test case each on its own line, representing the square of distance to the nearest bomb from the safest point in the cube.</p>
12
+
13
+ <h2>Constraints</h2>
14
+ <strong>T</strong> = 50<br/>
15
+ 1 &le; <strong>N</strong> &le; 200<br/>
16
+ All bombs coordinates will be in [0, 1000], both inclusive.
2011/finals/safest_place.in ADDED
The diff for this file is too large to render. See raw diff
 
2011/finals/safest_place.md ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ While en route to the 295th annual Galactic Dance Party on Risa, you find
2
+ yourself unceremoniously yanked out of hyperspace and, according to your
3
+ sensors, surrounded by **N** space bombs. Apparently caught in a trap laid out
4
+ by some dastardly and unknown enemy, and unable to return to hyperspace, you
5
+ must find the safest place in the vicinity to weather the detonation of all
6
+ the space bombs. Your unseen opponent has constructed a cube-shaped space
7
+ anomaly that you are unable to leave, so your options are limited to points
8
+ within that cube.
9
+
10
+ Before the bombs explode (all simultaneously), you have just enough time to
11
+ travel to any integer point in the cube [0, 0, 0]-[1000, 1000, 1000], both
12
+ inclusive. You must find the point with the maximum distance to the nearest
13
+ bomb, which your captain's intuition tells you will be the safest point.
14
+
15
+ ## Input
16
+
17
+ The first line of the input file consists of a single number **T**, the number
18
+ of test cases. Each test consists of single number **N**, the number of bombs,
19
+ followed by **3*N** integers describing the positions of the bombs.
20
+
21
+ ## Output
22
+
23
+ Output **T** integers, one per test case each on its own line, representing
24
+ the square of distance to the nearest bomb from the safest point in the cube.
25
+
26
+ ## Constraints
27
+
28
+ **T** = 50
29
+ 1 ≤ **N** ≤ 200
30
+ All bombs coordinates will be in [0, 1000], both inclusive.
31
+
2011/finals/safest_place.out ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Case #1: 520667
2
+ Case #2: 390625
3
+ Case #3: 265929
4
+ Case #4: 207418
5
+ Case #5: 164387
6
+ Case #6: 1002304
7
+ Case #7: 30452
8
+ Case #8: 30342
9
+ Case #9: 29642
10
+ Case #10: 29636
11
+ Case #11: 30462
12
+ Case #12: 30340
13
+ Case #13: 30614
14
+ Case #14: 30259
15
+ Case #15: 30443
16
+ Case #16: 31485
17
+ Case #17: 251306
18
+ Case #18: 253929
19
+ Case #19: 252650
20
+ Case #20: 255098
21
+ Case #21: 500000
22
+ Case #22: 500025
23
+ Case #23: 500000
24
+ Case #24: 750000
25
+ Case #25: 46875
26
+ Case #26: 46152
27
+ Case #27: 34611
28
+ Case #28: 41257
29
+ Case #29: 36670
30
+ Case #30: 44768
31
+ Case #31: 53459
32
+ Case #32: 47912
33
+ Case #33: 40165
34
+ Case #34: 61361
35
+ Case #35: 42029
36
+ Case #36: 39705
37
+ Case #37: 39338
38
+ Case #38: 40017
39
+ Case #39: 41798
40
+ Case #40: 45961
41
+ Case #41: 38850
42
+ Case #42: 44414
43
+ Case #43: 53594
44
+ Case #44: 43382
45
+ Case #45: 42110
46
+ Case #46: 37586
47
+ Case #47: 46685
48
+ Case #48: 40793
49
+ Case #49: 39049
50
+ Case #50: 39141
2011/quals/double_squares.html ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ A double-square number is an integer <b>X</b> which can be expressed as the
2
+ sum of two perfect squares. For example, 10 is a double-square because 10 =
3
+ 3<sup>2</sup> + 1<sup>2</sup>. Your task in this problem is, given <b>X</b>,
4
+ determine the number of ways in which it can be written as the sum of two
5
+ squares. For example, 10 can only be written as 3<sup>2</sup> + 1<sup>2</sup>
6
+ (we don't count 1<sup>2</sup> + 3<sup>2</sup> as being different). On the
7
+ other hand, 25 can be written as 5<sup>2</sup> + 0<sup>2</sup> or as
8
+ 4<sup>2</sup> + 3<sup>2</sup>.<br/><br/>
9
+ <h3>Input</h3>
10
+ You should first read an integer <b>N</b>, the number of test cases. The next
11
+ <b>N</b> lines will contain <b>N</b> values of <b>X</b>.
12
+ <h3>Constraints</h3>
13
+ 0 &le; <b>X</b> &le; 2147483647<br>
14
+ 1 &le; <b>N</b> &le; 100
15
+ <h3>Output</h3>
16
+ For each value of <b>X</b>, you should output the number of ways to write
17
+ <b>X</b> as the sum of two squares.
18
+
2011/quals/double_squares.in ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 63
2
+ 10
3
+ 25
4
+ 3
5
+ 0
6
+ 1
7
+ 2
8
+ 4
9
+ 5
10
+ 6
11
+ 65
12
+ 325
13
+ 1105
14
+ 4225
15
+ 5525
16
+ 27625
17
+ 71825
18
+ 138125
19
+ 160225
20
+ 801125
21
+ 2082925
22
+ 4005625
23
+ 5928325
24
+ 29641625
25
+ 77068225
26
+ 148208125
27
+ 243061325
28
+ 1215306625
29
+ 2147483642
30
+ 2147483643
31
+ 2147483644
32
+ 2147483645
33
+ 2147483646
34
+ 2147483647
35
+ 510644794
36
+ 625058908
37
+ 1816371419
38
+ 326864818
39
+ 1257431873
40
+ 415485223
41
+ 1740798996
42
+ 372654318
43
+ 1041493518
44
+ 326122507
45
+ 473200074
46
+ 713302969
47
+ 1077003976
48
+ 1538292481
49
+ 1096354453
50
+ 421330820
51
+ 1148284322
52
+ 1475149141
53
+ 1000582589
54
+ 2027929049
55
+ 1941554117
56
+ 1328649093
57
+ 1048039120
58
+ 602519112
59
+ 874566596
60
+ 858320077
61
+ 1369439656
62
+ 1022907856
63
+ 1991891221
64
+ 542915665
2011/quals/double_squares.md ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ A double-square number is an integer **X** which can be expressed as the sum
2
+ of two perfect squares. For example, 10 is a double-square because 10 = 32 \+
3
+ 12. Your task in this problem is, given **X**, determine the number of ways in
4
+ which it can be written as the sum of two squares. For example, 10 can only be
5
+ written as 32 \+ 12 (we don't count 12 \+ 32 as being different). On the other
6
+ hand, 25 can be written as 52 \+ 02 or as 42 \+ 32.
7
+
8
+
9
+ ### Input
10
+
11
+ You should first read an integer **N**, the number of test cases. The next
12
+ **N** lines will contain **N** values of **X**.
13
+
14
+ ### Constraints
15
+
16
+ 0 ≤ **X** ≤ 2147483647
17
+ 1 ≤ **N** ≤ 100
18
+
19
+ ### Output
20
+
21
+ For each value of **X**, you should output the number of ways to write **X**
22
+ as the sum of two squares.
23
+
2011/quals/double_squares.out ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Case #1: 1
2
+ Case #2: 2
3
+ Case #3: 0
4
+ Case #4: 1
5
+ Case #5: 1
6
+ Case #6: 1
7
+ Case #7: 1
8
+ Case #8: 1
9
+ Case #9: 0
10
+ Case #10: 2
11
+ Case #11: 3
12
+ Case #12: 4
13
+ Case #13: 5
14
+ Case #14: 6
15
+ Case #15: 8
16
+ Case #16: 9
17
+ Case #17: 10
18
+ Case #18: 12
19
+ Case #19: 16
20
+ Case #20: 18
21
+ Case #21: 20
22
+ Case #22: 24
23
+ Case #23: 32
24
+ Case #24: 36
25
+ Case #25: 40
26
+ Case #26: 48
27
+ Case #27: 64
28
+ Case #28: 0
29
+ Case #29: 0
30
+ Case #30: 0
31
+ Case #31: 0
32
+ Case #32: 0
33
+ Case #33: 0
34
+ Case #34: 0
35
+ Case #35: 0
36
+ Case #36: 0
37
+ Case #37: 0
38
+ Case #38: 0
39
+ Case #39: 0
40
+ Case #40: 0
41
+ Case #41: 0
42
+ Case #42: 0
43
+ Case #43: 0
44
+ Case #44: 2
45
+ Case #45: 1
46
+ Case #46: 1
47
+ Case #47: 2
48
+ Case #48: 1
49
+ Case #49: 4
50
+ Case #50: 1
51
+ Case #51: 1
52
+ Case #52: 2
53
+ Case #53: 2
54
+ Case #54: 1
55
+ Case #55: 4
56
+ Case #56: 8
57
+ Case #57: 4
58
+ Case #58: 1
59
+ Case #59: 1
60
+ Case #60: 4
61
+ Case #61: 2
62
+ Case #62: 1
63
+ Case #63: 2
2011/quals/peg_game.html ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ At the arcade, you can play a simple game where a ball is dropped into the top
2
+ of the game, from a position of your choosing. There are a number of pegs
3
+ that the ball will bounce off of as it drops through the game. Whenever the
4
+ ball hits a peg, it will bounce to the left with probability 0.5 and to the
5
+ right with probability 0.5. The one exception to this is when it hits a peg on
6
+ the far left or right side, in which case it always bounces towards the
7
+ middle.<br/><br/>
8
+ When the game was first made, the pegs where arranged in a regular grid.
9
+ However, it's an old game, and now some of the pegs are missing. Your goal in
10
+ the game is to get the ball to fall out of the bottom of the game in a
11
+ specific location. Your task is, given the arrangement of the game, to
12
+ determine the optimal place to drop the ball, such that the probability of
13
+ getting it to this specific location is maximized.<br/><br/>
14
+ The image below shows an example of a game with five rows of five columns.
15
+ Notice that the top row has five pegs, the next row has four pegs, the next
16
+ five, and so on. With five columns, there are four choices to drop the ball
17
+ into (indexed from 0). Note that in this example, there are three pegs
18
+ missing. The top row is row 0, and the leftmost peg is column 0, so the
19
+ coordinates of the missing pegs are (1,1), (2,1) and (3,2). In this example,
20
+ the best place to drop the ball is on the far left, in column 0, which gives a
21
+ 50% chance that it will end in the goal.
22
+
23
+ <pre>
24
+ x.x.x.x.x
25
+ x...x.x
26
+ x...x.x.x
27
+ x.x...x
28
+ x.x.x.x.x
29
+ G
30
+
31
+ 'x' indicates a peg, '.' indicates empty space.
32
+ </pre>
33
+ <h3>
34
+ Input
35
+ </h3>
36
+ You should first read an integer <b>N</b>, the number of test cases. Each of the
37
+ next <b>N</b> lines will then contain a single test case. Each test case will start
38
+ with integers <b>R</b> and <b>C</b>, the number of rows and columns (<b>R</b>
39
+ will be odd). Next, an integer <b>K</b> will specify the target column.
40
+ Finally, an integer <b>M</b> will be followed by <b>M</b> pairs of integer
41
+ <b>r<sub>i</sub></b> and <b>c<sub>i</sub></b>, giving the locations of the
42
+ missing pegs.
43
+ <h3>Constraints</h3>
44
+ <ul>
45
+ <li>1 &le; <b>N</b> &le; 100</li>
46
+ <li>3 &le; <b>R</b>,<b>C</b> &le; 100</li>
47
+ <li>The top and bottom rows will not have any missing pegs.</li>
48
+ <li>Other parameters will all be valid, given <b>R</b> and <b>C</b></li>
49
+ </ul>
50
+ <h3>
51
+ Output
52
+ </h3>
53
+ For each test case, you should output an integer, the location to drop the
54
+ ball into, followed by the probability that the ball will end in columns
55
+ <b>K</b>, formatted with exactly six digits after the decimal point (round the
56
+ last digit, don't truncate).
57
+ <h3>
58
+ Notes
59
+ </h3>
60
+ The input will be designed such that minor rounding errors will not impact the
61
+ output (i.e. there will be no ties or near -- up to 1E-9 -- ties, and the direction of rounding
62
+ for the output will not be impacted by small errors).
63
+
2011/quals/peg_game.in ADDED
The diff for this file is too large to render. See raw diff
 
2011/quals/peg_game.md ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ At the arcade, you can play a simple game where a ball is dropped into the top
2
+ of the game, from a position of your choosing. There are a number of pegs that
3
+ the ball will bounce off of as it drops through the game. Whenever the ball
4
+ hits a peg, it will bounce to the left with probability 0.5 and to the right
5
+ with probability 0.5. The one exception to this is when it hits a peg on the
6
+ far left or right side, in which case it always bounces towards the middle.
7
+
8
+ When the game was first made, the pegs where arranged in a regular grid.
9
+ However, it's an old game, and now some of the pegs are missing. Your goal in
10
+ the game is to get the ball to fall out of the bottom of the game in a
11
+ specific location. Your task is, given the arrangement of the game, to
12
+ determine the optimal place to drop the ball, such that the probability of
13
+ getting it to this specific location is maximized.
14
+
15
+ The image below shows an example of a game with five rows of five columns.
16
+ Notice that the top row has five pegs, the next row has four pegs, the next
17
+ five, and so on. With five columns, there are four choices to drop the ball
18
+ into (indexed from 0). Note that in this example, there are three pegs
19
+ missing. The top row is row 0, and the leftmost peg is column 0, so the
20
+ coordinates of the missing pegs are (1,1), (2,1) and (3,2). In this example,
21
+ the best place to drop the ball is on the far left, in column 0, which gives a
22
+ 50% chance that it will end in the goal.
23
+
24
+ x.x.x.x.x
25
+ x...x.x
26
+ x...x.x.x
27
+ x.x...x
28
+ x.x.x.x.x
29
+ G
30
+ 'x' indicates a peg, '.' indicates empty space.
31
+
32
+ ### Input
33
+
34
+ You should first read an integer **N**, the number of test cases. Each of the
35
+ next **N** lines will then contain a single test case. Each test case will
36
+ start with integers **R** and **C**, the number of rows and columns (**R**
37
+ will be odd). Next, an integer **K** will specify the target column. Finally,
38
+ an integer **M** will be followed by **M** pairs of integer **ri** and **ci**,
39
+ giving the locations of the missing pegs.
40
+
41
+ ### Constraints
42
+
43
+ * 1 ≤ **N** ≤ 100
44
+ * 3 ≤ **R**,**C** ≤ 100
45
+ * The top and bottom rows will not have any missing pegs.
46
+ * Other parameters will all be valid, given **R** and **C**
47
+
48
+ ### Output
49
+
50
+ For each test case, you should output an integer, the location to drop the
51
+ ball into, followed by the probability that the ball will end in columns
52
+ **K**, formatted with exactly six digits after the decimal point (round the
53
+ last digit, don't truncate).
54
+
55
+ ### Notes
56
+
57
+ The input will be designed such that minor rounding errors will not impact the
58
+ output (i.e. there will be no ties or near -- up to 1E-9 -- ties, and the
59
+ direction of rounding for the output will not be impacted by small errors).
60
+
2011/quals/peg_game.out ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Case #1: 0 0.375000
2
+ Case #2: 1 1.000000
3
+ Case #3: 1 1.000000
4
+ Case #4: 0 1.000000
5
+ Case #5: 0 0.500000
6
+ Case #6: 0 1.000000
7
+ Case #7: 3 0.500000
8
+ Case #8: 0 0.375000
9
+ Case #9: 0 0.625000
10
+ Case #10: 0 0.500000
11
+ Case #11: 1 1.000000
12
+ Case #12: 0 0.500000
13
+ Case #13: 2 0.250000
14
+ Case #14: 0 1.000000
15
+ Case #15: 2 1.000000
16
+ Case #16: 1 0.500000
17
+ Case #17: 0 0.375000
18
+ Case #18: 0 0.273438
19
+ Case #19: 25 0.139282
20
+ Case #20: 26 0.094469
21
+ Case #21: 5 0.343750
22
+ Case #22: 52 0.229212
23
+ Case #23: 8 0.144334
24
+ Case #24: 11 1.000000
25
+ Case #25: 4 0.273438
26
+ Case #26: 5 0.312500
27
+ Case #27: 9 0.118933
28
+ Case #28: 7 0.382813
29
+ Case #29: 17 0.130849
30
+ Case #30: 11 0.090337
31
+ Case #31: 63 0.235746
32
+ Case #32: 16 0.194322
33
+ Case #33: 6 0.103375
34
+ Case #34: 76 0.124419
35
+ Case #35: 44 0.234087
36
+ Case #36: 35 0.298492
37
+ Case #37: 52 0.158363
38
+ Case #38: 23 0.060319
39
+ Case #39: 28 0.078013
40
+ Case #40: 60 0.112882
41
+ Case #41: 15 0.283266
42
+ Case #42: 88 0.140881
43
+ Case #43: 44 0.250275
44
+ Case #44: 3 0.126945
45
+ Case #45: 51 0.101507
46
+ Case #46: 25 0.077408
47
+ Case #47: 60 0.108157
48
+ Case #48: 8 0.105733
49
+ Case #49: 43 0.343750
50
+ Case #50: 61 0.216110
51
+ Case #51: 25 0.102611
52
+ Case #52: 63 0.126953
53
+ Case #53: 74 0.375000
54
+ Case #54: 27 0.245132
55
+ Case #55: 52 0.186421
56
+ Case #56: 95 0.093098
57
+ Case #57: 30 0.078492
58
+ Case #58: 85 0.459503
59
+ Case #59: 83 0.147201
60
+ Case #60: 48 0.096127
2011/quals/studious_student.html ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ You've been given a list of words to study and memorize. Being a diligent student of language and the arts, you've decided to not study them at all and instead make up pointless games based on them. One game you've come up with is to see how you can concatenate the words to generate the lexicographically lowest possible string.
2
+ <br/><br/>
3
+
4
+ <h3>Input</h3>
5
+ As input for playing this game you will receive a text file containing an integer <strong>N</strong>, the number of word sets you need to play your game against. This will be followed by <strong>N</strong> word sets, each starting with an integer <strong>M</strong>, the number of words in the set, followed by <strong>M</strong> words. All tokens in the input will be separated by some whitespace and, aside from <strong>N</strong> and <strong>M</strong>, will consist entirely of lowercase letters.
6
+ <br/><br/>
7
+
8
+ <h3>Output</h3>
9
+ Your submission should contain the lexicographically shortest strings for each corresponding word set, one per line and in order.
10
+ <br/><br/>
11
+
12
+ <h3>Constraints</h3>
13
+ 1 &le; <strong>N</strong> &le; 100<br/>
14
+ 1 &le; <strong>M</strong> &le; 9<br/>
15
+ 1 &le; all word lengths &le; 10<br/>
2011/quals/studious_student.in ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 39
2
+ 6 facebook hacker cup for studious students
3
+ 5 k duz q rc lvraw
4
+ 5 mybea zdr yubx xe dyroiy
5
+ 5 jibw ji jp bw jibw
6
+ 5 uiuy hopji li j dcyi
7
+ 9 i hsmh hsmheh xgi eh xg xgeh xnfc ihsmh
8
+ 9 gm souyd fsrd bjnnuknqs rvncvkvssd gxfl wjmeagyob pahil nkfrcuhjh
9
+ 9 nnozzwtf ahkjj wtp t sj htawm ihw egzinwju vn
10
+ 9 rnnabb ldk ndhn rnnaldk zeabbbb zeabb zea rnna bb
11
+ 9 m xmnz mlk vlk lk iwkf lkiwkf vm v
12
+ 9 rgh woqg dmabatgbt qrvpcrx eluunoi sy w wnthqxgkg aimallazuc
13
+ 9 zvow qhx hx vth qhxhxdfgt q dfgt hxdfgt qhxq
14
+ 9 wjxwgm qdhmzkmpzv uhibo gcikegpzv ceqiwekdx rxegvkc ujjvbv kfit peiawyk
15
+ 9 jg j uj ujnzdng nzdng nzdn e g ujnzdngj
16
+ 9 qxwd bejf wfaua rvkorigcm psdflr utgcsj iaolpoazv hmzczeg hqktnql
17
+ 9 k itqsgpwze ma yhpncg xtf w m kahula zgbo
18
+ 9 nl jtdmdxu ux nlmnyzdxu mnyz jtdm nlmnyz dxu uxdxu
19
+ 9 a yncoklkc ek yyfqebh je edzhujjc gpmb ktqimdtw opka
20
+ 9 joicfs joi xul nzndjoi nzndjoijoi nznd nzndjoijoi ssre cfs
21
+ 9 vkzzfgtobz i tkczlqaf peqmnyoh eogzpbe bgorlllxor bkkupvnqr gsr xfqmteh
22
+ 9 hdfeax d s uxnnrzko nxpcu v njxqbnh aaqzeeb kxpkw
23
+ 9 ikjea pdizqbo cwvswrhe m fw yyxcoj ggwgyonra ep tbnoazzs
24
+ 9 eavcqvv wyuh mkfq not evhlpur eidqnartht pesgphnnlq t ztvu
25
+ 9 ld r d lo rlo rlol l rd ix
26
+ 9 o zt da wv brorejctww fu phnej ynrdkylwys ekggrmehcl
27
+ 9 z dvqgfh wqx vnajabkqvs sdwkc dlhcnc ezrcvsc teje gzwwj
28
+ 9 dcn csmzj krnc vkcoume wvpva yqoexwujwp v cxepgptf xb
29
+ 9 r wwwr ndtc ndtclp lpb b wwwb www lp
30
+ 9 fujv mzr kgukjmokvz schpxugnef p rjojpzbsro wpobp wl od
31
+ 9 wehfri kclm ri qgca gt qgcagt qgcagt wehf qgcagtqgca
32
+ 9 u ufmu ufmuqfy vmc ufm uqfy z vmcu qfy
33
+ 9 c evaxdeyrxb rhhfmdm xq vxedern diqs tpdofbc rbq kbxdy
34
+ 9 iccrmcrm mwp sil iccrmcrm ic odo iccrm crm odocrm
35
+ 9 ksdzsjz bbio ja mvvyxzkmq zgdvxolmt xgvwdbfqzn rhubnqtaad qa eeb
36
+ 9 myrzwdyhv pojiires fbjbkcbtq pzdfuxfh rq ukbom ypkffomyl tdko zbwqkbuu
37
+ 9 krqeokrq weo usau krqeo eo zltg krq w zltgkrq
38
+ 9 orth xlruwr afpjkzr qtrrmfpr lvqsidbp qcr dcg xcykyy trarmefmf
39
+ 9 s minpax ax zit cyax zitax minp zitaxminp cy
40
+ 9 izqht h qpbdayaifl pjsoie sujccnm umj dralemrspo euswuti m
2011/quals/studious_student.md ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ You've been given a list of words to study and memorize. Being a diligent
2
+ student of language and the arts, you've decided to not study them at all and
3
+ instead make up pointless games based on them. One game you've come up with is
4
+ to see how you can concatenate the words to generate the lexicographically
5
+ lowest possible string.
6
+
7
+
8
+ ### Input
9
+
10
+ As input for playing this game you will receive a text file containing an
11
+ integer **N**, the number of word sets you need to play your game against.
12
+ This will be followed by **N** word sets, each starting with an integer **M**,
13
+ the number of words in the set, followed by **M** words. All tokens in the
14
+ input will be separated by some whitespace and, aside from **N** and **M**,
15
+ will consist entirely of lowercase letters.
16
+
17
+
18
+ ### Output
19
+
20
+ Your submission should contain the lexicographically shortest strings for each
21
+ corresponding word set, one per line and in order.
22
+
23
+
24
+ ### Constraints
25
+
26
+ 1 ≤ **N** ≤ 100
27
+ 1 ≤ **M** ≤ 9
28
+ 1 ≤ all word lengths ≤ 10
29
+
2011/quals/studious_student.out ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Case #1: cupfacebookforhackerstudentsstudious
2
+ Case #2: duzklvrawqrc
3
+ Case #3: dyroiymybeaxeyubxzdr
4
+ Case #4: bwjibwjibwjijp
5
+ Case #5: dcyihopjijliuiuy
6
+ Case #6: ehhsmhehhsmhihsmhixgehxgixgxnfc
7
+ Case #7: bjnnuknqsfsrdgmgxflnkfrcuhjhpahilrvncvkvssdsouydwjmeagyob
8
+ Case #8: ahkjjegzinwjuhtawmihwnnozzwtfsjtvnwtp
9
+ Case #9: bbldkndhnrnnabbrnnaldkrnnazeabbbbzeabbzea
10
+ Case #10: iwkflkiwkflkmlkmvlkvmvxmnz
11
+ Case #11: aimallazucdmabatgbteluunoiqrvpcrxrghsywnthqxgkgwoqgw
12
+ Case #12: dfgthxdfgthxqhxhxdfgtqhxqhxqqvthzvow
13
+ Case #13: ceqiwekdxgcikegpzvkfitpeiawykqdhmzkmpzvrxegvkcuhiboujjvbvwjxwgm
14
+ Case #14: egjgjnzdngnzdnujnzdngjujnzdnguj
15
+ Case #15: bejfhmzczeghqktnqliaolpoazvpsdflrqxwdrvkorigcmutgcsjwfaua
16
+ Case #16: itqsgpwzekahulakmamwxtfyhpncgzgbo
17
+ Case #17: dxujtdmdxujtdmmnyznlmnyzdxunlmnyznluxdxuux
18
+ Case #18: aedzhujjcekgpmbjektqimdtwopkayncoklkcyyfqebh
19
+ Case #19: cfsjoicfsjoinzndjoijoinzndjoijoinzndjoinzndssrexul
20
+ Case #20: bgorlllxorbkkupvnqreogzpbegsripeqmnyohtkczlqafvkzzfgtobzxfqmteh
21
+ Case #21: aaqzeebdhdfeaxkxpkwnjxqbnhnxpcusuxnnrzkov
22
+ Case #22: cwvswrheepfwggwgyonraikjeampdizqbotbnoazzsyyxcoj
23
+ Case #23: eavcqvveidqnarthtevhlpurmkfqnotpesgphnnlqtwyuhztvu
24
+ Case #24: dixldllordrlolrlor
25
+ Case #25: brorejctwwdaekggrmehclfuophnejwvynrdkylwyszt
26
+ Case #26: dlhcncdvqgfhezrcvscgzwwjsdwkctejevnajabkqvswqxz
27
+ Case #27: csmzjcxepgptfdcnkrncvkcoumevwvpvaxbyqoexwujwp
28
+ Case #28: blpblpndtclpndtcrwwwbwwwrwww
29
+ Case #29: fujvkgukjmokvzmzrodprjojpzbsroschpxugnefwlwpobp
30
+ Case #30: gtkclmqgcagtqgcagtqgcagtqgcaqgcariwehfriwehf
31
+ Case #31: qfyufmufmuqfyufmuuqfyuvmcuvmcz
32
+ Case #32: cdiqsevaxdeyrxbkbxdyrbqrhhfmdmtpdofbcvxedernxq
33
+ Case #33: crmiccrmcrmiccrmcrmiccrmicmwpodocrmodosil
34
+ Case #34: bbioeebjaksdzsjzmvvyxzkmqqarhubnqtaadxgvwdbfqznzgdvxolmt
35
+ Case #35: fbjbkcbtqmyrzwdyhvpojiirespzdfuxfhrqtdkoukbomypkffomylzbwqkbuu
36
+ Case #36: eokrqeokrqeokrqkrqusauweowzltgkrqzltg
37
+ Case #37: afpjkzrdcglvqsidbporthqcrqtrrmfprtrarmefmfxcykyyxlruwr
38
+ Case #38: axcyaxcyminpaxminpszitaxminpzitaxzit
39
+ Case #39: dralemrspoeuswutihizqhtmpjsoieqpbdayaiflsujccnmumj
2011/round1a/diversity_number.html ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <p>Let's call a sequence of integers a<sub>1</sub>, a<sub>2</sub>, ..., a<sub>N</sub> <i>almost monotonic</i> if first K elements are non-decreasing sequence and last N-K+1 elements are non-increasing sequence: a<sub>1</sub>&le;a<sub>2</sub>&le;...&le;a<sub>K</sub> and a<sub>K</sub>&ge;a<sub>K+1</sub>&ge;...&ge;a<sub>N</sub>.</p>
2
+
3
+ <p>The <i>diversity number</i> of a sequence a<sub>1</sub>, a<sub>2</sub>, ..., a<sub>N</sub> is the number of possible sequences b<sub>1</sub>, b<sub>2</sub>,..., b<sub>N</sub> for which 0&le;b<sub>i</sub>&lt;a<sub>i</sub> and all of the numbers b<sub>1</sub>, b<sub>2</sub>,..., b<sub>N</sub> are different. The diversity number of an empty sequence is 1.</p>
4
+
5
+ <p>You need to find the sum of the diversity numbers of all almost monotonic subsequences of a sequence. Since this number can be very large, find it modulo 1,000,000,007. A subsequence is a sequence that can be obtained from another sequence by deleting some elements without changing the order of the remaining elements. Two sequences are considered different if their lengths differ or there is at least one position at which they differ.</p>
6
+
7
+ <h2>Input</h2>
8
+ <p>The first line of the input file consists of a single number <strong>T</strong>, the number of test cases. Each test case consists of a number <strong>M</strong>, the number of elements in a sequence, followed by <strong>M</strong> numbers <strong>n</strong>, elements of some sequence (note that this sequence is not necessarily <i>almost monotonic</i>). All tokens are whitespace-separated</p>
9
+
10
+ <h2>Constraints</h2>
11
+ <p>
12
+ <strong>T</strong> = 20<br/>
13
+ 1 &le; <strong>M</strong>, <strong>n</strong> &le; 100
14
+ </p>
15
+
16
+ <h2>Output</h2>
17
+ <p>Output T lines, with the answer to each test case on a single line.</p>
2011/round1a/diversity_number.in ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 60
2
+ 1
3
+ 1
4
+ 2
5
+ 2 1
6
+ 3
7
+ 1 3 2
8
+ 4
9
+ 1 3 1 2
10
+ 4
11
+ 2 3 4 3
12
+ 7
13
+ 4 3 2 1 3 8 9
14
+ 9
15
+ 8 6 3 9 7 1 9 1 6
16
+ 10
17
+ 3 1 1 2 1 1 1 3 3 1
18
+ 10
19
+ 1 1 1 5 7 7 4 4 7 7
20
+ 10
21
+ 1 1 1 1 3 4 3 3 4 4
22
+ 12
23
+ 10 2 10 4 8 3 9 2 14 1 3 11
24
+ 12
25
+ 5 4 6 8 6 8 8 5 12 7 14 14
26
+ 14
27
+ 2 3 3 3 4 4 4 4 4 4 1 3 4 3
28
+ 14
29
+ 4 4 1 1 3 3 3 2 2 1 1 1 2 4
30
+ 17
31
+ 9 4 11 9 9 9 2 9 11 12 5 8 4 13 1 11 1
32
+ 52
33
+ 94 85 91 90 90 9 74 59 16 18 18 57 53 19 22 85 22 42 41 57 38 25 36 36 78 36 36 27 28 30 25 24 21 31 20 43 17 44 16 44 48 58 14 5 1 86 66 77 42 78 83 84
34
+ 53
35
+ 8 10 5 10 22 9 10 2 14 2 19 10 3 8 2 3 10 4 8 4 6 11 8 16 24 26 4 21 13 11 21 13 2 12 27 20 23 2 25 28 18 15 15 23 24 18 28 28 11 25 1 21 23
36
+ 55
37
+ 4 45 12 12 6 42 37 12 45 26 27 12 18 18 22 36 27 18 17 28 20 3 20 39 20 31 31 20 36 20 20 30 15 35 29 24 30 11 19 25 4 33 35 38 16 20 31 3 38 38 39 15 40 13 34
38
+ 57
39
+ 10 48 5 11 45 22 42 49 23 7 7 49 38 10 26 37 42 25 29 33 41 36 34 31 30 15 16 32 11 32 45 41 18 7 28 39 19 25 4 33 6 6 27 6 29 27 4 25 24 28 2 34 40 9 40 44 2
40
+ 63
41
+ 41 2 3 3 37 3 3 3 3 8 9 9 13 14 37 18 14 33 14 14 14 22 24 7 26 28 29 10 22 7 34 4 2 33 20 39 33 33 33 40 35 36 36 33 37 38 38 40 9 38 40 38 40 22 40 43 6 43 13 5 43 18 21
42
+ 64
43
+ 28 56 53 46 49 54 46 41 42 20 16 47 28 60 39 61 59 20 22 16 33 59 64 62 62 20 51 39 3 26 15 53 48 27 43 50 41 55 35 1 57 12 60 5 14 23 11 35 49 9 58 44 42 49 34 9 13 36 49 7 30 5 20 64
44
+ 69
45
+ 86 82 84 90 56 86 64 81 72 71 67 72 58 66 56 10 47 35 43 55 27 48 52 90 73 45 68 36 66 90 15 30 42 48 30 15 41 24 36 65 57 56 23 7 88 29 31 53 35 20 12 93 52 50 16 71 12 44 73 24 27 38 26 21 21 21 18 11 1
46
+ 71
47
+ 75 75 76 66 71 66 58 62 61 57 55 16 57 56 26 55 55 73 50 35 53 49 46 46 45 46 44 44 35 1 21 34 34 43 32 38 29 29 29 34 54 29 61 29 33 33 31 29 27 27 26 23 26 64 66 11 26 8 71 8 4 23 1 19 11 43 71 4 2 2 1
48
+ 75
49
+ 31 11 2 35 1 2 28 9 35 3 3 3 7 7 31 28 26 8 5 9 7 31 11 16 30 30 2 12 30 2 29 19 26 32 21 24 25 13 21 13 32 13 16 23 22 32 16 15 35 22 25 25 19 16 15 12 12 13 12 27 15 10 12 12 6 5 30 34 30 5 30 30 32 33 3
50
+ 75
51
+ 60 57 59 53 3 53 53 5 53 6 52 51 52 49 43 51 42 49 10 49 42 49 46 45 35 45 34 34 44 33 22 39 39 36 32 22 33 30 32 32 29 26 30 26 25 25 19 19 24 20 20 13 28 10 10 28 10 15 13 32 8 13 7 7 34 51 6 5 3 1 5 4 1 54 1
52
+ 80
53
+ 80 72 11 10 80 28 73 7 29 61 65 74 45 68 37 34 6 30 31 16 48 75 49 23 34 52 71 40 19 24 50 29 57 42 63 30 47 43 46 47 42 55 30 29 62 73 7 56 2 42 45 57 51 28 45 52 53 51 34 57 25 27 12 34 62 59 31 26 69 41 21 24 15 58 14 48 20 10 32 66
54
+ 85
55
+ 34 90 83 39 86 79 11 49 95 87 13 35 79 17 47 34 20 84 66 24 70 63 32 39 55 72 40 80 87 17 32 61 90 69 58 26 86 58 60 34 29 54 14 29 23 68 49 76 23 91 49 65 36 50 73 13 32 42 93 32 29 29 12 19 66 28 66 8 6 22 13 4 73 62 13 87 23 16 88 16 1 70 2 91 94
56
+ 84
57
+ 14 14 20 20 20 5 19 8 5 18 11 7 18 18 18 17 9 16 16 16 14 13 11 18 12 12 4 12 12 12 7 20 9 20 11 10 10 20 9 9 9 9 8 8 17 4 8 8 20 7 8 8 8 3 6 12 6 6 15 1 5 11 5 3 6 5 1 5 5 18 14 18 4 4 4 2 20 4 13 2 4 1 1 1
58
+ 89
59
+ 17 17 6 5 16 16 17 10 16 17 17 1 8 14 14 15 7 6 5 14 16 13 14 14 3 14 16 14 14 13 14 14 11 10 6 9 16 10 6 10 8 13 13 9 5 11 9 6 10 8 8 13 7 5 7 16 4 7 16 5 7 2 3 3 15 15 8 7 6 14 6 6 5 5 15 6 6 11 4 2 6 6 5 7 3 1 5 3 3
60
+ 91
61
+ 98 98 4 15 3 98 34 47 30 87 7 98 71 98 96 13 42 97 76 77 66 95 29 75 71 32 50 61 60 49 73 60 69 66 35 65 18 36 62 64 49 42 50 60 51 44 15 53 31 77 57 73 23 79 45 85 44 14 42 79 42 42 41 87 80 88 13 93 78 41 31 14 92 15 27 89 23 48 43 4 22 13 2 94 15 52 3 12 8 94 96
62
+ 100
63
+ 37 1 26 4 32 37 39 18 2 39 2 3 15 6 16 2 34 3 28 4 19 3 13 47 4 23 21 39 21 8 23 26 45 12 19 25 27 40 39 23 32 2 26 23 29 46 23 31 33 19 32 36 29 34 38 7 36 25 8 5 36 17 37 43 37 39 23 22 43 16 18 10 44 25 37 45 20 39 2 38 45 14 38 42 12 45 46 41 47 1 45 46 4 46 5 43 26 27 46 43
64
+ 100
65
+ 1 27 2 20 9 9 28 2 30 5 27 17 10 1 11 27 30 9 8 1 10 14 23 2 17 30 20 11 6 22 9 18 17 26 1 20 6 25 11 11 25 14 12 13 1 30 11 26 13 23 9 26 17 26 11 2 13 5 6 18 18 30 12 24 4 13 15 20 15 6 18 7 28 6 18 2 23 26 18 26 1 5 12 4 10 9 20 20 21 18 13 30 21 29 24 18 25 12 22 24
66
+ 92
67
+ 60 4 73 24 67 12 5 20 10 11 39 12 13 14 73 14 68 43 42 66 11 74 29 8 70 71 25 28 62 28 16 55 26 43 53 35 19 62 58 15 38 57 40 47 40 40 69 57 73 19 46 57 30 40 37 33 35 59 40 17 52 48 46 26 71 22 42 60 4 75 47 48 55 12 27 60 40 73 40 34 67 6 55 60 44 72 15 44 73 26 69 70
68
+ 93
69
+ 1 23 1 17 23 24 20 24 2 20 24 19 2 2 3 24 3 21 3 5 5 20 9 19 9 14 17 18 17 14 16 14 15 15 18 19 15 17 21 24 21 2 15 17 13 19 13 11 21 11 22 22 22 22 2 10 23 17 9 18 9 9 6 23 14 12 10 23 1 1 1 23 23 23 1 23 23 9 23 24 7 24 24 1 24 24 24 5 5 1 2 1 24
70
+ 90
71
+ 6 60 63 61 6 37 59 53 59 51 3 9 59 59 27 28 58 51 36 54 51 59 54 41 50 25 50 25 45 32 57 2 43 16 22 38 54 44 36 5 14 38 23 38 32 44 43 40 42 38 41 39 34 29 7 35 33 32 1 33 23 26 23 32 45 21 27 16 16 19 19 27 36 52 10 4 39 1 30 18 16 16 1 46 8 8 59 57 1 6
72
+ 98
73
+ 2 35 3 6 6 10 2 10 10 10 38 63 7 11 11 19 9 9 9 9 12 19 14 15 20 57 21 15 21 16 19 20 21 26 21 22 22 26 26 28 29 27 30 36 61 29 31 31 33 33 41 41 44 63 63 33 35 33 36 36 40 42 46 46 63 65 47 66 67 48 48 71 49 76 49 77 51 83 77 51 54 78 54 55 58 78 82 58 83 62 18 65 65 70 78 78 79 80
74
+ 96
75
+ 39 35 39 39 39 1 35 2 37 37 31 30 25 7 29 29 28 9 36 27 26 20 16 39 34 26 31 39 26 26 26 21 1 11 25 23 23 21 3 14 2 26 3 28 14 28 14 20 7 28 13 12 12 25 12 14 25 26 11 26 9 26 25 24 7 4 23 23 23 23 20 20 20 16 15 4 9 17 38 9 8 8 1 8 1 36 5 17 1 1 2 17 2 1 1 12
76
+ 91
77
+ 2 3 32 31 31 3 31 4 4 4 7 7 8 8 26 8 9 24 9 23 9 9 9 10 14 16 17 18 6 18 23 23 10 11 22 18 11 20 20 18 13 20 14 21 22 23 14 23 19 23 18 23 21 14 12 23 9 23 9 24 13 23 24 9 23 9 23 24 23 25 9 8 7 27 27 26 27 27 4 27 28 28 31 31 18 30 31 32 32 1 32
78
+ 95
79
+ 9 19 47 46 11 47 43 41 9 47 39 48 9 39 37 35 37 11 35 41 15 35 9 10 33 31 31 11 11 13 13 47 29 32 20 14 28 42 35 18 27 31 27 27 20 27 4 21 31 37 21 32 31 13 13 31 42 31 22 22 27 27 26 10 31 25 22 46 26 25 21 3 39 2 30 37 33 24 43 39 21 21 15 23 23 17 23 42 26 30 3 2 10 46 3
80
+ 97
81
+ 1 32 46 45 12 22 47 46 42 43 42 36 39 39 36 36 17 35 39 37 36 35 34 33 32 35 4 27 27 26 34 26 26 45 18 26 30 27 26 3 26 25 23 22 37 21 26 23 21 20 19 17 23 23 23 22 17 15 22 15 23 20 22 21 4 15 11 8 20 34 20 17 17 46 17 10 9 19 1 19 8 13 8 24 7 22 12 6 27 6 11 5 7 3 7 24 5
82
+ 90
83
+ 2 11 29 12 19 30 13 81 75 2 74 13 2 39 24 6 20 75 60 72 8 12 76 7 66 14 63 14 61 32 72 52 11 14 29 73 48 23 13 56 32 34 50 14 20 6 42 55 22 21 35 64 51 36 44 31 53 42 64 9 7 26 34 15 10 23 21 65 67 30 28 6 16 3 66 30 67 47 63 64 67 3 69 46 78 77 20 44 1 76
84
+ 91
85
+ 1 34 3 3 4 33 5 5 29 1 8 1 8 1 10 2 29 12 12 12 12 2 12 6 12 8 10 15 12 16 12 12 12 19 12 24 12 24 23 20 21 14 14 14 22 17 17 15 15 21 16 16 17 18 18 25 29 19 21 31 21 21 32 32 22 22 22 23 16 23 14 23 26 12 11 28 6 28 5 35 5 32 35 4 35 32 33 35 35 35 1
86
+ 99
87
+ 68 55 1 65 65 17 1 62 61 41 10 61 1 17 61 5 41 5 7 61 14 47 30 17 20 52 8 8 23 17 20 61 68 19 60 57 3 20 9 26 3 38 54 20 18 22 23 49 9 49 29 31 35 22 35 49 47 45 36 33 12 44 45 50 43 41 52 2 41 39 31 30 30 47 29 53 36 42 42 26 26 33 24 54 23 25 68 15 54 66 56 57 27 7 45 66 5 67 67
88
+ 90
89
+ 64 58 51 17 29 15 13 49 36 63 27 7 7 62 61 6 54 50 43 12 7 42 19 29 57 10 37 16 21 9 8 57 18 20 3 6 1 39 12 22 21 6 35 45 32 4 8 55 19 16 26 24 63 61 26 24 32 45 7 51 29 8 30 61 44 61 9 64 5 57 36 22 61 14 34 35 23 38 3 59 45 60 23 27 3 2 53 58 1 1
90
+ 100
91
+ 6 98 64 95 95 86 84 13 100 70 89 7 100 40 89 54 65 16 65 60 78 60 88 48 23 24 78 81 24 35 45 47 47 76 63 75 74 56 83 41 47 66 74 39 14 38 66 38 22 61 35 65 19 63 63 62 58 56 51 51 49 42 100 75 4 16 42 39 39 37 17 36 8 7 74 34 1 91 7 36 36 31 28 78 27 95 24 4 3 21 17 99 81 10 43 32 15 66 11 8
92
+ 100
93
+ 3 4 100 6 10 10 12 99 16 16 84 17 19 20 20 21 23 24 25 27 27 74 29 74 58 29 30 32 46 35 35 35 35 35 36 36 36 42 43 43 28 44 17 45 45 45 47 47 50 22 50 50 51 51 52 53 54 54 20 55 55 55 39 55 56 56 57 16 57 61 61 62 15 67 69 73 77 77 85 86 7 87 87 87 88 88 88 5 88 88 88 89 89 91 91 95 95 97 2 97
94
+ 100
95
+ 96 4 2 99 8 5 23 12 88 17 17 74 7 3 9 5 18 21 29 7 34 40 31 15 21 33 42 46 23 100 35 41 18 24 63 44 58 49 59 36 41 58 28 56 41 27 39 41 10 31 34 34 34 40 44 39 56 61 51 71 62 60 63 62 66 85 41 72 57 58 86 78 53 72 87 58 96 81 39 70 75 7 85 72 84 77 4 78 40 79 87 84 90 85 27 87 31 100 96 12
96
+ 100
97
+ 27 5 4 11 11 13 13 13 13 13 100 13 13 13 86 74 45 14 14 17 17 67 19 20 20 89 69 27 27 30 37 50 55 34 34 89 24 6 34 35 36 36 37 37 63 39 39 41 42 1 45 47 47 48 92 49 49 63 41 64 64 65 38 60 68 69 72 72 35 72 72 75 4 76 81 81 31 86 82 10 14 84 85 85 91 97 91 91 91 90 92 92 92 92 92 92 92 95 98 100
98
+ 100
99
+ 93 2 94 94 94 91 87 89 89 3 83 80 82 16 80 78 77 76 18 75 78 50 70 73 70 70 26 67 67 65 64 27 67 62 29 62 67 27 49 50 65 59 58 50 56 50 50 58 49 42 56 42 62 41 66 36 69 35 47 34 71 42 30 42 27 34 32 32 23 21 18 30 18 13 15 13 72 76 15 3 11 22 15 11 10 81 81 9 9 81 7 10 84 5 3 1 10 6 3 85
100
+ 100
101
+ 98 92 1 97 96 96 96 96 88 96 93 93 89 89 89 29 89 89 88 84 84 84 80 76 76 75 75 74 73 75 73 70 70 69 67 67 67 67 67 66 63 63 63 54 52 51 51 51 51 51 51 51 49 63 49 49 47 47 45 42 41 41 41 74 41 41 38 58 37 36 33 33 30 30 30 29 36 29 28 21 21 21 23 16 20 20 97 19 18 18 18 18 18 13 10 8 8 20 2 2
102
+ 100
103
+ 74 6 42 100 1 57 28 100 6 83 97 6 60 60 33 98 69 77 15 29 70 98 94 94 94 37 98 28 29 67 48 53 41 74 41 61 92 85 33 94 62 20 82 96 87 84 80 74 44 33 52 74 27 30 37 65 62 62 33 28 59 36 57 95 26 19 55 43 51 48 16 11 46 25 32 45 39 25 22 15 73 37 36 84 19 41 15 27 32 24 35 14 6 88 38 91 60 4 29 3
104
+ 100
105
+ 3 23 85 98 96 91 3 90 86 6 7 97 7 84 8 77 77 10 77 10 14 17 19 20 26 88 26 26 70 59 43 26 16 37 59 59 27 59 9 93 63 55 31 2 28 54 39 62 49 44 31 41 36 41 43 42 1 48 48 50 51 42 60 42 60 65 66 30 68 96 72 75 25 40 36 35 76 34 49 33 26 80 29 82 26 82 24 89 24 23 92 23 95 14 10 9 95 6 98 17
106
+ 100
107
+ 2 2 2 6 11 11 13 9 7 89 14 15 14 18 16 18 22 22 24 24 27 26 1 27 30 29 16 31 31 31 33 33 19 33 38 92 53 34 84 39 40 42 49 49 44 48 54 53 80 55 55 60 55 56 56 55 60 1 61 67 33 59 62 66 66 68 68 72 68 71 82 70 48 76 78 79 84 78 84 12 92 86 84 88 92 47 93 89 43 93 90 93 93 96 93 99 95 97 97 97
108
+ 100
109
+ 100 22 76 77 65 18 70 37 97 28 20 4 57 94 19 60 89 81 93 42 57 27 81 9 57 38 30 45 73 95 32 23 97 81 30 66 19 35 69 96 54 92 82 61 28 52 58 67 57 61 54 26 61 48 64 74 55 17 53 36 11 48 64 89 42 48 32 68 80 33 87 9 95 60 18 89 16 47 18 16 23 20 3 16 16 41 93 11 79 16 96 26 21 6 8 37 77 75 34 16
110
+ 100
111
+ 2 6 6 5 97 3 15 91 9 15 11 11 84 12 23 81 18 56 37 20 60 26 81 32 27 43 11 89 24 30 80 78 38 70 33 34 33 80 46 37 32 41 34 30 39 86 99 49 49 22 46 41 35 57 36 65 5 15 38 50 55 53 75 75 90 75 35 24 55 75 80 84 57 15 14 64 32 84 26 22 68 13 95 91 11 22 12 56 90 4 97 3 96 94 1 74 79 81 83 99
112
+ 100
113
+ 88 16 30 3 40 30 66 40 82 30 85 35 46 73 58 19 61 25 62 18 41 27 22 82 87 13 13 86 16 2 9 4 93 61 21 52 31 17 40 98 26 71 90 60 56 6 51 29 72 30 14 88 9 77 50 14 77 87 53 98 77 39 3 85 51 79 14 52 36 82 59 56 1 57 18 78 80 97 87 83 99 63 75 31 30 15 91 37 84 33 27 22 30 89 40 1 2 33 61 14
114
+ 100
115
+ 30 20 99 2 28 3 31 9 100 61 2 78 3 32 8 93 92 23 61 33 14 90 98 23 92 98 83 97 79 34 37 16 24 21 80 32 27 47 50 80 46 75 56 86 56 33 58 63 39 62 58 75 45 46 10 43 61 81 72 55 73 66 37 96 29 46 71 67 61 56 45 87 3 45 22 51 16 73 29 77 77 38 77 65 88 27 45 75 24 36 20 26 12 10 79 10 52 19 80 37
116
+ 100
117
+ 86 2 69 74 9 50 10 61 71 81 64 19 15 19 15 80 60 56 52 58 9 100 68 1 32 16 22 52 52 82 62 52 44 36 10 19 55 90 37 30 60 69 61 46 19 44 45 40 40 26 23 69 77 44 16 92 56 26 56 34 44 34 7 69 4 58 76 33 32 45 40 32 30 73 82 87 27 27 82 34 22 21 74 20 30 49 47 11 87 88 81 3 18 100 11 6 3 39 92 94
118
+ 100
119
+ 2 7 21 21 22 22 42 58 24 54 23 5 36 13 97 77 52 39 14 77 46 48 28 48 15 61 1 16 16 18 48 74 62 20 55 6 63 84 61 95 24 24 28 64 39 67 60 67 28 76 95 31 31 76 33 76 77 89 52 79 37 54 54 8 55 72 55 74 81 16 87 57 58 75 58 99 81 62 50 56 60 1 74 81 81 85 79 47 80 26 81 87 86 91 100 2 46 22 97 18
120
+ 100
121
+ 59 5 2 5 6 2 6 90 88 58 19 34 6 6 38 20 24 81 22 16 33 35 86 28 74 71 8 44 33 22 44 52 69 50 27 29 23 71 8 41 27 91 71 66 71 48 52 48 61 45 18 48 46 60 93 35 73 48 14 48 72 59 65 48 59 98 64 74 80 51 55 11 6 73 73 3 98 48 16 9 46 69 86 86 88 86 88 19 70 39 51 34 31 5 61 91 83 98 86 11
2011/round1a/diversity_number.md ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Let's call a sequence of integers a1, a2, ..., aN _almost monotonic_ if first
2
+ K elements are non-decreasing sequence and last N-K+1 elements are non-
3
+ increasing sequence: a1≤a2≤...≤aK and aK≥aK+1≥...≥aN.
4
+
5
+ The _diversity number_ of a sequence a1, a2, ..., aN is the number of possible
6
+ sequences b1, b2,..., bN for which 0≤bi<ai and all of the numbers b1, b2,...,
7
+ bN are different. The diversity number of an empty sequence is 1.
8
+
9
+ You need to find the sum of the diversity numbers of all almost monotonic
10
+ subsequences of a sequence. Since this number can be very large, find it
11
+ modulo 1,000,000,007. A subsequence is a sequence that can be obtained from
12
+ another sequence by deleting some elements without changing the order of the
13
+ remaining elements. Two sequences are considered different if their lengths
14
+ differ or there is at least one position at which they differ.
15
+
16
+ ## Input
17
+
18
+ The first line of the input file consists of a single number **T**, the number
19
+ of test cases. Each test case consists of a number **M**, the number of
20
+ elements in a sequence, followed by **M** numbers **n**, elements of some
21
+ sequence (note that this sequence is not necessarily _almost monotonic_). All
22
+ tokens are whitespace-separated
23
+
24
+ ## Constraints
25
+
26
+ **T** = 20
27
+ 1 ≤ **M**, **n** ≤ 100
28
+
29
+ ## Output
30
+
31
+ Output T lines, with the answer to each test case on a single line.
32
+
2011/round1a/diversity_number.out ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Case #1: 2
2
+ Case #2: 5
3
+ Case #3: 15
4
+ Case #4: 17
5
+ Case #5: 80
6
+ Case #6: 1385
7
+ Case #7: 14225
8
+ Case #8: 44
9
+ Case #9: 7582
10
+ Case #10: 208
11
+ Case #11: 139062
12
+ Case #12: 12253464
13
+ Case #13: 398
14
+ Case #14: 260
15
+ Case #15: 95347532
16
+ Case #16: 526243268
17
+ Case #17: 929337171
18
+ Case #18: 147052968
19
+ Case #19: 195636079
20
+ Case #20: 389797360
21
+ Case #21: 665170103
22
+ Case #22: 16725417
23
+ Case #23: 146751068
24
+ Case #24: 7227736
25
+ Case #25: 518425798
26
+ Case #26: 266732463
27
+ Case #27: 507417546
28
+ Case #28: 503505194
29
+ Case #29: 232316930
30
+ Case #30: 988066713
31
+ Case #31: 517806143
32
+ Case #32: 300951705
33
+ Case #33: 753423693
34
+ Case #34: 566642014
35
+ Case #35: 71582778
36
+ Case #36: 674194511
37
+ Case #37: 812773393
38
+ Case #38: 29763795
39
+ Case #39: 250743743
40
+ Case #40: 836304681
41
+ Case #41: 351922379
42
+ Case #42: 797678285
43
+ Case #43: 883590649
44
+ Case #44: 978459083
45
+ Case #45: 789180545
46
+ Case #46: 843933280
47
+ Case #47: 812285465
48
+ Case #48: 339921829
49
+ Case #49: 145561976
50
+ Case #50: 396549044
51
+ Case #51: 697309449
52
+ Case #52: 83141363
53
+ Case #53: 734139224
54
+ Case #54: 933400677
55
+ Case #55: 747024168
56
+ Case #56: 405767349
57
+ Case #57: 746363179
58
+ Case #58: 196711014
59
+ Case #59: 975178336
60
+ Case #60: 810665910
2011/round1a/turn_on_the_lights.html ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ A simple game consists of a grid of <b>R</b>x<b>C</b> buttons. Each button
2
+ will be either lighted, or unlighted. Whenever you push a button, the state
3
+ of that button, and its (up to) four neighbors will toggle -- lighted buttons
4
+ will become unlighted and unlighted buttons will become lighted. Note that
5
+ the neighbors do not 'wrap' and thus a corner button has only two neighbors,
6
+ while an edge buttons has three.<br/><br/>
7
+ In this problem you will be given an initial configuration of the buttons.
8
+ Your task is to push the right buttons so that, when you are done, all of the
9
+ lights are turned on. If there are multiple ways to do this, you should
10
+ determine the minimum number of buttons pushes that it can be done in.
11
+ <h3>Input</h3>
12
+ You will first read an integer <b>N</b> the number of test cases. For each
13
+ test case, you will read two integers <b>R</b> and <b>C</b>. This will
14
+ be followed by <b>R</b> whitespace-separated tokens, each containing <b>C</b> characters. A 'X'
15
+ indicates a lighted button, while a '.' indicates an unlighted button.
16
+ <h3>Constraints</h3>
17
+ <ul>
18
+ <li><strong>N</strong> = 20</li>
19
+ <li>1 &le; <b>R</b>,<b>C</b> &le; 18</li>
20
+ </ul>
21
+ <h3>Output</h3>
22
+ For each test case you should output the minimum number of button presses
23
+ required to turn on all the lights. If there is no way to do this, you should
24
+ output -1.
25
+
2011/round1a/turn_on_the_lights.in ADDED
@@ -0,0 +1,1051 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 60
2
+ 5 6
3
+ XXXXXX
4
+ XXX.X.
5
+ XXXXXX
6
+ X.XXXX
7
+ XXXXX.
8
+ 1 13
9
+ ..XXXXXXX.X..
10
+ 11 6
11
+ XXXXXX
12
+ XXXXXX
13
+ XXXXXX
14
+ XXXXXX
15
+ XXXXXX
16
+ XXXXXX
17
+ XXXXXX
18
+ .X.XXX
19
+ XXXX.X
20
+ XXXXXX
21
+ XXX.XX
22
+ 10 13
23
+ ..XX...X.X.X.
24
+ XX..X..X.....
25
+ .X...........
26
+ X........X...
27
+ .....XX..X.X.
28
+ .X..XX.......
29
+ .X.....X.X...
30
+ .X....X......
31
+ ......XX...X.
32
+ ..X....X.....
33
+ 9 3
34
+ ...
35
+ ...
36
+ ...
37
+ ...
38
+ ...
39
+ ..X
40
+ ...
41
+ ...
42
+ ...
43
+ 7 4
44
+ XXXX
45
+ XXXX
46
+ XXXX
47
+ XXXX
48
+ XXXX
49
+ .XX.
50
+ XXXX
51
+ 18 18
52
+ XXXXXXXXX.X.XXXXXX
53
+ X.XXXXXXXXX.XX..X.
54
+ XXX.XXX.XXXXXXXXXX
55
+ XXXXXXXXXXXXXX.XX.
56
+ .XXX.XX.X.XX.XXXX.
57
+ XXXXXXXXXXXXXXX..X
58
+ X.XXXXXX.XX...XXXX
59
+ XXXX...XXXXXXX.XX.
60
+ XXXXXX.XXXX.XXX.XX
61
+ XXXXXXXXX..XX.XXX.
62
+ XXXXXXXXXXXXXX..XX
63
+ XXXXXX.XXX.XXXXXX.
64
+ XXXXXXXXX.XXXXXXXX
65
+ XXXXXXXXXX.XXXXXXX
66
+ XXXXXXXX.XXXXXXXX.
67
+ XXXX.XXXXXXXXX.X.X
68
+ XX.XXXXXXXXXXX.XXX
69
+ XXXXXXXXXXXXXXX.X.
70
+ 18 18
71
+ .X..XXXX...X..X..X
72
+ XXXXXXXXX.X.XXXXXX
73
+ .XXXX.XXXXXXX.X..X
74
+ XX....XX.XX...XX..
75
+ XXXXXXX.XX.X.X.X.X
76
+ XXXX.X..X.XXXX.X.X
77
+ X.XXXXXXXXXX...XXX
78
+ X..XX.XX.X.XX.XXXX
79
+ .X.X.XXX.X.X..X...
80
+ X.X.XXXXXXXXX.X.X.
81
+ .XX..X.XX..XX..XXX
82
+ ..X.XX..X.XX.X.X..
83
+ X.X.X.XXXXXXX..XXX
84
+ ..X.X..XXXXXXXXXX.
85
+ XX.XX..XXXXXXXX.XX
86
+ X.X.XXXXXXXXXX.XXX
87
+ XXX.XXX.X...XXXXXX
88
+ ..XXXX.XXX...X.X.X
89
+ 18 18
90
+ ....X.X.X.XX......
91
+ ..................
92
+ .........X........
93
+ ......X.....XX....
94
+ ..........X.X....X
95
+ ..................
96
+ ....X...X....X....
97
+ ....X........X....
98
+ XX.........X......
99
+ .X.............X.X
100
+ ........X.......X.
101
+ .....X..........X.
102
+ X.................
103
+ X.X.........X.....
104
+ X........X.....X.X
105
+ ......XX......X...
106
+ ..X...X...........
107
+ .X..........X.X...
108
+ 18 18
109
+ X.........X......X
110
+ ..................
111
+ .....X..........X.
112
+ ............X.....
113
+ ...............X..
114
+ ....X.............
115
+ XX........XX......
116
+ ...............X..
117
+ .................X
118
+ .............X....
119
+ X..X.X............
120
+ X........X........
121
+ .X....X..X....X...
122
+ ..X...........X...
123
+ ..XX......X......X
124
+ .......X.X........
125
+ .....X......X.....
126
+ ..................
127
+ 18 18
128
+ .X..X..XX..X......
129
+ XXX.XX......XXX.X.
130
+ .....X..X.X..X.X.X
131
+ XX.XXX.X...XX.X..X
132
+ .XX..XXX..X.X.X...
133
+ X.X......X....XX.X
134
+ .X.X.X.X..X.X.X.XX
135
+ ...XXXX.X..XX..XX.
136
+ .X.X.XX.....XX...X
137
+ .XX...X.....X.X..X
138
+ XXXXXXX...XXXX....
139
+ XXXXXXXX.X.XXXXXX.
140
+ .X.XXXX....X.XXX..
141
+ .XXX..XXXX..XXXX..
142
+ XXX...XX.XXX..XXX.
143
+ X.XXXX....XXX.XX..
144
+ XXX.XXXX...XXX.XX.
145
+ X.XX..X...XX..X..X
146
+ 18 18
147
+ XXXX..............
148
+ X..X..X......X....
149
+ ...X....X.X.......
150
+ .X...X.......X..X.
151
+ .X...X............
152
+ ..XXXX..X.........
153
+ ..XX...X..X..XX...
154
+ ..X.X..X.....X.X.X
155
+ ..........X.......
156
+ ..........X..X.X..
157
+ ..................
158
+ ......X.......X...
159
+ ......X..X....X...
160
+ .............XX...
161
+ ............X.....
162
+ .X..XXX..X....XX..
163
+ ......X.X.........
164
+ .............X..XX
165
+ 18 18
166
+ .XXX.X...XXXX.XX.X
167
+ XXXXXX.XX.XXX..XX.
168
+ XXXXX.XX..XXXXXXXX
169
+ XXXXXX.X.X..XXXXXX
170
+ XX.XXXXXXXXXXXX.XX
171
+ XXXXXXX.XXX.XXX.XX
172
+ X.XXX.X..XXXXX.XXX
173
+ ..XX.X.XXXXXXX.XX.
174
+ XXXXXXXX.XXXXXXX.X
175
+ XXXXXXX.XXXXXXXXXX
176
+ XX.X..X.XX.X.XXXXX
177
+ X.X.XXXX.XXXXXXXXX
178
+ .XXXXX..XXXXXXX..X
179
+ XXX.XXX.XXX.XX.XXX
180
+ ..XXXXX.XXXXXXX.X.
181
+ XXX..XXXX..X..XXXX
182
+ .XXXX.XXX.XX.X.XXX
183
+ XXXXXX.X.XX.XX.XXX
184
+ 18 18
185
+ ..XXXX.......XX..X
186
+ ......X.........XX
187
+ .......X....X.X.XX
188
+ ...X....X..X......
189
+ .........X.X......
190
+ ..X...XXXX........
191
+ ....XX.....X...XX.
192
+ ......X........X..
193
+ ..................
194
+ ..X...............
195
+ ..................
196
+ .....X..X.X.......
197
+ ..........XX..X...
198
+ ........X......X..
199
+ ..XXX.......X.....
200
+ ...X.X........X...
201
+ ..........X..X....
202
+ .X........X....X.X
203
+ 18 18
204
+ .XXXXXXXXXXXX.XX..
205
+ XXX.XXXXXXX.XXXXXX
206
+ XX.XXXXX.X.XXX.XXX
207
+ .XXXXXX.XX.X.XXXX.
208
+ X.XXX.XXXX.XXXXX.X
209
+ XXXXXX.XX.XXX.XX..
210
+ XXXXXX.XXXXXXX.XXX
211
+ XXXX.XXXXXX.XXXXX.
212
+ XXXXXXXXXXXXXXX.XX
213
+ XX.XXXXXXX.X.XXXXX
214
+ XXXXXXXXX.XXXXXXXX
215
+ XXXXXX.XXXXXXXX.XX
216
+ XX.XXXXXXXXXXXX.X.
217
+ XX.XX.XXXXXXX.XXXX
218
+ XXXXXXXXX.XXX.XXXX
219
+ .XXX.XXXX.XXXXX.X.
220
+ .XX.XXXXX.XXXXXX.X
221
+ X.XXXXXXXXXXXXXXXX
222
+ 18 18
223
+ XXX..XX.XXXXXXXXX.
224
+ .X..XXXXXXXXXXXX.X
225
+ X.X..XXXX.XXX.XX.X
226
+ XX.X.XXX.XXXXX.XXX
227
+ XXXXXX.XXXXXX.XXXX
228
+ XXXXXXXXX.XX..XXX.
229
+ .XXXXXX.XXXXXX.XXX
230
+ XXXX..XX.XXXXXXXXX
231
+ XXXXXXXXXX..XXXXX.
232
+ XXXXXXXXXXXXXXXXXX
233
+ XXXXXXXXX.XXXXXX..
234
+ .X.XX.XXXXXXX.XXXX
235
+ X..XXXXXXXX.X.XXXX
236
+ XX..X.X.XXXXXX.XXX
237
+ .X.XXXXXXX..XXXXXX
238
+ XXXXXX..XXXXXXXXXX
239
+ XXXXXXXXXXXXXXXX.X
240
+ XXXXXXXX..XXXXXXX.
241
+ 18 18
242
+ .X...X.X..X.......
243
+ ......X.X...X.....
244
+ X......X..........
245
+ X........XX.......
246
+ ....X.............
247
+ .X.X...X...X......
248
+ .......X.X..XX.X..
249
+ ......X.X.....X...
250
+ ........X...XX...X
251
+ X.X...X..X...X...X
252
+ .X......X....X.X..
253
+ .......X...XX.....
254
+ XXXXX.X........X..
255
+ ..............XX..
256
+ .XX.XXX.....X.XX..
257
+ ........X........X
258
+ ...X.....X.......X
259
+ ..............X.X.
260
+ 18 18
261
+ .XXX..X..X.XX..X.X
262
+ .......X..X.XXXX.X
263
+ X.X.XX.XX.XX.XXXXX
264
+ ...XX.X.XXX.X..X..
265
+ ..XX..X.XX..XXX.XX
266
+ .X.X..XXXXX.XX..XX
267
+ XX.XX..XXX..XXX.X.
268
+ .XXXX.X.XX.XXXXXXX
269
+ XXXXX.X......XXXX.
270
+ XXXX.XXX.X.XX.....
271
+ ....XX.XXX...XXXX.
272
+ XXXXX..XX.XXX.X..X
273
+ X..X.XX.XX..X.X.X.
274
+ X..X..X....XXXXX..
275
+ X.XXXX.......X...X
276
+ XXX..XX.X..X...X.X
277
+ .....XXXXX.X.X.XX.
278
+ .X..XXXX.X.XX.X..X
279
+ 18 18
280
+ X...X...........X.
281
+ X....XXX...X..X...
282
+ ....XX.X..........
283
+ .X.......X.X..X.XX
284
+ ....XX..XXX.......
285
+ ...X.X...XX.......
286
+ X..X.X.X.X..X.....
287
+ ...X......XX.XX...
288
+ XX..X....X..X.....
289
+ .....X..XX.......X
290
+ X.....XX..X....X..
291
+ ........XX.X....X.
292
+ ........X...X.....
293
+ ..X.X.X..X.X.XXX.X
294
+ .X..X...X.X..X..X.
295
+ .XXX..XX...XX....X
296
+ .XXX...X...X......
297
+ ...X...XXXX......X
298
+ 18 18
299
+ XXXXXXXXXXXXXXXXXX
300
+ XXXXXXXXXXXXXXXXXX
301
+ XXXXXX.XXXXXXXXXXX
302
+ XXXXXXXXXXXXXXXXXX
303
+ XXXXXXXXXXXXXXXXX.
304
+ XXXXXXX.XXXXXXXXXX
305
+ XXXXXXXXXXXXXXXXXX
306
+ XXX.XXXXXXXXXXXXXX
307
+ XXXXXXXXXXXXXXXXXX
308
+ XXXXXXXXXXXX.XXXXX
309
+ XXXXXXXXXXXXXXXXXX
310
+ XXXXXXXXXXXXXXXXXX
311
+ XXXXXXXXXXXXXXXXXX
312
+ XXXXXXXX.XXXXXXXXX
313
+ XXXXXXXXXXXXXXXXXX
314
+ XXX.XXXXXXXXXXX.XX
315
+ XXXXXXXXXXXXXXXXXX
316
+ XX.XXXXXXXXXXXX.X.
317
+ 18 18
318
+ ..............X...
319
+ .....X............
320
+ ....X.............
321
+ ...........X.....X
322
+ ..................
323
+ X.................
324
+ ..................
325
+ ...........X......
326
+ ..................
327
+ .......X......X...
328
+ ..................
329
+ ..................
330
+ ..................
331
+ .X................
332
+ ..................
333
+ ...X....X.........
334
+ .............X.X..
335
+ XX..X.............
336
+ 18 18
337
+ XX.X..XXXXXXX..XX.
338
+ ..XX...XXXXXX....X
339
+ XXXXXXXXX..X.XX..X
340
+ ..X..X.X.XXXXX.XX.
341
+ ..X.XXXXX.XX.XX.XX
342
+ XXXXXX....XX.XXX.X
343
+ X.X.X.X.X...XX.X..
344
+ X..X...X..X.X..X..
345
+ X.X.X..XXXXXX..XX.
346
+ ..X...X..XXX.X...X
347
+ ..X.X.XXXX..X..XXX
348
+ .X.X..X.X.XXX.X..X
349
+ ...X.X.X..XX..X.XX
350
+ XXXXX.....X.X..XXX
351
+ XXXXX.X..X.X..X.XX
352
+ XX.X.XXXX.XXXX...X
353
+ XX..X.X.XX.XX.....
354
+ X..X.XX.X..XX..X..
355
+ 18 18
356
+ ..X..........X...X
357
+ ...X.....X.X.X....
358
+ .XX............XXX
359
+ .......X..........
360
+ .XXXX....X...X....
361
+ .XX..X..X.....X..X
362
+ ....X..........X..
363
+ ..................
364
+ ...XX.X........X..
365
+ ....X.X...........
366
+ X...X.....X......X
367
+ ..X......X...X..X.
368
+ .......X......XX..
369
+ ..XX...........XX.
370
+ XX...X............
371
+ ......XXX.X....X..
372
+ X..X..X....XXX....
373
+ X............X....
374
+ 18 18
375
+ XXXXXXX.XXXXXXXXX.
376
+ X.XXXXXXXXXXXX..XX
377
+ X.XXXX.X.XX.XXXXX.
378
+ X.XXXX.XXXXXX.XXX.
379
+ XX.XXX.X.X.XXXXXXX
380
+ XXXX..XX.XXXXXXXXX
381
+ .X.X.XXXXXX..XXXXX
382
+ X.X.XXX.XXXXXXXXXX
383
+ XXX.XXXX.X..XXX.XX
384
+ .XXX.XX.XXXXXXX.XX
385
+ .XX.X.XX.XXXX..XX.
386
+ XXXXX.XX.XX..XXXXX
387
+ XXX.XXXXXXXX.X.X.X
388
+ XXXXX.XX.X.XXXXXXX
389
+ .XX.XXXXXXX..XXX..
390
+ X..X.X.XXXXXX.XXXX
391
+ .XXXXXXXXX.XXX.XXX
392
+ XX..X.X.XXXX.XXXXX
393
+ 18 18
394
+ X....X....X.......
395
+ ..X.....XX........
396
+ ..X.X...........X.
397
+ ....X.............
398
+ ...X..X....X......
399
+ ......XX..........
400
+ .X.X......X.......
401
+ ..X.X.........XX..
402
+ .X..XX.X........X.
403
+ ..X.....X.........
404
+ ..X...X.......X...
405
+ ............X.....
406
+ ..X...............
407
+ ....X.............
408
+ ..................
409
+ .X...X..........XX
410
+ .X................
411
+ ..XX..............
412
+ 18 18
413
+ ..................
414
+ .........X........
415
+ ......X...........
416
+ ....XX............
417
+ X.................
418
+ ...X....X..X......
419
+ ..................
420
+ .............X....
421
+ .....X............
422
+ ...X......X.......
423
+ .......X.........X
424
+ ......X...........
425
+ ...X....X.........
426
+ XX..........X.....
427
+ ................X.
428
+ ................XX
429
+ .X....X...........
430
+ ..X...X......X....
431
+ 18 18
432
+ ..X..X.XX..X.X..X.
433
+ .X.XX.XXXXX..XXXXX
434
+ .XX.X.....X...X..X
435
+ XXX.X.X.XXX.XX.X..
436
+ ......XXX...X.XX.X
437
+ XX...XX....XXXX.X.
438
+ .XXX.XXXXX..X.X.X.
439
+ X.X..X.X..XX.X.XXX
440
+ X...XX...XX....XX.
441
+ XX..XXXXXXXX.X.XX.
442
+ X.....X...X.XXXXXX
443
+ .XX.X..X...XXX.X..
444
+ ...XX.XXX.X..X...X
445
+ X.X.X.XXXXXXX....X
446
+ X.XXX..XXX.......X
447
+ X.XXXXXX....XXXXX.
448
+ XXX..XXXX.XXXXXX..
449
+ X...XXX.XXXX.....X
450
+ 18 18
451
+ XX...XXX..XX....X.
452
+ XX..X..XX..XXX.X.X
453
+ ..X...............
454
+ XX.....X....X..XX.
455
+ XX....XXX..XXXXXXX
456
+ XX..X.X...X.X...X.
457
+ XXXX..X.X....XX...
458
+ X.X.X..X..X..X...X
459
+ ....XXXX..X.XX....
460
+ .X.X...X.XXXXX.X.X
461
+ ....XXXX....X.XX.X
462
+ XX.XX.X.X.XX.XXX.X
463
+ XX.....X......X.X.
464
+ .XX...........XXX.
465
+ .X.X..X...X.XX...X
466
+ .XXXX..XX..X...X.X
467
+ ...X...X...XX..X..
468
+ ..X....X..........
469
+ 18 18
470
+ ....X.X..X....X.XX
471
+ XX.X.....X.......X
472
+ X.X.X.....X....X.X
473
+ X...X..X.X.X.X...X
474
+ ....XX.XXX.XX..X..
475
+ ...XXX............
476
+ XX.X.X.X..XX..XXXX
477
+ X.X...X.X....X....
478
+ X..X....X..XX.....
479
+ X.....XX.X....X...
480
+ .......XXXXXXX....
481
+ .X.X.X.X.X....XX.X
482
+ X..X.X..XX.XXX.XXX
483
+ X..XXXXX.X..X.XXXX
484
+ X..XX........XX.X.
485
+ ..X........XX.X...
486
+ .X.......XX.XX...X
487
+ XX.X.XXX..XXXXXX.X
488
+ 18 18
489
+ X......X....XX..XX
490
+ ....X.X.X.X.XX.X.X
491
+ X.X.XXXXXX.XX.X.XX
492
+ X.......X.XX...X.X
493
+ ..X.X...X.XX......
494
+ ...XXX.X....XXX.X.
495
+ ...XXXXX.X...XX...
496
+ ....X.X.X..XXXX.X.
497
+ X....XX..XX.XXX.X.
498
+ .X.XX..X.XXXXX..X.
499
+ ...X...XX.XX.X....
500
+ .X..XX.X.X...XX.XX
501
+ X.X..XXX.......XX.
502
+ XX..X...XX.X..XX..
503
+ .XXXXX...X.XXXX.X.
504
+ ...XX.X..X.X...XXX
505
+ ..X.X.XX.X.XXXXX.X
506
+ .X..XX.X...XXXXX.X
507
+ 18 18
508
+ .......X.XXXXXXXX.
509
+ XXXXX..XX.XXXXXXXX
510
+ X.XXXX.XX..X.XX.XX
511
+ X..XXXXXX.XXXX....
512
+ XX.XX.XXX...XXXXXX
513
+ XXXX..XXX.X...XX..
514
+ .X....X.XXXXXX.X..
515
+ X.XX..XXXX.XX.X.XX
516
+ X...X..X..X.XX.XX.
517
+ .X.XX..XX.XX..X...
518
+ XX.XXXXXXXX.XX.XX.
519
+ .X.X.X.XX.XXXXX..X
520
+ X..XXXX.XXX.X.XXX.
521
+ X...X.XX.X.XX.X...
522
+ X..XXXX.XX....XXX.
523
+ X.XXXXXX.X.XX....X
524
+ XXXX.XX..X..XXXX.X
525
+ XXX.XXX..XX.XXX.X.
526
+ 18 18
527
+ XXXXXXXXXX.X....X.
528
+ XX.....XX...XX...X
529
+ .XX.X.XX...XXXX...
530
+ .X.X....XX..X..X..
531
+ XXXX..X..XXXX..X.X
532
+ ....X..X.X...XXX..
533
+ XX.XX.XXX.X...X.X.
534
+ X...XXX..XXX..XXX.
535
+ XX.X..X.XX.XXX....
536
+ X..X..X..XX..XXX..
537
+ ..XX.X.XXXX.X..XXX
538
+ XX.X..XXXX....XXXX
539
+ XXX...XX...X.XXXX.
540
+ .XX.XX.XX..XXXXXX.
541
+ ...X...XXX.XXXXX.X
542
+ .XX...X.XX.X...XXX
543
+ XXXX..........X.XX
544
+ X..XX..X...XXX..XX
545
+ 18 18
546
+ XXXXXXX..XX.X..XXX
547
+ X...X.XX..X..XX.XX
548
+ XXXX.XXXXX.X.X.XXX
549
+ ........XX.XXX..XX
550
+ ......XXX.XX.XXXX.
551
+ ...X.X.X...XX..XXX
552
+ .XXXXXXX.XXX.XX..X
553
+ XX.X...XXX..XX..XX
554
+ X...XXX.XXX.XXX.X.
555
+ XXX....X.XX.XXX.XX
556
+ .XX.XXX..X.X.XX..X
557
+ .XXX.XXX...XXXX.X.
558
+ ...XXXXXX.XXXX.X.X
559
+ X...XXX.X.....XXX.
560
+ X.XXXXXX.X..X.XX..
561
+ .X..X.X...XXX.XX.X
562
+ ..X..X...XX...XXXX
563
+ X..XXXX.X..XXX.XX.
564
+ 18 18
565
+ ...XX.X.X.....X.X.
566
+ X..X......X..XX.X.
567
+ .XX.X..X.XX...X...
568
+ ....XXX.X..XXXXX..
569
+ ..XX...X...XXXX.XX
570
+ .XX.XXXXX..X.X.XXX
571
+ X.XX..........XXX.
572
+ .XX...XXX.....XXX.
573
+ .X..XX.X.X..XX...X
574
+ .....XX..X.XX..XX.
575
+ ..X...XXX....XX...
576
+ .X..X......XXX...X
577
+ X.X...XX.X...X...X
578
+ .XX..X...X..X...XX
579
+ X..X...X........XX
580
+ .X..X.X.XXX.XX.X.X
581
+ XX...X.X.XX.X..X.X
582
+ X.X..XXX..XXXX.X..
583
+ 18 18
584
+ XXXX.XXXXXXXXXXXX.
585
+ XXXX.XXXXXX.XXX.X.
586
+ XXXXXXXXX.XXX.XXXX
587
+ XXXXX.XX.X.XXXXXXX
588
+ XX.XX..XXXXXXXXX.X
589
+ .XXXXXXXXXXXXXXXXX
590
+ XXXXXXXXX.XXX.X.X.
591
+ XXXXXXXXXXXXXXXXX.
592
+ XXXXX.XX.XXXXXXXX.
593
+ XXXXX.XXXXXXXX.XXX
594
+ XXXXX.XXXXXXXXXXX.
595
+ XXXXXXXXXX.XXXXXXX
596
+ .XX..XXXX.XXXXXXXX
597
+ XXXXXXXXXXXXXXXXX.
598
+ XXXXXXXXXXXXXXX.XX
599
+ XXXXXXX.XXXX..XXXX
600
+ X.XXXXXXXXX.X.XXXX
601
+ XXXXXXXXXXX.XXX.XX
602
+ 18 18
603
+ XXXXXXXXXXXXXXXX..
604
+ .XXXXXXXXXXXXXXXXX
605
+ .XXXXXXXXXXXXXXXXX
606
+ XX.XXXXXXXXXXXXXXX
607
+ .XXXXXXXXXXXXXXXXX
608
+ XXXXXXXXXXXXXX.XXX
609
+ XX.XXXX.XXX.X.XXXX
610
+ XXXX.XXXXXXXXXX.XX
611
+ XXXXX.XXXXXXXXXXXX
612
+ XXXXXXXXXXXXXXXXXX
613
+ XXXXXXXXX.XX..XXXX
614
+ XXXXX..XXXXXXX.XXX
615
+ X.XXXXXXXXXXX.XXXX
616
+ XXXXXXXXXXXXXXXXXX
617
+ X.XXXXXXXXX.XXXXXX
618
+ XXXXXXXXX..XXX.XXX
619
+ XXXXXXXX.XX.XX.XXX
620
+ XXXXXXXXXXXXXXXXXX
621
+ 18 18
622
+ ..XXX.X..X.XX.X..X
623
+ ..XX....X...XX.X..
624
+ .XX.....X...X.....
625
+ XXX.X.X.XX...XXX..
626
+ .X..X...X.....XXXX
627
+ ....X......X.X..XX
628
+ XX.X...X.........X
629
+ X.......X.X.XX..XX
630
+ X...XX........X...
631
+ X.X.X....XXXXXX...
632
+ XXX..X.....X.X....
633
+ .......X..X.X...XX
634
+ ..X.............XX
635
+ XXX......X......X.
636
+ .X.XX.X..X.X....X.
637
+ X...XX....X..X..X.
638
+ ......XX...X...X..
639
+ ..X..X.XXXX......X
640
+ 18 18
641
+ X.....X.X.XX.X....
642
+ .X...XXXX..XX.....
643
+ .X.X....XX...X....
644
+ XX..XX......X.....
645
+ .............X....
646
+ ...X.X.X.XXX......
647
+ ...X...X......X...
648
+ ....X....X......XX
649
+ ..X.X..X......X...
650
+ ...X.X.X.....XX..X
651
+ ..X......X...X.X.X
652
+ .....X.X.X........
653
+ X...XX.......X.XX.
654
+ .............XX...
655
+ X.XXX....X...X....
656
+ .....X....XX....XX
657
+ ..X......X.......X
658
+ .X...X......X.X..X
659
+ 18 18
660
+ X.XX...X..X..XX.XX
661
+ XX.X..X...X.XXX.XX
662
+ X...XXXXXXXXX.XXXX
663
+ X...XXX.XX..XXXXXX
664
+ X..XXXXXX...X..X..
665
+ XXXXXX.X.XX.X.XXX.
666
+ XX..XXX.X...XXX..X
667
+ XXXX...X.X..XX...X
668
+ ..XXXXXXXXXX.X....
669
+ ...XXXX.XX.XX...X.
670
+ .XXXX.XX.X.XXXXXXX
671
+ XXXX.XXXXXXXX.X.X.
672
+ .XXX..XXX...XXX.XX
673
+ XXX.XXX..X.X..XX.X
674
+ ...X..X.X.XX..XXX.
675
+ XX.....X...X..XXXX
676
+ XXXXXXX..XXX.XX..X
677
+ X.X.XXXXXXXXXXXX.X
678
+ 18 18
679
+ XXX.XXXXXX.XXXXXXX
680
+ XX.XX.X..XX..XXXXX
681
+ .X..XXXXX.XXXXXXX.
682
+ XX.X..X.XX.XXXX.XX
683
+ XX.XX.XX.XXXXX.XXX
684
+ XX.XXXXXXXXXX..XXX
685
+ XXXXX.XXX.XXXXX.XX
686
+ XXX.X.X.XXXXXXXXXX
687
+ .X.XXX.XXXXX.X.XX.
688
+ X.XXXXXX..XXXXXXX.
689
+ .X.XXXXXXXXX.X.XXX
690
+ XX.XXXXX..XXXX.XX.
691
+ X.XXXXXXX..XXX.XXX
692
+ XX.XXXXXXXXXX.X.XX
693
+ X....X..XXXX..XXXX
694
+ .XXXXX.XX..XXX.X.X
695
+ XX..XX.XXXXX.XX.XX
696
+ .XXXXXXX.XXXX.XXXX
697
+ 18 18
698
+ XXXXXXXXXXXXXXXXXX
699
+ XXXXXXXXXXXXXXXXXX
700
+ XXXXXXXXXXXXXXXXXX
701
+ XXXXXXX.XXXXXXXXXX
702
+ XX.XXX.XXXXXXXXX.X
703
+ XXXXXXXXXXXXXXXXXX
704
+ XXXXXXX.XXXXXXXXXX
705
+ XXXXXXXXXX..XXXXXX
706
+ XXXXXXXXXXXXXX.XXX
707
+ XXXXXXXXXXXXXXXXXX
708
+ XXXXX.XXXXX.XXXXX.
709
+ XXXXXXXXXXXXXXXXXX
710
+ X.XXXXXXXXXXXXXXXX
711
+ XXXXXXXXXXXXXXXXXX
712
+ X..XXXXXXXXXX.XXXX
713
+ XXXXX.XXXXXXX.XXXX
714
+ XXXXXXXXXXXXXXXXXX
715
+ XXXXXXXXXXXXXXXXXX
716
+ 18 18
717
+ .........X........
718
+ ...XX..X.........X
719
+ X.........X.......
720
+ .............X..X.
721
+ ..........X.......
722
+ .....X.XXX........
723
+ ............X.....
724
+ .........X........
725
+ ..X......X.....XX.
726
+ ..X.........X.....
727
+ ..................
728
+ ..XXX........X..X.
729
+ ..X...XX..........
730
+ X..........X..X..X
731
+ ..XX......X.....X.
732
+ ..X.....X.......X.
733
+ X..X.X........X..X
734
+ ........X......X..
735
+ 18 18
736
+ XXXXX.XXXXXXXXXXXX
737
+ XXXXXXXXXXXXXXXXXX
738
+ XXXXXX.XXXXXXXXXXX
739
+ XXXXXXXXXXXXXXXXXX
740
+ XXXXXXXXXXXXXXXXXX
741
+ XXXXXXXXXXXXXXXXXX
742
+ XX.XXXXXXXXX.XXXXX
743
+ XXXXXXXXXX.XXXXXXX
744
+ XXXXXXXXXXXXXXXXXX
745
+ XXXXXXXXXXXXXXXXXX
746
+ XXXXXXXXXXXXXX.XXX
747
+ XXXXXXXXXXXXXXXXXX
748
+ XXXXXXXXXXXXXXXXXX
749
+ XXXXXXXXXXXXXXXXXX
750
+ XXXXXXXXXXXXXXXXXX
751
+ XXXXXXXXXXXXXXXXXX
752
+ XXXXXXXXXXXXXXXXXX
753
+ XXXXX.XXXXXXXXXXXX
754
+ 18 18
755
+ X.XX.X.X....XXXXXX
756
+ ...XX..XX.XX.....X
757
+ .........X.....X..
758
+ ........X.X..X.XX.
759
+ .....X.......X....
760
+ ......X...X.X.X.XX
761
+ X.......X....X...X
762
+ ..X..XX...X....X.X
763
+ .X..........X.XX..
764
+ XXX.XXX.......X.X.
765
+ X.X......XXXX.X..X
766
+ XXXX.............X
767
+ ........XX....XX.X
768
+ .X..X.X...........
769
+ ..XXXX....X..X..X.
770
+ XX..X...XX.XX.....
771
+ ...........X......
772
+ .X....XX..........
773
+ 18 18
774
+ .XX.XX...X.X.X..XX
775
+ X.X..XX.XX...X.XX.
776
+ XX.XX.XXX.XXX..XX.
777
+ X.X.X.XX...X..XXXX
778
+ .X.X.X..XXX..XX.X.
779
+ ..X.X..XX.X.XX.XX.
780
+ .XX..XX.X.X..XXX.X
781
+ XXXXX..XX.X..X.XXX
782
+ XXX.X.XXX.......XX
783
+ XXXXX.X.XXX..X..X.
784
+ .XX.XXX.X...XX....
785
+ ...X..X.XXX.XXXX..
786
+ .XXXX...XXXX....X.
787
+ XXX.X..XX.XX.XX..X
788
+ .XXX.XX...XX.XXX.X
789
+ XXX.XXXXX.X.XXX...
790
+ .XXX..X...XXX.XXX.
791
+ .....X.XXX..XX....
792
+ 18 18
793
+ XXXXXXXXXXXXXXXXXX
794
+ XXXXXXXXXX.XXXXX.X
795
+ XXXXXXXXXXXXXXXX..
796
+ XXXXXXXXXXXXXXXXXX
797
+ XXXXXXXXXXXXXXXXXX
798
+ XXXXXXXX.XXXXXXXXX
799
+ XXXXXXXXXXXX.XXXXX
800
+ XXXXXXXXXXXXXXXXXX
801
+ XXXXXXXXXXXXXXXXXX
802
+ XXXXXXXXXXXXXXX.XX
803
+ XXX.XX.XXXXXXXXXXX
804
+ XXXXX.XXXXXXXXXXXX
805
+ X.XXXXXXXXXXXXXXXX
806
+ XXXXXXXXXXXXXXXXXX
807
+ XXXXXXXXXXXXXXXXXX
808
+ XXXXX.XXXXXXXXXXXX
809
+ XXXXXXXXXXXXXXXXXX
810
+ XXXXXXXXXXXXXXXXXX
811
+ 18 18
812
+ ..................
813
+ ..................
814
+ ..................
815
+ ..................
816
+ ..................
817
+ ..................
818
+ ..................
819
+ ..................
820
+ X.................
821
+ ..................
822
+ .X................
823
+ ..................
824
+ ..................
825
+ ..................
826
+ ..................
827
+ ..................
828
+ ..................
829
+ ..................
830
+ 18 18
831
+ .............X....
832
+ ..X....X.XX.X.....
833
+ ......X..........X
834
+ X..X.....X...XX...
835
+ ....X...X....XX...
836
+ .......X.........X
837
+ ...XX.X...........
838
+ ..X...X...........
839
+ ..................
840
+ ......X....XXX....
841
+ ..X..X...X..X..XX.
842
+ ......X...X..XX.X.
843
+ ..................
844
+ .......X.XX...X..X
845
+ .X.X....XX...X.X..
846
+ .X..XX...XX.....X.
847
+ ..................
848
+ ...XXX............
849
+ 18 18
850
+ XXXXXXXXXXXXXX....
851
+ X.X..XXX...X...X.X
852
+ XXX...XX.XXX.X.XX.
853
+ ...XX.X.XX..XX.X..
854
+ ..XXX...XXXX..X...
855
+ ..XX....XX...XXX..
856
+ ......XXX..X...X..
857
+ X..X....XXXX.XX.X.
858
+ ..XXXX....XXXX.XXX
859
+ .XX.XX.X.X...X..XX
860
+ X.X.....X.XXX..X.X
861
+ X.....X.XXXX..XX..
862
+ XX.XX.X...XXX.X.X.
863
+ XX.....X....XX.X.X
864
+ .X...X...X..X.X.XX
865
+ ..X.....X.X.XXXX..
866
+ ..XXXX....XX..XX.X
867
+ .XX..X..XXX.....XX
868
+ 18 18
869
+ X.XXXXXXXXXXXXXXXX
870
+ XXXXXXXX.XXXXXXXXX
871
+ .XXXXXXXXXXXXXXXXX
872
+ XXXXXXXXXXXXXXXXXX
873
+ XXXXXXXXXXXXXXXXXX
874
+ XXXXXXXXXXXXXXXXXX
875
+ XXXXXXXXXXXXXXXXXX
876
+ XXXXXXXXXXXXXXXXXX
877
+ XXXXXXXXXXXXXXXXXX
878
+ XXXXXXXX.XXXXXXXXX
879
+ XXXXXX.XXXXXXXX.XX
880
+ XXXXXXXXXXXXXXXXXX
881
+ XXXXXXXXXXXXXXXXXX
882
+ XXXXXXXXXXXXXX..XX
883
+ XXXXXXXXXXXXXXXXXX
884
+ XXXXXXXXXXXXXXXXXX
885
+ XXXXXXXXXXXXXXXXXX
886
+ XXXXXXXXXXXXXXXXXX
887
+ 14 13
888
+ .XXXXX.XXX.XX
889
+ XXXXXXXXXXXXX
890
+ XXXXXXXXX.XX.
891
+ XXXXXXXXX.XX.
892
+ XXXXXXXXXXXXX
893
+ XXXXXXX..XX.X
894
+ XXXXX.XXX..XX
895
+ XXXXXX.X.XXXX
896
+ XXXXXXXXXXXXX
897
+ .XXXX.XXXXXXX
898
+ XXXXXXXX.XXX.
899
+ XXX.XXXXXXXXX
900
+ XXXXXXXXXXXXX
901
+ XX.XXXXXXXXXX
902
+ 17 6
903
+ XX.XX.
904
+ X.X.XX
905
+ X.XXXX
906
+ .XXX..
907
+ .X.XX.
908
+ XXXXXX
909
+ XXXXXX
910
+ ...XX.
911
+ XXX.XX
912
+ XX.X.X
913
+ XXX..X
914
+ .X.XXX
915
+ .XXXXX
916
+ .XXXX.
917
+ ..XXXX
918
+ ..X.XX
919
+ X.XXX.
920
+ 15 16
921
+ ...............X
922
+ ......X.........
923
+ ..X...X....X....
924
+ .........X.X....
925
+ .X..............
926
+ ..X.............
927
+ ......X........X
928
+ ..X......X.X....
929
+ .X..............
930
+ X.X.............
931
+ ..X........X.X..
932
+ .........XX.....
933
+ .......X........
934
+ ..X.........X...
935
+ ....X...........
936
+ 6 17
937
+ XXXXXXXXXXXXXXXXX
938
+ XXXXXXXXXX.XXXXXX
939
+ XXXXXXXXXXXXXX.XX
940
+ XXXXXXXXXXXXXX.X.
941
+ XXXXXXXXXXXXXXXXX
942
+ XXXXXXXXXXXXXXX.X
943
+ 18 18
944
+ XXXXXXXXXXXXXXXXXX
945
+ XXXXXXXXXXXXXXXXXX
946
+ XXXXXXXXXXXXXXXXXX
947
+ XXXXXXXXXXXXXXXXXX
948
+ XXXXXXXXXXXXXXXXXX
949
+ XXXXXXXXXXXXXXXXXX
950
+ XXXXXXXXXXXXXXXXXX
951
+ XXXXXXXXXXXXXXXXXX
952
+ XXXXXXXXXXXXXXXXXX
953
+ XXXXXXXXXXXXXXXXXX
954
+ XXXXXXXXXXXXXXXXXX
955
+ XXXXXXXXXXXXXXXXXX
956
+ XXXXXXXXXXXXXXXXXX
957
+ XXXXXXXXXXXXXXXXXX
958
+ XXXXXXXXXXXXXXXXXX
959
+ XXXXXXXXXXXXXXXXXX
960
+ XXXXXXXXXXXXXXXXXX
961
+ XXXXXXXXXXXXXXXXXX
962
+ 17 17
963
+ XXXXXXXXX.X.XXXXX
964
+ XX.XXXXXXXXX.XX..
965
+ X.XXX.XXX.XXXXXXX
966
+ XXXXXXXXXXXXXXXXX
967
+ .XX..XXX.XX.X.XX.
968
+ XXXX.XXXXXXXXXXXX
969
+ XXX..XX.XXXXXX.XX
970
+ ...XXXXXXXX...XXX
971
+ XXXX.XX.XXXXXX.XX
972
+ XX.XXX.XXXXXXXXXX
973
+ X..XX.XXX.XXXXXXX
974
+ XXXXXXX..XXXXXXXX
975
+ .XXX.XXXXXX.XXXXX
976
+ XXXX.XXXXXXXXXXXX
977
+ XXXXXX.XXXXXXXXXX
978
+ XXXXX.XXXXXXXX.XX
979
+ XX.XXXXXXXXX.X.XX
980
+ 17 17
981
+ .................
982
+ .......XX....X...
983
+ ............X....
984
+ ..X...........X..
985
+ .X....X.....X....
986
+ ...X.X.....X.....
987
+ ...........X.....
988
+ ..............X..
989
+ ..X...X..X......X
990
+ XX.....X.........
991
+ .....X.X.........
992
+ ......X.......XX.
993
+ XX.XX.......XX...
994
+ .X.......X....X..
995
+ ...X.........X...
996
+ ....X...........X
997
+ ......X...X......
998
+ 17 17
999
+ .................
1000
+ .................
1001
+ .................
1002
+ ...........X.....
1003
+ ......X...X......
1004
+ .................
1005
+ .................
1006
+ ...........X.....
1007
+ ................X
1008
+ .................
1009
+ .................
1010
+ .............X...
1011
+ ..........XX.....
1012
+ .................
1013
+ .................
1014
+ .................
1015
+ .................
1016
+ 17 17
1017
+ ...........XX.X..
1018
+ X......X.X...X...
1019
+ .....X.X...X.X...
1020
+ .XXXX......X.....
1021
+ X.XXX............
1022
+ X....X.....X.X...
1023
+ ..XX.........XX..
1024
+ ...X.............
1025
+ X........XX......
1026
+ .XXXX........X...
1027
+ .X...X.....X.....
1028
+ ....XX......X..X.
1029
+ ..X.X....XX.X....
1030
+ .XXX.X.X........X
1031
+ ..X..X.XX.X.X....
1032
+ ........X..X.X...
1033
+ ........X....XXXX
1034
+ 17 17
1035
+ ..XX.....X.X..X..
1036
+ ...X..X....X.X...
1037
+ .X..XX...X.X...X.
1038
+ ..........X..X..X
1039
+ X..X...X.X..X.XX.
1040
+ X.X.XX.XX..X...XX
1041
+ ....X......X.XX..
1042
+ .........X...X...
1043
+ X..........XX....
1044
+ .......X.........
1045
+ .XX..............
1046
+ ..X.X..X.........
1047
+ ....X..X.X....XX.
1048
+ .................
1049
+ .......X.X.X.....
1050
+ X..X...X.......X.
1051
+ X.X..XX..XX..X.X.
2011/round1a/turn_on_the_lights.md ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ A simple game consists of a grid of **R**x**C** buttons. Each button will be
2
+ either lighted, or unlighted. Whenever you push a button, the state of that
3
+ button, and its (up to) four neighbors will toggle -- lighted buttons will
4
+ become unlighted and unlighted buttons will become lighted. Note that the
5
+ neighbors do not 'wrap' and thus a corner button has only two neighbors, while
6
+ an edge buttons has three.
7
+
8
+ In this problem you will be given an initial configuration of the buttons.
9
+ Your task is to push the right buttons so that, when you are done, all of the
10
+ lights are turned on. If there are multiple ways to do this, you should
11
+ determine the minimum number of buttons pushes that it can be done in.
12
+
13
+ ### Input
14
+
15
+ You will first read an integer **N** the number of test cases. For each test
16
+ case, you will read two integers **R** and **C**. This will be followed by
17
+ **R** whitespace-separated tokens, each containing **C** characters. A 'X'
18
+ indicates a lighted button, while a '.' indicates an unlighted button.
19
+
20
+ ### Constraints
21
+
22
+ * **N** = 20
23
+ * 1 ≤ **R**,**C** ≤ 18
24
+
25
+ ### Output
26
+
27
+ For each test case you should output the minimum number of button presses
28
+ required to turn on all the lights. If there is no way to do this, you should
29
+ output -1.
30
+
2011/round1a/turn_on_the_lights.out ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Case #1: 14
2
+ Case #2: 7
3
+ Case #3: 27
4
+ Case #4: 65
5
+ Case #5: 11
6
+ Case #6: 16
7
+ Case #7: 167
8
+ Case #8: 152
9
+ Case #9: 171
10
+ Case #10: 174
11
+ Case #11: 170
12
+ Case #12: 158
13
+ Case #13: 170
14
+ Case #14: 166
15
+ Case #15: 181
16
+ Case #16: 157
17
+ Case #17: 150
18
+ Case #18: 159
19
+ Case #19: 171
20
+ Case #20: 169
21
+ Case #21: 165
22
+ Case #22: 157
23
+ Case #23: 161
24
+ Case #24: 166
25
+ Case #25: 156
26
+ Case #26: 170
27
+ Case #27: 169
28
+ Case #28: 153
29
+ Case #29: 164
30
+ Case #30: 161
31
+ Case #31: 176
32
+ Case #32: 156
33
+ Case #33: 166
34
+ Case #34: 160
35
+ Case #35: 166
36
+ Case #36: 178
37
+ Case #37: 184
38
+ Case #38: 169
39
+ Case #39: 156
40
+ Case #40: 160
41
+ Case #41: 137
42
+ Case #42: 160
43
+ Case #43: 170
44
+ Case #44: 135
45
+ Case #45: 158
46
+ Case #46: 175
47
+ Case #47: 169
48
+ Case #48: 164
49
+ Case #49: 182
50
+ Case #50: 163
51
+ Case #51: -1
52
+ Case #52: -1
53
+ Case #53: 136
54
+ Case #54: -1
55
+ Case #55: 0
56
+ Case #56: -1
57
+ Case #57: -1
58
+ Case #58: -1
59
+ Case #59: 136
60
+ Case #60: -1
2011/round1a/wine_tasting.html ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ A group of Facebook employees just had a very successful product launch. To
2
+ celebrate, they have decided to go wine tasting. At the vineyard, they decide
3
+ to play a game. One person is given some glasses of wine, each containing a
4
+ different wine. Every glass of wine is labelled to indicate the kind of wine
5
+ the glass contains. After tasting each of the wines, the labelled glasses are
6
+ removed and the same person is given glasses containing the same wines, but
7
+ unlabelled. The person then needs to determine which of the unlabelled glasses
8
+ contains which wine. Sadly, nobody in the group can tell wines apart, so they
9
+ just guess randomly. They will always guess a different type of wine for each
10
+ glass. If they get enough right, they win the game. You must find the number
11
+ of ways that the person can win, modulo 1051962371.<br/><br/>
12
+
13
+ <h3>Input</h3>
14
+ The first line of the input is the number of test cases, <strong>N</strong>. The next <strong>N</strong> lines
15
+ each contain a test case, which consists of two integers, <b>G</b> and
16
+ <b>C</b>, separated by a single space. <b>G</b> is the total number of glasses
17
+ of wine and <b>C</b> is the minimum number that the person must correctly
18
+ identify to win.<br/><br/>
19
+
20
+ <h3>Constraints</h3>
21
+ <ul>
22
+ <li><strong>N</strong> = 20</li>
23
+ <li>1 &le; <strong>G</strong> &le; 100</li>
24
+ <li>1 &le; <strong>C</strong> &le; <strong>G</strong></li>
25
+ </ul><br/>
26
+
27
+ <h3>Output</h3>
28
+ For each test case, output a line containing a single integer, the
29
+ number of ways that the person can win the game modulo 1051962371.
2011/round1a/wine_tasting.in ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 50
2
+ 1 1
3
+ 4 2
4
+ 5 5
5
+ 13 10
6
+ 14 1
7
+ 23 11
8
+ 83 4
9
+ 52 3
10
+ 15 4
11
+ 16 9
12
+ 35 2
13
+ 62 39
14
+ 69 30
15
+ 98 16
16
+ 32 7
17
+ 17 13
18
+ 97 86
19
+ 36 15
20
+ 13 9
21
+ 84 75
22
+ 15 8
23
+ 33 31
24
+ 89 12
25
+ 82 59
26
+ 30 8
27
+ 67 3
28
+ 19 6
29
+ 75 35
30
+ 66 19
31
+ 14 4
32
+ 93 85
33
+ 86 2
34
+ 66 46
35
+ 49 33
36
+ 19 4
37
+ 70 49
38
+ 60 23
39
+ 75 1
40
+ 73 9
41
+ 88 57
42
+ 34 27
43
+ 19 11
44
+ 24 3
45
+ 56 44
46
+ 71 17
47
+ 96 78
48
+ 74 47
49
+ 30 7
50
+ 51 43
51
+ 97 57
2011/round1a/wine_tasting.md ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ A group of Facebook employees just had a very successful product launch. To
2
+ celebrate, they have decided to go wine tasting. At the vineyard, they decide
3
+ to play a game. One person is given some glasses of wine, each containing a
4
+ different wine. Every glass of wine is labelled to indicate the kind of wine
5
+ the glass contains. After tasting each of the wines, the labelled glasses are
6
+ removed and the same person is given glasses containing the same wines, but
7
+ unlabelled. The person then needs to determine which of the unlabelled glasses
8
+ contains which wine. Sadly, nobody in the group can tell wines apart, so they
9
+ just guess randomly. They will always guess a different type of wine for each
10
+ glass. If they get enough right, they win the game. You must find the number
11
+ of ways that the person can win, modulo 1051962371.
12
+
13
+
14
+ ### Input
15
+
16
+ The first line of the input is the number of test cases, **N**. The next **N**
17
+ lines each contain a test case, which consists of two integers, **G** and
18
+ **C**, separated by a single space. **G** is the total number of glasses of
19
+ wine and **C** is the minimum number that the person must correctly identify
20
+ to win.
21
+
22
+
23
+ ### Constraints
24
+
25
+ * **N** = 20
26
+ * 1 ≤ **G** ≤ 100
27
+ * 1 ≤ **C** ≤ **G**
28
+
29
+
30
+ ### Output
31
+
32
+ For each test case, output a line containing a single integer, the number of
33
+ ways that the person can win the game modulo 1051962371.
34
+
2011/round1a/wine_tasting.out ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Case #1: 1
2
+ Case #2: 7
3
+ Case #3: 1
4
+ Case #4: 651
5
+ Case #5: 405146859
6
+ Case #6: 268080562
7
+ Case #7: 552088028
8
+ Case #8: 498632674
9
+ Case #9: 635191483
10
+ Case #10: 23541693
11
+ Case #11: 81808008
12
+ Case #12: 80187174
13
+ Case #13: 74001353
14
+ Case #14: 996152376
15
+ Case #15: 402231981
16
+ Case #16: 22917
17
+ Case #17: 229148997
18
+ Case #18: 319742759
19
+ Case #19: 7086
20
+ Case #20: 863143030
21
+ Case #21: 13402248
22
+ Case #22: 529
23
+ Case #23: 871634493
24
+ Case #24: 390562784
25
+ Case #25: 141615833
26
+ Case #26: 195200775
27
+ Case #27: 389246543
28
+ Case #28: 173520569
29
+ Case #29: 488623143
30
+ Case #30: 603392721
31
+ Case #31: 49429646
32
+ Case #32: 299325777
33
+ Case #33: 596669446
34
+ Case #34: 20744057
35
+ Case #35: 380563847
36
+ Case #36: 79967853
37
+ Case #37: 902077391
38
+ Case #38: 862630060
39
+ Case #39: 141282623
40
+ Case #40: 391774960
41
+ Case #41: 875219463
42
+ Case #42: 170303393
43
+ Case #43: 654845005
44
+ Case #44: 505880537
45
+ Case #45: 902409729
46
+ Case #46: 525015203
47
+ Case #47: 893971096
48
+ Case #48: 948425733
49
+ Case #49: 253211239
50
+ Case #50: 203764253
2011/round1b/chess_2.html ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ After decades of shadowy demonstrations and delays from the game’s maker, Chess 2 has finally been released. You waited in line all night to be one of the first to purchase an example of the hot sequel to the classic original, and now you are finally getting a chance to open up your new investment and take a look inside. What you find is slightly puzzling; in addition to the traditional pieces, the game has been expanded to contain a number of pieces that are not actually original.<br/><br/>
2
+
3
+ The best-known piece that has been added to the game is the nightrider. The nightrider can make any number of knight moves in a single direction, i.e., its offset from its initial position will be 2*<strong>m</strong> in one dimension and <strong>m</strong> in the other for some nonzero integer <strong>m</strong>. Like other "sliding" pieces, if one of the knight moves would cause it to take another piece it is not able to traverse beyond that point<br/><br/>
4
+
5
+ The archbishop is also part of Chess 2. The archbishop can simply make any move that a knight or bishop could legally make.<br/><br/>
6
+
7
+ The strangest new piece is the kraken. The kraken can move to any square on the board, regardless of the position of any other pieces, including its own current position.<br/><br/>
8
+
9
+ You don't feel like reading the manual to learn about how the new pieces fit into the standard chess opening positions, so instead you place some of the pieces randomly on the board. The game you’ve decided to play is simply to count how many pieces on the board are currently being threatened. A piece is threatened if another piece is able to move into its cell and take it (note that if the kraken moves into its own cell it does not take itself).<br/><br/>
10
+
11
+ <h2>Input</h2>
12
+ Your input file will consist of a single integer <strong>N</strong> followed by <strong>N</strong> test cases. Each case will consist of, all separated by whitespace, an integer <strong>P</strong> followed by the identities and positions of <strong>P</strong> Chess 2 pieces. Pieces are described by a single character <strong>C</strong> to denote their type (see specification below) followed by two integers <strong>R</strong> and <strong>F</strong>, the 1-based rank and file, respectively, of the piece.<br/><br/>
13
+
14
+ You've decided to ignore the colors of the pieces in this game. The color of the pieces will not be reflected in the input and so cannot affect your output.
15
+ <br/><br/>
16
+
17
+ To make room for the new pieces, the Chess 2 board is a 16 by 16 grid. No specified pieces will fall outside the board, and no two pieces will occupy the same position.</br><br/>
18
+ The types of pieces will be specified as follows, and no entries not present in this table will appear on the board:
19
+ <table border="1">
20
+ <tr>
21
+ <td>Piece</td>
22
+ <td>Abbreviation</td>
23
+ </tr>
24
+ <tr>
25
+ <td>King</td>
26
+ <td>K</td>
27
+ </tr>
28
+ <tr>
29
+ <td>Queen</td>
30
+ <td>Q</td>
31
+ </tr>
32
+ <tr>
33
+ <td>Rook</td>
34
+ <td>R</td>
35
+ </tr>
36
+ <tr>
37
+ <td>Bishop</td>
38
+ <td>B</td>
39
+ </tr>
40
+ <tr>
41
+ <td>Knight</td>
42
+ <td>N</td>
43
+ </tr>
44
+ <tr>
45
+ <td>Nightrider</td>
46
+ <td>S</td>
47
+ </tr>
48
+ <tr>
49
+ <td>Archbishop</td>
50
+ <td>A</td>
51
+ </tr>
52
+ <tr>
53
+ <td>Kraken</td>
54
+ <td>E</td>
55
+ </tr>
56
+ </table>
57
+ <br/><br/>
58
+
59
+ <h2>Output</h2>
60
+ Output a single integer, the number of threatened pieces on the board, for each test case separated by whitespace.<br/><br/>
61
+
62
+ <h2>Constraints</h2>
63
+ <strong>N</strong> = 20<br/>
64
+ 3 &le; <strong>P</strong> &le; 64<br/>
65
+ 1 &le; <strong>R, F</strong> &le; 16<br/>
66
+ <strong>C</strong> will be one of {K, Q, R, B, N, S, A, E}
2011/round1b/chess_2.in ADDED
@@ -0,0 +1,1462 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 50
2
+ 4
3
+ Q 1 1
4
+ B 3 1
5
+ B 5 1
6
+ B 1 4
7
+
8
+ 3
9
+ S 1 1
10
+ K 2 3
11
+ S 3 5
12
+
13
+ 4
14
+ N 1 1
15
+ B 3 3
16
+ Q 5 5
17
+ N 4 1
18
+
19
+ 5
20
+ R 2 2
21
+ N 1 2
22
+ N 2 1
23
+ N 16 2
24
+ N 2 16
25
+
26
+ 6
27
+ Q 1 1
28
+ Q 2 3
29
+ Q 3 5
30
+ Q 4 2
31
+ Q 5 4
32
+ E 1 5
33
+
34
+ 16
35
+ B 2 7
36
+ R 4 1
37
+ S 11 16
38
+ E 1 3
39
+ N 3 16
40
+ E 16 15
41
+ E 8 7
42
+ R 6 3
43
+ A 6 9
44
+ A 2 9
45
+ K 10 11
46
+ B 3 13
47
+ E 10 3
48
+ A 12 8
49
+ A 1 1
50
+ S 9 1
51
+
52
+ 16
53
+ B 3 5
54
+ N 2 9
55
+ Q 10 16
56
+ Q 5 10
57
+ K 3 1
58
+ B 11 3
59
+ N 3 8
60
+ Q 3 16
61
+ B 4 4
62
+ B 14 4
63
+ Q 7 16
64
+ B 9 15
65
+ N 1 5
66
+ Q 2 11
67
+ S 2 16
68
+ R 16 4
69
+
70
+ 13
71
+ E 6 8
72
+ B 6 5
73
+ Q 1 9
74
+ S 16 11
75
+ R 5 15
76
+ B 9 5
77
+ Q 2 7
78
+ S 5 9
79
+ K 8 16
80
+ Q 4 6
81
+ A 4 9
82
+ N 9 2
83
+ N 9 13
84
+
85
+ 41
86
+ B 6 4
87
+ A 5 12
88
+ S 3 4
89
+ A 16 15
90
+ K 12 14
91
+ S 3 7
92
+ S 6 1
93
+ Q 11 6
94
+ R 15 15
95
+ S 12 13
96
+ K 7 9
97
+ Q 16 3
98
+ E 10 12
99
+ K 14 9
100
+ S 11 10
101
+ K 8 5
102
+ N 2 10
103
+ N 1 5
104
+ R 9 2
105
+ S 2 5
106
+ R 11 5
107
+ A 10 3
108
+ N 6 6
109
+ R 10 4
110
+ A 1 15
111
+ B 12 9
112
+ E 11 7
113
+ S 5 14
114
+ A 13 15
115
+ B 1 7
116
+ R 6 14
117
+ K 15 2
118
+ R 9 13
119
+ E 7 10
120
+ S 16 1
121
+ N 10 9
122
+ Q 9 11
123
+ Q 15 16
124
+ E 12 4
125
+ N 6 13
126
+ E 4 6
127
+
128
+ 7
129
+ R 14 8
130
+ B 6 10
131
+ K 3 3
132
+ S 11 14
133
+ E 10 12
134
+ N 15 12
135
+ K 11 11
136
+
137
+ 23
138
+ A 9 13
139
+ E 5 12
140
+ N 6 11
141
+ Q 15 15
142
+ Q 5 13
143
+ K 3 7
144
+ K 10 7
145
+ S 13 15
146
+ A 5 2
147
+ K 13 9
148
+ A 7 6
149
+ B 11 16
150
+ K 8 7
151
+ R 12 9
152
+ S 2 13
153
+ N 6 14
154
+ K 13 8
155
+ K 3 1
156
+ R 8 8
157
+ S 12 16
158
+ K 6 13
159
+ E 16 16
160
+ R 13 4
161
+
162
+ 44
163
+ S 12 3
164
+ S 4 11
165
+ E 3 10
166
+ R 9 1
167
+ B 7 15
168
+ A 12 7
169
+ S 1 4
170
+ A 8 8
171
+ B 8 10
172
+ R 11 8
173
+ A 8 2
174
+ R 16 6
175
+ N 10 4
176
+ R 5 7
177
+ Q 6 14
178
+ B 13 1
179
+ S 2 5
180
+ S 1 7
181
+ B 3 2
182
+ Q 10 16
183
+ Q 16 1
184
+ R 12 15
185
+ K 14 12
186
+ Q 6 4
187
+ R 7 3
188
+ A 10 14
189
+ S 7 9
190
+ K 6 8
191
+ E 2 10
192
+ N 11 11
193
+ Q 15 6
194
+ S 16 9
195
+ R 11 4
196
+ S 8 1
197
+ E 2 1
198
+ R 11 10
199
+ Q 9 14
200
+ B 3 8
201
+ E 4 6
202
+ N 9 3
203
+ N 12 6
204
+ K 12 12
205
+ R 15 16
206
+ K 3 11
207
+
208
+ 42
209
+ K 2 5
210
+ Q 7 8
211
+ E 14 16
212
+ A 6 6
213
+ K 5 1
214
+ N 12 13
215
+ A 2 1
216
+ K 6 12
217
+ K 7 4
218
+ E 8 13
219
+ E 4 4
220
+ B 11 1
221
+ S 12 15
222
+ K 9 16
223
+ E 2 3
224
+ N 9 14
225
+ A 4 12
226
+ A 11 5
227
+ A 12 3
228
+ B 6 8
229
+ N 2 15
230
+ N 1 12
231
+ N 1 6
232
+ N 15 6
233
+ E 15 15
234
+ Q 12 1
235
+ Q 2 13
236
+ R 11 4
237
+ R 11 12
238
+ K 1 9
239
+ Q 12 16
240
+ E 16 6
241
+ A 4 14
242
+ B 5 12
243
+ A 8 12
244
+ B 15 2
245
+ E 8 16
246
+ E 15 4
247
+ K 8 9
248
+ S 8 2
249
+ A 15 12
250
+ Q 11 6
251
+
252
+ 60
253
+ N 6 15
254
+ Q 7 3
255
+ E 10 11
256
+ N 9 4
257
+ Q 9 7
258
+ Q 3 6
259
+ A 2 8
260
+ B 15 13
261
+ N 10 9
262
+ Q 11 7
263
+ R 5 4
264
+ K 14 5
265
+ Q 1 15
266
+ N 1 12
267
+ S 7 2
268
+ R 13 4
269
+ N 4 10
270
+ S 6 5
271
+ R 8 15
272
+ S 11 1
273
+ R 2 2
274
+ N 10 1
275
+ R 1 9
276
+ E 15 6
277
+ A 10 3
278
+ E 3 2
279
+ K 16 16
280
+ A 12 7
281
+ B 14 10
282
+ B 8 1
283
+ N 6 8
284
+ R 11 14
285
+ B 16 15
286
+ S 12 13
287
+ Q 15 12
288
+ A 12 1
289
+ B 6 9
290
+ S 5 12
291
+ E 9 2
292
+ A 9 12
293
+ K 9 9
294
+ N 12 15
295
+ A 11 11
296
+ R 12 6
297
+ R 13 15
298
+ B 5 11
299
+ R 9 16
300
+ B 6 14
301
+ E 10 16
302
+ K 13 5
303
+ E 9 15
304
+ N 13 11
305
+ R 4 6
306
+ Q 1 14
307
+ Q 6 6
308
+ R 3 7
309
+ K 5 10
310
+ B 4 3
311
+ R 4 2
312
+ A 13 9
313
+
314
+ 24
315
+ N 2 15
316
+ E 14 16
317
+ R 5 10
318
+ E 16 8
319
+ N 14 15
320
+ B 10 12
321
+ R 1 6
322
+ K 7 13
323
+ N 4 3
324
+ B 12 3
325
+ B 10 11
326
+ B 3 8
327
+ A 13 8
328
+ B 5 9
329
+ B 3 11
330
+ E 7 1
331
+ K 16 13
332
+ S 2 2
333
+ N 15 15
334
+ E 10 8
335
+ B 4 12
336
+ A 7 10
337
+ K 5 15
338
+ A 8 2
339
+
340
+ 12
341
+ B 2 4
342
+ K 14 13
343
+ S 6 12
344
+ E 11 9
345
+ E 3 1
346
+ S 3 7
347
+ R 5 3
348
+ A 6 6
349
+ S 8 4
350
+ K 5 5
351
+ A 10 6
352
+ Q 13 16
353
+
354
+ 34
355
+ B 8 5
356
+ B 9 9
357
+ K 12 3
358
+ B 5 11
359
+ B 7 9
360
+ Q 12 1
361
+ K 15 1
362
+ K 7 15
363
+ A 10 2
364
+ R 12 14
365
+ A 13 12
366
+ K 13 15
367
+ A 10 6
368
+ N 11 8
369
+ S 1 5
370
+ Q 12 16
371
+ E 2 16
372
+ A 4 13
373
+ S 13 14
374
+ E 14 3
375
+ Q 16 13
376
+ K 3 2
377
+ Q 11 15
378
+ S 10 12
379
+ N 3 5
380
+ R 8 8
381
+ R 13 10
382
+ E 15 16
383
+ S 14 4
384
+ A 1 15
385
+ K 16 9
386
+ R 15 10
387
+ N 15 9
388
+ B 3 9
389
+
390
+ 14
391
+ K 1 5
392
+ E 7 5
393
+ B 16 5
394
+ B 6 1
395
+ Q 14 1
396
+ A 6 2
397
+ B 1 7
398
+ Q 3 11
399
+ S 1 12
400
+ R 6 5
401
+ K 10 12
402
+ E 15 16
403
+ E 7 6
404
+ Q 2 7
405
+
406
+ 33
407
+ E 7 15
408
+ A 10 10
409
+ Q 12 7
410
+ K 7 7
411
+ R 1 14
412
+ B 10 4
413
+ Q 12 3
414
+ E 5 9
415
+ K 6 4
416
+ B 2 6
417
+ K 6 1
418
+ E 11 11
419
+ A 5 16
420
+ N 14 1
421
+ Q 6 9
422
+ R 7 5
423
+ S 15 2
424
+ N 7 14
425
+ R 5 10
426
+ E 8 14
427
+ E 1 3
428
+ S 9 8
429
+ N 13 1
430
+ S 6 3
431
+ K 11 16
432
+ E 10 16
433
+ K 9 7
434
+ E 2 8
435
+ B 16 16
436
+ R 8 4
437
+ N 9 6
438
+ A 12 12
439
+ A 2 9
440
+
441
+ 39
442
+ E 1 1
443
+ N 13 7
444
+ S 2 1
445
+ A 13 14
446
+ S 14 9
447
+ Q 16 11
448
+ B 3 6
449
+ R 9 2
450
+ N 5 9
451
+ E 5 2
452
+ Q 11 4
453
+ K 8 1
454
+ A 15 14
455
+ R 4 6
456
+ Q 10 2
457
+ B 6 7
458
+ Q 11 8
459
+ N 6 3
460
+ K 14 5
461
+ B 3 4
462
+ E 15 5
463
+ E 1 16
464
+ A 4 2
465
+ S 14 3
466
+ B 13 8
467
+ Q 2 11
468
+ A 14 10
469
+ S 13 16
470
+ R 4 7
471
+ K 8 6
472
+ E 3 15
473
+ Q 9 14
474
+ B 10 6
475
+ E 11 5
476
+ R 5 15
477
+ S 16 13
478
+ S 13 13
479
+ A 15 3
480
+ A 1 10
481
+
482
+ 22
483
+ B 11 9
484
+ R 1 14
485
+ E 7 11
486
+ K 1 7
487
+ S 16 4
488
+ N 5 6
489
+ E 9 5
490
+ Q 6 10
491
+ S 1 9
492
+ B 3 13
493
+ A 3 4
494
+ B 12 15
495
+ R 4 9
496
+ R 15 8
497
+ B 8 15
498
+ K 13 12
499
+ A 11 12
500
+ Q 13 4
501
+ A 11 6
502
+ A 11 13
503
+ K 12 14
504
+ E 1 11
505
+
506
+ 25
507
+ N 2 13
508
+ B 12 14
509
+ S 1 15
510
+ A 15 11
511
+ K 15 7
512
+ B 9 6
513
+ B 3 1
514
+ E 9 13
515
+ Q 3 14
516
+ A 12 13
517
+ S 15 12
518
+ A 1 16
519
+ S 6 3
520
+ B 14 8
521
+ R 14 5
522
+ K 11 4
523
+ N 3 15
524
+ K 6 13
525
+ K 9 1
526
+ A 8 1
527
+ R 3 3
528
+ S 4 5
529
+ A 14 15
530
+ E 7 15
531
+ N 12 6
532
+
533
+ 38
534
+ S 12 2
535
+ Q 1 11
536
+ Q 10 10
537
+ A 14 2
538
+ K 13 5
539
+ B 2 2
540
+ B 13 9
541
+ E 3 9
542
+ R 8 6
543
+ S 14 3
544
+ R 11 13
545
+ N 10 7
546
+ R 12 14
547
+ S 3 10
548
+ S 1 6
549
+ Q 7 13
550
+ E 8 16
551
+ R 11 8
552
+ R 12 9
553
+ K 11 9
554
+ Q 6 1
555
+ S 12 7
556
+ S 13 12
557
+ S 11 5
558
+ B 7 15
559
+ E 2 7
560
+ R 16 11
561
+ A 3 5
562
+ N 3 8
563
+ S 8 3
564
+ S 13 2
565
+ A 15 5
566
+ K 6 7
567
+ R 12 10
568
+ E 10 5
569
+ B 10 11
570
+ E 4 7
571
+ B 15 15
572
+
573
+ 7
574
+ Q 11 3
575
+ K 12 3
576
+ Q 16 3
577
+ S 10 16
578
+ Q 16 15
579
+ R 8 15
580
+ R 11 14
581
+
582
+ 30
583
+ E 10 16
584
+ A 4 5
585
+ E 7 12
586
+ K 4 9
587
+ N 8 7
588
+ A 12 14
589
+ E 12 10
590
+ N 13 5
591
+ K 1 12
592
+ Q 10 3
593
+ R 2 13
594
+ K 1 4
595
+ N 14 11
596
+ R 1 2
597
+ E 4 4
598
+ A 16 4
599
+ R 6 12
600
+ Q 2 2
601
+ S 6 11
602
+ R 5 2
603
+ K 9 9
604
+ A 12 7
605
+ S 14 12
606
+ R 12 11
607
+ R 2 15
608
+ Q 15 3
609
+ S 13 14
610
+ A 9 8
611
+ R 9 5
612
+ K 15 14
613
+
614
+ 64
615
+ Q 6 2
616
+ E 15 12
617
+ N 15 4
618
+ A 7 15
619
+ Q 9 7
620
+ Q 7 1
621
+ B 5 7
622
+ K 4 10
623
+ K 14 15
624
+ Q 5 1
625
+ E 15 16
626
+ E 2 4
627
+ Q 10 3
628
+ Q 2 5
629
+ Q 15 13
630
+ Q 10 4
631
+ R 11 14
632
+ B 3 5
633
+ N 4 16
634
+ E 5 3
635
+ E 3 11
636
+ A 6 12
637
+ K 4 7
638
+ A 13 15
639
+ B 2 8
640
+ N 13 3
641
+ R 3 10
642
+ B 14 13
643
+ A 3 15
644
+ R 8 15
645
+ Q 14 1
646
+ E 4 12
647
+ A 10 5
648
+ B 8 16
649
+ B 16 13
650
+ B 16 7
651
+ S 6 13
652
+ Q 9 16
653
+ K 14 9
654
+ K 2 3
655
+ A 11 2
656
+ B 1 5
657
+ E 13 9
658
+ Q 14 5
659
+ S 7 13
660
+ B 3 6
661
+ N 7 16
662
+ S 2 11
663
+ N 4 9
664
+ B 3 4
665
+ S 9 11
666
+ A 1 1
667
+ K 4 1
668
+ A 4 15
669
+ K 6 1
670
+ N 8 13
671
+ S 7 2
672
+ S 2 15
673
+ Q 7 4
674
+ R 8 2
675
+ E 11 7
676
+ A 12 11
677
+ A 8 12
678
+ A 16 15
679
+
680
+ 15
681
+ N 6 16
682
+ B 5 1
683
+ Q 14 14
684
+ E 2 15
685
+ S 9 7
686
+ K 4 6
687
+ N 12 16
688
+ A 10 2
689
+ R 16 14
690
+ B 8 15
691
+ K 9 2
692
+ B 11 11
693
+ R 9 5
694
+ K 13 13
695
+ R 11 13
696
+
697
+ 25
698
+ K 9 15
699
+ S 13 14
700
+ S 11 13
701
+ E 3 12
702
+ K 9 3
703
+ A 12 7
704
+ K 16 11
705
+ Q 1 16
706
+ K 2 13
707
+ B 15 7
708
+ Q 12 1
709
+ S 8 12
710
+ E 9 16
711
+ S 12 12
712
+ B 9 6
713
+ N 5 12
714
+ N 15 12
715
+ N 7 16
716
+ E 16 1
717
+ Q 14 5
718
+ E 8 16
719
+ N 11 3
720
+ R 4 13
721
+ K 8 14
722
+ N 6 12
723
+
724
+ 7
725
+ E 2 13
726
+ R 7 3
727
+ Q 5 4
728
+ E 9 4
729
+ E 16 16
730
+ E 4 13
731
+ K 1 14
732
+
733
+ 10
734
+ A 3 9
735
+ K 2 8
736
+ B 15 16
737
+ K 12 9
738
+ A 11 7
739
+ A 11 5
740
+ N 13 13
741
+ E 10 8
742
+ R 1 16
743
+ R 6 12
744
+
745
+ 47
746
+ E 4 5
747
+ B 3 7
748
+ E 6 14
749
+ B 13 12
750
+ N 9 14
751
+ R 1 11
752
+ B 16 4
753
+ R 3 2
754
+ E 1 13
755
+ R 15 12
756
+ B 1 5
757
+ S 15 13
758
+ R 11 11
759
+ E 7 12
760
+ N 6 2
761
+ K 8 16
762
+ A 7 14
763
+ Q 11 3
764
+ A 4 7
765
+ E 3 10
766
+ S 12 11
767
+ B 1 4
768
+ Q 9 15
769
+ N 4 3
770
+ N 11 4
771
+ S 12 3
772
+ S 3 11
773
+ N 3 4
774
+ K 11 13
775
+ S 2 12
776
+ N 5 11
777
+ Q 5 3
778
+ Q 13 2
779
+ Q 7 13
780
+ Q 7 7
781
+ A 9 2
782
+ B 11 12
783
+ E 8 13
784
+ K 3 15
785
+ E 6 4
786
+ S 7 15
787
+ Q 14 3
788
+ E 9 7
789
+ A 5 7
790
+ S 13 8
791
+ A 14 6
792
+ S 5 5
793
+
794
+ 17
795
+ B 11 1
796
+ K 12 3
797
+ S 11 16
798
+ K 14 7
799
+ R 13 15
800
+ K 8 10
801
+ R 6 7
802
+ E 15 13
803
+ Q 11 3
804
+ B 9 2
805
+ K 5 9
806
+ A 14 4
807
+ Q 12 15
808
+ B 10 13
809
+ N 10 11
810
+ Q 8 4
811
+ Q 12 6
812
+
813
+ 3
814
+ B 8 8
815
+ Q 4 8
816
+ A 14 4
817
+
818
+ 43
819
+ N 15 9
820
+ A 11 15
821
+ K 16 2
822
+ Q 3 7
823
+ S 1 5
824
+ S 7 2
825
+ E 7 13
826
+ E 5 6
827
+ A 1 12
828
+ E 10 3
829
+ B 3 6
830
+ K 6 8
831
+ K 4 5
832
+ Q 7 12
833
+ E 13 2
834
+ B 14 13
835
+ E 2 11
836
+ R 7 4
837
+ K 8 12
838
+ A 4 9
839
+ A 15 3
840
+ A 13 11
841
+ S 2 6
842
+ K 13 15
843
+ B 4 11
844
+ E 6 14
845
+ N 11 12
846
+ S 12 16
847
+ S 2 5
848
+ N 6 10
849
+ K 3 5
850
+ N 10 9
851
+ Q 11 10
852
+ K 2 1
853
+ N 2 10
854
+ Q 4 16
855
+ E 14 3
856
+ R 10 15
857
+ K 4 2
858
+ A 2 14
859
+ R 1 11
860
+ A 3 16
861
+ Q 8 10
862
+
863
+ 44
864
+ R 3 15
865
+ N 14 14
866
+ K 10 5
867
+ A 11 11
868
+ Q 13 7
869
+ E 11 4
870
+ K 10 1
871
+ E 9 2
872
+ S 5 13
873
+ B 14 7
874
+ S 11 2
875
+ A 5 4
876
+ S 1 3
877
+ E 10 6
878
+ K 15 4
879
+ A 1 10
880
+ B 9 4
881
+ B 13 16
882
+ A 6 8
883
+ B 2 1
884
+ K 3 2
885
+ E 6 3
886
+ R 11 5
887
+ S 8 2
888
+ K 7 14
889
+ A 10 7
890
+ Q 12 13
891
+ K 14 2
892
+ B 2 14
893
+ A 12 15
894
+ R 11 6
895
+ R 9 16
896
+ N 8 10
897
+ S 2 3
898
+ R 7 15
899
+ N 13 4
900
+ R 4 16
901
+ R 11 16
902
+ N 14 5
903
+ K 8 9
904
+ A 15 1
905
+ E 12 3
906
+ A 4 13
907
+ N 2 15
908
+
909
+ 4
910
+ Q 15 3
911
+ E 14 6
912
+ A 14 15
913
+ N 2 3
914
+
915
+ 27
916
+ N 14 13
917
+ S 16 14
918
+ B 12 3
919
+ N 12 2
920
+ B 12 13
921
+ A 12 1
922
+ A 2 2
923
+ S 16 10
924
+ S 8 8
925
+ S 10 5
926
+ E 11 6
927
+ R 6 7
928
+ B 11 4
929
+ Q 13 14
930
+ R 11 16
931
+ S 7 2
932
+ E 8 16
933
+ N 12 4
934
+ S 1 8
935
+ A 1 4
936
+ Q 9 1
937
+ N 5 12
938
+ B 12 9
939
+ A 2 16
940
+ K 4 14
941
+ S 9 11
942
+ E 7 11
943
+
944
+ 38
945
+ S 14 12
946
+ A 5 3
947
+ A 7 6
948
+ Q 6 11
949
+ N 4 7
950
+ Q 4 1
951
+ K 6 1
952
+ S 9 12
953
+ S 6 4
954
+ Q 12 14
955
+ B 11 7
956
+ K 10 8
957
+ B 5 15
958
+ S 11 5
959
+ E 14 5
960
+ Q 9 16
961
+ A 11 10
962
+ A 7 10
963
+ Q 1 2
964
+ Q 3 7
965
+ K 5 14
966
+ A 6 6
967
+ S 8 14
968
+ S 10 3
969
+ A 7 2
970
+ Q 3 12
971
+ S 15 7
972
+ E 6 15
973
+ E 12 5
974
+ S 6 8
975
+ S 16 13
976
+ B 14 1
977
+ K 15 5
978
+ S 2 11
979
+ S 4 3
980
+ R 8 15
981
+ A 5 4
982
+ Q 3 16
983
+
984
+ 51
985
+ E 16 10
986
+ Q 3 11
987
+ N 3 13
988
+ R 12 11
989
+ B 14 4
990
+ Q 8 14
991
+ A 9 9
992
+ E 5 1
993
+ E 6 15
994
+ B 7 4
995
+ A 15 5
996
+ B 6 6
997
+ N 8 3
998
+ N 1 11
999
+ B 9 13
1000
+ E 12 14
1001
+ Q 15 4
1002
+ A 1 16
1003
+ B 16 6
1004
+ E 2 12
1005
+ K 3 10
1006
+ A 10 8
1007
+ K 9 15
1008
+ R 7 15
1009
+ Q 6 4
1010
+ A 15 14
1011
+ N 12 15
1012
+ S 3 6
1013
+ E 15 10
1014
+ Q 1 9
1015
+ R 3 8
1016
+ S 12 13
1017
+ E 7 2
1018
+ N 4 4
1019
+ A 4 15
1020
+ K 6 3
1021
+ Q 9 2
1022
+ Q 9 12
1023
+ Q 7 6
1024
+ B 2 1
1025
+ Q 6 16
1026
+ S 12 5
1027
+ Q 14 13
1028
+ E 7 1
1029
+ N 11 14
1030
+ B 6 8
1031
+ B 11 12
1032
+ Q 15 8
1033
+ Q 3 7
1034
+ B 8 13
1035
+ Q 13 12
1036
+
1037
+ 13
1038
+ Q 14 2
1039
+ B 6 14
1040
+ N 12 3
1041
+ B 9 3
1042
+ A 13 13
1043
+ E 7 14
1044
+ S 5 6
1045
+ B 8 11
1046
+ K 11 5
1047
+ R 9 11
1048
+ R 10 10
1049
+ Q 9 15
1050
+ Q 6 4
1051
+
1052
+ 34
1053
+ K 15 8
1054
+ A 12 7
1055
+ R 2 13
1056
+ R 16 12
1057
+ E 15 9
1058
+ A 16 5
1059
+ A 2 16
1060
+ K 1 1
1061
+ A 10 6
1062
+ A 8 8
1063
+ N 7 11
1064
+ B 13 5
1065
+ K 9 10
1066
+ S 2 8
1067
+ S 13 1
1068
+ S 6 13
1069
+ R 2 10
1070
+ E 15 14
1071
+ K 3 9
1072
+ S 7 16
1073
+ N 16 7
1074
+ S 8 16
1075
+ Q 13 16
1076
+ N 5 8
1077
+ E 9 14
1078
+ R 10 4
1079
+ B 8 10
1080
+ R 12 15
1081
+ N 4 9
1082
+ K 1 15
1083
+ N 16 3
1084
+ A 11 16
1085
+ B 9 2
1086
+ A 3 15
1087
+
1088
+ 27
1089
+ Q 16 3
1090
+ S 2 6
1091
+ N 11 15
1092
+ N 13 3
1093
+ R 16 4
1094
+ B 6 9
1095
+ E 10 9
1096
+ Q 13 4
1097
+ N 15 14
1098
+ E 4 5
1099
+ N 16 16
1100
+ K 8 2
1101
+ E 11 13
1102
+ R 14 13
1103
+ N 8 9
1104
+ B 6 11
1105
+ K 12 5
1106
+ B 6 3
1107
+ S 15 1
1108
+ K 7 9
1109
+ E 14 5
1110
+ S 10 8
1111
+ A 11 2
1112
+ B 10 13
1113
+ N 4 9
1114
+ R 8 10
1115
+ S 16 12
1116
+
1117
+ 62
1118
+ R 4 6
1119
+ B 14 16
1120
+ Q 13 11
1121
+ E 5 11
1122
+ E 13 3
1123
+ S 14 1
1124
+ R 5 15
1125
+ K 9 16
1126
+ S 5 12
1127
+ N 1 2
1128
+ N 6 15
1129
+ N 7 15
1130
+ E 4 13
1131
+ S 15 4
1132
+ N 9 6
1133
+ R 5 14
1134
+ B 7 10
1135
+ E 9 3
1136
+ S 4 12
1137
+ B 13 15
1138
+ E 2 10
1139
+ B 7 11
1140
+ B 7 16
1141
+ Q 2 8
1142
+ B 3 14
1143
+ R 6 10
1144
+ N 11 9
1145
+ Q 1 13
1146
+ A 11 5
1147
+ A 15 9
1148
+ A 14 8
1149
+ S 8 14
1150
+ Q 9 13
1151
+ S 4 9
1152
+ A 6 11
1153
+ S 3 5
1154
+ N 7 5
1155
+ Q 1 4
1156
+ N 5 5
1157
+ N 15 10
1158
+ S 6 1
1159
+ A 10 3
1160
+ A 8 10
1161
+ S 12 1
1162
+ Q 15 13
1163
+ R 12 15
1164
+ S 10 2
1165
+ B 4 5
1166
+ S 3 16
1167
+ K 6 5
1168
+ S 15 1
1169
+ K 14 13
1170
+ Q 10 15
1171
+ S 9 7
1172
+ Q 9 11
1173
+ B 7 3
1174
+ A 14 12
1175
+ K 1 5
1176
+ A 16 14
1177
+ K 4 14
1178
+ E 7 4
1179
+ E 12 2
1180
+
1181
+ 56
1182
+ E 9 10
1183
+ S 8 13
1184
+ N 16 7
1185
+ A 13 10
1186
+ E 8 7
1187
+ S 14 2
1188
+ K 12 14
1189
+ R 13 4
1190
+ S 16 16
1191
+ E 3 12
1192
+ E 10 11
1193
+ K 9 4
1194
+ N 15 16
1195
+ S 1 15
1196
+ K 3 15
1197
+ E 3 2
1198
+ K 16 14
1199
+ K 2 3
1200
+ N 4 14
1201
+ S 14 9
1202
+ B 11 14
1203
+ S 15 9
1204
+ N 3 3
1205
+ K 4 13
1206
+ A 6 9
1207
+ S 1 8
1208
+ R 3 14
1209
+ E 11 9
1210
+ R 5 5
1211
+ A 9 11
1212
+ B 14 13
1213
+ R 14 11
1214
+ B 5 3
1215
+ R 5 7
1216
+ Q 7 4
1217
+ B 14 4
1218
+ S 4 6
1219
+ R 9 9
1220
+ R 15 15
1221
+ R 8 12
1222
+ A 3 6
1223
+ N 10 12
1224
+ E 2 16
1225
+ K 5 1
1226
+ E 13 12
1227
+ K 9 16
1228
+ K 13 5
1229
+ A 11 7
1230
+ R 5 12
1231
+ R 6 15
1232
+ K 2 14
1233
+ Q 15 14
1234
+ B 9 15
1235
+ K 2 10
1236
+ B 11 4
1237
+ N 12 8
1238
+
1239
+ 23
1240
+ N 7 4
1241
+ A 3 8
1242
+ A 6 13
1243
+ B 2 2
1244
+ S 6 9
1245
+ S 3 16
1246
+ R 2 10
1247
+ R 6 10
1248
+ K 6 16
1249
+ R 12 15
1250
+ R 9 15
1251
+ Q 15 6
1252
+ K 4 10
1253
+ S 4 12
1254
+ Q 16 3
1255
+ B 1 14
1256
+ Q 3 7
1257
+ B 5 8
1258
+ N 4 14
1259
+ A 7 9
1260
+ K 16 6
1261
+ B 4 5
1262
+ R 11 1
1263
+
1264
+ 42
1265
+ N 6 8
1266
+ A 15 15
1267
+ Q 7 7
1268
+ K 8 1
1269
+ Q 8 12
1270
+ R 4 7
1271
+ S 1 6
1272
+ K 11 6
1273
+ B 5 5
1274
+ Q 6 11
1275
+ A 3 9
1276
+ B 8 4
1277
+ S 4 13
1278
+ N 2 13
1279
+ S 1 4
1280
+ E 13 13
1281
+ N 16 9
1282
+ E 6 13
1283
+ N 7 10
1284
+ A 13 11
1285
+ A 16 6
1286
+ B 14 1
1287
+ Q 10 14
1288
+ N 2 14
1289
+ S 2 15
1290
+ B 10 11
1291
+ R 12 7
1292
+ B 14 9
1293
+ S 16 3
1294
+ R 8 8
1295
+ E 1 3
1296
+ S 6 2
1297
+ A 4 12
1298
+ Q 5 3
1299
+ A 9 14
1300
+ A 8 14
1301
+ N 11 8
1302
+ A 15 10
1303
+ Q 11 9
1304
+ K 4 3
1305
+ N 12 4
1306
+ B 7 14
1307
+
1308
+ 41
1309
+ Q 12 13
1310
+ B 14 10
1311
+ S 11 13
1312
+ R 4 4
1313
+ S 11 4
1314
+ E 10 15
1315
+ E 7 9
1316
+ A 9 8
1317
+ B 6 4
1318
+ B 8 6
1319
+ E 14 16
1320
+ R 12 11
1321
+ R 4 13
1322
+ N 8 7
1323
+ E 10 4
1324
+ Q 8 14
1325
+ E 11 10
1326
+ K 2 15
1327
+ Q 11 7
1328
+ A 10 12
1329
+ B 5 3
1330
+ B 4 10
1331
+ R 2 5
1332
+ K 16 10
1333
+ Q 11 1
1334
+ Q 10 14
1335
+ E 2 4
1336
+ R 12 4
1337
+ R 7 7
1338
+ R 15 15
1339
+ N 14 5
1340
+ S 1 14
1341
+ S 15 14
1342
+ S 7 14
1343
+ R 14 2
1344
+ S 1 7
1345
+ K 4 8
1346
+ N 14 1
1347
+ E 10 9
1348
+ B 8 4
1349
+ E 11 5
1350
+
1351
+ 25
1352
+ A 2 11
1353
+ B 8 9
1354
+ A 11 8
1355
+ S 13 4
1356
+ K 7 8
1357
+ K 6 1
1358
+ S 4 8
1359
+ K 6 16
1360
+ K 16 3
1361
+ N 7 11
1362
+ S 4 5
1363
+ S 6 14
1364
+ E 5 3
1365
+ Q 9 14
1366
+ N 11 6
1367
+ N 16 11
1368
+ E 7 15
1369
+ K 13 1
1370
+ A 11 2
1371
+ R 6 5
1372
+ A 7 5
1373
+ N 8 14
1374
+ B 11 1
1375
+ Q 12 11
1376
+ N 8 4
1377
+
1378
+ 27
1379
+ E 11 12
1380
+ N 4 2
1381
+ K 2 9
1382
+ N 6 13
1383
+ K 10 6
1384
+ R 2 5
1385
+ E 12 16
1386
+ S 12 3
1387
+ K 12 6
1388
+ K 6 6
1389
+ Q 14 12
1390
+ N 4 9
1391
+ A 11 16
1392
+ A 15 13
1393
+ K 12 14
1394
+ R 6 7
1395
+ Q 1 7
1396
+ S 15 5
1397
+ S 11 11
1398
+ K 16 9
1399
+ K 10 4
1400
+ A 16 6
1401
+ E 1 2
1402
+ K 13 11
1403
+ E 6 10
1404
+ Q 3 12
1405
+ A 5 15
1406
+
1407
+ 54
1408
+ R 2 12
1409
+ K 9 14
1410
+ K 13 2
1411
+ S 3 5
1412
+ B 13 14
1413
+ R 14 16
1414
+ N 1 5
1415
+ A 2 10
1416
+ Q 2 11
1417
+ R 7 1
1418
+ E 7 15
1419
+ A 7 6
1420
+ N 7 11
1421
+ E 1 10
1422
+ K 2 8
1423
+ E 8 9
1424
+ Q 3 7
1425
+ S 14 9
1426
+ B 6 1
1427
+ S 8 6
1428
+ Q 14 3
1429
+ N 3 10
1430
+ E 7 16
1431
+ S 8 10
1432
+ K 6 7
1433
+ A 5 2
1434
+ N 13 4
1435
+ E 16 7
1436
+ R 10 7
1437
+ B 11 1
1438
+ B 13 11
1439
+ S 5 14
1440
+ B 6 11
1441
+ S 12 1
1442
+ B 8 11
1443
+ B 3 6
1444
+ Q 11 15
1445
+ N 2 16
1446
+ N 10 4
1447
+ Q 2 6
1448
+ A 11 10
1449
+ N 3 12
1450
+ N 1 16
1451
+ Q 11 7
1452
+ Q 6 9
1453
+ K 12 9
1454
+ B 3 1
1455
+ B 4 13
1456
+ A 9 16
1457
+ K 12 8
1458
+ K 10 2
1459
+ B 3 9
1460
+ S 9 10
1461
+ R 8 4
1462
+
2011/round1b/chess_2.md ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ After decades of shadowy demonstrations and delays from the game’s maker,
2
+ Chess 2 has finally been released. You waited in line all night to be one of
3
+ the first to purchase an example of the hot sequel to the classic original,
4
+ and now you are finally getting a chance to open up your new investment and
5
+ take a look inside. What you find is slightly puzzling; in addition to the
6
+ traditional pieces, the game has been expanded to contain a number of pieces
7
+ that are not actually original.
8
+
9
+ The best-known piece that has been added to the game is the nightrider. The
10
+ nightrider can make any number of knight moves in a single direction, i.e.,
11
+ its offset from its initial position will be 2***m** in one dimension and
12
+ **m** in the other for some nonzero integer **m**. Like other "sliding"
13
+ pieces, if one of the knight moves would cause it to take another piece it is
14
+ not able to traverse beyond that point
15
+
16
+ The archbishop is also part of Chess 2. The archbishop can simply make any
17
+ move that a knight or bishop could legally make.
18
+
19
+ The strangest new piece is the kraken. The kraken can move to any square on
20
+ the board, regardless of the position of any other pieces, including its own
21
+ current position.
22
+
23
+ You don't feel like reading the manual to learn about how the new pieces fit
24
+ into the standard chess opening positions, so instead you place some of the
25
+ pieces randomly on the board. The game you’ve decided to play is simply to
26
+ count how many pieces on the board are currently being threatened. A piece is
27
+ threatened if another piece is able to move into its cell and take it (note
28
+ that if the kraken moves into its own cell it does not take itself).
29
+
30
+
31
+ ## Input
32
+
33
+ Your input file will consist of a single integer **N** followed by **N** test
34
+ cases. Each case will consist of, all separated by whitespace, an integer
35
+ **P** followed by the identities and positions of **P** Chess 2 pieces. Pieces
36
+ are described by a single character **C** to denote their type (see
37
+ specification below) followed by two integers **R** and **F**, the 1-based
38
+ rank and file, respectively, of the piece.
39
+
40
+ You've decided to ignore the colors of the pieces in this game. The color of
41
+ the pieces will not be reflected in the input and so cannot affect your
42
+ output.
43
+
44
+ To make room for the new pieces, the Chess 2 board is a 16 by 16 grid. No
45
+ specified pieces will fall outside the board, and no two pieces will occupy
46
+ the same position.
47
+ The types of pieces will be specified as follows, and no entries not present
48
+ in this table will appear on the board:
49
+
50
+ Piece
51
+
52
+ Abbreviation
53
+
54
+ King
55
+
56
+ K
57
+
58
+ Queen
59
+
60
+ Q
61
+
62
+ Rook
63
+
64
+ R
65
+
66
+ Bishop
67
+
68
+ B
69
+
70
+ Knight
71
+
72
+ N
73
+
74
+ Nightrider
75
+
76
+ S
77
+
78
+ Archbishop
79
+
80
+ A
81
+
82
+ Kraken
83
+
84
+ E
85
+
86
+
87
+
88
+
89
+ ## Output
90
+
91
+ Output a single integer, the number of threatened pieces on the board, for
92
+ each test case separated by whitespace.
93
+
94
+
95
+ ## Constraints
96
+
97
+ **N** = 20
98
+ 3 ≤ **P** ≤ 64
99
+ 1 ≤ **R, F** ≤ 16
100
+ **C** will be one of {K, Q, R, B, N, S, A, E}
101
+
2011/round1b/chess_2.out ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Case #1: 2
2
+ Case #2: 1
3
+ Case #3: 3
4
+ Case #4: 4
5
+ Case #5: 6
6
+ Case #6: 16
7
+ Case #7: 12
8
+ Case #8: 13
9
+ Case #9: 41
10
+ Case #10: 7
11
+ Case #11: 23
12
+ Case #12: 44
13
+ Case #13: 42
14
+ Case #14: 60
15
+ Case #15: 24
16
+ Case #16: 12
17
+ Case #17: 34
18
+ Case #18: 14
19
+ Case #19: 33
20
+ Case #20: 39
21
+ Case #21: 22
22
+ Case #22: 25
23
+ Case #23: 38
24
+ Case #24: 6
25
+ Case #25: 30
26
+ Case #26: 64
27
+ Case #27: 14
28
+ Case #28: 25
29
+ Case #29: 7
30
+ Case #30: 10
31
+ Case #31: 47
32
+ Case #32: 16
33
+ Case #33: 1
34
+ Case #34: 43
35
+ Case #35: 44
36
+ Case #36: 3
37
+ Case #37: 27
38
+ Case #38: 38
39
+ Case #39: 51
40
+ Case #40: 12
41
+ Case #41: 34
42
+ Case #42: 27
43
+ Case #43: 62
44
+ Case #44: 56
45
+ Case #45: 19
46
+ Case #46: 42
47
+ Case #47: 41
48
+ Case #48: 25
49
+ Case #49: 27
50
+ Case #50: 54
2011/round1b/diminishing_circle.html ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+
2
+
2011/round1b/diminishing_circle.in ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 60
2
+ 9 3
3
+ 4 1
4
+ 3 2
5
+ 5 4
6
+ 6 9
7
+ 14 2
8
+ 9 15
9
+ 8 14
10
+ 15 3
11
+ 18 9
12
+ 11 3
13
+ 15 22
14
+ 20 26
15
+ 15 24
16
+ 17 33
17
+ 15569 5541
18
+ 11583 9801
19
+ 16692 25
20
+ 9229 6228
21
+ 22236 50
22
+ 285788 5470
23
+ 157298 7500
24
+ 185465 3340
25
+ 712096 1618
26
+ 116111 8531
27
+ 1004844898 5998
28
+ 70982398 5
29
+ 1912844176 4274
30
+ 280090413 1327
31
+ 1524325969 45
32
+ 432684539840 1071
33
+ 730523654378 2562
34
+ 369544242544 20
35
+ 823836837752 5
36
+ 257470121962 2
37
+ 371508310088 2081
38
+ 155104102185 4617
39
+ 840455709600 3010
40
+ 516253853029 2524
41
+ 999018856195 4502
42
+ 890630293137 9910
43
+ 966621871186 4
44
+ 97326279643 11
45
+ 800194613241 4986
46
+ 424051667526 9993
47
+ 312576262614 8689
48
+ 208459759810 6745
49
+ 799896021803 9345
50
+ 752744976641 12
51
+ 319948975564 15
52
+ 999999999994 6774
53
+ 999999999954 1073
54
+ 999999999929 9869
55
+ 999999999997 2287
56
+ 999999999902 1385
57
+ 999999999976 1657
58
+ 999999999995 2961
59
+ 1000000000000 7885
60
+ 999999999965 470
61
+ 999999999979 9266
2011/round1b/diminishing_circle.md ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+
2
+
2011/round1b/diminishing_circle.out ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Case #1: 1
2
+ Case #2: 1
3
+ Case #3: 2
4
+ Case #4: 2
5
+ Case #5: 2
6
+ Case #6: 2
7
+ Case #7: 1
8
+ Case #8: 4
9
+ Case #9: 13
10
+ Case #10: 3
11
+ Case #11: 9
12
+ Case #12: 10
13
+ Case #13: 5
14
+ Case #14: 1
15
+ Case #15: 7
16
+ Case #16: 2120
17
+ Case #17: 9307
18
+ Case #18: 13767
19
+ Case #19: 8380
20
+ Case #20: 12870
21
+ Case #21: 108319
22
+ Case #22: 73245
23
+ Case #23: 141748
24
+ Case #24: 662176
25
+ Case #25: 88331
26
+ Case #26: 85722025
27
+ Case #27: 39037023
28
+ Case #28: 515376569
29
+ Case #29: 35505654
30
+ Case #30: 296987310
31
+ Case #31: 275734586354
32
+ Case #32: 378886990758
33
+ Case #33: 250719764684
34
+ Case #34: 718335168421
35
+ Case #35: 92977784171
36
+ Case #36: 127438603762
37
+ Case #37: 13032499082
38
+ Case #38: 344868691150
39
+ Case #39: 347331336612
40
+ Case #40: 184304921625
41
+ Case #41: 614107045428
42
+ Case #42: 468287005627
43
+ Case #43: 58859175635
44
+ Case #44: 598309863104
45
+ Case #45: 270992714172
46
+ Case #46: 138523456879
47
+ Case #47: 146266615756
48
+ Case #48: 318728205092
49
+ Case #49: 558519823146
50
+ Case #50: 255077042619
51
+ Case #51: 605474245496
52
+ Case #52: 806603136066
53
+ Case #53: 379199925050
54
+ Case #54: 520133628360
55
+ Case #55: 635459719362
56
+ Case #56: 33420462051
57
+ Case #57: 621390814757
58
+ Case #58: 138243410238
59
+ Case #59: 748830943000
60
+ Case #60: 517148542034
2011/round1b/slot_machine_hacker.html ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <p>You recently befriended a guy who writes software for slot machines. After hanging out with him a bit, you notice that he has a penchant for showing off his knowledge of how the slot machines work. Eventually you get him to describe for you in precise detail the algorithm used on a particular brand of machine. The algorithm is as follows:</p>
2
+
3
+ <pre>
4
+ int getRandomNumber() {
5
+ secret = (secret * 5402147 + 54321) % 10000001;
6
+ return secret % 1000;
7
+ }
8
+ </pre>
9
+
10
+ <p>This function returns an integer number in [0, 999]; each digit represents one of ten symbols that appear on a wheel during a particular machine state. <strong>secret</strong> is initially set to some nonnegative value unknown to you.</p>
11
+
12
+ <p>By observing the operation of a machine long enough, you can determine value of <b>secret</b> and thus predict future outcomes. Knowing future outcomes you would be able to bet in a smart way and win lots of money.</p>
13
+
14
+ <h2>
15
+ Input
16
+ </h2>
17
+
18
+ <p>The first line of the input contains positive number <strong>T</strong>, the number of test cases. This is followed by <strong>T</strong> test cases. Each test case consists of a positive integer <strong>N</strong>, the number of observations you make. Next <strong>N</strong> tokens are integers from 0 to 999 describing your observations.</p>
19
+
20
+ <h2>
21
+ Output
22
+ </h2>
23
+ <p>
24
+ For each test case, output the next 10 values that would be displayed by the machine separated by whitespace.<br/>
25
+ If the sequence you observed cannot be produced by the machine your friend described to you, print "Wrong machine" instead.<br/>
26
+ If you cannot uniquely determine the next 10 values, print "Not enough observations" instead.
27
+ </p>
28
+
29
+ <h2>
30
+ Constraints
31
+ </h2>
32
+ <strong>T</strong> = 20<br/>
33
+ 1 &le; <strong>N</strong> &le; 100<br/>
34
+ Tokens in the input are no more than 3 characters long and contain only digits 0-9.
2011/round1b/slot_machine_hacker.in ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 55
2
+ 1 968
3
+ 3 767 308 284
4
+ 5 78 880 53 698 235
5
+ 7 23 786 292 615 259 635 540
6
+ 9 862 452 303 558 767 105 911 846 462
7
+ 11 255 353 267 500 766 937 792 682 28 339 575
8
+ 13 611 876 666 178 641 403 377 804 590 641 708 268 512
9
+ 15 511 831 275 539 597 170 42 467 286 37 560 817 474 917 250
10
+ 17 945 782 497 380 959 578 65 837 870 618 444 12 656 345 168 43 484
11
+ 19 743 398 250 424 103 472 294 112 512 942 604 955 793 162 243 182 873 587 787
12
+ 21 201 260 506 418 790 810 314 622 128 316 429 966 217 930 503 128 316 696 81 862 930
13
+ 23 999 876 259 462 934 705 543 897 770 641 589 909 354 747 579 267 705 83 572 270 807 791 41
14
+ 25 433 827 480 303 296 112 567 266 353 221 473 105 536 176 497 873 819 208 726 156 71 134 672 663 617
15
+ 27 378 733 719 221 320 986 89 206 453 199 328 208 839 774 86 650 597 325 450 512 575 14 695 426 230 63 103
16
+ 29 689 305 489 341 127 345 816 52 612 920 459 58 96 761 832 958 651 704 511 391 691 902 868 131 133 92 617 457 664
17
+ 31 241 172 738 267 885 360 159 170 984 680 77 77 865 506 228 726 27 292 149 934 57 886 879 917 244 891 3 35 132 846 92
18
+ 33 870 223 112 965 54 390 762 594 509 344 574 298 213 582 681 426 84 424 484 502 119 362 172 227 99 381 160 192 300 976 429 539 30
19
+ 35 668 839 865 10 199 285 991 869 152 668 734 241 350 399 756 564 473 811 975 910 996 714 954 995 970 564 971 566 671 189 580 421 990 923 161
20
+ 37 100 4 238 270 27 492 928 28 578 480 340 61 415 72 48 640 582 291 197 569 248 20 959 616 202 792 35 365 90 290 888 275 780 657 56 22 970
21
+ 39 924 316 873 48 30 517 241 654 410 366 719 195 910 984 92 649 306 307 760 145 615 482 150 463 486 487 823 708 235 798 9 217 469 143 9 978 232 626 775
22
+ 41 853 436 501 761 405 895 233 155 193 488 586 482 885 370 848 276 984 368 977 486 645 93 30 825 686 281 857 753 506 817 291 931 415 666 571 635 355 833 105 943 908
23
+ 43 156 884 848 933 536 819 493 299 636 272 763 334 229 229 85 394 808 819 405 439 757 178 562 57 938 718 268 282 543 969 722 829 32 483 464 683 598 312 574 229 72 85 17
24
+ 45 614 745 103 927 223 158 513 809 251 646 588 344 653 997 345 341 252 928 699 266 499 594 976 758 583 458 308 50 736 366 0 743 551 451 889 853 683 272 121 24 290 491 521 705 550
25
+ 47 227 148 683 247 18 43 290 310 581 595 94 687 689 370 381 886 124 630 622 617 412 297 244 25 664 934 711 130 113 739 832 322 300 47 809 542 791 666 319 744 453 716 158 861 80 677 231
26
+ 49 846 312 78 812 729 460 766 453 477 551 632 483 972 243 339 85 754 439 344 560 641 289 389 352 35 689 754 624 44 536 714 355 114 791 344 558 49 957 921 754 52 870 526 224 298 235 879 258 494
27
+ 51 791 219 317 730 753 333 288 393 577 528 487 586 275 841 928 862 533 556 68 917 144 168 412 116 648 583 91 109 110 714 134 677 675 320 72 864 711 708 334 368 779 195 366 557 437 810 139 685 10 818 427
28
+ 53 104 364 139 493 532 597 767 197 713 274 217 73 924 19 781 704 1 845 688 576 463 334 603 129 729 679 798 0 645 326 858 150 293 903 743 173 483 519 28 991 466 573 276 826 215 381 317 924 582 643 461 671 825
29
+ 55 47 696 325 768 584 566 537 178 835 226 472 540 835 426 263 947 365 53 853 152 764 936 608 585 164 506 943 251 674 324 563 473 154 540 920 296 922 812 401 458 525 736 697 717 521 437 530 626 663 47 688 810 320 409 902
30
+ 57 334 357 62 736 67 995 267 883 961 154 662 575 852 73 668 915 89 447 774 90 401 753 997 415 3 843 51 340 916 316 856 762 156 351 647 694 626 748 787 573 560 789 862 903 130 980 97 375 188 320 259 512 719 90 32 345 477
31
+ 59 279 264 300 653 91 868 789 823 60 132 516 678 155 671 257 692 868 564 498 446 905 632 20 179 616 737 388 825 982 494 276 84 716 880 375 0 288 498 200 188 287 114 702 237 268 555 357 802 704 362 906 763 321 956 57 822 898 243 642
32
+ 61 590 835 70 774 898 227 516 668 219 853 647 529 412 658 3 0 922 943 559 325 21 521 193 884 519 766 903 482 480 926 285 559 635 571 495 126 837 853 854 663 306 329 194 64 214 608 488 316 841 548 519 194 386 907 980 569 198 788 142 19 263
33
+ 63 535 741 309 691 922 100 38 608 318 830 502 632 715 256 592 777 700 60 283 682 524 400 216 647 132 660 240 967 546 104 705 881 195 100 223 432 499 603 267 278 33 655 34 397 353 182 748 743 357 590 167 445 987 774 6 46 619 177 780 375 61 399 22
34
+ 65 377 331 985 41 239 122 200 791 256 734 937 80 806 346 676 748 406 92 611 644 3 790 155 352 760 752 207 70 618 367 327 100 443 724 701 114 827 683 296 967 353 54 585 454 56 126 635 28 829 262 808 57 356 355 886 89 513 52 744 182 324 994 321 460 719
35
+ 67 3 619 803 907 978 973 143 636 516 627 428 524 2 994 142 786 915 830 966 513 236 586 942 504 134 450 1 693 363 797 786 709 558 343 463 207 391 202 81 166 808 988 507 109 984 27 429 229 217 557 588 161 615 765 215 467 263 895 457 319 537 357 350 533 556 346 515
36
+ 69 126 403 347 309 113 772 666 749 385 947 305 489 767 697 743 320 38 615 900 554 185 550 230 400 716 706 266 823 479 858 760 881 565 486 530 576 699 997 373 919 795 483 741 792 848 675 343 275 52 967 895 145 837 241 578 630 663 716 22 556 251 268 910 962 692 207 146 1 418
37
+ 71 752 43 166 175 852 271 257 594 996 840 797 285 963 345 209 358 546 354 256 423 770 994 17 200 738 405 412 447 224 288 868 490 680 105 291 21 263 164 511 767 898 768 663 799 776 225 489 476 440 614 28 601 97 298 556 359 412 560 383 693 112 631 291 35 530 37 602 796 926 928 132
38
+ 73 508 387 866 718 201 300 870 509 714 496 344 819 980 939 983 491 218 983 538 281 263 443 563 36 168 803 75 723 27 48 818 720 777 505 288 147 469 863 236 410 39 362 253 352 170 989 97 138 495 379 158 232 130 837 63 225 188 606 85 970 734 985 567 461 126 358 686 766 700 982 105 643 226
39
+ 75 453 293 104 635 225 173 391 449 813 473 198 922 283 538 572 268 997 100 262 637 767 323 586 799 781 697 412 207 93 225 238 42 338 34 16 453 131 613 650 25 766 688 93 685 309 564 356 565 10 421 805 483 732 703 88 701 609 995 723 326 532 200 928 0 431 799 465 833 1 223 375 974 842 877 699
40
+ 77 764 864 874 756 32 532 119 294 972 194 329 772 540 524 319 576 50 480 323 516 883 211 759 504 684 727 926 865 591 658 247 516 256 725 136 578 680 967 303 500 785 903 584 512 254 616 488 79 148 608 419 914 797 655 11 449 909 539 223 627 614 304 490 240 404 320 49 655 720 835 676 347 696 14 661 897 669
41
+ 79 709 770 113 673 56 406 641 234 71 171 184 876 843 122 908 353 829 597 47 872 386 91 782 268 297 620 263 349 657 835 667 838 817 254 864 885 342 718 717 115 512 228 424 845 393 191 747 507 664 650 66 165 398 521 37 925 330 928 860 983 412 519 851 779 710 761 828 722 21 76 946 678 313 796 838 149 143 603 805
42
+ 81 142 722 335 514 418 814 664 604 654 752 67 71 25 551 826 959 943 721 201 758 651 434 413 94 878 668 897 550 594 793 230 568 419 342 895 328 582 258 996 549 746 473 601 858 364 511 225 51 873 235 192 51 667 752 165 954 309 450 223 26 450 96 365 761 458 279 882 10 282 611 74 600 988 740 737 31 437 655 381 507 296
43
+ 83 941 338 88 559 562 708 893 879 297 77 227 14 162 368 901 98 331 108 692 166 528 786 195 862 749 851 709 923 965 5 381 450 380 594 319 589 708 403 516 844 274 607 429 364 141 309 574 682 704 965 284 118 399 68 192 254 167 127 449 13 772 562 82 443 875 876 739 55 961 517 234 565 901 40 422 595 372 754 634 465 830 279 118
44
+ 85 252 909 857 679 369 67 620 724 456 797 358 865 420 354 648 406 385 487 753 45 644 675 368 567 652 880 223 581 463 438 389 924 298 286 439 715 257 758 169 320 293 822 921 192 86 362 706 197 842 151 897 550 464 19 115 1 467 672 948 314 854 666 644 682 848 396 323 878 680 129 534 938 755 177 384 528 488 752 667 460 160 401 772 223 754
45
+ 87 197 815 96 597 393 940 142 664 555 775 213 968 722 953 237 183 164 604 477 402 147 554 390 331 265 774 560 65 529 615 809 246 859 814 167 21 920 508 583 934 20 147 761 525 225 936 965 624 357 193 545 800 66 886 140 478 888 61 586 670 652 881 5 221 153 837 102 944 981 370 804 269 372 959 560 780 962 704 24 484 228 38 413 546 694 289 970
46
+ 89 884 843 512 375 348 280 458 45 782 100 428 923 394 238 276 668 506 599 875 126 149 585 297 474 726 730 853 847 803 773 133 413 65 93 84 341 245 151 129 10 406 427 60 667 246 590 331 193 134 624 579 824 113 805 434 83 265 713 777 176 470 997 784 741 821 73 537 494 117 309 174 957 164 416 998 364 352 580 418 497 666 684 94 23 637 802 299 461 245
47
+ 91 429 383 71 482 900 242 395 308 781 680 257 106 42 198 230 928 666 115 121 696 289 250 803 925 717 5 6 640 837 785 523 857 421 154 622 726 285 194 382 664 782 526 766 44 973 55 792 800 398 508 763 753 66 433 295 806 726 260 174 700 12 924 236 885 318 952 13 278 921 811 92 156 960 203 144 226 191 855 853 428 33 760 528 283 37 144 223 469 750 269 263
48
+ 93 886 244 326 476 586 581 415 819 396 54 82 117 465 966 490 874 110 225 416 523 31 666 217 626 362 745 46 408 30 183 801 772 940 122 47 896 370 153 930 459 0 932 269 698 280 884 834 110 220 7 932 369 1 934 217 731 589 516 86 369 570 778 442 982 180 317 519 121 262 758 504 896 518 822 599 847 846 706 991 489 897 915 758 114 748 134 156 841 407 35 188 935 259
49
+ 95 258 555 693 861 961 429 868 200 522 207 288 128 551 589 809 278 998 861 520 258 916 140 511 322 704 383 706 575 410 342 674 804 950 826 322 896 33 984 344 810 303 141 138 12 966 689 185 992 746 976 447 368 854 395 105 354 516 222 416 687 257 634 402 317 984 242 80 698 961 899 52 665 654 909 202 209 458 158 903 273 246 894 970 984 57 533 61 8 388 328 367 779 455 882 90
50
+ 97 921 872 464 227 634 647 68 696 837 825 503 197 416 6 826 703 154 215 156 685 832 598 280 726 585 323 63 32 972 182 837 241 966 428 467 420 47 305 11 992 300 576 558 128 650 485 97 756 341 350 208 872 925 463 548 285 833 230 45 166 59 425 153 393 21 131 394 633 279 176 702 321 227 800 418 871 444 343 859 598 9 722 443 121 729 427 491 870 880 163 203 824 349 78 968 37 782
51
+ 99 866 778 702 144 658 520 590 636 937 802 357 300 719 604 414 480 932 332 880 42 336 477 303 489 198 217 400 516 37 360 257 563 527 957 195 727 709 55 425 606 26 901 398 461 789 59 356 184 857 392 856 123 526 330 573 762 254 619 683 522 856 640 513 933 326 572 173 699 580 417 972 652 843 582 594 123 918 295 216 621 77 359 84 443 669 653 259 188 736 119 632 531 70 142 749 35 114 733 304
52
+ 2 511 831
53
+ 2 945 782
54
+ 2 743 398
55
+ 2 201 260
56
+ 2 999 876
2011/round1b/slot_machine_hacker.md ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ You recently befriended a guy who writes software for slot machines. After
2
+ hanging out with him a bit, you notice that he has a penchant for showing off
3
+ his knowledge of how the slot machines work. Eventually you get him to
4
+ describe for you in precise detail the algorithm used on a particular brand of
5
+ machine. The algorithm is as follows:
6
+
7
+ int getRandomNumber() {
8
+ secret = (secret * 5402147 + 54321) % 10000001;
9
+ return secret % 1000;
10
+ }
11
+
12
+ This function returns an integer number in [0, 999]; each digit represents one
13
+ of ten symbols that appear on a wheel during a particular machine state.
14
+ **secret** is initially set to some nonnegative value unknown to you.
15
+
16
+ By observing the operation of a machine long enough, you can determine value
17
+ of **secret** and thus predict future outcomes. Knowing future outcomes you
18
+ would be able to bet in a smart way and win lots of money.
19
+
20
+ ## Input
21
+
22
+ The first line of the input contains positive number **T**, the number of test
23
+ cases. This is followed by **T** test cases. Each test case consists of a
24
+ positive integer **N**, the number of observations you make. Next **N** tokens
25
+ are integers from 0 to 999 describing your observations.
26
+
27
+ ## Output
28
+
29
+ For each test case, output the next 10 values that would be displayed by the
30
+ machine separated by whitespace.
31
+ If the sequence you observed cannot be produced by the machine your friend
32
+ described to you, print "Wrong machine" instead.
33
+ If you cannot uniquely determine the next 10 values, print "Not enough
34
+ observations" instead.
35
+
36
+ ## Constraints
37
+
38
+ **T** = 20
39
+ 1 ≤ **N** ≤ 100
40
+ Tokens in the input are no more than 3 characters long and contain only digits
41
+ 0-9.
42
+
2011/round1b/slot_machine_hacker.out ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Case #1: Not enough observations
2
+ Case #2: 577 428 402 291 252 544 735 545 771 34
3
+ Case #3: 762 18 98 703 456 676 621 291 488 332
4
+ Case #4: 38 802 434 531 725 594 86 921 607 35
5
+ Case #5: Wrong machine
6
+ Case #6: 863 914 332 914 352 538 579 357 505 427
7
+ Case #7: Wrong machine
8
+ Case #8: 437 370 75 142 741 46 328 433 773 68
9
+ Case #9: 200 296 626 311 671 64 600 649 15 469
10
+ Case #10: 35 188 23 845 368 520 198 280 973 598
11
+ Case #11: 439 260 68 165 938 320 741 792 232 981
12
+ Case #12: 836 36 121 132 115 162 444 132 104 321
13
+ Case #13: 169 766 316 100 402 695 833 924 868 164
14
+ Case #14: 800 165 579 115 155 485 397 892 591 132
15
+ Case #15: 12 123 630 403 88 13 716 682 620 212
16
+ Case #16: Wrong machine
17
+ Case #17: 671 737 285 894 377 188 114 36 31 852
18
+ Case #18: 547 21 522 708 409 563 166 681 372 411
19
+ Case #19: Wrong machine
20
+ Case #20: 499 309 706 12 532 496 169 184 596 591
21
+ Case #21: Wrong machine
22
+ Case #22: 51 243 287 11 772 631 963 393 308 117
23
+ Case #23: 117 52 82 453 461 561 924 51 178 774
24
+ Case #24: Wrong machine
25
+ Case #25: 776 780 877 52 725 929 793 919 721 279
26
+ Case #26: 127 654 591 954 270 340 110 917 31 941
27
+ Case #27: Wrong machine
28
+ Case #28: 493 61 44 54 688 821 37 868 201 56
29
+ Case #29: 854 5 362 383 865 738 326 916 904 102
30
+ Case #30: 719 181 80 99 865 221 345 881 565 158
31
+ Case #31: 184 661 105 194 865 465 388 877 222 869
32
+ Case #32: 644 499 307 244 454 178 463 139 35 315
33
+ Case #33: Wrong machine
34
+ Case #34: Wrong machine
35
+ Case #35: Wrong machine
36
+ Case #36: Wrong machine
37
+ Case #37: 96 522 713 79 701 58 479 559 161 68
38
+ Case #38: 964 553 653 415 502 627 798 708 300 579
39
+ Case #39: 651 449 497 957 920 363 732 525 826 367
40
+ Case #40: 521 25 557 3 54 464 52 135 605 250
41
+ Case #41: 675 54 868 633 515 738 869 307 940 437
42
+ Case #42: 792 808 907 388 524 550 79 759 228 538
43
+ Case #43: 63 202 233 593 27 579 587 451 423 344
44
+ Case #44: 551 450 984 8 293 172 487 124 517 833
45
+ Case #45: Wrong machine
46
+ Case #46: 98 270 352 869 563 250 36 505 232 178
47
+ Case #47: 172 486 864 971 603 697 927 850 774 910
48
+ Case #48: Wrong machine
49
+ Case #49: 29 663 215 269 304 846 114 206 387 418
50
+ Case #50: 271 614 979 74 762 740 272 167 572 45
51
+ Case #51: Not enough observations
52
+ Case #52: Not enough observations
53
+ Case #53: Not enough observations
54
+ Case #54: Not enough observations
55
+ Case #55: Not enough observations
2011/round1c/n_factorful.html ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ A number is called <strong>n</strong>-factorful if it has exactly <strong>n</strong> distinct prime factors. Given positive integers <strong>a</strong>, <strong>b</strong>, and <strong>n</strong>, your task is to find the number of integers between <strong>a</strong> and <strong>b</strong>, inclusive, that are <strong>n</strong>-factorful. We consider 1 to be 0-factorful.<br/><br/>
2
+
3
+ <h2>Input</h2>
4
+ Your input will consist of a single integer <strong>T</strong> followed by a newline and <strong>T</strong> test cases. Each test cases consists of a single line containing integers <strong>a</strong>, <strong>b</strong>, and <strong>n</strong> as described above.<br/><br/>
5
+
6
+ <h2>Output</h2>
7
+ Output for each test case one line containing the number of <strong>n</strong>-factorful integers in [<strong>a</strong>, <strong>b</strong>].<br/><br/>
8
+
9
+ <h2>Constraints</h2>
10
+ <strong>T</strong> = 20<br/>
11
+ 1 &le; <strong>a</strong> &le; <strong>b</strong> &le; 10<sup>7</sup><br/>
12
+ 0 &le; <strong>n</strong> &le; 10
2011/round1c/n_factorful.in ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 50
2
+ 1 3 1
3
+ 1 10 2
4
+ 1 10 3
5
+ 1 100 3
6
+ 1 1000 0
7
+ 2836886 9741361 10
8
+ 5686897 9548986 8
9
+ 106918 126109 1
10
+ 5781726 9933735 1
11
+ 2097182 8971863 4
12
+ 1732109 8779488 5
13
+ 7551469 9356612 7
14
+ 5777852 9164237 6
15
+ 4469152 8202365 1
16
+ 6066267 8009990 9
17
+ 3822727 8587114 4
18
+ 6892171 8394739 2
19
+ 2120074 7432867 7
20
+ 3893280 7240493 6
21
+ 2558797 7817616 8
22
+ 5416449 7625242 9
23
+ 1003781 2819352 6
24
+ 1771171 2626977 5
25
+ 2448143 3204101 9
26
+ 2675787 3011726 7
27
+ 1591563 2049854 2
28
+ 452893 1857479 1
29
+ 792490 2434603 3
30
+ 2036417 2242228 4
31
+ 209457 1280356 7
32
+ 662907 1087982 8
33
+ 1255 1665105 10
34
+ 99515 1472731 8
35
+ 46295 510858 3
36
+ 47709 318484 2
37
+ 820229 895607 6
38
+ 680385 703233 5
39
+ 2951918 3585378 6
40
+ 189824 3393004 4
41
+ 483428 3970127 8
42
+ 1722003 3777753 7
43
+ 2750996 2815880 2
44
+ 219766 2623506 1
45
+ 1778284 3200629 5
46
+ 2196668 3008255 3
47
+ 27114 2046383 8
48
+ 319644 1854008 7
49
+ 698476 2431131 9
50
+ 1120382 2238757 8
51
+ 1144104 1276885 3