The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 785 new columns ({'199', '0.106', '0.392', '0.517', '0.334', '0.46', '0.24', '0.144', '252.13', '239.1', '0.396', '92', '0.504', '0.208', '0.313', '0.406', '0.455', '252.45', '0.587', '0.310', '0.380', '12', '0.173', '0.12', '143.2', '0.359', '252.23', '0.394', '252.24', '0.255', '0.52', '155', '0.354', '0.117', '0.381', '0.418', '0.472', '66.6', '126.1', '0.248', '15.1', '0.586', '171', '0.87', '0.130', '49', '0.330', '0.352', '0.127', '0.60', '0.460', '0.103', '0.81', '0.357', '0.94', '0.136', '252.5', '0.379', '0.125', '177', '0.162', '0.525', '3.1', '0.114', '252.7', '0.383', '0.175', '0.327', '0.520', '174', '0.36', '0.368', '0.238', '0.377', '0.219', '100', '19', '0.409', '0.458', '0.211', '0.240', '0.15', '253.6', '0.398', '79', '0.256', '0.384', '159', '0.230', '0.246', '0.301', '0.210', '0.83', '0.315', '0.395', '0.19', '0.143', '12.2', '233', '0.292', '15', '0.322', '0.204', '0.79', '0.218', '0.434', '0.160', '0.492', '145', '0.558', '0.232', '66.4', '0.448', '0.484', '0.134', '0.317', '232', '0.1', '0.88', '0.176', '252.12', '0.217', '0.489', '0.95', '67', '0.141', '0.228', '0.278', '20', '0.438', '0.187', '252.15', '0.264', '0.245', '0.533', '0.457', '0.413', '0.532', '0.13', '0.452', '0.93', '252.14', '249.2', '0.251', '0.252', '0.495', '0.437', '0.156', '0.580', '159.1', '0.16', '0.63', '0.221', '0.325', '0.454', '34.1', '0.361', '0.320', '0.461', '0.53', '0.40', '0.507', '143', '0.515', '0.414', '0.42', '0.367', '0.151', '0.440', '0.559', '0.400', '0.428', '0.567', '252.11', '0
...
', '0.451', '89.1', '252.27', '0.478', '0.430', '0.167', '0.283', '252.46', '108', '0.267', '6', '0.346', '0.522', '0.165', '0.408', '0.350', '0.51', '252.36', '0.68', '0.309', '0.54', '0.4', '0.445', '0.195', '253.2', '0.524', '0.480', '0.469', '0.590', '0.73', '0.389', '131', '0.513', '0.244', '246', '0.2', '0.132', '252.8', '0.419', '252.4', '0.66', '0.385', '0.536', '209', '0.324', '0.543', '0.425', '135', '0.25', '252.47', '0.312', '0.323', '0.432', '243', '0.10', '0.99', '0.277', '66.9', '209.1', '0.107', '0.308', '119', '0.442', '0.101', '0.84', '252', '98', '0.257', '0.316', '0.348', '0.243', '0.464', '0.342', '0.146', '0.263', '10', '0.583', '0.262', '0.191', '0.90', '30', '0.338', '0.481', '0.470', '0.67', '0.123', '0.34', '48', '0.122', '66.3', '0.269', '0.496', '0.225', '0.411', '216', '0.85', '0.365', '0.178', '0.231', '11', '233.1', '248', '0.133', '104', '0.216', '0.499', '0.351', '0.39', '0.197', '0.431', '0.570', '5.1', '177.1', '0.510', '0.139', '0.318', '0.190', '193', '0.436', '0.226', '0.41', '0.274', '0.341', '0.503', '252.6', '0.169', '5.2', '0.209', '0.415', '0.273', '152', '0.304', '0.258', '0.297', '0.222', '0.105', '252.38', '18', '0.335', '0.549', '0.485', '0.116', '0.336', '0.80', '0.512', '0.523', '0.260', '0.291', '0.538', '0.247', '0.508', '0.573', '0.435', '0.113', '0.78', '0.47', '0.288', '0.29', '0.17', '0.373', '166', '0.529', '0.77', '132', '82', '0.100', '0.120', '0.21', '252.1', '0.236', '0.521', '0.498', '73', '0.477', '0.239', '252.3'}) and 9 missing columns ({'median_income', 'total_bedrooms', 'total_rooms', 'households', 'longitude', 'latitude', 'housing_median_age', 'population', 'median_house_value'}).

This happened while the csv dataset builder was generating data using

hf://datasets/haibaraconan/tif/mnist_train_small.csv (at revision 6758e06c3bca69311d29ff686ec4c57a142e4e6c)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1870, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 622, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2292, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2240, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              6: int64
              0: int64
              0.1: int64
              0.2: int64
              0.3: int64
              0.4: int64
              0.5: int64
              0.6: int64
              0.7: int64
              0.8: int64
              0.9: int64
              0.10: int64
              0.11: int64
              0.12: int64
              0.13: int64
              0.14: int64
              0.15: int64
              0.16: int64
              0.17: int64
              0.18: int64
              0.19: int64
              0.20: int64
              0.21: int64
              0.22: int64
              0.23: int64
              0.24: int64
              0.25: int64
              0.26: int64
              0.27: int64
              0.28: int64
              0.29: int64
              0.30: int64
              0.31: int64
              0.32: int64
              0.33: int64
              0.34: int64
              0.35: int64
              0.36: int64
              0.37: int64
              0.38: int64
              0.39: int64
              0.40: int64
              0.41: int64
              0.42: int64
              0.43: int64
              0.44: int64
              0.45: int64
              0.46: int64
              0.47: int64
              0.48: int64
              0.49: int64
              0.50: int64
              0.51: int64
              0.52: int64
              0.53: int64
              0.54: int64
              0.55: int64
              0.56: int64
              0.57: int64
              0.58: int64
              0.59: int64
              0.60: int64
              0.61: int64
              0.62: int64
              0.63: int64
              0.64: int64
              0.65: int64
              0.66: int64
              0.67: int64
              0.68: int64
              0.69: int64
              0.70: int64
              0.71: int64
              0.72: int64
              0.73: int64
              0.74: int64
              0.75: int64
              0.76: int64
              0.77: int64
              0.78: int64
              0.79: int64
              0.80: int64
              0.81: int64
              0.82: int64
              0.83: int64
              0.84: int64
              0.85: int64
              0.86: int64
              0.87: int64
              0.88: int64
              0.89: int64
              0.90: int64
              0.91: int64
              0.92: int64
              0.93: int64
              0.94: int64
              0.95: int64
              0.96: int64
              0.97: int64
              0.98: int64
              0.99: int64
              0.100: int64
              0.101: int64
              0.102: int64
              0.103: int64
              0.104: int64
              0.105: int64
              0.106: int64
              0.107: int64
              0.108: int64
              0.109: int64
              0.110: int64
              0.111: int64
              0.112: int64
              0.113: int64
              0.114: int64
              0.115: int64
              0.116: int64
              0.117: int64
              0.118: int64
              0.119: int64
              0.120: int64
              0.121: int64
              24: int64
              67: int
              ...
              nt64
              0.484: int64
              0.485: int64
              0.486: int64
              0.487: int64
              0.488: int64
              0.489: int64
              0.490: int64
              0.491: int64
              0.492: int64
              0.493: int64
              0.494: int64
              0.495: int64
              0.496: int64
              0.497: int64
              0.498: int64
              0.499: int64
              0.500: int64
              0.501: int64
              0.502: int64
              0.503: int64
              0.504: int64
              0.505: int64
              0.506: int64
              0.507: int64
              0.508: int64
              0.509: int64
              0.510: int64
              0.511: int64
              0.512: int64
              0.513: int64
              0.514: int64
              0.515: int64
              0.516: int64
              0.517: int64
              0.518: int64
              0.519: int64
              0.520: int64
              0.521: int64
              0.522: int64
              0.523: int64
              0.524: int64
              0.525: int64
              0.526: int64
              0.527: int64
              0.528: int64
              0.529: int64
              0.530: int64
              0.531: int64
              0.532: int64
              0.533: int64
              0.534: int64
              0.535: int64
              0.536: int64
              0.537: int64
              0.538: int64
              0.539: int64
              0.540: int64
              0.541: int64
              0.542: int64
              0.543: int64
              0.544: int64
              0.545: int64
              0.546: int64
              0.547: int64
              0.548: int64
              0.549: int64
              0.550: int64
              0.551: int64
              0.552: int64
              0.553: int64
              0.554: int64
              0.555: int64
              0.556: int64
              0.557: int64
              0.558: int64
              0.559: int64
              0.560: int64
              0.561: int64
              0.562: int64
              0.563: int64
              0.564: int64
              0.565: int64
              0.566: int64
              0.567: int64
              0.568: int64
              0.569: int64
              0.570: int64
              0.571: int64
              0.572: int64
              0.573: int64
              0.574: int64
              0.575: int64
              0.576: int64
              0.577: int64
              0.578: int64
              0.579: int64
              0.580: int64
              0.581: int64
              0.582: int64
              0.583: int64
              0.584: int64
              0.585: int64
              0.586: int64
              0.587: int64
              0.588: int64
              0.589: int64
              0.590: int64
              -- schema metadata --
              pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 83572
              to
              {'longitude': Value(dtype='float64', id=None), 'latitude': Value(dtype='float64', id=None), 'housing_median_age': Value(dtype='float64', id=None), 'total_rooms': Value(dtype='float64', id=None), 'total_bedrooms': Value(dtype='float64', id=None), 'population': Value(dtype='float64', id=None), 'households': Value(dtype='float64', id=None), 'median_income': Value(dtype='float64', id=None), 'median_house_value': Value(dtype='float64', id=None)}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1412, in compute_config_parquet_and_info_response
                  parquet_operations, partial, estimated_dataset_info = stream_convert_to_parquet(
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 988, in stream_convert_to_parquet
                  builder._prepare_split(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1741, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1872, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 785 new columns ({'199', '0.106', '0.392', '0.517', '0.334', '0.46', '0.24', '0.144', '252.13', '239.1', '0.396', '92', '0.504', '0.208', '0.313', '0.406', '0.455', '252.45', '0.587', '0.310', '0.380', '12', '0.173', '0.12', '143.2', '0.359', '252.23', '0.394', '252.24', '0.255', '0.52', '155', '0.354', '0.117', '0.381', '0.418', '0.472', '66.6', '126.1', '0.248', '15.1', '0.586', '171', '0.87', '0.130', '49', '0.330', '0.352', '0.127', '0.60', '0.460', '0.103', '0.81', '0.357', '0.94', '0.136', '252.5', '0.379', '0.125', '177', '0.162', '0.525', '3.1', '0.114', '252.7', '0.383', '0.175', '0.327', '0.520', '174', '0.36', '0.368', '0.238', '0.377', '0.219', '100', '19', '0.409', '0.458', '0.211', '0.240', '0.15', '253.6', '0.398', '79', '0.256', '0.384', '159', '0.230', '0.246', '0.301', '0.210', '0.83', '0.315', '0.395', '0.19', '0.143', '12.2', '233', '0.292', '15', '0.322', '0.204', '0.79', '0.218', '0.434', '0.160', '0.492', '145', '0.558', '0.232', '66.4', '0.448', '0.484', '0.134', '0.317', '232', '0.1', '0.88', '0.176', '252.12', '0.217', '0.489', '0.95', '67', '0.141', '0.228', '0.278', '20', '0.438', '0.187', '252.15', '0.264', '0.245', '0.533', '0.457', '0.413', '0.532', '0.13', '0.452', '0.93', '252.14', '249.2', '0.251', '0.252', '0.495', '0.437', '0.156', '0.580', '159.1', '0.16', '0.63', '0.221', '0.325', '0.454', '34.1', '0.361', '0.320', '0.461', '0.53', '0.40', '0.507', '143', '0.515', '0.414', '0.42', '0.367', '0.151', '0.440', '0.559', '0.400', '0.428', '0.567', '252.11', '0
              ...
              ', '0.451', '89.1', '252.27', '0.478', '0.430', '0.167', '0.283', '252.46', '108', '0.267', '6', '0.346', '0.522', '0.165', '0.408', '0.350', '0.51', '252.36', '0.68', '0.309', '0.54', '0.4', '0.445', '0.195', '253.2', '0.524', '0.480', '0.469', '0.590', '0.73', '0.389', '131', '0.513', '0.244', '246', '0.2', '0.132', '252.8', '0.419', '252.4', '0.66', '0.385', '0.536', '209', '0.324', '0.543', '0.425', '135', '0.25', '252.47', '0.312', '0.323', '0.432', '243', '0.10', '0.99', '0.277', '66.9', '209.1', '0.107', '0.308', '119', '0.442', '0.101', '0.84', '252', '98', '0.257', '0.316', '0.348', '0.243', '0.464', '0.342', '0.146', '0.263', '10', '0.583', '0.262', '0.191', '0.90', '30', '0.338', '0.481', '0.470', '0.67', '0.123', '0.34', '48', '0.122', '66.3', '0.269', '0.496', '0.225', '0.411', '216', '0.85', '0.365', '0.178', '0.231', '11', '233.1', '248', '0.133', '104', '0.216', '0.499', '0.351', '0.39', '0.197', '0.431', '0.570', '5.1', '177.1', '0.510', '0.139', '0.318', '0.190', '193', '0.436', '0.226', '0.41', '0.274', '0.341', '0.503', '252.6', '0.169', '5.2', '0.209', '0.415', '0.273', '152', '0.304', '0.258', '0.297', '0.222', '0.105', '252.38', '18', '0.335', '0.549', '0.485', '0.116', '0.336', '0.80', '0.512', '0.523', '0.260', '0.291', '0.538', '0.247', '0.508', '0.573', '0.435', '0.113', '0.78', '0.47', '0.288', '0.29', '0.17', '0.373', '166', '0.529', '0.77', '132', '82', '0.100', '0.120', '0.21', '252.1', '0.236', '0.521', '0.498', '73', '0.477', '0.239', '252.3'}) and 9 missing columns ({'median_income', 'total_bedrooms', 'total_rooms', 'households', 'longitude', 'latitude', 'housing_median_age', 'population', 'median_house_value'}).
              
              This happened while the csv dataset builder was generating data using
              
              hf://datasets/haibaraconan/tif/mnist_train_small.csv (at revision 6758e06c3bca69311d29ff686ec4c57a142e4e6c)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

longitude
float64
latitude
float64
housing_median_age
float64
total_rooms
float64
total_bedrooms
float64
population
float64
households
float64
median_income
float64
median_house_value
float64
-114.31
34.19
15
5,612
1,283
1,015
472
1.4936
66,900
-114.47
34.4
19
7,650
1,901
1,129
463
1.82
80,100
-114.56
33.69
17
720
174
333
117
1.6509
85,700
-114.57
33.64
14
1,501
337
515
226
3.1917
73,400
-114.57
33.57
20
1,454
326
624
262
1.925
65,500
-114.58
33.63
29
1,387
236
671
239
3.3438
74,000
-114.58
33.61
25
2,907
680
1,841
633
2.6768
82,400
-114.59
34.83
41
812
168
375
158
1.7083
48,500
-114.59
33.61
34
4,789
1,175
3,134
1,056
2.1782
58,400
-114.6
34.83
46
1,497
309
787
271
2.1908
48,100
-114.6
33.62
16
3,741
801
2,434
824
2.6797
86,500
-114.6
33.6
21
1,988
483
1,182
437
1.625
62,000
-114.61
34.84
48
1,291
248
580
211
2.1571
48,600
-114.61
34.83
31
2,478
464
1,346
479
3.212
70,400
-114.63
32.76
15
1,448
378
949
300
0.8585
45,000
-114.65
34.89
17
2,556
587
1,005
401
1.6991
69,100
-114.65
33.6
28
1,678
322
666
256
2.9653
94,900
-114.65
32.79
21
44
33
64
27
0.8571
25,000
-114.66
32.74
17
1,388
386
775
320
1.2049
44,000
-114.67
33.92
17
97
24
29
15
1.2656
27,500
-114.68
33.49
20
1,491
360
1,135
303
1.6395
44,400
-114.73
33.43
24
796
243
227
139
0.8964
59,200
-114.94
34.55
20
350
95
119
58
1.625
50,000
-114.98
33.82
15
644
129
137
52
3.2097
71,300
-115.22
33.54
18
1,706
397
3,424
283
1.625
53,500
-115.32
32.82
34
591
139
327
89
3.6528
100,000
-115.37
32.82
30
1,602
322
1,130
335
3.5735
71,100
-115.37
32.82
14
1,276
270
867
261
1.9375
80,900
-115.37
32.81
32
741
191
623
169
1.7604
68,600
-115.37
32.81
23
1,458
294
866
275
2.3594
74,300
-115.38
32.82
38
1,892
394
1,175
374
1.9939
65,800
-115.38
32.81
35
1,263
262
950
241
1.8958
67,500
-115.39
32.76
16
1,136
196
481
185
6.2558
146,300
-115.4
32.86
19
1,087
171
649
173
3.3182
113,800
-115.4
32.7
19
583
113
531
134
1.6838
95,800
-115.41
32.99
29
1,141
220
684
194
3.4038
107,800
-115.46
33.19
33
1,234
373
777
298
1
40,000
-115.48
32.8
21
1,260
246
805
239
2.6172
88,500
-115.48
32.68
15
3,414
666
2,097
622
2.3319
91,200
-115.49
32.87
19
541
104
457
106
3.3583
102,800
-115.49
32.69
17
1,960
389
1,691
356
1.899
64,000
-115.49
32.67
29
1,523
440
1,302
393
1.1311
84,700
-115.49
32.67
25
2,322
573
2,185
602
1.375
70,100
-115.5
32.75
13
330
72
822
64
3.4107
142,500
-115.5
32.68
18
3,631
913
3,565
924
1.5931
88,400
-115.5
32.67
35
2,159
492
1,694
475
2.1776
75,500
-115.51
33.24
32
1,995
523
1,069
410
1.6552
43,300
-115.51
33.12
21
1,024
218
890
232
2.101
46,700
-115.51
32.99
20
1,402
287
1,104
317
1.9088
63,700
-115.51
32.68
11
2,872
610
2,644
581
2.625
72,700
-115.52
34.22
30
540
136
122
63
1.3333
42,500
-115.52
33.13
18
1,109
283
1,006
253
2.163
53,400
-115.52
33.12
38
1,327
262
784
231
1.8793
60,800
-115.52
32.98
32
1,615
382
1,307
345
1.4583
58,600
-115.52
32.97
24
1,617
366
1,416
401
1.975
66,400
-115.52
32.97
10
1,879
387
1,376
337
1.9911
67,500
-115.52
32.77
18
1,715
337
1,166
333
2.2417
79,200
-115.52
32.73
17
1,190
275
1,113
258
2.3571
63,100
-115.52
32.67
6
2,804
581
2,807
594
2.0625
67,700
-115.53
34.91
12
807
199
246
102
2.5391
40,000
-115.53
32.99
25
2,578
634
2,082
565
1.7159
62,200
-115.53
32.97
35
1,583
340
933
318
2.4063
70,700
-115.53
32.97
34
2,231
545
1,568
510
1.5217
60,300
-115.53
32.73
14
1,527
325
1,453
332
1.735
61,200
-115.54
32.99
23
1,459
373
1,148
388
1.5372
69,400
-115.54
32.99
17
1,697
268
911
254
4.3523
96,000
-115.54
32.98
27
1,513
395
1,121
381
1.9464
60,600
-115.54
32.97
41
2,429
454
1,188
430
3.0091
70,800
-115.54
32.79
23
1,712
403
1,370
377
1.275
60,400
-115.55
32.98
33
2,266
365
952
360
5.4349
143,000
-115.55
32.98
24
2,565
530
1,447
473
3.2593
80,800
-115.55
32.82
34
1,540
316
1,013
274
2.5664
67,500
-115.55
32.8
23
666
142
580
160
2.1136
61,000
-115.55
32.79
23
1,004
221
697
201
1.6351
59,600
-115.55
32.79
22
565
162
692
141
1.2083
53,600
-115.55
32.78
5
2,652
606
1,767
536
2.8025
84,300
-115.56
32.96
21
2,164
480
1,164
421
3.8177
107,200
-115.56
32.8
28
1,672
416
1,335
397
1.5987
59,400
-115.56
32.8
25
1,311
375
1,193
351
2.1979
63,900
-115.56
32.8
15
1,171
328
1,024
298
1.3882
69,400
-115.56
32.79
20
2,372
835
2,283
767
1.1707
62,500
-115.56
32.79
18
1,178
438
1,377
429
1.3373
58,300
-115.56
32.78
46
2,511
490
1,583
469
3.0603
70,800
-115.56
32.78
35
1,185
202
615
191
4.6154
86,200
-115.56
32.78
29
1,568
283
848
245
3.1597
76,200
-115.56
32.76
15
1,278
217
653
185
4.4821
140,300
-115.57
32.85
33
1,365
269
825
250
3.2396
62,300
-115.57
32.85
17
1,039
256
728
246
1.7411
63,500
-115.57
32.84
29
1,207
301
804
288
1.9531
61,100
-115.57
32.83
31
1,494
289
959
284
3.5282
67,500
-115.57
32.8
16
2,276
594
1,184
513
1.875
93,800
-115.57
32.79
34
1,152
208
621
208
3.6042
73,600
-115.57
32.78
20
1,534
235
871
222
6.2715
97,200
-115.57
32.78
15
1,413
279
803
277
4.3021
87,500
-115.58
33.88
21
1,161
282
724
186
3.1827
71,700
-115.58
32.81
5
805
143
458
143
4.475
96,300
-115.58
32.81
10
1,088
203
533
201
3.6597
87,500
-115.58
32.79
14
1,687
507
762
451
1.6635
64,400
-115.58
32.78
5
2,494
414
1,416
421
5.7843
110,100
-115.59
32.85
20
1,608
274
862
248
4.875
90,800
End of preview.